JP4572457B2 - 光学装置およびそれを用いた投射型表示装置 - Google Patents

光学装置およびそれを用いた投射型表示装置 Download PDF

Info

Publication number
JP4572457B2
JP4572457B2 JP2000278627A JP2000278627A JP4572457B2 JP 4572457 B2 JP4572457 B2 JP 4572457B2 JP 2000278627 A JP2000278627 A JP 2000278627A JP 2000278627 A JP2000278627 A JP 2000278627A JP 4572457 B2 JP4572457 B2 JP 4572457B2
Authority
JP
Japan
Prior art keywords
light
incident
wavelength
optical
color separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278627A
Other languages
English (en)
Other versions
JP2002090874A (ja
Inventor
能久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000278627A priority Critical patent/JP4572457B2/ja
Publication of JP2002090874A publication Critical patent/JP2002090874A/ja
Application granted granted Critical
Publication of JP4572457B2 publication Critical patent/JP4572457B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば液晶プロジェクタ装置(投射装置)等の照明装置として用いられる光学装置およびそれを用いた投射型表示装置に関するものである。
【0002】
【従来の技術】
液晶プロジェクタ装置は、液晶材料を用いた空間光変調器(以下、液晶パネルと呼ぶ)を用いるプロジェクタ装置である。
液晶プロジェクタにおいて、液晶パネル自体は発光しないことから、光源と組み合わせ、液晶パネルに光を照明する。そして、液晶パネルに映像信号を印加し、液晶パネルの像を、投射レンズにより、スクリーンに投射する。
これにより、小型で効率のよいプロジェクタ装置を実現できる。
【0003】
ところで、コンピュータの高速化と共に、コンピュータの扱う画面の画素数は年々増加している。また、テレビジョン放送も、高画質化と共に、一画面の画素数が増える傾向にある。
これらに対応して、液晶プロジェクタにおいても画素数を増やして、高画質化を目指すようになってきた。
【0004】
液晶パネルにおいて、画素数を増やすと、内部の配線が増えることになる。
液晶パネルに光が入射し、その入射した面の逆側から光が出射する、いわゆる透過型液晶パネルでは、画素数が増え、内部配線が増加すると、次のような問題が生じる。
それは、光が通過できる部分の面積(開口率と呼ぶ)が減少し、プロジェクタの光の利用率が減少することである。加えて、この問題は液晶パネルのサイズが小さくなるほど、顕著になる。
小さな液晶プロジェクタを作る上では、液晶パネルのサイズを小さくすることが肝心であるが、透過型液晶パネルを用い、画素数を増やすと、高輝度なプロジェクタ装置を実現することは困難である。
【0005】
そこで、反射型液晶パネルを用いる技術が提案されてきた。
これは、液晶パネルに光が入射する面と、同じ面から光が出射するものである。反射型液晶パネルでは、液晶パネルの内部に光の反射層が内蔵されている。光は反射層で、反射し、液晶層を往復する。このときに各画素に印加される電界により、液晶が回転し、液晶材料の閃光性という性質により、入射光の偏光面が回転する。
反射型液晶パネルでは、各画素の配線を、反射層の光の非入射側(光が通らない部位側)に作ることで、画素数が増えても、開口率が劣化しないという特徴がある。このため、小さなサイズの液晶パネルで、かつ多くの画素を持つことができる。
【0006】
反射型液晶パネルを用いる液晶プロジェクタ装置は、入射光と出射光が同一の面から出てくるために、入射光と出射光を分離する必要がある。
そこで、一般的に、偏光ビームスプリッタ(以下、PBSという)が用いられる。
【0007】
基本的には、図14に示すように、反射層1aを内蔵する液晶パネル1の光入出射面1b側にPBS2を配置する。そして、PBS2の偏光分離合成面2aは、S偏光S−PLは反射し、P偏光P−PLは透過する機能を有する。
このような構成において、入射光LINは、PBS2の偏光分離合成面2aに対してS偏光S−PLとなるようにし、PBS2で反射させて液晶パネル1に入射させる。そして、液晶パネル1の反射層1aで反射され、液晶層で変調されて液晶パネル1を出射し、再びPBS2に入射する。
液晶パネル1内部で変調され、偏光方向が変化した光は、PBS2の偏光分離合成面2aに対して、P偏光P−PLの成分を持つので、PBS2を透過し、図示しない投射レンズに入射して、スクリーンに向かう。
【0008】
なお、図15に示すように、入射光をP偏光P−PLとし、スクリーンにはS偏光S−PLが向かうようにした構成も採用可能である。
【0009】
図14、および図15に示した光学系が、反射型液晶プロジェクタの基本原理である。
しかし、この光学系では、フルカラー画像を再現することができない。一般に光源として白色光を発する放電ランプなどが用いられる場合、R(赤)、G(緑)、B(青)の色の3原色に対応する3枚の液晶パネルを用いる必要がある。
【0010】
反射型液晶パネルを用いて、フルカラー液晶プロジェクタを実現する場合、大きく2つの方法に分けることができる。
第1はPBS(偏光ビームスプリッタ)を3個用いる方法であり、第2は一個のみ用いる方法である。
以下では、3個のPBSを用いる第1の方法を採用した3板式反射型プロジェクタ装置について説明する。
【0011】
3個のPBSを用いる3板式反射型プロジェクタ装置には、図16に示すような光学装置のほかに、図17に示すような光学装置が用いられる。
【0012】
図16の3板式反射型プロジェクタ装置10は、光源11、集光レンズ12、第1色分離ミラー13、第2色分離ミラー14、反射ミラー15、リレーレンズ16、第1反射型液晶パネル17、第2反射型液晶パネル18、第3反射型液晶パネル19、第1PBS20、第2PBS21、第3PBS22、第1フィールドレンズ23、第2フィールドレンズ24、第3フィールドレンズ25、色合成プリズム26、投射レンズ27、およびスクリーン28を有している。
【0013】
図16の3板式反射型プロジェクタ装置10においては、放電ランプ11aとリフレクタ11bにより構成される光源11から白色光による照明光を出射される。光源11により出射される照明光は、集光レンズ12によりほぼ平行な光束に変換されて第1色分離ミラー13に向けて出射される。
第1色分離ミラー13では、集光レンズ12より出射された照明光の光路上にて、所定波長の光が第2色分離ミラー14の配置方向に反射され、残る照明光が透過される。
第2色分離ミラー14では、第1色分離ミラー13で反射された照明光の光路上にて、所定波長の照明光が反射され、残る照明光が透過される。これらにより、光源11より出射された照明光は、R(赤)、G(緑)、B(青)の照明光に分離される。
【0014】
第2色分離ミラー14を透過した照明光は、第1フィールドレンズ23を介して第1PBS20に入射され、第2色分離ミラー14で反射された照明光は、第2フィールドレンズ24を介して第2PBS21に入射される。
また、第1色分離ミラー13を透過した照明光は、反射ミラー15で光路が略90度異なる方向(第1色分離ミラー13の反射方向に平行な方向)に反射され、リレーレンズ16、さらに第3フィールドレンズ25を介して第3PBS22に入射される。
【0015】
第1PBS20では、第1フィールドレンズ23を介して入射した照明光のうち、所定偏光面の照明光が第1反射型液晶パネル17に向けて反射され、この偏光面と直交する偏光面の照明光は透過される。
また、第1反射型液晶パネル17では、入射した照明光が空間光変調され、この変調光が再び第1PBS20に入射される。
そして、第1PBS20では、変調光のうち偏光成分が透過されて色合成プリズム26に出射される。
【0016】
同様に、第2PBS21では、第2フィールドレンズ24を介して入射した照明光のうち、所定偏光面の照明光が第2反射型液晶パネル18に向けて反射され、この偏光面と直交する偏光面の照明光は透過される。
また、第2反射型液晶パネル18では、入射した照明光が空間光変調され、この変調光が再び第2PBS21に入射される。
そして、第2PBS21では、変調光のうち偏光成分が透過されて色合成プリズム26に出射される。
第3PBS23では、第3フィールドレンズ25を介して入射した照明光のうち、所定偏光面の照明光が第3反射型液晶パネル19に向けて反射され、この偏光面と直交する偏光面の照明光は透過される。
また、第3反射型液晶パネル19では、入射した照明光が空間光変調され、この変調光が再び第3PBS22に入射される。
そして、第3PBS22では、変調光のうち偏光成分が透過されて色合成プリズム26に出射される。
【0017】
色合成プリズム26では、第1〜第3PBS20〜22より入射された変調光が合成されて、この合成光が投射レンズ27を介してスクリーン28に投射される。
これにより、3板式反射型プロジェクタ装置10においては、それぞれ第1〜第3反射型液晶パネル17〜19で形成された映像がスクリーン28に拡大投影され、所望のカラー画像が表示される。
【0018】
また、図17の3板式反射型プロジェクタ装置30は、光源31、集光レンズ32、第1色分離ミラー33、第2色分離ミラー34、第3色分離ミラー35、第4色分離ミラー36、第5色分離ミラー37、第1反射ミラー38、第2反射ミラー39、第1反射型液晶パネル40、第2反射型液晶パネル41、第3反射型液晶パネル42、第1PBS43、第2PBS44、第3PBS45、第1フィールドレンズ46、第2フィールドレンズ47、第3フィールドレンズ48、色合成プリズム49、投射レンズ50、およびスクリーン51を有している。
【0019】
図17の3板式反射型プロジェクタ装置30は、光源の位置が異なる点を除けば、基本的には図16の装置と略同様の構成を有することから、その動作説明については、ここでは省略する。
【0020】
図16のプロジェクタ装置10では、光源11から、3枚の液晶パネル17〜19までの距離が等距離ではないが、図17のプロジェクタ装置30の場合では等距離となる。
このため、図17のプロジェクタ装置30は、図16のプロジェクタ装置10の場合に比べて、リレーレンズが不要である。
以下、図16のプロジェクタ装置10の光学装置を不等光路光学系、図17のプロジェクタ装置30の光学装置を等光路光学系と称することにする。
【0021】
また、図16、図17のプロジェクタ装置10,30では、ともに第1〜第3PBS17〜19、43〜45の光入射面側に、第1〜第3フィールドレンズ23〜25、46〜48が配置されている。
これらフィールドレンズ23〜25、46〜48は、各PBSに入射する光束をテレセントリック光学系とするものである。テレセントリック光学系とすることで、液晶パネルの各位置での輝度むらや色むらなどを均一にすることができる。
【0022】
【発明が解決しようとする課題】
ところで、PBSの偏光分離合成面と入射光の中心のなす入射角度は自由に決めることができない。
この入射角度とは、PBSの入射面に対して垂直に入射した光線が、偏光分離膜への入射する角度である。
たとえば、図18に示すPBS2は、入射角度θ=45度の場合である。この角度θは、PBSを構成するガラスの屈折率により制限される。
一般的に用いられるガラスをPBSに用いるとすると、θ=45度付近である場合が、良好な分離合成効率の設計が可能である。
【0023】
また、液晶パネルに入る光束は、完全な平行光ではなく、ある角度を持つ光束が入射する。
図19に示すように、液晶パネル1上のある一点に入射する光は、立体角を持つように光が入射するようになる。
これは、レーザのように、点光源とみなせるような光源でない場合(放電ランプなど)、効率よく光を液晶パネル1に集光するためには、ある角度を持ってパネル1に光を入射させなくてはならないためである。
【0024】
このため、高輝度な光輝度を得るには、大きな角度で液晶パネルに光を入射させる必要が生じる。
しかし、図16、図17に示すような従来の光学系では以下のような問題があった。
【0025】
大きな広がり角度で液晶パネルに光を入射させる場合、光路の断面積が増大してしまうことである。
ここで、図16に示した光学系において、光の入射角度を大きくすることを考える。
すると、図20に示すように、PBS、特に第1PBS20の入射前の光路において、光束の断面積が大きくなるため、光学素子である第2フィールドレンズ24と照明光が干渉してしまう。
【0026】
これを防ぐには、たとえば図21に示すように、色合成プリズム26を大きくするか、図22に示すように、PBS20〜22と色合成プリズム26の間を離す、もしくは図23に示すように、PBS20〜22と色合成プリズム26の間に、透明部材61、62、63を設置することが必要であった。
【0027】
図21のように色合成プリズムを大きくすると、コストの面、重量の面で不利である。
また、図21〜23においては、液晶パネルから投射レンズまでの距離(バックフォーカス)が増大し、投射レンズが大きく、重くなってしまうという欠点があった。
これは、等長光学系である図17に示す光学系でも同様であった。
【0028】
また、これまではPBSへの入射角度θが45度である場合をみてきたが、これが45度より大きくなると、さらに、干渉する条件が厳しくなる。
【0029】
このように、従来用いられてきた3つのPBSを有する3板フルカラー反射型液晶プロジェクタ10,30では、高輝度を得るために、液晶パネルへの入射角度を大きくする場合、投射レンズから液晶パネルまでのバックフォーカス長が増大し、投射レンズが大きくなり装置の大型化を招き、また、重くなるという不利益があった。
また、PBSの体積も増大する可能性がある。
【0030】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、大型化を防止でき、また軽量化を図れる光学装置およびそれを用いた投射型表示装置を提供することにある。
【0031】
【課題を解決するための手段】
上記目的を達成するため、本発明の光学装置は、光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する色分離手段と、上記色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、上記色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光を合成し、第1の波長光と第2の波長光の入射方向とは異なる方向で、出射先の光学系の光軸に平行な方向に出射する色合成手段と、上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、直接的に照明光を上記色分離手段に入射し得ない位置に配置された光源と、上記光源による照明光を、上記色分離手段に入射させる反射手段と、を有し、上記反射手段は、反射面が上記色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
【0032】
また、本発明の光学装置は、光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、光入出射部から入射した第3の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第3の変調光として上記光入出射部から出射する第3の反射型空間光変調手段と、照明光から第1の波長帯域の第1の波長光および第2の波長帯域の第2の波長光を含む合成波長光と、第3の波長帯域の第3の波長光に分離する第1の色分離手段と、入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する第2の色分離手段と、上記第2の色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、上記第2の色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、上記第3の波長光が入射され、当該第3の波長光に含まれる所定の偏光面の光を上記第3の照明光として上記第3の反射型空間光変調手段に入射させ、当該第3の反射型空間光変調手段で偏光面が回転された上記第3の変調光を上記第3の波長光とは異なる方向に出射する第3の偏光処理手段と、異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光と上記第3の偏光処理手段から出射された第3の波長光とを合成し、第1の波長光と第2の波長光と第3の波長光の入射方向とは異なる方向、出射先の光学系の光軸に平行な方向に出射する色合成手段と、上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記第2の色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記第2の色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、
直接的に上記照明光を上記第2の色分離手段に入射し得ない位置に配置され、当該照明光を上記第1の色分離手段に入射させる光源と、上記第1の色分離手段による合成波長光を、上記第2の色分離手段に入射させる反射手段と、を有し、上記反射手段は、反射面が上記第2の色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記第2の色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
【0033】
また、本発明の投射型表示装置は、光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する色分離手段と、上記色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、上記色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光を合成し、第1の波長光と第2の波長光の入射方向とは異なる方向で、出射先の光学系の光軸に平行な方向に出射する色合成手段と、上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、直接的に照明光を上記色分離手段に入射し得ない位置に配置された光源と、上記光源による照明光を、上記色分離手段に入射させる反射手段と上記色合成手段の合成光をスクリーン上に投射する投射光学系と、を有し、上記反射手段は、反射面が上記色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
【0034】
また、本発明の投射型表示装置は、光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、光入出射部から入射した第3の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第3の変調光として上記光入出射部から出射する第3の反射型空間光変調手段と、照明光から第1の波長帯域の第1の波長光および第2の波長帯域の第2の波長光を含む合成波長光と、第3の波長帯域の第3の波長光に分離する第1の色分離手段と、入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する第2の色分離手段と、上記第2の色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、上記第2の色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、上記第3の波長光が入射され、当該第3の波長光に含まれる所定の偏光面の光を上記第3の照明光として上記第3の反射型空間光変調手段に入射させ、当該第3の反射型空間光変調手段で偏光面が回転された上記第3の変調光を上記第3の波長光とは異なる方向に出射する第3の偏光処理手段と、異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光と上記第3の偏光処理手段から出射された第3の波長光とを合成し、第1の波長光と第2の波長光と第3の波長光の入射方向とは異なる方向、出射先の光学系の光軸に平行な方向に出射する色合成手段と、上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記第2の色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記第2の色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、直接的に上記照明光を上記第2の色分離手段に入射し得ない位置に配置され、当該照明光を上記第1の色分離手段に入射させる光源と、上記第1の色分離手段による合成波長光を、上記第2の色分離手段に入射させる反射手段と上記色合成手段の合成光をスクリーン上に投射する投射光学系と、を有し、上記反射手段は、反射面が上記第2の色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記第2の色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
【0035】
また、本発明では、上記偏光処理手段は入射角度が所定の角度に設定されており、上記偏光処理手段の入射部に配置された光学素子は、入射した波長光束を、当該光路が上記設定された入射角度を満足するように屈折させて偏光処理手段に入射させる。
【0036】
また、本発明では、上記光学素子は、入射光に対して偏心したレンズを含む。
【0037】
また、本発明では、上記レンズはフレネルレンズを含む。
【0038】
また、本発明では、上記レンズはフィールドレンズとしての機能を含む。
【0039】
また、本発明では、上記光学素子は、偏角プリズムを含む。
【0040】
また、本発明では、上記偏光処理手段は偏光ビームスプリッタを含み、上記偏角プリズムは、上記偏光ビームスプリッタと一体化している。
【0041】
本発明によれば、光源から、たとえば白色光による照明光が第1の色分離手段に出射される。
そして、第1の色分離手段では、第1の波長帯域および第2の波長帯域を含む合成波長光(照明光)と第3の波長帯域の第3の波長光とに分離され、第1の波長帯域および第2の波長帯域を含む合成波長光は、反射手段に入射される。
一方、第3の波長光は、たとえば他の反射手段等を介して、光学素子に導かれ、第3反射型空間光変調手段に入射される。
反射手段では、第1の波長帯域および第2の波長帯域を含む照明光が、反射光の光束の、端の光線が、第2の偏光処理手段の入射部に配置された光学素子に至らない(当たらない)光路をもって第2の色分離手段に入射するように反射される。
第2の色分離手段では、反射手段で反射された第1の波長帯域および第2の波長帯域を含む照明光が入射され、入射光のうちの第1の波長帯域の光が透過され第1の波長光として、たとえば第1の偏光処理手段の入射部に配置された第1の光学素子に出射される。
一方、第2の波長帯域の光が第2の色分離手段で反射されて第2の波長光として、第2の偏光処理手段の入射部に配置された第2の光学素子に出射される。
以上の第1および第2の色分離手段の波長分離機能により、光源より出射された照明光は、R(赤)、G(緑)、B(青)の照明光に分離される。
【0042】
たとえば第1の光学素子では、第2の色分離手段を透過した第1の波長光が、斜めに入射される。そして、第1の光学素子では、少なくとも光束の中心光線が第1の偏光処理手段の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第1の偏光処理手段に出射される。
また、第2の光学素子では、第2の色分離手段で反射された第2の波長光が、斜めに入射される。そして、第2の光学素子では、少なくとも光束の中心光線が第2の偏光処理手段の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第2の偏光処理手段に出射される。
第1の偏光処理手段では、第1の光学素子を介して入射した第1の波長光のうち、たとえばS偏光が第1の照明光として第1の反射型空間光変調手段に向けて反射される。
第1の反射型空間光変調手段では、光入出射部からたとえば所定の立体角をもって入射した第1の波長帯域の第1の照明光(たとえばS偏光)に対し、たとえば印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第1の変調光として光入出射部から第1の偏光分離手段に出射される。
そして、第1の偏光分離手段では、第1の変調光のうちたとえばP偏光成分が透過されて色合成手段に出射される。
【0043】
第2の偏光分離手段では、第2の光学素子を介して入射した第2の波長光のうち、たとえばS偏光が第2の照明光として第2の反射型空間光変調手段に向けて反射される。
第2の反射型空間光変調手段では、光入出射部からたとえば所定の立体角をもって入射した第2の波長帯域の第2の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第2の変調光として光入出射部から第2の偏光処理手段に出射される。
そして、第2の偏光処理手段では、第2の変調光のうちたとえばP偏光成分が透過されて色合成手段に出射される。
同様に、第3の偏光処理手段では、入射した第3の波長光のうち、たとえばS偏光が第3の照明光として第3の反射型空間光変調手段に向けて反射される。
第3の反射型空間光変調手段では、光入出射部からたとえば所定の立体角をもって入射した第3の波長帯域の第3の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第3の変調光として光入出射部から第3の偏光処理手段に出射される。
そして、第3の偏光処理手段では、第3の変調光のうちたとえばP偏光成分が透過されて色合成手段に出射される。
色合成手段では、第1〜第3の偏光分離手段より入射された第1〜第3の変調光が合成されて、この合成光が投射光学系を介してスクリーンに投射される。
【0044】
本発明によれば、光学素子は、上述したように、光学素子を通過する光束を所定の角度、折り曲げるように作用し、すなわち、前記光束の光軸を折り曲げ、偏光分離手段に入射せしめる。
これにより、光学系において、光束と、部品などとの干渉を防ぎ、小さな光学系を実現できる。
この結果、この光学装置を採用した投射型表示装置においては、投射光学系と反射型空間光変調手段との光路長が短くなり、投射光学系を小さくすることが可能となる。
【0045】
【発明の実施の形態】
第1実施形態
図1は、本発明に係る3板式反射型液晶プロジェクタ装置の第1の実施形態を示す構成図である。
この反射型液晶プロジェクタ装置100は、不等光路光学系の光学装置を用いている。
【0046】
この反射型液晶プロジェクタ装置100は、図1に示すように、光源101、集光レンズ102、反射手段および第1の色分離手段としての第1色分離ミラー103、第2色分離ミラー104、反射ミラー105、リレーレンズ106、第1の反射型空間光変調手段としての第1反射型液晶パネル107、第2の反射型空間光変調手段としての第2反射型液晶パネル108、第3の反射型空間光変調手段としての第3反射型液晶パネル109、第1の偏光処理手段としての第1PBS110、第2の偏光処理手段としての第2PBS111、第3の偏光処理手段としての第3PBS112、光学素子としての第1フィールドレンズ113、光学素子としての第2フィールドレンズ114、光学素子としての第3フィールドレンズ115、色合成手段としての色合成プリズム116、投射光学系としての投射レンズ117、およびスクリーン118を有している。
【0047】
反射型液晶プロジェクタ装置100において、色合成プリズム116は、図1において上面116aが投射レンズ117の光入射面と対向するように配置されている。
第1PBS110は、色合成プリズム116の図1において左側面116b側に近接して(あるいは接触させて)配置されている。
第2PBS111は、色合成プリズム116の図1において下面116c側に近接して(あるいは接触させて)配置されている。
第3PBS112は、色合成プリズム116の図1において右側面116d側に近接して(あるいは接触させて)配置されている。
【0048】
第1PBS110の図1において左側面110aに近接して、第1反射型液晶パネル107の光入出射面107aが対向するように配置されている。また、第1PBS110の図1において下面110bに近接して、あるいは一体的に第1フィールドレンズ113が配置されている。
【0049】
第2PBS111の図1において下面111aに近接して、第2反射型液晶パネル108の光入出射面108aが対向するように配置されている。また、第2PBS111の図1において左側面111bに近接して、あるいは一体的に第2フィールドレンズ114が配置されている。
【0050】
第3PBS112の図1において右側面112aに近接して、第3反射型液晶パネル109の光入出射面109aが対向するように配置されている。また、第3PBS112の図1において下面112bに近接して、あるいは一体的に第3フィールドレンズ115が配置されている。
【0051】
光源101は、たとえば放電ランプ101aとリフレクタ101bにより構成され、白色光による照明光を出射する。
【0052】
集光レンズ102は、光源101により出射される照明光を、ほぼ平行な光束に変換して第1色分離ミラー103に向けて出射する。
集光レンズ102としては、ガラスやプラスチックのものが用いられる。
なお、図1の例では、光源101による照明光をほぼ平行光束に変換する手段として、集光レンズを用いているが、たとえばマルチレンズアレイ(MLA)と呼ばれる複数のレンズを組み合わせたレンズ板や透明物質で作られた導光筒等を用いることも可能である。
【0053】
第1色分離ミラー103は、集光レンズ102より出射された照明光の光路上にて、少なくとも第1の波長帯域および第2の波長帯域を含む照明光(合成波長光)を、第2色分離ミラー104に向かって反射し、第3の波長帯域の照明光を透過させて反射ミラー105に向かって出射する。
第1色分離ミラー103は、第1の波長帯域および第2の波長帯域を含む照明光を、反射するに際し、図2に示すように、反射光の光束の、端の光線103Rが、第2フィールドレンズ114や第2PBS111に至らない(当たらない)光路をもって第2色分離ミラー104に入射するように、配置されている。
そして、第1色分離ミラー103は、反射光束が第2フィールドレンズ114や第2PBS111に至らない(当たらない)ように、しかも大型化を防止する観点から可能な限り第2フィールドレンズ114に近接した反射光路を確保するために、図2に示すように、第2フィールドレンズ114の配置位置より第2色分離ミラー104の配置側(図1では左側)で、反射光束の中心の光線103Cが、投射レンズ117の光軸OAと平行にならない角度もって斜めに反射させ得る角度をもって配置されている。
なお、第1色分離ミラー103は、たとえばガラスなどの透明材料に、誘電体薄膜を蒸着すること等により作製され、この誘電体薄膜において、入射光の波長により、透過光と反射光に分離する。
【0054】
第2色分離ミラー104は、色分離面が第1分離ミラー103の分離面とほぼ平行となるように第1フィールドレンズ113および第2フィールドレンズ114の近傍に配置され、第1色分離ミラー103で反射された第1の波長帯域および第2の波長帯域を含む照明光を入射し、入射光のうちの第1の波長帯域の光を透過して第1の波長光として第1フィールドレンズ113に出射し、第2の波長帯域の光を反射して第2の波長光として第2フィールドレンズ114に出射する。
なお、第2色分離ミラー104は、第1色分離ミラー103と同様に、たとえばガラスなどの透明材料に、誘電体薄膜を蒸着すること等により作製され、この誘電体薄膜において、入射光の波長により、透過光と反射光に分離する。
【0055】
反射ミラー105は、第1色分離ミラー103を透過した第3の波長帯域の照明光を、リレーレンズ106、第3PBS112の配置方向で、投射レンズ117の光軸OAにほぼ平行な方向に反射する。
【0056】
リレーレンズ106は、反射ミラー105で反射された第3の波長帯域の照明光を受けて、光源101から第1反射型液晶パネル107、第2反射型液晶パネル108への光路長と、第3反射型液晶パネル109への光路長との違いに基づいて、さらに照明光の像を生成させ、第3の波長光として第3フィールドレンズ115に出射する。
【0057】
第1反射型液晶パネル107は、反射層を内蔵し、第1PBS110の側面110aから出射され、光入出射面107aから所定の立体角をもって入射した第1の波長帯域の第1の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第1の変調光として光入出射面107aから第1PBS110の側面110aに出射する。
【0058】
第2反射型液晶パネル108は、反射層を内蔵し、第2PBS111の下面111aから出射され、光入出射面108aから所定の立体角をもって入射した第2の波長帯域の第2の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第2の変調光として光入出射面108aから第2PBS111の下面111aに出射する。
【0059】
第3反射型液晶パネル109は、反射層を内蔵し、第3PBS112の側面112aから出射され、光入出射面109aから所定の立体角をもって入射した第3の波長帯域の第3の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第3の変調光として光入出射面109aから第3PBS112の側面112aに出射する。
【0060】
第1PBS110は、たとえば入射角度θが45度に設定されており、偏光分離合成面110cが投射レンズ117の光軸OAに垂直な方向に対して略45度の傾斜を持つように配置され、第1フィールドレンズ113による第1の波長光のうち、図3(a)に示すように、S偏光S−PLを反射して側面110aから第1の照明光として第1反射型液晶パネル107の光入出射面107aに出射し、また、図3(b)に示すように、第1反射型液晶パネル107の光入出射面107aから出射された第1の変調光のP偏光P−PLを偏光分離合成面110cで透過させて色合成プリズム116の側面116bに出射する。
なお、第1PBS110は、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0061】
第2PBS111は、たとえば入射角度θが45度に設定されており、偏光分離合成面111cが投射レンズ117の光軸OAに対して略45度の傾斜を持つように配置され、第2フィールドレンズ114による第2の波長光のうち、S偏光S−PLを反射して下面111aから第2の照明光として第2反射型液晶パネル108の光入出射面108aに出射し、また、第2反射型液晶パネル108の光入出射面108aから出射された第2の変調光のP偏光P−PLを偏光分離合成面111cで透過させて色合成プリズム116の下面116cに出射する。
なお、第2PBS111は、第1PBS110と同様に、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0062】
第3PBS112は、たとえば入射角度θが45度に設定されており、偏光分離合成面112cが投射レンズ117の光軸OAに垂直な方向に対して略45度の傾斜を持つように配置され、第3フィールドレンズ113による第3の波長光のうち、S偏光S−PLを反射して側面112aから第3の照明光として第3反射型液晶パネル109の光入出射面109aに出射し、また、第3反射型液晶パネル109の光入出射面109aから出射された第3の変調光のP偏光P−PLを偏光分離合成面112cで透過させて色合成プリズム116の側面116dに出射する。
なお、第3PBS112は、第1PBS110および第2PBS111と同様に、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0063】
第1フィールドレンズ113は、第1PBS110の光入射面を形成する下面110bに近接して、あるいは一体的に配置され、投射レンズ117の光軸OAとは平行ではない方向から斜めに入射される第2色分離ミラー104を透過した第1の波長光を、その入射光束を屈折させて(入射光束の出射角度を変えて)、少なくとも光束の中心光線を第1PBS110の偏光分離合成面110cに45度の入射角度をもって入射させる。
第1フィールドレンズ113は、その光軸が、第1フィールドレンズ113を通過する第1の波長光の光束の中心からずらしてある、すなわち、偏心させてある。
この偏心構造によって、図4に示すように、第1フィールドレンズ113は、投射レンズ117の光軸OAに平行でない方向から斜めに入射した第1の波長光の光束L104の出射方向を投射レンズ117の光軸OAに略平行な方向の光束L113に変更して第1PBS110に入射させる。
【0064】
第2フィールドレンズ114は、第2PBS111の光入射面を形成する側面111bに近接して、あるいは一体的に配置され、投射レンズ117の光軸OAに垂直な方向に平行ではない方向から斜めに入射される第2色分離ミラー104を反射され第2の波長光を、その入射光束を屈折させて(入射光束の出射角度を変えて)、少なくとも光束の中心光線を第2PBS111の偏光分離合成面111cに45度の入射角度をもって入射させる。
第2フィールドレンズ114は、第1フィールドレンズ113と同様に、その光軸が、第2フィールドレンズ114を通過する第2の波長光の光束の中心からずらしてある、すなわち、偏心させてある。
この偏心構造によって、第1フィールドレンズ114は、投射レンズ117の光軸OAに垂直な方向に平行でない方向から斜めに入射した第2の波長光の光束の出射方向を投射レンズ117の光軸OAに垂直な方向に略平行な方向の光束に変更して第2PBS111に入射させる。
【0065】
第3フィールドレンズ115は、第3PBS112の光入射面を形成する下面112bに近接して、あるいは一体的に配置され、投射レンズ117の光軸OAに平行な方向から入射されるリレーレンズ106を透過した第3の波長光の光束の中心光線を第3PBS112の偏光分離合成面112cに45度の入射角度をもって入射させる。
なお、第3フィールドレンズ115は、入射光束の中心が投射レンズ117の光軸OAに平行な方向から入射されことから、偏心構造をとっていない。
ただし、第3フィールドレンズ115も偏心構造を採用したものを用いることは勿論可能である。この場合、反射ミラー105やリレーレンズ106の配置位置や角度が適宜変更される。
【0066】
なお、入射光束を屈折させて、PBSの入射角度をもって出射させる光学素子としては、偏心構造を持ったせたフィールドレンズを用いる代わりに、たとえば図5、図6、図7に示すような光学素子を用いることも可能である。
【0067】
図5に示す例は、偏心構造を持たないフィールドレンズ120と、フィールドレンズ120への入射光路に配置された透明部材で形成された偏角プリズム121との組み合わせで、入射光束を屈折させてPBSに入射される例である。
【0068】
図6に示す例は、フィールドレンズをフレネルレンズ122で構成し、その光軸を入射光束に対し偏心させた例である。
【0069】
また、図7に示す例は、偏角プリズムとPBSを一体化し、PBS130の入射面130a自体で光束を屈折させる例である。
【0070】
色合成プリズム116は、図8に示すように、第1PBS110から出射され、左側面116b側から入射した第1反射型液晶パネル107による第1の変調光を投射レンズ117の配置方向で、その光軸OAに平行な方向に反射し、第2PBS111から出射され、下面116cから入射した第2反射型液晶パネル108による第2の変調光を、投射レンズ117の光軸OAに平行な方向に透過させ、第3PBS112から出射され、右側面116d側から入射した第3反射型液晶パネル109による第3の変調光を投射レンズ117の配置方向で、その光軸OAに平行な方向に反射し、これら第1〜第3の変調光を合成して、合成光を投射レンズ117に出射する。
【0071】
投射レンズ117は、色合成プリズム116による合成光、すなわち、第1〜第3反射型液晶パネル107〜109による映像光をスクリーン118上に結像させる。
【0072】
次に、上記構成による動作を説明する。
【0073】
光源101に対して図示しない電源回路から所定の電力が供給され、これにより、光源101から白色光による照明光を出射される。光源101により出射される照明光は、集光レンズ102によりほぼ平行な光束に変換されて第1色分離ミラー103に向けて出射される。
【0074】
第1色分離ミラー103では、集光レンズ12より出射された照明光の光路上にて、少なくとも第1の波長帯域および第2の波長帯域を含む照明光が第2色分離ミラー104に向かって反射され、第3の波長帯域の光が透過されて反射ミラー105に向かって出射される。
このとき、第1色分離ミラー103で反射された第1の波長帯域および第2の波長帯域を含む照明光は、反射光の光束の、端の光線103Rが、第2フィールドレンズ114や第2PBS111に至らない(当たらない)光路で、しかも第2フィールドレンズ114に近接した反射光路をもって第2色分離ミラー104に入射される。
【0075】
第2色分離ミラー104では、第1色分離ミラー103で反射された第1の波長帯域および第2の波長帯域を含む照明光が入射され、入射光のうちの第1の波長帯域の光が透過され第1の波長光として第1フィールドレンズ113に出射される。
一方、第2の波長帯域の光が第2色分離ミラー104で反射されて第2の波長光として第2フィールドレンズ114に出射される。
以上の第1色分離ミラー103および第2色分離ミラー104の波長分離機能により、光源101より出射された照明光は、R(赤)、G(緑)、B(青)の照明光に分離される。
【0076】
また、第1色分離ミラー103を透過した第3の波長帯域の照明光は、反射ミラー105においてリレーレンズ106、第3PBS112の配置方向で、投射レンズ117の光軸OAにほぼ平行な方向に反射されて、リレーレンズ106に入射される。
そして、リレーレンズ106では、反射ミラー105で反射された第3の波長帯域の照明光を受けて、光源101から第1反射型液晶パネル107、第2反射型液晶パネル108への光路長と、第3反射型液晶パネル109への光路長との違いに基づいて、さらに照明光の像が生成され、第3の波長光として第3フィールドレンズ115に出射される。
【0077】
第1フィールドレンズ113では、第2色分離ミラー104を透過した第1の波長光が、投射レンズ117の光軸OAとは平行ではない方向から斜めに入射される。そして、第1フィールドレンズ113では、少なくとも光束の中心光線が第1PBS110の偏光分離合成面110cに45度の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第1PBS110に出射される。
また、第2フィールドレンズ114では、第2色分離ミラー104で反射された第2の波長光が、投射レンズ117の光軸OAに垂直な方向とは平行ではない方向から斜めに入射される。そして、第2フィールドレンズ114では、少なくとも光束の中心光線が第2PBS111の偏光分離合成面111cに45度の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第2PBS111に出射される。
また、第3フィールドレンズ114では、投射レンズ117の光軸OAに平行な方向から入射されるリレーレンズ106を透過した第3の波長光が、その光束の中心光線が第3PBS112の偏光分離合成面112cに45度の入射角度をもって入射するように出射される。
【0078】
第1PBS110では、第1フィールドレンズ113を介して入射した第1の波長光のうち、S偏光が第1の照明光として第1反射型液晶パネル107に向けて反射される。
第1反射型液晶パネル107では、光入出射面107aから所定の立体角をもって入射した第1の波長帯域の第1の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第1の変調光として光入出射面107aから第1PBS110の側面110aに出射される。
そして、第1PBS110では、第1の変調光のうちP偏光成分が透過されて色合成プリズム116に出射される。
【0079】
第2PBS111では、第2フィールドレンズ114を介して入射した第2の波長光のうち、S偏光が第2の照明光として第2反射型液晶パネル108に向けて反射される。
第2反射型液晶パネル108では、光入出射面108aから所定の立体角をもって入射した第2の波長帯域の第2の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第2の変調光として光入出射面108aから第2PBS111の下面111aに出射される。
そして、第2PBS111では、第2の変調光のうちP偏光成分が透過されて色合成プリズム116に出射される。
【0080】
同様に、第3PBS112では、第3フィールドレンズ115を介して入射した第3の波長光のうち、S偏光が第3の照明光として第2反射型液晶パネル109に向けて反射される。
第3反射型液晶パネル109では、光入出射面109aから所定の立体角をもって入射した第3の波長帯域の第3の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第3の変調光として光入出射面109aから第3PBS112の側面112aに出射される。
そして、第3PBS112では、第3の変調光のうちP偏光成分が透過されて色合成プリズム116に出射される。
【0081】
色合成プリズム116では、第1〜第3PBS110〜112より入射された第1〜第3の変調光が合成されて、この合成光が投射レンズ117を介してスクリーン118に投射される。
これにより、3板式反射型プロジェクタ装置100においては、それぞれ第1〜第3反射型液晶パネル107〜109で形成された映像がスクリーン118に拡大投影され、所望のカラー画像が表示される。
【0082】
以上説明したように、本第1の実施形態によれば、第1色分離ミラー103を、反射光束が第2フィールドレンズ114や第2PBS111に至らない(当たらない)ように、しかも可能な限り第2フィールドレンズ114に近接した反射光路を確保するように、第2フィールドレンズ114の配置位置より第2色分離ミラー104の配置側で、反射光束の中心の光線103Cが、投射レンズ117の光軸OAと平行にならない角度をもって斜めに反射させ得る角度をもって配置し、また、第1PBS110および第2PBS111の入射側において、入射光束を屈折させて設定入射角度をもってPBSに入射させる光学素子としての第1フィールドレンズ113、第2フィールドレンズ114を設けたので、光束を第2フィールドレンズ114や第2PBS111に近づけることができることから、第1PBS110、第2PBS111と色合成プリズム116との距離を短くできる。このため、投射レンズと液晶パネルの距離を長くする必要がなく投射レンズの増大を避けることができる。また、PBSに、光束が入射する角度は、たとえば偏心構造を持ったフィールドレンズにより、従来と同じ角度で、入射できる。
【0083】
なお、以上の説明では、PBSの入射角度θが45度に設定された場合を例に説明したが、本発明は、図9および図10に示すように、入射角度が45度以外のPBSを用いる場合でも適用できる。
なお、図9は、入射角度θが45度より大きいPBSを用いた場合を示し、図10は、入射角度θが45度より小さいPBSを用いた例を示している。
これらの場合、フィールドレンズの偏心量等が最適なものに適宜設定される。
【0084】
また、本実施形態では、図1において光源101を色分離ミラー103の左側方に配置した例を説明したが、たとえば、図1において色分離ミラー103の下方に配置し、色分離ミラーとして、第1の波長帯域および第2の波長帯域を含む照明光を透過させ、第3の波長帯域の照明光を反射ミラー105に向かって反射するものを用いて構成することも可能である。この場合も、上記した効果と同様の効果を得ることができる。
【0085】
第2実施形態
図11は、本発明に係る3板式反射型液晶プロジェクタ装置の第2の実施形態を示す構成図である。
この3板式反射型液晶プロジェクタ200は、等光路光学系の光学装置を用いている。
【0086】
この3板式反射型液晶プロジェクタ200は、図11に示すように、光源201、集光レンズ202、第1の色分離手段としての第1色分離ミラー203、第1の色分離手段としての第2色分離ミラー204、第1の色分離手段としての第3色分離ミラー205、第1の色分離手段としての第4色分離ミラー206、第2の色分離手段としての第5色分離ミラー207、反射手段としての第1反射ミラー208、第2反射ミラー209、第1の反射型空間光変調手段としての第1反射型液晶パネル210、第2の反射型空間光変調手段としての第2反射型液晶パネル211、第3の反射型空間光変調手段としての第3反射型液晶パネル212、第1の偏光処理手段としての第1PBS213、第2の偏光処理手段としての第2PBS214、第3の偏光処理手段としての第3PBS215、光学素子としての第1フィールドレンズ216、光学素子としての第2フィールドレンズ217、光学素子としての第3フィールドレンズ218、色合成手段としての色合成プリズム219、投射系光学系としての投射レンズ220、およびスクリーン221を有している。
【0087】
反射型液晶プロジェクタ装置200においては、色合成プリズム219は、その光学的中心部が投射レンズ220の光軸OAと平行配置するように、図11において上面219aが投射レンズ220の光入射面と対向するように配置されている。
また、反射型液晶プロジェクタ装置200においては、光源201、および集光レンズ202は、その光軸が11が投射レンズ220の光軸OAと略一致するように配置されている。
【0088】
そして、第1PBS213は、その光学的中心部が色合成プリズム219の光学的中心部に一致し、かつそれら光学的中心部を結ぶ延長線が投射レンズ220の光軸OAとに直交するように、色合成プリズム219の図11において左側面219側に近接して(あるいは接触させて)配置されている。
第2PBS214は、その光学的中心部が色合成プリズム219の光学的中心部に一致し、かつそれら光学的中心部を結ぶ延長線が投射レンズ220の光軸OAとに一致するように、色合成プリズム219の図11において下面219c側に近接して(あるいは接触させて)配置されている。
第3PBS215は、その光学的中心部が色合成プリズム219の光学的中心部に一致し、かつそれら光学的中心部を結ぶ延長線が投射レンズ220の光軸OAとに直交するように、色合成プリズム219の図11において右側面219d側に近接して(あるいは接触させて)配置されている。
【0089】
第1PBS213の図11において左側面213aに近接して、第1反射型液晶パネル210の光入出射面210aが対向するように配置されている。また、第1PBS213の図11において下面213bに近接して、あるいは一体的に第1フィールドレンズ216が配置されている。
【0090】
第2PBS214の図11において下面214aに近接して、第2反射型液晶パネル211の光入出射面211aが対向するように配置されている。また、第2PBS214の図11において左側面214bに近接して、あるいは一体的に第2フィールドレンズ217が配置されている。
【0091】
第3PBS215の図11において右側面215aに近接して、第3反射型液晶パネル212の光入出射面212aが対向するように配置されている。また、第3PBS215の図11において下面215bに近接して、あるいは一体的に第3フィールドレンズ218が配置されている。
【0092】
光源201は、たとえば放電ランプ201aとリフレクタ201bにより構成され、白色光による照明光を出射する。
【0093】
集光レンズ202は、光源101により出射される照明光を、ほぼ平行な光束に変換して交差するように配置された第1〜第4色分離ミラー203〜206に向けて出射する。
集光レンズ102としては、ガラスやプラスチックのものが用いられる。
なお、図11の例では、光源101による照明光をほぼ平行光束に変換する手段として、集光レンズを用いているが、たとえばマルチレンズアレイ(MLA)と呼ばれる複数のレンズを組み合わせたレンズ板や透明物質で作られた導光筒等を用いることも可能である。
【0094】
第1色分離ミラー203と第4色分離ミラー206が直線状に配置され、第2色分離ミラー204と第3色分離ミラー205が直線状に配置され、両者がX字状に交差するように配置されている。
そして、第1色分離ミラー203と第4色分離ミラー206が同じ特性を持ち、第2色分離ミラー204と第3色分離ミラー205が同じ特性を持つように構成されている。
【0095】
具体的は、第1色分離ミラー203と第4色分離ミラー206は、集光レンズ202より出射された照明光の光路上にて、少なくとも第1の波長帯域および第2の波長帯域を含む照明光(合成波長光)を、図11において左側に配置された第1反射ミラー208に向かって反射(照明光の入射光路に対して略90度の角度で左方向に反射)し、第3の波長帯域の照明光(第3の波長光)を透過させる。
一方、第2色分離ミラー204と第3色分離ミラー205は、集光レンズ202より出射された照明光の光路上にて、第3の波長帯域の照明光を図11において右側に配置された第2反射ミラー209に向かって反射(照明光の入射光路に対して略90度の角度で右方向に反射)し、残りの光を透過させる。
したがって、第3色分離ミラー205を透過し、第1色分離ミラー203で反射された光束、あるいは、第4色分離ミラー206で反射され第3色分離ミラー204を透過した照明光が第1反射ミラー208の反射面に入射される。
一方、第4色分離ミラー206を透過し、第2色分離ミラー204で反射された光束、あるいは、第3色分離ミラー205で反射され第4色分離ミラー206を透過した照明光が第2反射ミラー209の反射面に入射される。
【0096】
第1反射ミラー208は、第1の波長帯域および第2の波長帯域を含む照明光を、反射するに際し、図11に示すように、反射光の光束の、端の光線208Rが、第2フィールドレンズ217や第2PBS214に至らない(当たらない)光路をもって第5色分離ミラー207に入射するように、配置されている。
さらに具体的には、第1反射ミラー208は、反射光束が第2フィールドレンズ217や第2PBS214に至らない(当たらない)ように、しかも大型化を防止する観点から可能な限り第2フィールドレンズ114に近接した反射光路を確保するために、図11に示すように、第2フィールドレンズ217の配置位置より第5色分離ミラー207の配置側(図11では左側)で、反射光束の中心の光線208Cが、投射レンズ220の光軸OAと平行にならない角度もって、図11において、右斜め上方向に反射させ得る角度をもって配置されている。
【0097】
第2反射ミラー209は、第3の波長帯域の照明光を、反射するに際し、図11に示すように、反射光の光束の、端の光線209Rが、第2PBS214に至らない(当たらない)光路をもって第3フィールドレンズ218に入射するように、配置されている。
さらに具体的には、第2反射ミラー209が、反射光束が第2PBS214に至らない(当たらない)ように、しかも大型化を防止する観点から可能な限り第2PBS214に近接した反射光路を確保するために、図11に示すように、第2PBS214の配置位置より第3PBS215の配置側(図11では右側)で、反射光束の中心の光線209Cが、投射レンズ220の光軸OAと平行にならない角度もって、図11において、右斜め左方向に反射させ得る角度をもって配置されている。
【0098】
第5色分離ミラー207は、第1フィールドレンズ216および第2フィールドレンズ217の近傍に配置され、第1反射ミラー208で反射された第1の波長帯域および第2の波長帯域を含む照明光を入射し、入射光のうちの第1の波長帯域の光を透過して第1の波長光として第1フィールドレンズ216に出射し、第2の波長帯域の光を反射して第2の波長光として第2フィールドレンズ217に出射する。
【0099】
なお、第1〜第5色分離ミラー203〜207は、たとえばガラスなどの透明材料に、誘電体薄膜を蒸着すること等により作製され、この誘電体薄膜において、入射光の波長により、透過光と反射光に分離する。
【0100】
第1反射型液晶パネル210は、反射層を内蔵し、第1PBS213の側面213aから出射され、光入出射面210aから所定の立体角をもって入射した第1の波長帯域の第1の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第1の変調光として光入出射面210aから第1PBS213の側面213aに出射する。
【0101】
第2反射型液晶パネル211は、反射層を内蔵し、第2PBS214の下面214aから出射され、光入出射面211aから所定の立体角をもって入射した第2の波長帯域の第2の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第2の変調光として光入出射面211aから第2PBS214の下面214aに出射する。
【0102】
第3反射型液晶パネル212は、反射層を内蔵し、第3PBS215の側面215aから出射され、光入出射面212aから所定の立体角をもって入射した第3の波長帯域の第3の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調を行い、反射層で反射して第3の変調光として光入出射面212aから第3PBS215の側面215aに出射する。
【0103】
第1PBS213は、たとえば入射角度θが45度に設定されており、偏光分離合成面213cが投射レンズ220の光軸OAに垂直な方向に対して略45度の傾斜を持つように配置され、第1フィールドレンズ216による第1の波長光のうち、S偏光S−PLを反射して側面213aから第1の照明光として第1反射型液晶パネル210の光入出射面210aに出射し、また、第1反射型液晶パネル210の光入出射面210aから出射された第1の変調光のP偏光P−PLを偏光分離合成面213cで透過させて色合成プリズム219の側面219bに出射する。
なお、第1PBS213は、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0104】
第2PBS214は、たとえば入射角度θが45度に設定されており、偏光分離合成面214cが投射レンズ220の光軸OAに対して略45度の傾斜を持つように配置され、第2フィールドレンズ217による第2の波長光のうち、S偏光S−PLを反射して下面214aから第2の照明光として第2反射型液晶パネル211の光入出射面211aに出射し、また、第2反射型液晶パネル211の光入出射面211aから出射された第2の変調光のP偏光P−PLを偏光分離合成面214cで透過させて色合成プリズム219の下面219cに出射する。
なお、第2PBS214は、第1PBS213と同様に、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0105】
第3PBS215は、たとえば入射角度θが45度に設定されており、偏光分離合成面215cが投射レンズ220の光軸OAに垂直な方向に対して略45度の傾斜を持つように配置され、第3フィールドレンズ218による第3の波長光のうち、S偏光S−PLを反射して側面215aから第3の照明光として第3反射型液晶パネル212の光入出射面212aに出射し、また、第3反射型液晶パネル212の光入出射面212aから出射された第3の変調光のP偏光P−PLを偏光分離合成面215cで透過させて色合成プリズム219の側面219dに出射する。
なお、第3PBS215は、第1PBS213および第2PBS214と同様に、2つのガラスプリズムの間に誘電体多層膜を単層もしくは複数積層して構成される。
【0106】
第1フィールドレンズ216は、第1PBS213の光入射面を形成する下面213bに近接して、あるいは一体的に配置され、投射レンズ220の光軸OAとは平行ではない方向から斜めに入射される第5色分離ミラー207を透過した第1の波長光を、その入射光束を屈折させて(入射光束の出射角度を変えて)、少なくとも光束の中心光線を第1PBS213の偏光分離合成面213cに45度の入射角度をもって入射させる。
第1フィールドレンズ216は、その光軸が、第1フィールドレンズ216を通過する第1の波長光の光束の中心からずらしてある、すなわち、偏心させてある。
この偏心構造によって、第1フィールドレンズ216は、投射レンズ220の光軸OAに平行でない方向から斜めに入射した第1の波長光の光束L207の出射方向を投射レンズ220の光軸OAに略平行な方向の光束L216に変更して第1PBS213に入射させる。
【0107】
第2フィールドレンズ217は、第2PBS214の光入射面を形成する側面214bに近接して、あるいは一体的に配置され、投射レンズ220の光軸OAに垂直な方向に平行ではない方向から斜めに入射される第5色分離ミラー207を反射され第2の波長光を、その入射光束を屈折させて(入射光束の出射角度を変えて)、少なくとも光束の中心光線を第2PBS214の偏光分離合成面214cに45度の入射角度をもって入射させる。
第2フィールドレンズ217は、第1フィールドレンズ216と同様に、その光軸が、第2フィールドレンズ217を通過する第2の波長光の光束の中心からずらしてある、すなわち、偏心させてある。
この偏心構造によって、第1フィールドレンズ217は、投射レンズ220の光軸OAに垂直な方向に平行でない方向から斜めに入射した第2の波長光の光束の出射方向を投射レンズ220の光軸OAに垂直な方向に略平行な方向の光束に変更して第2PBS214に入射させる。
【0108】
第3フィールドレンズ218は、第3PBS215の光入射面を形成する下面215bに近接して、あるいは一体的に配置され、投射レンズ220の光軸OAとは平行ではない方向から斜めに入射される第2反射ミラー209で反射された第3の波長光を、その入射光束を屈折させて(入射光束の出射角度を変えて)、少なくとも光束の中心光線を第3PBS215の偏光分離合成面215cに45度の入射角度をもって入射させる。
第3フィールドレンズ218は、その光軸が、第3フィールドレンズ218を通過する第3の波長光の光束の中心からずらしてある、すなわち、偏心させてある。
この偏心構造によって、第3フィールドレンズ218は、投射レンズ220の光軸OAに平行でない方向から斜めに入射した第1の波長光の光束の出射方向を投射レンズ220の光軸OAに略平行な方向の光束に変更して第3PBS215に入射させる。
【0109】
なお、入射光束を屈折させて、PBSの入射角度をもって出射させる光学素子としては、偏心構造を持ったせたフィールドレンズを用いる代わりに、たとえば図5、図6、図7に示すような光学素子を用いることも勿論可能である。
【0110】
色合成プリズム219は、第1PBS213から出射され、左側面219b側から入射した第1反射型液晶パネル210による第1の変調光を投射レンズ220の配置方向で、その光軸OAに平行な方向に反射し、第2PBS214から出射され、下面219cから入射した第2反射型液晶パネル211による第2の変調光を、投射レンズ220の光軸OAに平行な方向に透過させ、第3PBS215から出射され、右側面219d側から入射した第3反射型液晶パネル212による第3の変調光を投射レンズ220の配置方向で、その光軸OAに平行な方向に反射し、これら第1〜第3の変調光を合成して、投射レンズ220に出射する。
【0111】
投射レンズ220は、色合成プリズム219による合成光、すなわち、第1〜第3反射型液晶パネル210〜212による映像光をスクリーン221上に結像させる。
【0112】
次に、上記構成による動作を説明する。
【0113】
光源201に対して図示しない電源回路から所定の電力が供給され、これにより、光源201から白色光による照明光を出射される。光源201により出射される照明光は、集光レンズ202によりほぼ平行な光束に変換されて交差配置された第1〜第4色分離ミラー203〜206に向けて出射される。
【0114】
そして、第1色分離ミラー203と第4色分離ミラー206において、集光レンズ202より出射された照明光の光路上にて、少なくとも第1の波長帯域および第2の波長帯域を含む照明光が、第1反射ミラー208に向かって反射される。
一方、第2色分離ミラー204と第3色分離ミラー205において、集光レンズ202より出射された照明光の光路上にて、第3の波長帯域の照明光が、第2反射ミラー209に向かって反射される。
【0115】
第1反射ミラー208では、第1の波長帯域および第2の波長帯域を含む照明光が、反射光の光束の、端の光線208Rが、第2フィールドレンズ217や第2PBS214に至らない(当たらない)光路をもって第5色分離ミラー207に入射するように反射される。
また、第2反射ミラー209では、第3の波長帯域の照明光が、反射光の光束の、端の光線209Rが、第2PBS214に至らない(当たらない)光路をもって第3フィールドレンズ218に入射するように反射される。
【0116】
第5色分離ミラー207では、第1反射ミラー208で反射された第1の波長帯域および第2の波長帯域を含む照明光が入射され、入射光のうちの第1の波長帯域の光が透過され第1の波長光として第1フィールドレンズ217に出射される。
一方、第2の波長帯域の光が第5色分離ミラー207で反射されて第2の波長光として第2フィールドレンズ217に出射される。
以上の第1〜第5色分離ミラー203〜207の波長分離機能により、光源201より出射された照明光は、R(赤)、G(緑)、B(青)の照明光に分離される。
【0117】
第1フィールドレンズ216では、第5色分離ミラー207を透過した第1の波長光が、投射レンズ220の光軸OAとは平行ではない方向から斜めに入射される。そして、第1フィールドレンズ216では、少なくとも光束の中心光線が第1PBS213の偏光分離合成面213cに45度の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第1PBS213に出射される。
また、第2フィールドレンズ217では、第5色分離ミラー207で反射された第2の波長光が、投射レンズ220の光軸OAに垂直な方向とは平行ではない方向から斜めに入射される。そして、第2フィールドレンズ217では、少なくとも光束の中心光線が第2PBS214の偏光分離合成面214cに45度の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第2PBS214に出射される。
また、第3フィールドレンズ218では、第2反射ミラー209で反射された第3の波長光が、投射レンズ220の光軸OAとは平行ではない方向から斜めに入射される。そして、第3フィールドレンズ218では、少なくとも光束の中心光線が第3PBS215の偏光分離合成面215cに45度の入射角度をもって入射するように、入射光束が所定角度だけ屈折作用を受けて第3PBS215に出射される。
【0118】
第1PBS213では、第1フィールドレンズ216を介して入射した第1の波長光のうち、S偏光が第1の照明光として第1反射型液晶パネル210に向けて反射される。
第1反射型液晶パネル210では、光入出射面210aから所定の立体角をもって入射した第1の波長帯域の第1の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第1の変調光として光入出射面210aから第1PBS213の側面213aに出射される。
そして、第1PBS213では、第1の変調光のうちP偏光成分が透過されて色合成プリズム219に出射される。
【0119】
第2PBS214では、第2フィールドレンズ217を介して入射した第2の波長光のうち、S偏光が第2の照明光として第2反射型液晶パネル211に向けて反射される。
第2反射型液晶パネル211では、光入出射面211aから所定の立体角をもって入射した第2の波長帯域の第2の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第2の変調光として光入出射面211aから第2PBS214の下面214aに出射される。
そして、第2PBS214では、第2の変調光のうちP偏光成分が透過されて色合成プリズム219に出射される。
【0120】
同様に、第3PBS215では、第3フィールドレンズ218を介して入射した第3の波長光のうち、S偏光が第3の照明光として第3反射型液晶パネル212に向けて反射される。
第3反射型液晶パネル212では、光入出射面212aから所定の立体角をもって入射した第3の波長帯域の第3の照明光(たとえばS偏光)に対し、印加される映像信号に応じて偏光面を回転させる空間光変調が行われ、反射層で反射して第3の変調光として光入出射面212aから第3PBS215の側面215aに出射される。
そして、第3PBS215では、第3の変調光のうちP偏光成分が透過されて色合成プリズム219に出射される。
【0121】
色合成プリズム219では、第1〜第3PBS213〜215より入射された第1〜第3の変調光が合成されて、この合成光が投射レンズ220を介してスクリーン221に投射される。
これにより、3板式反射型プロジェクタ装置200においては、それぞれ第1〜第3反射型液晶パネル210〜212で形成された映像がスクリーン221に拡大投影され、所望のカラー画像が表示される。
【0122】
以上説明したように、本第2の実施形態によれば、上述した第1の実施形態の効果と同様の効果を得ることができる。
すなわち、光束を第2フィールドレンズ217や第2PBS214に近づけることができことから、第1PBS213、第2PBS214と色合成プリズム219との距離を短くできる。このため、投射レンズと液晶パネルの距離を長くする必要がなく投射レンズの増大を避けることができる。また、PBSに、光束が入射する角度は、たとえば偏心構造を持ったフィールドレンズにより、従来と同じ角度で、入射できる。
【0123】
また、本第2の実施形態においても、PBSの入射角度θが45度に設定された場合を例に説明したが、本発明は、前述した第1の実施形態の場合と同様、図9および図10に示すように、入射角度が45度以外のPBSを用いる場合でも適用できる。
これらの場合、フィールドレンズの偏心量等が最適なものに適宜設定される。
【0124】
第3実施形態
図12は、本発明に係る3板式反射型液晶プロジェクタ装置の第3の実施形態を示す構成図である。
この3板式反射型液晶プロジェクタ200Aは、等光路光学系の光学装置を用いている。
【0125】
本第3の実施形態が上述した第2の実施形態と異なる点は、光源201の照明光の出射側と集光レンズ202の光入射面側との間に、いわゆるインテグレータ光学系230を配置したことにある。
【0126】
このインテグレータ光学系230は、複数のレンズが配置され、光源201から出射された照明光を複数の像に分割し、これら分割像を集光して各分割像の光スポットを所定の位置にレイアウトさせる第1のマルチレンズアレイ(MLA)231と、第1MLA231により集光される複数の光スポットに対応する複数のレンズが配置され、各レンズにより第1のMLA231により分割像を重畳結合して集光レンズ202に出射する第2のMLA232を有している。
【0127】
その他の構成は上述した第2の実施形態と同様である。
【0128】
本第3の実施形態によれば、上述した第2の実施形態の効果と同様の効果を得られることはもとより、効率の良い照明を実現できる利点がある。
【0129】
なお、インテグレータ光学系は、図1に示す不等光路光学系に適用できることはいうまでもない。
【0130】
第4実施形態
図13は、本発明に係る3板式反射型液晶プロジェクタ装置の第4の実施形態を示す構成図である。
この3板式反射型液晶プロジェクタ200Bは、等光路光学系の光学装置を用いている。
【0131】
本第4の実施形態が上述した第3の実施形態と異なる点は、第1PBS213Aおよび第3PBS215Aが、S偏光を反射し、P偏光を透過させる特性のものを用いるに代えて、S偏光を透過し、P偏光を反射させる特性に有するもの構成したことにある。
そのため、第1反射型液晶パネル210が第1PBS213Aの上面側に配置され、同様に、第3反射型液晶パネル212が第3PBS215Aの上面側に配置されている。
【0132】
その他の構成は上述した第3の実施形態と同様である。
【0133】
本第4の実施形態によれば、上述した第3の実施形態の効果と同様の効果を得ることができる。
【0134】
なお、この構成は、図1に示す不等光路光学系に適用できることはいうまでもない。
【0135】
【発明の効果】
本発明によれば、偏光処理手段と色合成手段との距離を短くでき、光学装置の小型化、軽量化を図ることができる。
また、投射光学系と反射型空間光変調手段との距離を長くする必要がなく投射光学系の増大を避けることができ、投射光学系の小型化を図ることができる。
これに従い、装置の小型化、軽量化を実現できる。
【図面の簡単な説明】
【図1】本発明に係る光学装置を用いた反射型液晶プロジェクタ装置の第1の実施形態を示す構成図である。
【図2】図1の第1色分離ミラーの配置および機能を説明するための図である。
【図3】図1のPBSの機能を説明するための図である。
【図4】本発明に係る入射光束をPBSの入射角度に応じて屈折させる光学素子としての偏心構造を持つフィールドレンズを説明するための図である。
【図5】本発明に係る入射光束をPBSの入射角度に応じて屈折させる光学素子を他の例を示す図である。
【図6】本発明に係る入射光束をPBSの入射角度に応じて屈折させる光学素子を他の例を示す図である。
【図7】本発明に係る入射光束をPBSの入射角度に応じて屈折させる光学素子を他の例を示す図である。
【図8】図1の色合成プリズムの機能を説明するための図である。
【図9】偏光分離合成面への入射角度が45度より大きな角度であるようなPBSを示す図である。
【図10】偏光分離合成面への入射角度が45度より小さな角度であるようなPBSを示す図である。
【図11】本発明に係る光学装置を用いた反射型液晶プロジェクタ装置の第2の実施形態を示す構成図である。
【図12】本発明に係る光学装置を用いた反射型液晶プロジェクタ装置の第3の実施形態を示す構成図である。
【図13】本発明に係る光学装置を用いた反射型液晶プロジェクタ装置の第4の実施形態を示す構成図である。
【図14】反射型液晶パネルを用いるプロジェクタ装置の基本動作を説明するための図である。
【図15】反射型液晶パネルを用いるプロジェクタ装置の基本動作を他の例を説明するための図である。
【図16】不等光路光学系を採用した従来の3板式反射型プロジェクタ装置を示す構成図である。
【図17】等光路光学系を採用した従来の3板式反射型プロジェクタ装置を示す構成図である。
【図18】偏光合成分離面への入射角度が45度であるようなPBS(偏光ビームスプリッタスプリッタ)を説明するための図である。
【図19】液晶パネルのある一点に入射する光束の様子を説明するための図である。
【図20】従来装置において、液晶パネルへの入射角度を増すと、フィールドレンズ、PBS、液晶パネルと光束が干渉してしまうことを説明するための図である。
【図21】色合成プリズムを大きくして光路と光学素子との干渉を防ぐ従来例を示す図である。
【図22】色合成プリズムとPBSの間隔を離し、光路と光学素子との干渉を防ぐ従来例を示す図である。
【図23】色合成プリズムとPBSの間に透明部材を挿入し、光路と光学素子との干渉を防ぐ従来例を示す図である。
【符号の説明】
100…不等光路光学系の反射型液晶プロジェクタ装置、101…光源、102…集光レンズ、103…第1色分離ミラー(反射手段および第1の色分離手段)、104…第2色分離ミラー(第2の色分離手段)、105…反射ミラー、106…リレーレンズ、107…第1反射型液晶パネル(第1の反射型空間光変調手段)、108…第2反射型液晶パネル(第2の反射型空間光変調手段)、109…第3反射型液晶パネル(第3の反射型空間光変調手段)、110…第1PBS(第1の偏光処理手段)、111…第2PBS(第2の偏光処理手段)、112…第3PBS(第3の偏光処理手段)、113…第1フィールドレンズ(光学素子)、114…第2フィールドレンズ(光学素子)、115…第3フィールドレンズ(光学素子)、116…色合成プリズム(色合成手段)、117…投射レンズ(投射光学系)、118…スクリーン、120…フィールドレンズ(光学素子)、121…偏角プリズム(光学素子)、122…偏心フレネルレンズ(光学素子)、130〜132…PBS、200,200A,200B…等光路光学系の反射型液晶プロジェクタ装置、201…光源、202…集光レンズ、203…第1色分離ミラー(第1の色分離手段)、204…第2色分離ミラー(第1の色分離手段)、205…第3色分離ミラー(第1の色分離手段)、206…第4色分離ミラー(第1の色分離手段)、207…第5色分離ミラー(第2の色分離手段)、208…第1反射ミラー(反射手段)、209…第2反射ミラー、210…第1反射型液晶パネル(第1の反射型空間光変調手段)、211…第2反射型液晶パネル(第2の反射型空間光変調手段)、212…第3反射型液晶パネル(第3の反射型空間光変調手段)、213,213A…第1PBS(第1の偏光処理手段)、214…第2PBS(第2の偏光処理手段)、215,215A…第3PBS(第3の偏光処理手段)、216…第1フィールドレンズ(光学素子)、217…第2フィールドレンズ(光学素子)、218…第3フィールドレンズ(光学素子)、219…色合成プリズム(色合成手段)、220…投射レンズ(投射光学系)、221…スクリーン221、230…インテグレータ光学系、231…第1のマイクロレンズアレイ、232…第2のマイクロレンズアレイ。

Claims (32)

  1. 光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、
    光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、
    入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する色分離手段と、
    上記色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、
    上記色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、
    異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光を合成し、第1の波長光と第2の波長光の入射方向とは異なる方向で、出射先の光学系の光軸に平行な方向に出射する色合成手段と、
    上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、
    上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、
    直接的に照明光を上記色分離手段に入射し得ない位置に配置された光源と、
    上記光源による照明光を、上記色分離手段に入射させる反射手段と、を有し、
    上記反射手段は、
    反射面が上記色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
    光学装置。
  2. 上記偏光処理手段は入射角度が所定の角度に設定されており、
    上記偏光処理手段の入射部に配置された光学素子は、入射した波長光束を、当該光路が上記設定された入射角度を満足するように屈折させて偏光処理手段に入射させる
    請求項1記載の光学装置。
  3. 上記光学素子は、入射光に対して偏心したレンズを含む
    請求項2記載の光学装置。
  4. 上記レンズはフレネルレンズを含む
    請求項3記載の光学装置。
  5. 上記レンズはフィールドレンズとしての機能を含む
    請求項3記載の光学装置。
  6. 上記レンズはフィールドレンズとしての機能を含む
    請求項4記載の光学装置。
  7. 上記光学素子は、偏角プリズムを含む
    請求項2記載の光学装置。
  8. 上記偏光処理手段は偏光ビームスプリッタを含み、
    上記偏角プリズムは、上記偏光ビームスプリッタと一体化している
    請求項7記載の光学装置。
  9. 光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、
    光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、
    光入出射部から入射した第3の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第3の変調光として上記光入出射部から出射する第3の反射型空間光変調手段と、
    照明光から第1の波長帯域の第1の波長光および第2の波長帯域の第2の波長光を含む合成波長光と、第3の波長帯域の第3の波長光に分離する第1の色分離手段と、
    入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する第2の色分離手段と、
    上記第2の色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、
    上記第2の色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、
    上記第3の波長光が入射され、当該第3の波長光に含まれる所定の偏光面の光を上記第3の照明光として上記第3の反射型空間光変調手段に入射させ、当該第3の反射型空間光変調手段で偏光面が回転された上記第3の変調光を上記第3の波長光とは異なる方向に出射する第3の偏光処理手段と、
    異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光と上記第3の偏光処理手段から出射された第3の波長光とを合成し、第1の波長光と第2の波長光と第3の波長光の入射方向とは異なる方向、出射先の光学系の光軸に平行な方向に出射する色合成手段と、
    上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記第2の色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、
    上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記第2の色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、
    直接的に上記照明光を上記第2の色分離手段に入射し得ない位置に配置され、当該照明光を上記第1の色分離手段に入射させる光源と、
    上記第1の色分離手段による合成波長光を、上記第2の色分離手段に入射させる反射手段と、を有し、
    上記反射手段は、
    反射面が上記第2の色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記第2の色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
    光学装置。
  10. 上記偏光処理手段は入射角度が所定の角度に設定されており、
    上記偏光処理手段の入射部に配置された光学素子は、入射した波長光束を、当該光路が上記設定された入射角度を満足するように屈折させて偏光処理手段に入射させる
    請求項9記載の光学装置。
  11. 上記光学素子は、入射光に対して偏心したレンズを含む
    請求項10記載の光学装置。
  12. 上記レンズはフレネルレンズを含む
    請求項11記載の光学装置。
  13. 上記レンズはフィールドレンズとしての機能を含む
    請求項11記載の光学装置。
  14. 上記レンズはフィールドレンズとしての機能を含む
    請求項12記載の光学装置。
  15. 上記光学素子は、偏角プリズムを含む
    請求項10記載の光学装置。
  16. 上記偏光処理手段は偏光ビームスプリッタを含み、
    上記偏角プリズムは、上記偏光ビームスプリッタと一体化している
    請求項15記載の光学装置。
  17. 光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、
    光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、
    入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する色分離手段と、
    上記色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、
    上記色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、
    異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光を合成し、第1の波長光と第2の波長光の入射方向とは異なる方向で、出射先の光学系の光軸に平行な方向に出射する色合成手段と、
    上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、
    上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、
    直接的に照明光を上記色分離手段に入射し得ない位置に配置された光源と、
    上記光源による照明光を、上記色分離手段に入射させる反射手段と
    上記色合成手段の合成光をスクリーン上に投射する投射光学系と、を有し、
    上記反射手段は、
    反射面が上記色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
    投射型表示装置。
  18. 上記偏光処理手段は入射角度が所定の角度に設定されており、
    上記偏光処理手段の入射部に配置された光学素子は、入射した波長光束を、当該光路が上記設定された入射角度を満足するように屈折させて偏光処理手段に入射させる
    請求項17記載の投射型表示装置。
  19. 上記光学素子は、入射光に対して偏心したレンズを含む
    請求項18記載の投射型表示装置。
  20. 上記レンズはフレネルレンズを含む
    請求項19記載の投射型表示装置。
  21. 上記レンズはフィールドレンズとしての機能を含む
    請求項19記載の投射型表示装置。
  22. 上記レンズはフィールドレンズとしての機能を含む
    請求項20記載の投射型表示装置。
  23. 上記光学素子は、偏角プリズムを含む
    請求項18記載の投射型表示装置。
  24. 上記偏光処理手段は偏光ビームスプリッタを含み、
    上記偏角プリズムは、上記偏光ビームスプリッタと一体化している
    請求項23記載の投射型表示装置。
  25. 光入出射部から入射した第1の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第1の変調光として上記光入出射部から出射する第1の反射型空間光変調手段と、
    光入出射部から入射した第2の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第2の変調光として上記光入出射部から出射する第2の反射型空間光変調手段と、
    光入出射部から入射した第3の照明光の偏光面を回転させる空間光変調が可能で、入射光を反射して第3の変調光として上記光入出射部から出射する第3の反射型空間光変調手段と、
    照明光から第1の波長帯域の第1の波長光および第2の波長帯域の第2の波長光を含む合成波長光と、第3の波長帯域の第3の波長光に分離する第1の色分離手段と、
    入射光のうちの第1の波長帯域の光を透過して第1の波長光として出射し、第2の波長帯域の光を反射して第2の波長光として出射する第2の色分離手段と、
    上記第2の色分離手段により分離された第1の波長光が入射され、当該第1の波長光に含まれる所定の偏光面の光を上記第1の照明光として上記第1の反射型空間光変調手段に入射させ、当該第1の反射型空間光変調手段で偏光面が回転された上記第1の変調光を上記第1の波長光とは異なる方向に出射する第1の偏光処理手段と、
    上記第2の色分離手段により分離された第2の波長光が入射され、当該第2の波長光に含まれる所定の偏光面の光を上記第2の照明光として上記第2の反射型空間光変調手段に入射させ、当該第2の反射型空間光変調手段で偏光面が回転された上記第2の変調光を上記第2の波長光とは異なる方向に出射する第2の偏光処理手段と、
    上記第3の波長光が入射され、当該第3の波長光に含まれる所定の偏光面の光を上記第3の照明光として上記第3の反射型空間光変調手段に入射させ、当該第3の反射型空間光変調手段で偏光面が回転された上記第3の変調光を上記第3の波長光とは異なる方向に出射する第3の偏光処理手段と、
    異なる方向から入射した上記第1の偏光処理手段から出射された第1の波長光と上記第2の偏光処理手段から出射された第2の波長光と上記第3の偏光処理手段から出射された第3の波長光とを合成し、第1の波長光と第2の波長光と第3の波長光の入射方向とは異なる方向、出射先の光学系の光軸に平行な方向に出射する色合成手段と、
    上記第1の偏光処理手段の第1の波長光の入射部に配置され、上記第2の色分離手段を透過して上記色合成手段の出射先の光学系の光軸に平行でない方向から斜めに入射される上記第1の波長光の入射光束の出射角度を変えて、第1の波長光束の中心の光線が上記光学系の光軸に平行となる光路で上記第1の偏光処理手段に入射させる第1の光学素子と、
    上記第2の偏光処理手段の第2の波長光の入射部に配置され、上記第2の色分離手段で反射されて上記色合成手段の出射先の光学系の光軸に垂直な方向に平行でない方向から斜めに入射される上記第2の波長光の入射光束の出射角度を変えて、第2の波長光束の中心の光線が上記光学系の光軸に垂直な方向に平行となる光路で上記第2の偏光処理手段に入射させる第2の光学素子と、
    直接的に上記照明光を上記第2の色分離手段に入射し得ない位置に配置され、当該照明光を上記第1の色分離手段に入射させる光源と、
    上記第1の色分離手段による合成波長光を、上記第2の色分離手段に入射させる反射手段と
    上記色合成手段の合成光をスクリーン上に投射する投射光学系と、を有し、
    上記反射手段は、
    反射面が上記第2の色分離手段の光入射面に対向し、光学系の光軸に垂直な方向において上記第2の光学素子の配置位置より上記第2の色分離手段の配置位置側で、反射光束の中心の光線が上記光学系の光軸に平行にならない角度をもって斜めに反射させ、反射光束の端の光線が上記第2の光学素子に当たらず、かつ当該第2の光学素子に近い反射光路を確保し得る角度をもって配置されている
    投射型表示装置。
  26. 上記偏光処理手段は入射角度が所定の角度に設定されており、
    上記偏光処理手段の入射部に配置された光学素子は、入射した波長光束を、当該光路が上記設定された入射角度を満足するように屈折させて偏光処理手段に入射させる
    請求項25記載の投射型表示装置。
  27. 上記光学素子は、入射光に対して偏心したレンズを含む
    請求項26記載の投射型表示装置。
  28. 上記レンズはフレネルレンズを含む
    請求項27記載の投射型表示装置。
  29. 上記レンズはフィールドレンズとしての機能を含む
    請求項27記載の投射型表示装置。
  30. 上記レンズはフィールドレンズとしての機能を含む
    請求項28記載の投射型表示装置。
  31. 上記光学素子は、偏角プリズムを含む
    請求項26記載の投射型表示装置。
  32. 上記偏光処理手段は偏光ビームスプリッタを含み、
    上記偏角プリズムは、上記偏光ビームスプリッタと一体化している
    請求項31記載の投射型表示装置。
JP2000278627A 2000-09-13 2000-09-13 光学装置およびそれを用いた投射型表示装置 Expired - Fee Related JP4572457B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278627A JP4572457B2 (ja) 2000-09-13 2000-09-13 光学装置およびそれを用いた投射型表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278627A JP4572457B2 (ja) 2000-09-13 2000-09-13 光学装置およびそれを用いた投射型表示装置

Publications (2)

Publication Number Publication Date
JP2002090874A JP2002090874A (ja) 2002-03-27
JP4572457B2 true JP4572457B2 (ja) 2010-11-04

Family

ID=18763760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278627A Expired - Fee Related JP4572457B2 (ja) 2000-09-13 2000-09-13 光学装置およびそれを用いた投射型表示装置

Country Status (1)

Country Link
JP (1) JP4572457B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264663A (ja) * 2003-03-03 2004-09-24 Pentax Corp 反射型液晶プロジェクタ
US7188954B2 (en) 2003-03-14 2007-03-13 Victor Company Of Japan Limited Image displaying apparatus and color separating-combining optical system
US7724436B2 (en) 2006-09-18 2010-05-25 3M Innovative Properties Company Reflective corrector for optical projection engine
JP5446530B2 (ja) * 2009-07-14 2014-03-19 株式会社Jvcケンウッド 画像投射装置
EP2963493B1 (en) 2013-02-27 2018-08-15 Sony Corporation Image projection device
CN111380874B (zh) * 2018-12-28 2021-04-30 上海微电子装备(集团)股份有限公司 缺陷检测装置、键合设备以及键合方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111839A (ja) * 1998-10-01 2000-04-21 Nikon Corp 偏光装置および投射装置
JP2000199883A (ja) * 1998-10-29 2000-07-18 Fujitsu Ltd 反射型プロジェクタ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111839A (ja) * 1998-10-01 2000-04-21 Nikon Corp 偏光装置および投射装置
JP2000199883A (ja) * 1998-10-29 2000-07-18 Fujitsu Ltd 反射型プロジェクタ装置

Also Published As

Publication number Publication date
JP2002090874A (ja) 2002-03-27

Similar Documents

Publication Publication Date Title
EP1031870B1 (en) Illumination system and projector
US6208451B1 (en) Polarization conversion system, illumination system, and projector
US6698895B2 (en) Projection image display
JPH11183848A (ja) 偏光照明装置および投写型表示装置
JP2002023105A (ja) 照明光学系及びこれを用いたプロジェクタ
US6987618B2 (en) Polarization converting device, illumination optical system and projector
KR100381051B1 (ko) 액정 프로젝터의 광학계
JPH11281930A (ja) 投写型表示装置
JP4572457B2 (ja) 光学装置およびそれを用いた投射型表示装置
JPH10170869A (ja) 偏光照明装置および投写型表示装置
JP2002350781A (ja) リアプロジェクタ
CN111837073B (zh) 图像显示设备
JP3460456B2 (ja) 投写型表示装置
KR100349027B1 (ko) 단판식 액정 프로젝터용 칼라 분리 장치
JP2000250137A (ja) 照明光学装置及びプロジェクタ装置
US6048079A (en) Illumination optical system for liquid crystal display
JPH09318907A (ja) 投写型表示装置
JP3555610B2 (ja) 偏光照明装置および投写型表示装置
JP2007101875A (ja) 照明光学装置及び反射型画像投射装置
JP2000235168A (ja) 液晶プロジェクション装置
JP5104338B2 (ja) プロジェクタ
JP3654301B2 (ja) 偏光照明装置および投写型表示装置
JP2004226813A (ja) 照明装置及びこれを備えたプロジェクタ
JP2003330107A (ja) 投射型液晶表示装置
JP2004295150A (ja) 偏光照明装置および投写型表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees