JP4577872B2 - 追記型光記録媒体 - Google Patents
追記型光記録媒体 Download PDFInfo
- Publication number
- JP4577872B2 JP4577872B2 JP2004064452A JP2004064452A JP4577872B2 JP 4577872 B2 JP4577872 B2 JP 4577872B2 JP 2004064452 A JP2004064452 A JP 2004064452A JP 2004064452 A JP2004064452 A JP 2004064452A JP 4577872 B2 JP4577872 B2 JP 4577872B2
- Authority
- JP
- Japan
- Prior art keywords
- recording
- layer
- recording medium
- organic material
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
Description
超高密度の記録が可能となる青色レーザの開発は急速に進んでおり、それに対応した追記型光記録媒体の開発が行われている。
従来の追記型光記録媒体では、有機材料からなる記録層にレーザ光を照射し、主に有機材料の分解・変質による屈折率変化を生じさせることで記録ピットを形成させており、記録層に用いられる有機材料の光学定数や分解挙動が、良好な記録ピットを形成させるための重要な要素となっている。
従って、青色レーザ対応の追記型光記録媒体の記録層に用いる有機材料としては、青色レーザ波長に対する光学的性質や分解挙動の適切な材料を選択する必要がある。即ち、未記録時の反射率を高め、またレーザの照射によって有機材料が分解し大きな屈折率変化が生じるようにするため(これによって大きな変調度が得られる)、記録再生波長は大きな吸収帯の長波長側の裾に位置するように選択される。何故ならば、有機材料の大きな吸収帯の長波長側の裾は、適度な吸収係数を有し且つ大きな屈折率が得られる波長領域となるためである(図1参照。従来の有機材料を記録層とした追記型光記録媒体では、図中の斜線部分に記録再生波長を設定する)。
つまり、青色レーザ波長近傍に吸収帯を持つ有機材料は多数存在し、吸収係数を制御することは可能となるが、大きな屈折率を持たないため、大きな変調度を得ることができなくなる。
また、従来の追記型光記録媒体では、有機材料の分解・変質による屈折率変化と共に、基板変形によっても記録が行われている。例えば、図3〔市販のDVD−Rに記録を行った部分の基板面をAFM(アトミックフォースマイクロスコープ、Atomic force microscope)により観察した図〕に示すように、基板は反射層側に変形しており、この変形によって変調度を発生させている。
しかし、これらの公報では、実施例を見ても溶液と薄膜のスペクトルを測定しているのみで、記録再生に関する記載はない。
特許文献6〜8では、実施例に記録の記載があるものの、記録波長は488nmであり、また記録条件や記録密度に関する記載はなく、良好な記録ピットが形成できた旨の記載があるのみである。
特許文献9では、実施例に記録の記載があるものの、記録波長は430nmであり、また記録条件や記録密度に関する記載はなく、良好な変調度が得られた旨の記載があるのみである。
特許文献10〜19では、実施例に記録波長430nm、NA0.65での記録例があるが、最短ピットが0.4μmという低記録密度条件(DVDと同等の記録密度)である。
特許文献20では、記録再生波長は405〜408nmであるが、記録密度に関する具体的な記載がなく、14T−EFM信号の記録という低記録密度条件である。
従来の有機材料を用いた追記型光記録媒体では、変調度と反射率の確保の点から、記録再生波長に対し大きな屈折率と比較的小さな吸収係数(0.05〜0.07程度)を持つ有機材料しか使用することができない。
更に、有機材料は記録光に対して十分な吸収能を持たないため、有機材料の膜厚を薄膜化することが不可能であり、従って、深い溝を持った基板を使用する必要があった(有機材料は通常スピンコート法によって形成されるため、有機材料を深い溝に埋めて厚膜化している)。そのため、深い溝を有する基板の形成が非常に難しくなり、光記録媒体としての品質を低下させる要因になっている。
また、有機材料の膜厚を薄くすることができないため、記録パワーマージン等が狭くなるといった問題点(記録再生特性の各種マージンが狭いという問題)を有していた。
特許文献21には、基板/可飽和吸収色素含有層/反射層という層構成で、可飽和吸収色素の消衰係数(本発明でいう吸収係数)の変化により記録を行う技術が開示されている。
特許文献22には、基板/金属蒸着層/光吸収層/保護シ−トという層構成で、光吸収層によって発生した熱によって、金属蒸着層を変色又は変形させることで記録を行う技術が開示されている。
特許文献23には、基板/誘電体層/光吸収体を含む記録層/反射層という層構成で、記録層の膜厚を変えることにより溝部の深さを変えて記録を行う技術が開示されている。
特許文献24には、基板/光吸収体を含む記録層/金属反射層という層構成で、記録層の膜厚を10〜30%変化させることにより記録を行う技術が開示されている。
特許文献25には、基板/有機色素を含有する記録層/金属反射層/保護層という層構成で、基板の溝幅を未記録部に対して20〜40%広くすることにより記録を行う技術が開示されている。
特許文献27には、基板/光吸収層/記録補助層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献28には、基板/光吸収層/多孔質な記録補助層/光反射層、或いは、基板/多孔質な記録補助層/光吸収層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献29には、基板/多孔質な光吸収層/光反射層という層構成で、光吸収層を凹状に変形させると共に、光吸収層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許文献30には、基板/有機色素を含む記録層/記録補助層という層構成で、記録補助層と有機色素が相溶して、有機色素の吸収スペクトルを短波長側へシフトさせることで記録を行う技術が開示されている。
特許文献32には、基板上に金属薄膜層、変形可能な緩衝層、反射層、保護層を順次形成した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚を薄くさせることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金との規定がある。また、緩衝層としては、変形し易く適当な流動性を持つ樹脂が用いられ、変形を促進させるために色素を含有させても良いとの記載がある。
特許文献33には、基板上に金属薄膜層、緩衝層、反射層を順次積層した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、緩衝層は色素と有機高分子の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
以上の公開技術は、基本的に青色レーザ波長領域での光記録媒体の実現を狙ったものではなく、青色レーザ波長領域で有効となる層構成や記録方法ではない。更に、上述の技術では、記録層中の色素に光吸収機能が必要となるため、色素の主吸収帯が記録再生波長近傍に存在しなければならず、色素の選択に大きな制限が加わる。
また、上述の技術では、その記録原理の主体が変形による場合が殆どである。この変形が記録原理の主体となると、良好なジッタや変調度が得られても、記録マーク間の干渉が大きくなるため、各種記録再生特性のマージンが狭くなるという問題がある。
近年、記録容量の増大を目的に多値記録技術が開発されている。最近はホームユーザーでも普通に容量の大きいオーディオデータや画像/動画データを扱うようになり、また一方、ハードディスクも大容量化が進み、CDやDVD系の光記録媒体では記録容量が足りなくなってきている。
そんな中で、従来型の光記録媒体の容量を高める記録方式として、「多値記録技術(Multi Level Technology)」が、米国のベンチャー企業カリメトリクス社(Calimetrics, Inc.)から提案されている。この多値記録技術は、簡単に言えば、記録線密度を向上させるものである。
従来のCDやDVD系の光記録媒体では、記録するデータ列に応じて各記録マーク端部の位置や長さを変えて記録し、再生時に記録マークの長さを判定している(スライス方式)。簡単に現行のスライス方式について説明する。
その記録媒体に記録された記録マーク列(c)に再生光を照射して情報を再生すると、図(d)に示すような再生信号波形が得られる。
この再生信号波形は、(b)で示した記録波形のような矩形波とはならず鈍った波形になるため、再生信号波形を等化器で整形する(具体的には再生信号の高周波成分が増幅される)。
次いで、この等化波形(e)と閾値との交点を検出し、ウインドウ内で交点が検出されれば「1」、交点が検出されなければ「0」として二値データを出力する(f)。
そしてこの交点検出に得られた二値データ(f)をNRZ変換することによって(g)に示すような復号データを得ている。
この多値記録では、通常、再生時のレーザー光のビームスポット径は、基本セル長よりも大きい。これによって、1つの記録マークで3ビット分の信号を表現することができるため、トラックピッチを詰めることなく、記録線密度を上げ、記録容量を増加させることができる。
上記特許文献36には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、基板のガラス転移点と反射率の熱伝導率を規定する発明が記載されている。
特許文献37には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、有機色素の熱分解特性を規定する発明が記載されている。
特許文献38〜39には、多値記録が可能なフタロシアニンやシアニン色素からなる記録層を有する光記録媒体において、波長、NA、グルーブ幅の関係を規定した発明が記載されている。
特許文献40には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、グルーブ上の記録層膜厚とグルーブ深さの関係を規定した発明が記載されている。
特許文献41には、多値記録が可能な有機色素からなる記録層を有する光記録媒体において、未記録時の反射率を40〜80%とする発明が記載されている。
即ち、従来の記録材料、層構成等のままで十分高密度化した多値記録が可能となるのであれば、これは従来の記録材料、層構成等のままでも最短マークを短くできることを意味するため、二値記録でも最短マーク長を短くして高密度化が図れることになる(実際通常の二値記録では、特別な記録再生方法等を利用しない限り現状以上に記録密度を高めることができない)。
従って、二値記録よりも十分高密度化した多値記録可能な追記型光記録媒体を実現させるためには、従来の記録材料、層構成等のままでは実現不可能であって、従来とは異なる記録材料や層構成が新たに必要になる筈である。
また、上記公知技術では変形を主体として記録マークが形成されている(前述した図3参照)。この変形は、記録マーク間の長さが十分長い場合(記録線密度が低い場合)、或いは多値レベルが記録されたセルの長さが再生光のビーム径以上に連続しない場合は特に問題はないが、記録線密度が高くなる場合、或いは多値レベルが記録されたセルの長さが再生光のビーム径以上の長さで連続する場合は、変形が干渉しあって、その干渉が線形でなくなる(線形から大きく外れる)。
図7は、3つの連続したセルに変形を主体とする記録マークを形成した場合であって、その記録されたセルの一連の長さが再生ビーム径以下の場合、3つのセルの変形の干渉の違いによる再生信号の変化を模式的に示したものである。変形の干渉が線形であれば図7(b)のような変形状態になるが、変形の干渉が線形でなくなると、図7(c)、(d)のような変形状態を示すようになる。
しかし、この干渉した変形が再生ビーム径以下の長さであるため、変形状態の違いを検出することができず、変形状態が(b)、(c)、(d)のように異なった場合でも、ほぼ(e)に示すような再生信号が得られる。
従って、(e)に示したT1、T2、T3のサンプリングタイムで反射レベルを検出すれば、正しいデータを復元することができる。
この場合には、図7の場合に比べて変形の干渉がより線形でなくなり、例えば図8(b)、(c)、(d)のような変形状態を示すようになる(実際はもっと複雑になる)。この干渉した変形が再生ビーム径より大きな長さであるため、変形状態の違いを明瞭に検出することができ、(b)、(c)、(d)の変形状態に合わせて、例えば、それぞれ(e)、(f)、(g)のような再生信号が得られる。
従って、(e)、(f)、(g)に示したT1〜T7のサンプリングタイムで反射レベルを検出すると、干渉の違いによって異なったデータが復元されてしまい、もはや正しいデータを復元することができない。
このように、変形が記録の主体となると、記録パターンによって記録マーク間の干渉が全く異なってしまうため(どのような再生信号が得られるか予測できない)、記録再生特性が悪化する。
多値記録技術とは別の高密度化技術として、現行のスライス方式の代りにPRML(パーシャル・レスポンス・アンド・マキシマム・ライクリフッド、Partial Response and Maximum Likelihood)方式の光記録媒体への利用が検討されている。
高密度化を図るために記録線密度を高めると、再生信号はより鈍った波形となる〔これは図4で説明したように、再生信号波形(d)は記録波形(b)のような矩形波にならないことを意味する〕。再生信号は等化器によって高周波成分が増幅され、等化波形へと変換されるが、高密度化されて波形が鈍ると、より高周波成分を増幅する必要がある。この高周波成分の増幅時には、等化器は信号劣化成分まで増幅を行ってしまうため、再生信号のSNRの大幅な低下を招くという問題がある。PRMLという技術は、この高密度化に伴う再生信号のSNRの低下を抑制するための再生信号処理法方式である。
図9の(a)〜(d)は、図4の(a)〜(d)と同様であり、それぞれ、記録すべき情報である記録データ(a)、記録波形(b)、記録マーク列(c)、再生信号波形(d)である。
図9(d)の再生波形に対して、等化器でPR(1,1)特性,PR(1,2,1)特性,PR(1,2,2,1)特性に基づく等化を行った場合の等化波形を、それぞれ図9(e)〜(g)に示す。ここで、PR(1,1)特性とは、インパルス応答が、連続する2つの識別点に各々1:1の割合で出現する特性を示し、PR(1,2,1)特性とは、インパルス応答が、連続する3つの識別点に各々1:2:1の割合で出現する特性を示し、PR(1,2,2,1)特性とは、インパルス応答が、連続する4つの識別点に各々1:2:2:1の割合で出現する特性を示す。図9(e)〜(g)に示すように、PR特性が複雑になるほど等化波形が鈍ることが分る。
PRML方式では、再生波形の特性に近いPR特性で波形等化することにより、等化器による再生信号劣化成分の増幅を抑制することが可能となる。
このように、PRML技術を用いることで、従来と同等の光学系を用いても高密度化が実現される訳であるが、PRML技術を用いた場合であっても、記録マーク間の干渉(符号間干渉)が大きくなって、その干渉が線形でなくなると(予測できない記録マーク間干渉が起こること)、もはや信頼性の高い記録再生が不能となる。即ち、PRML方式を適用できるのは、予測可能な記録マーク間の干渉が起こることが前提で、実際の記録マーク間干渉が予測と異なるとPRML方式を用いた効果がなくなる。
従って、記録マーク間の干渉を予測可能なレベルに抑制させるためには、記録マークの変形を抑制することが必要である。
青色レーザ波長域以下の短波長で多値記録が可能な追記型光記録媒体を実現するためには、次の(1)〜(3)が課題となる。
(1)小さな記録マークが形成できる。
(2)記録マーク間の干渉が少ない。
(3)記録マークの安定性が高い。
従来の二値記録の場合は、最短マークが再生ビーム径に対して十分な大きさを有しているため(おおよそ再生ビーム径の1/2程度)、最短マークから得られる振幅も大きい。つまり、最短マーク部の変形量が大きいことを意味する。
一方、多値記録では、最短マークが再生ビーム径に対して十分な大きさを有しないため、最短マークから得られる振幅が、二値記録の最短マークから得られる振幅の数分の1以下となる。つまり、最短マーク部の変形量が非常に小さくなること意味する。
ところで、従来のCD系やDVD系の追記型光記録媒体では、光吸収機能を有する有機色素が基板に直接接して設けられているため、基板が大きく変形する(有機色素の分解による複素屈折率変化等の寄与もあるが、基板変形が主体となって変調度が発生し易い)。基板変形は、その変形量が大きくなれば弾性変形領域を超えるため変形が固定されるが、弾性変形領域内の変形量である変形は、外部からの熱等によって変形が緩和される恐れがある。また弾性変形領域を越えた変形であっても、隣接した記録マークの形成時の熱や、隣接記録マークの変形によって、変形形状が大きく変わる恐れがある。
図10は、従来型の構造、即ち基板/色素層/Ag反射層/保護層構成を有する追記型光記録媒体の記録マークの様子を示すものである。
Aは、再生信号の波形を示し、Bは、保護層、Ag反射層、色素層を剥がして基板表面をAFMによって観察した像を示し、Cは、Bで測定した基板のAFM像から得た基板断面の変形量を表示した図である。この図から、記録部は非常に大きな変形を起こしており、その基板変形形状は記録マーク中央部近傍が凹んだ形状を示していることが分る。また、前記図6〜8で説明したように、変形の干渉(記録マーク内の変形の干渉)が線形でないことが明らかである。
図11では、図10と同様に、Aは、再生信号の波形を示し、Bは、保護層、Ag反射層、色素層を剥がして、基板表面をAFMによって観察した像を示し、Cは、Bで測定した基板のAFM像から得た基板断面の変形量を表示した図である。この図から、弱DC光を照射することで基板の変形状態が変化し、これによって再生信号の波形も変化することが分る。これは弱DC光の照射によって基板の変形部における歪が緩和されたためと考えられる。
また、記録マーク部の基板変形形状が、弱いDC光の照射によって変化することから、記録マーク部上にある色素層にはまだ十分な光吸収機能が残っている筈であり、従来型の追記型光記録媒体では、変形が主体となって変調度を発生させていることが分る。
(1)記録マーク内の変形の干渉が大きくなり、変形状態の違いによって、即ち記録マーク長によって再生信号波形が変化する
(2)記録マーク間の干渉が大きくなり、変形状態の違いによって、即ち記録パターンによって(前後或いは隣接トラック間の記録マークの種類によって)再生信号波形が変化する
(3)再生時、隣接トラックへの記録時、高温環境下での放置、或いは経年放置によって変形が緩和され、再生信号波形が変化する
という問題が発生するため、
(イ)ジッタ、或いはエラー率等が悪化する
(ロ)ジッタ、或いはエラー率等の記録パワーマージンが狭くなる
(ハ)最適ジッタ、或いは最小エラー率が得られる記録状態において、そのアシンメトリが不適正化し易い(アシンメトリがゼロから大きくずれる)
(ニ)小さな記録マークを安定して形成することができない
(ホ)記録マーク間の干渉を予測できない
という弊害が発生する。
これらの弊害は従来の二値記録においても当然発生する問題であるが、従来の二値記録よりも記録線密度を高めた追記型光記録媒体、即ち多値記録やPRML方式を適用した追記型光記録媒体の場合に一層顕著になる。
(イ)有機材料の選択の幅が非常に狭い
(ロ)波長依存性が非常に大きい
(ハ)基板の溝深さを深くしないと良好な記録再生特性を実現できない
(ニ)いわゆるランド部(溝間部)には記録ができない
そこで、本発明は、上記問題点、課題を解決するための追記型光記録媒体とその記録再生方法の提供を目的とする。
従来の追記型光記録媒体では、有機材料の分解・変質によって記録再生波長における吸収係数を低下させ、これによる大きな屈折率変化を利用して変調度を発生させていたが、本発明の追記型光記録媒体では、従来、光吸収機能による熱発生層であり、かつ分解・変質に起因した屈折率(複素屈折率の実部)変化による記録層として機能していた有機材料薄膜から、主たる熱発生層の機能を分離させ、有機材料薄膜とは別に光吸収機能を有するBiO膜を設けた点に特徴がある。この追記型光記録媒体は、従来の色素を用いた追記型光記録媒体に比べて短マーク形成能力が非常に優れている。
また本発明では、更なる記録再生特性の向上という要求・期待に応えるため、保存安定性が一層優れた追記型光記録媒体の提供も目的とする。
1) 基板上に少なくともBiO膜と有機材料薄膜を有し、該BiO膜が、Bi元素、O元素及び4B族の中から選ばれる一種以上の元素を含有し、該BiO膜の組成をBia4BbOd(4Bは4B族の元素、a、b、dは組成比)として、
10≦a≦40
3≦b≦20
50≦d≦70
であることを特徴とする追記型光記録媒体。
2) BiO膜が、Al、Cr、Mn、In、Co、Fe、Cu、Ni、Zn及びTiの中から選ばれる一種以上の元素Mを含有し(以下、この薄膜をBiOM膜という)、該BiOM膜の組成をBia4BbMcOd(4Bは4B族の元素、a、b、c、dは組成比)として、
10≦a≦40
3≦b≦20
3≦c≦20
50≦d≦70
であることを特徴とする1)記載の追記型光記録媒体。
3) 4B族元素がSi又はGeであることを特徴とする1)又は2)記載の追記型光記録媒体。
4) 基板上に、少なくとも、BiO膜、有機材料薄膜、反射層が順次積層されたことを特徴とする1)〜3)の何れかに記載の追記型光記録媒体。
5) 基板上に、少なくとも、有機材料薄膜、BiO膜、反射層が順次積層されたことを特徴とする1)〜3)の何れかに記載の追記型光記録媒体。
6) 基板上に、少なくとも、反射層、BiO膜、有機材料薄膜、カバー層が順次積層されたことを特徴とする1)〜3)の何れかに記載の追記型光記録媒体。
7) 基板上に、少なくとも、反射層、有機材料薄膜、BiO膜、カバー層が順次積層されたことを特徴とする1)〜3)の何れかに記載の追記型光記録媒体。
本発明の課題である変形量の小さい記録マークで、大きな変調度を発生させることを実現させるためのポイントは、次の(イ)〜(ニ)である。
(イ)光吸収機能を有する層が分解、変質、組成変化、酸化/還元等を起こし、光吸収機能を有する層自体が大きく変形しないようにすること
(ロ)光吸収機能を有する層が分解、変質、組成変化、酸化/還元等を起こし、基板等の変形し易い隣接層に多くの熱を伝えないこと(光吸収機能を有する層で発生した熱を光吸収機能を有する層で消費する。これによって基板等の変形を小さくすることが可能となる。)
(ハ)変形量を低減させても十分な変調度を発生させるために、大きな光学定数変化を起こす層を有すること
(ニ)変形量を低減させても十分な変調度を発生させるために、隣接層との層界面を不明瞭化する記録原理を利用すること
このような機能を有する材料について鋭意検討した結果、本発明のような特定の材料からなる薄膜と有機材料薄膜の組み合わせが非常に有効であることを発見した。この組み合わせを用いることで、記録マークにおける変形の寄与を従来に比べて非常に小さくすることが可能となり、〔発明が解決しようとする課題〕で説明した課題・問題点を解決することができる。
これに対し、本発明の追記型光記録媒体では、従来、光吸収機能による熱発生層であり且つ分解・変質に起因した屈折率(複素屈折率の実部)変化による記録層として機能していた有機材料薄膜から、主たる熱発生層の機能を分離させ、有機材料薄膜とは別に光吸収機能を有するBiO膜を設けた点に特徴がある。
本発明では、次のイ)〜ル)の記録原理に基づいて記録マークが形成される。
イ)BiO膜を変形させる
ロ)BiO膜の複素屈折率を変化させる
ハ)BiO膜の組成を変化させる
ニ)BiO膜を溶融させる
ホ)BiO膜中の構成元素を隣接層へ拡散させる
ヘ)BiO膜の結晶状態・結晶構造を変化させる
ト)BiO膜中の構成元素を酸化/還元させる
チ)BiO膜中の組成分布を変化させる
リ)有機材料薄膜の体積を変化させる
ヌ)有機材料薄膜の複素屈折率を変化させる
ル)有機材料薄膜に空洞部を形成させる
即ち、これらの記録原理を用いることで、次の(1)〜(7)のような特性を有し、変形量の小さい記録マークで大きな変調度を発生させることができる光記録媒体とその記録再生方法を実現することができる。
(1)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、二値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(2)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、多値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体とその記録再生方法。
(3)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、PRML方式による信号処理系での記録再生に適した高密度記録可能な追記型光記録媒体とその記録再生方法。
(4)記録パワーの変動に対する、ジッタやエラー率等のマージンの広い追記型光記録媒体とその記録再生方法。
(5)記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体とその記録再生方法。
(6)転写性のよい浅溝基板でも記録再生が容易に行える追記型光記録媒体とその記録再生方法。
(7)ランド部にも記録が可能な追記型光記録媒体とその記録再生方法。
本発明では、BiO膜が主たる光吸収機能を担う。
このBiO膜は、正常分散を示す材料であるため(有機材料のように、ある波長範囲内に大きな吸収帯を有する材料でないため、複素屈折率の波長依存性が小さい)、レーザの個体差や、環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという従来の問題を大幅に解消することができる。
従来の追記型光記録媒体では、有機材料薄膜が記録層と光吸収層の機能を兼用していたため、記録再生波長に対して大きな屈折率nと比較的小さな吸収係数kを有することが有機材料の必須条件であり、そのため有機材料を分解させる温度まで到達させるには、比較的厚い膜厚が必要となっていた(また相変化型の光記録媒体に対し基板の溝深さが非常に深くなっていた)。
しかし、本発明の光記録媒体では、有機材料薄膜に主たる光吸収機能や記録機能を持たせる必要がないため、有機材料薄膜の膜厚は従来に比べて薄くすることが可能となる。
また、有機材料薄膜の薄膜化が可能となったことにより、転写性(成形性)に優れた溝深さの浅い基板を使用することが可能となり、光記録媒体の信号品質が大幅に向上すると共に従来に比べて基板を容易かつ安価に製造(成形)できる。
また、上記記録原理によるため再生時に基板の溝形状の影響を受け難く、基板形状のばらつきに対する許容度が大きくなり、従来に比べて基板の製造を容易かつ安価に行うことができる。
また、有機材料薄膜を薄くすることが可能なため、記録パワーマージン等を広げることが可能となる。
具体的には、BiO膜の光吸収機能によって、BiO膜自身が次のような状態変化を起こす。
イ)変形(但し、従来に比べて変形量が小さい)
ロ)複素屈折率の変化〔例えば下記ハ)〜チ)に伴って複素屈折率が変化する〕
ハ)組成の変化
ニ)酸化/還元
ホ)溶融
ヘ)構成元素の隣接層への拡散
ト)組成分布変化
チ)結晶構造の変化
このように、500nm以下の記録再生波長に対して光吸収機能を有すると共に、記録機能をも持たせるために、Bi元素を選択する。
また、大きな複素屈折率変化、組成の変化、溶融を起こしたり、或いは隣接層に構成元素を拡散させるために、低融点のBi元素を選択する。
更に、BiO膜には、Al、Cr、Mn、In、Co、Fe、Cu、Ni、Zn、及びTiの中から選ばれる一種以上の元素Mを含有させることが好ましい。
また、Bia4BbOd又はBia4BbMcOdで表されるBiO膜又はBiOM膜を採用することにより、記録再生特性や保存安定性等を改善させることができる。4B族元素としてはC、Si、Ge、Sn、Pbが挙げられるが、中でもSiとGeが特に好ましい。
また、BiOM膜の場合には、添加元素Mの作用により、大きな複素屈折率変化、組成の変化、溶融を起こしたり、或いは隣接層に構成元素を拡散させる能力が更に向上する。
また、BiO膜が元素Mを含有する場合は、(1)Bi−M−Oの三元化合物、(2)Bi+MO(元素Biと元素Mの酸化物からなる混合物)、(3)BiO+MO(元素Biの酸化物と元素Mの酸化物からなる混合物)、(4)Bi+BiO+MO(元素Bi、元素Biの酸化物、及び元素Mの酸化物からなる混合物)、或いは(1)〜(4)の組み合わせからなる元素、化合物を同時に含有してもよい。逆に言えば、本発明で言うBiO膜とは、前記のような混合物を含めた総称である。
そして、例えば元素Bi(非酸化物状態)を記録によって酸化させ、これに伴ってBiO膜の複素屈折率を大きく変化させることができる。この酸化という記録原理を用いれば非変形記録を実現でき、符号間干渉の小さい記録を行なうことができる。
また、例えば元素Biの酸化物を記録によって還元させ、これに伴ってBiO膜の複素屈折率を大きく変化させることができる。この還元という記録原理を用いれば非変形記録を実現でき、符号間干渉の小さい記録を行なうことができる。
但し、BiO膜において、元素Bi及び/又は元素Mが非酸化物状態で多く存在する場合は、BiO膜の保存安定性を低下させる場合があるので、元素Bi及び/又は元素M単体の含有量は、元素Bi及び/又は元素Mの酸化物量に対して少ない方が好ましい場合がある。この割合は、記録感度、ジッタ、保存安定性等の兼ね合いによって適宜調整することが可能である。
なお、BiO膜の厚さは20〜500Åの範囲が望ましい。
有機材料薄膜の機能としては、(a)断熱機能〔反射層とBiO膜に有機材料薄膜が挟まれる構造の場合〕、(b)変調度の発生機能、(c)再生信号波形を補償する機能、(d)反射率やトラッキング信号等の制御機能、(e)記録感度の制御機能に大別することができる。
反射層を有する追記型光記録媒体の場合、BiO膜と反射層が隣接した構造とすると、BiO膜で吸収されたエネルギーが効率よく熱に変換されなくなり、適当な記録パワーで記録できなくなる場合が発生する。
この場合、BiO膜と反射層の間に有機材料薄膜を導入すると、非常に薄い有機材料薄膜であっても十分な断熱効果を得ることができる。
ところで、通常、有機材料薄膜はスピンコート法によって成膜させる場合が多い。このスピンコート法で有機材料薄膜を形成する場合、ランド部に比べてグルーブ部の有機材料薄膜の膜厚が厚くなるため、グルーブ部では十分な断熱効果を確保できるが、ランド部では熱が逃げ易い構造となる。従って、グルーブ記録の場合、断熱層として有機材料薄膜を用いることにより、記録再生特性の向上を図ることが可能となる。
また、有機材料薄膜は以下の現象を引き起こすことにより、(b)変調度の発生機能を発現する。
・記録によって有機材料薄膜の体積が変化する
・記録によって有機材料薄膜の複素屈折率が変化する
・記録によって有機材料薄膜中に空洞部を形成する
・記録によるBiO膜の状態変化を受容する
・反射層の変形を受容する
なお、ここで言う「BiO膜の状態変化」とは、変形、複素屈折率の変化、組成の変化、溶融、構成元素の隣接層への拡散(混合)、酸化/還元、結晶構造変化等を指す。
有機材料薄膜は、その複素屈折率と膜厚を非常に広い範囲で制御することができるため、(d)の反射率やトラッキング信号等の制御機能を有することは明らかである。
また、(e)の機能については、本発明はBiO膜に主たる光吸収機能を付与するが、有機材料薄膜の複素屈折率(特に複素屈折率の虚部)を制御することで、有機材料薄膜を光吸収層として補助的に用いることが可能なため、記録感度を制御することができる。
有機材料薄膜を光吸収層として補助的に用いる場合、有機材料薄膜の記録再生波長での複素屈折率虚部の値は、BiO膜の複素屈折率の虚部の値よりも小さいことが好ましい。何故ならば、有機材料薄膜の記録再生波長での複素屈折率虚部の値を必要以上に大きくすることは、波長依存性を悪化させることに繋がるからである。
また、有機材料薄膜を光吸収層として補助的に用いる場合、有機材料薄膜は、その主吸収帯が記録再生波長に対して長波長側に位置し、かつ、記録再生波長近傍に主吸収帯に帰属しない吸収帯を有することが好ましい。
このように、有機材料薄膜に補助的に光吸収機能を付与する場合であっても、主吸収帯に帰属しない吸収帯を記録再生波長近傍に有する有機材料薄膜を用いるため、波長依存性を小さくすることが可能となる。
以上の説明は、1つの有機材料が主吸収帯と、主吸収帯に帰属しない吸収帯を有する場合であるが、本発明では、2つ以上の有機材料を混合して図13に示すような吸収スペクトルを形成させた有機材料薄膜を用いることもでき、この場合も従来に比べて波長依存性を大幅に改善することができる。
以上のように、有機材料薄膜は、複素屈折率や膜厚を変えることで、記録感度を制御することができる。
更に、本発明における有機材料薄膜には、大きな吸収帯が記録再生波長よりも十分離れて存在する色素などの有機材料を用いることができるため(大きな吸収帯近傍では屈折率が異常分散性を示し、屈折率が波長によって大きく異なるという性質を示すが、大きな吸収帯から十分離れた波長領域では屈折率は正常分散性を示し、屈折率は波長に対し緩やかな変化を示す)、レーザの個体差や、環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという従来の問題を大幅に解消することができる。
但し、本発明の実施に際しては、別途光吸収層(BiO膜)が存在することから、反射率を高めるために、有機材料薄膜の主吸収帯と記録再生波長を遠ざけることが好ましい。この場合、記録再生波長に対して有機材料薄膜の主吸収帯が長波長側に存在しても、逆に短波長側に存在してもよい。
上記の説明から分るように、本発明は、赤色領域から青色領域まで、更には青色領域以下も含む広い範囲の記録再生波長に対して適用可能であり、用いられる記録再生波長に合わせて、後述するような公知の有機材料(特に色素)の中から上記条件を満たす材料を適宜選択することにより目的とする光記録媒体を得ることができる。
本発明では、反射率を確保するために、有機材料の主吸収帯と記録再生波長を十分遠ざけることが好ましい。例えば、記録再生波長が赤色領域にある場合は、有機材料の主吸収帯に対して記録再生波長は短波長側にあっても、長波長側にあってもよい。一方、記録再生波長が青色領域以下にある場合は、有機材料の主吸収帯に対して記録再生波長を長波長側に設定することは、有機材料の分子骨格を小さくしなければいけない(共役系を短くする)ことを意味し、これは分解・爆発性の低下を招く恐れがあり、また溶解性の低下や結晶性の向上によって薄膜の形成が困難になる可能性があるため好ましくない。
従って、十分な熱分解特性を確保し、かつ良質な薄膜を形成させるために、記録再生波長が青色レーザ波長領域にある場合は、その主吸収帯が記録再生波長よりも長波長側に存在するような有機材料を選択することが好ましい。
色素層の形成は、蒸着、スパッタリング、CVD、溶剤塗布などの通常の手段によって行なうことができる。塗布法を用いる場合には、上記染料などを有機溶剤に溶解して、スプレー、ローラーコーティング、ディッピング、スピンコーティングなどの慣用のコーティング法で行なうことができる。
用いられる有機溶剤としては、一般にメタノール、エタノール、イソプロパノールなどアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;テトラヒドロフラン、ジオキサン、ジエチルエーテル、エチレングリコールモノメチルエーテルなどのエーテル類;酢酸メチル、酢酸エチルなどのエステル類;クロロホルム、塩化メチレン、ジクロルエタン、四塩化炭素、トリクロルエタンなどの脂肪族ハロゲン化炭素類;ベンゼン、キシレン、モノクロルベンゼン、ジクロルベンゼンなどの芳香族類;メトキシエタノール、エトキシエタノールなどのセロソルブ類;ヘキサン、ペンタン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素類などが挙げられる。
色素層の膜厚は、100Å〜10μm、好ましくは100〜2000Åとする。
通常、3種類以上の異なる再生信号レベルを生成するためには、図5のように仮想された基本セルに対して、記録マ−クの面積比(光記録媒体の平面方向の面積比)を変えることが一般的である。しかし、本発明では、この面積比以外に、光記録媒体の断面方向の記録マーク形成領域の大きさを変えることで、3種類以上の異なる再生信号レベルを生成することができる。
本発明で言う、「膜厚方向に3種類以上の異なる再生信号レベルを生成する記録マークを形成する」とは、光記録媒体の断面方向の記録マーク形成領域の大きさを変えることで記録マ−クを形成し、この断面方向の記録マーク形成領域の大きさの違いに基づいて3種類以上の異なる再生信号レベルを生成することを意味する。
なお、本発明では、光記録媒体の断面方向に階調を持たせて記録することが好ましいが、勿論平面方向に階調を持たせて記録することも可能である。
基板の素材としては、熱的、機械的に優れた特性を有し、基板側から(基板を通して)記録再生が行われる場合には光透過特性にも優れたものであれば、特別な制限はない。
具体例としては、ポリカーボネート、ポリメタクリル酸メチル、非晶質ポリオレフィン、セルロースアセテート、ポリエチレンテレフタレートなどが挙げられるが、ポリカーボネートや非晶質ポリオレフィンが好ましい。
基板の厚さは用途により異なり、特に制限はない。
また、上記金属を主成分として他の元素を含んでいても良く、他の元素としては、Mg、Se、Hf、V、Nb、Ru、W、Mn、Re、Fe、Co、Rh、Ir、Zn、Cd、Ga、In、Si、Ge、Te、Pb、Po、Sn、Biなどの金属及び半金属を挙げることができる。
中でもAgを主成分とするものは、コストが安く高反射率が出易い点から特に好ましい。
金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多層膜を形成し、反射層として用いることも可能である。
反射層を形成する方法としては、例えば、スパッタ法、イオンプレーティング法、化学蒸着法、真空蒸着法等が挙げられる。
反射層の好ましい膜厚は、50〜300nmである。
反射層や干渉層の上に形成する保護層の材料としては、反射層や干渉層を外力から保護するものであれば特に限定されない。有機材料としては、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹脂、UV硬化性樹脂等が挙げられる。また、無機材料としては、SiO2、SiN4、MgF2、SnO2等が挙げられる。
熱可塑性樹脂、熱硬化性樹脂は適当な溶剤に溶解した塗布液を塗布し乾燥することによって形成することができる。UV硬化性樹脂は、そのまま又は適当な溶剤に溶解した塗布液を塗布し、UV光を照射して硬化させることによって形成することができる。UV硬化性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどのアクリレート系樹脂を用いることができる。
これらの材料は単独で用いても混合して用いても良いし、1層だけでなく多層膜にして用いても良い。
保護層の膜厚は、一般に0.1〜100μmの範囲であるが、本発明においては、3〜30μmが好ましい。
また、反射層或いは干渉層面に更に基板を貼り合わせてもよく、また反射層や干渉層面相互を内面とし対向させ光学記録媒体2枚を貼り合わせても良い。
基板鏡面側に、表面保護やゴミ等の付着防止のために紫外線硬化樹脂層や、無機系薄膜等を成膜してもよい。
従って、基板の厚さを薄くしてチルト角に対する収差の影響をなるべく小さくするようにしている。
そこで、例えば基板上に凹凸を形成して記録層とし、その上に反射層を設け、更にその上に光を透過する薄膜である光透過性のカバー層を設けるようにし、カバー層側から再生光を照射して記録層の情報を再生するような光記録媒体や、基板上に反射層を設け、その上に記録層を設け、更にこの上に光透過性を有するカバー層を設けるようにし、カバー層側から再生光を照射して記録層の情報を再生するような光記録媒体が提案されている。
このようにすれば、カバー層を薄型化していくことで対物レンズの高NA化に対応可能である。つまり、薄いカバー層を設け、このカバー層側から記録再生することで、更なる高記録密度化を図ることができる。
なお、このようなカバー層は、ポリカーボネートシートや、紫外線硬化型樹脂により形成されるのが一般的である。また、本発明で言うカバー層には、カバー層を接着するための層を含めてもよい。
本発明の追記型光記録媒体に使用されるレーザ光は、高密度記録のため波長が短いほど好ましいが、特に350〜530nmのレーザ光が好ましく、その代表例としては、中心波長405nmのレーザ光が挙げられる。
(1)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、二値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体。
(2)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、多値記録の記録再生が容易に行える高密度記録可能な追記型光記録媒体。
(3)青色レーザ波長領域(500nm以下)、特に405nm近傍の波長領域であっても、PRML方式による信号処理系での記録再生に適した高密度記録可能な追記型光記録媒体。
(4)記録パワーの変動に対する、ジッタやエラー率等のマージンの広い追記型光記録媒体。
(5)記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体。
(6)転写性のよい浅溝基板を用いても記録再生が容易に行える追記型光記録媒体。
(7)ランド部にも記録が可能な追記型光記録媒体。
案内溝(溝深さ50nm)を有するポリカーボネート基板上に、スパッタ法により膜厚15nmのBi3Fe5O12薄膜を設け〔x/(x+y)=0.375>0.3〕、その上に下記〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法により形成し、その上にスパッタ法により膜厚150nmのAg反射層を設け、更にその上に、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて追記型光記録媒体を作成した。
なお、〔化1〕の色素は、従来のDVD−RやDVD+Rに用いられる材料であり、青色レーザ領域には吸収が殆どない材料である。
<記録条件>
・記録線密度 : 1T=0.0917(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザー
その結果、図14に示すように、記録パワーが6.1mWで10.2%という良好なジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
変形量は最大でも10nmであることが確認できた。
Bi3Fe5O12の代りにBi3Fe4Cu1O12を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi3Fe1Al4O12を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi3Al5O12を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi38Dy8Fe41Ga13O12を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。
その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにIn3Fe5O12を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
〔化1〕で示される色素の代りに〔化2〕で示される色素を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。なお、〔化2〕の有機材料は、従来のDVD−RやDVD+Rに用いることのできる材料であるが、前記図13に示すような、青色レーザ領域にも吸収係数の小さなブロードな吸収帯を有する材料である(但し、主吸収帯は記録再生波長よりも長波長側に存在する)。
従って、本参考例では、Bi3Fe5O12膜膜と〔化2〕の有機材料薄膜の両方の光吸収機能で記録を行うことができ、実際、最適記録パワーを約1.0mW低下させることができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi6Fe5Oz〔zを同定することが困難。x/(x+y)=0.545>0.3〕を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi15Fe5Oz〔zを同定することが困難。x/(x+y)=0.75>0.3〕を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi2O3〔x/(x+y)=1.0>0.3〕を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、表1に記すように、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにBi1Fe5Oz〔zを同定することが困難。x/(x+y)=0.167<0.3〕を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、ジッタ値は15%を越え、良好な記録を実現することができなかった。
Bi3Fe5O12の代りにBi2Fe5Oz〔zを同定することが困難。x/(x+y)=0.286<0.3〕を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、ジッタ値は15%を越え、良好な記録を実現することができなかった。
Bi3Fe5O12の代りにMoO3を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、ジッタ値11%以下の記録が実現できた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.8%以下の劣化(増加)に留まった。
Bi3Fe5O12の代りにV2O5を用いた点以外は、参考例1と同様にして追記型光記録媒体を作成し、同様の記録実験を行った。その結果、ジッタ値11%以下の記録が実現できた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.8%以下の劣化(増加)に留まった。
案内溝(溝深さ50nm)を有するポリカーボネート基板上に、スパッタ法により膜厚12nmのBiaSibOd薄膜(BiO膜)を設け、その上に、参考例1と同じ〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法により形成し、その上に、スパッタ法により膜厚100nmのAg反射層を設け、更にその上に、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8−16変調信号の記録を行った(従来の二値記録)。
<記録条件>
・記録線密度 : 1T=0.0917(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザー
本実施例においてBiaSibOd薄膜の組成を種々変化させたところ、12%以下のジッタ値が得られたが、特に、10≦a≦40、3≦b≦20、50≦d≦70である場合に、記録パワーが約7.2mWで10%以下のジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.5%以下の劣化(増加)に留まった。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiaSibOd薄膜表面の変形状態をAFMにより調べた。その結果、変形量は最大でも17nmであることが確認できた。
BiaSibOdの代りにBiaGebOdを用いた点以外は、実施例13と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、実施例13と同様に、a、b、dが上記数値範囲内にある場合に、記録パワーが約7.2mWで10%以下のジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.8%以下の劣化(増加)に留まった。
BiaSibOdの代りにBiaSibFecOdを用いた点以外は、実施例13と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、BiaSibFecOd薄膜(BiOM膜)の組成が、10≦a≦40、3≦b≦20、3≦c≦20、50≦d≦70の場合に、記録パワーが約7.5mWで10%以下のジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.5%以下の劣化(増加)に留まった。
BiaSibFecOdの代りにBi3SiM4O12(Mは、Al、Cr、Mn、In、Co、Cu、Ni、Zn、Tiの何れか)を用いた点以外は、実施例15と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、どの元素の場合も記録パワーが約7.0mWで10%以下のジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.5%以下の劣化(増加)に留まった。
案内溝(溝深さ50nm)を有するポリカーボネート基板上に、参考例1と同じ〔化1〕で示される色素からなる有機材料薄膜(平均膜厚約30nm)をスピンコート法により形成し、その上に、スパッタ法により膜厚25nmのBiaSibOd薄膜(BiO膜)を設け、その上に、スパッタ法により膜厚25nmのAg反射層を設け、更にその上に、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて本発明の追記型光記録媒体を作成した。
実施例13と同様にBiaSibOd薄膜の組成を種々変化させたところ、12%以下のジッタ値が得られたが、特に、10≦a≦40、3≦b≦20、50≦d≦70である場合に、記録パワーが約7.4mWで10%以下のジッタ値が得られ、良好な二値記録特性を実現することができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.8%以下の劣化に留まった。
〔化1〕で示される色素の代りに、参考例7と同じ〔化2〕で示される色素を用いた点以外は、実施例13と同様にして本発明の追記型光記録媒体を作成し、同様の記録実験を行った。その結果、良好な二値記録特性を実現することができた。なお、〔化2〕の有機材料は、前述したように、青色レーザ領域にも吸収係数の小さなブロードな吸収帯を有する材料である(図13参照。但し、主吸収帯は記録再生波長よりも長波長側に存在する)。
従って、本実施例では、BiaSibOd膜膜と〔化2〕の有機材料薄膜の両方の光吸収機能で記録を行うことができ、実際、最適記録パワーを約1.0mW低下させることができた。
また、上記数値範囲を満足する媒体について、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも1.0%以下の劣化(増加)に留まった。
案内溝(溝深さ50nm)を有するポリカーボネート基板上に、FOM−559(和光純薬社製フタロシアニン)からなる有機材料薄膜(平均膜厚約80nm)をスピンコート法によって形成し、その上に、スパッタ法により膜厚150nmのAg反射層を設け、更にその上に、紫外線硬化型樹脂からなる膜厚約5μmの保護層を設けて追記型光記録媒体を作成した(従来の層構成を青色領域でも適用した例)。
なお、FOM−559(和光純薬社製フタロシアニン)は、従来型の追記型光記録媒体に用いられる有機材料と同様に、記録再生波長である405nm近傍で比較的小さな複素屈折率虚部(吸収係数)と、比較的大きな複素屈折率実部を有する材料である。
上記光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8−16変調信号の記録を行った。
<記録条件>
・記録線密度 : 1T=0.0917(μm)
・記録線速度 : 6.0(m/s)
・波形等化 : ノーマルイコライザー
その結果、記録パワー約11.0mWで10.1%というジッタ値が得られた。
また、80℃、相対湿度85%の環境下で100時間の保存試験を行いジッタの劣化を調査したところ、アーカイバルジッタ、シェルフジッタとも0.6%以下の劣化(増加)に留まった。
しかし、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流して基板表面の変形状態をAFMにより調べたところ、変形量は最大では100nmを超えており、基板溝深さ以上の変形を起こしていることが確認できた。
また、図15に示すように、隣接トラックに記録した記録マークの変形によって(図15のM)、その記録マークよりも時間的に先に記録された記録マークの変形状態(図15のN)が干渉を受け、その形状が大きく変わっていることが確認できた。
従って、更なる高密度化には不利であることが明らかになった。
参考例1で作成した追記型光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8値の多値記録を行った。
<記録条件>
・記録線密度 : 基本セル長=0.47(μm)
・記録線速度 : 3.5(m/s)
・記録パターン: 孤立マークと連続マーク(2つの空の基本セルを挟
んで、多値レベルが同一な記録マークが4つ連続した連続マークと
1つの孤立マークを、7つの異なる多値レベルについて記録した)
その結果、図16に示すように、変調度(ダイナミックレンジ)が大きく(変調度60%)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)にも同様に記録が行えた。
実施例13で作成した追記型光記録媒体に対し、参考例19と同様にして8値の多値記録を行った。
その結果、参考例19の場合と同様に、変調度(ダイナミックレンジ)が大きく(変調度60%)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)にも同様に記録が行えた。
比較例3の追記型光記録媒体に対し、パルステック工業(株)製の光ディスク評価装置DDU−1000(波長:405nm、NA:0.65)を用いて、以下の条件で、8値の多値記録を行った。
<記録条件>
・記録線密度 : 基本セル長=0.47(μm)
・記録線速度 : 3.5(m/s)
・記録パターン: 孤立マークと連続マーク(参考例19と同様)
その結果、図17に示すように、連続記録部において、いわゆる「変調度のひげ」が発生し、多値記録レベルの変動が非常に大きくなり(連続記録部において、再生レベルが同一でなくてはならない)、多値記録に適さないことが確認できた。また、記録パワーを低下させると変調度のひげが発生しなくなることが確認できたが、この時は、変調度(ダイナミックレンジ)が非常に小さくなり(変調度は20%)、またSNRが低下した。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流して基板表面の変形状態をAFMにより調べた。
その結果、図18に示すように、基本セルにおける記録マークの大きさが大きい連続記録部で〔(d)〜(f)〕、線形でない記録マーク間の干渉が発生しており、「変調度のひげ」が、変形の干渉による変形形状の大幅な劣化に基づくものであることが確認できた。
また、図19に示すように、基板の変形量と変調度のひげ量(連続記録マーク部の先頭と後端との再生レベルの差)の関係を調べた結果、変形量が約50nmを超えると連続記録部のレベル均一性が乱れ、多値記録に適さなくなることが分った。
即ち、変形量を低減させないと多値記録に対応した追記型光記録媒体を実現できないことが明らかとなった(しかし、この比較例4の追記型光記録媒体では、変形量を大きくしないと十分な変調度が発生しない)。
更に、上記の実験では、溝部(グルーブ部)に多値記録を行ったが、溝間部(ランド)には全く記録が行えなかった。
基本セル長を更に小さく0.26(μm)とした点以外は、参考例19と同様にして、8値の多値記録を行った。
その結果、図20に示すように、変調度(ダイナミックレンジ)が大きく(変調度は60%)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiFeO表面の変形状態をSEM(走査型電子顕微鏡)により調べた。
その結果、図21に示すように、殆ど変形を伴わないで記録マークが形成されていることが確認できた(SEM写真では明らかな変形が認められない)。
また、記録部表面と断面のTEM像観察から、本発明の多値記録可能な追記型光記録媒体では、BiFeO薄膜及び/又は有機材料薄膜の面積方向への多値記録と共に、膜厚方向にも多値記録されていた。
基本セル長を更に小さく0.26(μm)とした点以外は、実施例20と同様にして、8値の多値記録を行った。
その結果、参考例21の場合と同様に、変調度(ダイナミックレンジ)が大きく(変調度は60%)、連続記録部においても多値記録レベルの変動が非常に小さな記録を実現できることが分った。
また、この記録を行った追記型光記録媒体の紫外線硬化型樹脂からなる保護層とAg反射層を剥がし、更に有機材料薄膜をエタノールで洗い流してBiaSibOd表面の変形状態をSEM(走査型電子顕微鏡)により調べたところ、参考例21の場合と同様に、殆ど変形を伴わないで記録マークが形成されていることが確認できた。
また、記録部表面と断面のTEM像観察から、本発明の多値記録可能な追記型光記録媒体では、BiaSibOd及び/又は有機材料薄膜の面積方向への多値記録と共に、膜厚方向にも多値記録されていた。
参考例1で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
その結果、通常の二値記録におけるジッタ評価ではジッタ値が20%を超えたが、PRML方式で復号した結果、BER(ビットエラーレート)は10−5台となり非常に良好な記録再生が行えることが確認できた。
実施例13で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
その結果、通常の二値記録におけるジッタ評価ではジッタ値が20%を超えたが、PRML方式で復号した結果、BER(ビットエラーレート)は10−5台となり非常に良好な記録再生が行えることが確認できた。
比較例3で作成した追記型光記録媒体に対し、最短マーク長が0.205μmとなる記録線密度でPR(1,2,1)方式を用いて記録再生を行った。
その結果、通常の二値記録におけるジッタ評価ではジッタ値が20%を超え、PRML方式で復号した結果、BER(ビットエラーレート)も10−3台となり、この記録線密度では、PRML方式を適用しても記録再生が行えないことが確認できた。
参考例1で作成した追記型光記録媒体の吸収率Qを測定した。具体的には、該光記録媒体の反射率Rと透過率Tを測定し、1−R−Tなる値を吸収率Qとした(図22中のX)。
また比較のため、参考例1の追記型光記録媒体と同様にして、青色レーザ波長域でも記録再生が可能な材料であるフタロシアニン化合物を使用している市販のCD−Rの吸収率Q(図22中のZ)と、比較例3で作成した追記型光記録媒体の吸収率Q(図22中のY)も測定した(フタロシアニン化合物を用いた市販のCD−Rそのままでは、基板のトラックピッチや基板厚の関係で、青色レーザ対応の評価装置では記録再生できないが、市販のCD−Rを破壊してフタロシアニン化合物を溶剤で洗い流し、青色レーザに対応した基板に再度塗布し直すと、青色レーザ対応の評価装置で記録再生が可能である)。
その結果、本発明の追記型光記録媒体は、500nm以下の波長域、特に400nmの近傍で吸収率Qの変動が非常に小さいことが確認できた。
従って、本発明の追記型光記録媒体は、記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等の変化が少ない追記型光記録媒体を実現できることが確認できた。
参考例1で作成した追記型光記録媒体に形成された記録マークがどのような原理に基づいて形成されているかを確認する実験を行った。
即ち、参考例1で作成した追記型光記録媒体の記録部分をFIB(集束イオンビーム加工装置)によって切断し、この部分をTEM(透過型電子顕微鏡)で観察した。
その結果、図23に示すように、記録マーク部ではBiFeO薄膜の構成元素が隣接層(基板及び有機材料薄膜)へ拡散していること、BiFeO薄膜の組成が変化している可能性があることが確認できた。また、電子線回折による分析では、記録部では結晶化が起こっており、結晶粒が形成されていることが確認された。
更に、有機材料薄膜にも空洞部の形成が見られる場合があり、複素屈折率が変化していることが確認できた。
以上の結果から、本発明の記録原理が変形を主体とするものでないことが確認できた。
実施例13で作成した追記型光記録媒体に形成された記録マークがどのような原理に基づいて形成されているかを確認する実験を行った。
即ち、実施例13で作成した追記型光記録媒体の記録部分をFIB(集束イオンビーム加工装置)によって切断し、この部分をTEM(透過型電子顕微鏡)で観察した。
その結果、参考例26の場合と同様に、記録マーク部ではBiaSibOd薄膜の構成元素が隣接層(基板及び有機材料薄膜)へ拡散していること、BiaSibOd薄膜の組成が変化している可能性があることが確認できた。また、電子線回折による分析では、記録部では結晶化が起こっており、結晶粒が形成されていることが確認された。
更に、有機材料薄膜にも空洞部の形成が見られる場合があり、複素屈折率が変化していることが確認できた。
以上の結果から、本発明の記録原理が変形を主体とするものでないことが確認できた。
k 複素屈折率の虚部
δn 記録再生波長における複素屈折率の実部の変化
δk 記録再生波長における複素屈折率の虚部の変化
δλ 記録再生波長の変動幅
T1〜T7 サンプリングタイム
A 再生信号の波形
B 保護層、Ag反射層、色素層を剥がして基板表面をAFM観察した像
C Bで測定した基板のAFM像から基板断面の変形量を表示した図
M 隣接トラックに記録した記録マーク
N Mよりも時間的に先に記録された記録マーク
a 多値レベル2(図5参照)の連続記録部
b 多値レベル3(図5参照)の連続記録部
c 多値レベル4(図5参照)の連続記録部
d 多値レベル5(図5参照)の連続記録部
e 多値レベル6(図5参照)の連続記録部
f 多値レベル7(図5参照)の連続記録部
X 参考例1の追記型光記録媒体の吸収率
Y 参考比較例1の追記型光記録媒体の吸収率
Z 市販のCD−Rの吸収率
Claims (7)
- 基板上に少なくともBiO膜と有機材料薄膜を有し、該BiO膜が、Bi元素、O元素及び4B族の中から選ばれる一種以上の元素を含有し、該BiO膜の組成をBia4BbOd(4Bは4B族の元素、a、b、dは組成比)として、
10≦a≦40
3≦b≦20
50≦d≦70
であることを特徴とする追記型光記録媒体。 - BiO膜が、Al、Cr、Mn、In、Co、Fe、Cu、Ni、Zn及びTiの中から選ばれる一種以上の元素Mを含有し(以下、この薄膜をBiOM膜という)、該BiOM膜の組成をBia4BbMcOd(4Bは4B族の元素、a、b、c、dは組成比)として、
10≦a≦40
3≦b≦20
3≦c≦20
50≦d≦70
であることを特徴とする請求項1記載の追記型光記録媒体。 - 4B族元素がSi又はGeであることを特徴とする請求項1又は2記載の追記型光記録媒体。
- 基板上に、少なくとも、BiO膜、有機材料薄膜、反射層が順次積層されたことを特徴とする請求項1〜3の何れかに記載の追記型光記録媒体。
- 基板上に、少なくとも、有機材料薄膜、BiO膜、反射層が順次積層されたことを特徴とする請求項1〜3の何れかに記載の追記型光記録媒体。
- 基板上に、少なくとも、反射層、BiO膜、有機材料薄膜、カバー層が順次積層されたことを特徴とする請求項1〜3の何れかに記載の追記型光記録媒体。
- 基板上に、少なくとも、反射層、有機材料薄膜、BiO膜、カバー層が順次積層されたことを特徴とする請求項1〜3の何れかに記載の追記型光記録媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004064452A JP4577872B2 (ja) | 2003-04-15 | 2004-03-08 | 追記型光記録媒体 |
DE602004010451T DE602004010451T2 (de) | 2003-04-15 | 2004-04-14 | Einmal beschreibbarer, mehrmals lesbarer optischer Datenträger und Verfahren zum Beschreiben und Lesen des Datenträgers |
US10/824,227 US6933032B2 (en) | 2003-04-15 | 2004-04-14 | Write-once-read-many optical recording media and process for recording and reproducing information on the media |
EP04008899A EP1475793B1 (en) | 2003-04-15 | 2004-04-14 | Write-once-read-many optical recording medium and process for recording and reproducing of the optical medium |
US11/159,920 US7413788B2 (en) | 2003-04-15 | 2005-06-23 | Write-once-read-many optical recording media and process for recording and reproducing information on the media |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003110867 | 2003-04-15 | ||
JP2003317578 | 2003-09-09 | ||
JP2004064452A JP4577872B2 (ja) | 2003-04-15 | 2004-03-08 | 追記型光記録媒体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005108396A JP2005108396A (ja) | 2005-04-21 |
JP4577872B2 true JP4577872B2 (ja) | 2010-11-10 |
Family
ID=34556970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004064452A Expired - Fee Related JP4577872B2 (ja) | 2003-04-15 | 2004-03-08 | 追記型光記録媒体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4577872B2 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4778300B2 (ja) | 2004-12-15 | 2011-09-21 | 株式会社リコー | 追記型光記録媒体 |
US7488526B2 (en) | 2005-11-22 | 2009-02-10 | Ricoh Company, Ltd. | Sputtering target and manufacturing method therefor, and optical recording medium and manufacturing method therefor |
JP5016295B2 (ja) * | 2005-11-22 | 2012-09-05 | 株式会社リコー | スパッタリングターゲット及び追記型光記録媒体 |
JP4871062B2 (ja) | 2006-03-01 | 2012-02-08 | 株式会社リコー | スパッタリングターゲット及びその製造方法、並びに追記型光記録媒体 |
JP4667427B2 (ja) * | 2006-08-01 | 2011-04-13 | 株式会社リコー | 追記型光記録媒体 |
US20100020668A1 (en) | 2006-08-01 | 2010-01-28 | Ricoh Company Ltd | Recordable optical recording medium and recording method thereof |
JP2008084515A (ja) * | 2006-09-01 | 2008-04-10 | Ricoh Co Ltd | 追記型光記録媒体とその記録方法 |
US7976922B2 (en) | 2006-12-12 | 2011-07-12 | Ricoh Company, Ltd. | Optical recording medium |
JP4764858B2 (ja) | 2007-01-30 | 2011-09-07 | 株式会社リコー | 光記録媒体、スパッタリングターゲット及びその製造方法 |
US8124211B2 (en) | 2007-03-28 | 2012-02-28 | Ricoh Company, Ltd. | Optical recording medium, sputtering target, and method for manufacturing the same |
JP2008276900A (ja) | 2007-04-02 | 2008-11-13 | Ricoh Co Ltd | 追記型光記録媒体 |
WO2008123620A1 (en) * | 2007-04-02 | 2008-10-16 | Ricoh Company, Ltd. | Worm optical recording medium |
JP4783327B2 (ja) * | 2007-04-19 | 2011-09-28 | 太陽誘電株式会社 | 光情報記録媒体 |
JP5510638B2 (ja) * | 2007-11-20 | 2014-06-04 | 日本電気株式会社 | 光学的情報記録媒体及びその製造方法 |
TWI521505B (zh) | 2012-06-04 | 2016-02-11 | Sony Corp | Information media |
JP2015032340A (ja) * | 2013-08-07 | 2015-02-16 | 太陽誘電株式会社 | 光記録媒体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001184720A (ja) * | 1999-10-13 | 2001-07-06 | Hitachi Maxell Ltd | 情報記録媒体および情報の記録再生方法 |
JP2003048375A (ja) * | 2001-03-07 | 2003-02-18 | Ricoh Co Ltd | 光情報記録媒体、この媒体の情報記録方法、情報再生方法および情報記録/再生装置 |
-
2004
- 2004-03-08 JP JP2004064452A patent/JP4577872B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001184720A (ja) * | 1999-10-13 | 2001-07-06 | Hitachi Maxell Ltd | 情報記録媒体および情報の記録再生方法 |
JP2003048375A (ja) * | 2001-03-07 | 2003-02-18 | Ricoh Co Ltd | 光情報記録媒体、この媒体の情報記録方法、情報再生方法および情報記録/再生装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2005108396A (ja) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7413788B2 (en) | Write-once-read-many optical recording media and process for recording and reproducing information on the media | |
JP4577872B2 (ja) | 追記型光記録媒体 | |
US7245576B2 (en) | Optical recording medium and optical recording-reproducing method | |
JP4271063B2 (ja) | 追記型光記録媒体とその記録再生方法 | |
JP4577891B2 (ja) | 光記録媒体 | |
JP4778300B2 (ja) | 追記型光記録媒体 | |
US9135941B2 (en) | Dye for optical information recording medium and optical information recording medium | |
JP2005004944A (ja) | 光記録媒体及びその記録再生方法と装置 | |
EP1585116B1 (en) | Apparatus for recording dye based recordable DVD media and process for recording | |
US6792613B2 (en) | Optical information recording medium | |
WO2007018263A1 (ja) | 光記録媒体、アゾ系鉄キレート色素及びアゾ系金属キレート色素添加剤 | |
Hosoda et al. | Inorganic recordable disk with more eco-friendly material for blue | |
KR20030094051A (ko) | 광기록재생방법과 광기록매체 | |
JPH08273193A (ja) | 光記録媒体 | |
JP2006079710A (ja) | 片面2層光記録媒体およびその記録再生方法およびその記録再生装置 | |
KR100573680B1 (ko) | 멀티 레벨 초해상 광디스크 | |
KR20010090164A (ko) | 고밀도 광기록매체 | |
JP2002362030A (ja) | 光記録媒体及びこれを用いる光記録方法 | |
Takazawa et al. | HD DVD-R Disc with Organic Dye having Low to High Polarity Recording | |
JP2010009712A (ja) | 光情報記録媒体 | |
JP2009291975A (ja) | 光情報記録媒体 | |
JP2000048406A (ja) | 光記録媒体 | |
JP2001076343A (ja) | 光記録媒体及び光記録方式 | |
JP2002288841A (ja) | 光記録媒体及び光記録方法 | |
JP2004213745A (ja) | 追記型光記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090409 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100712 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100823 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4577872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |