JP4567892B2 - Metal plate having photocatalytic activity and method for producing the same - Google Patents

Metal plate having photocatalytic activity and method for producing the same Download PDF

Info

Publication number
JP4567892B2
JP4567892B2 JP2001015971A JP2001015971A JP4567892B2 JP 4567892 B2 JP4567892 B2 JP 4567892B2 JP 2001015971 A JP2001015971 A JP 2001015971A JP 2001015971 A JP2001015971 A JP 2001015971A JP 4567892 B2 JP4567892 B2 JP 4567892B2
Authority
JP
Japan
Prior art keywords
metal plate
photocatalytic activity
film
length
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001015971A
Other languages
Japanese (ja)
Other versions
JP2002219769A (en
Inventor
元紀 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001015971A priority Critical patent/JP4567892B2/en
Publication of JP2002219769A publication Critical patent/JP2002219769A/en
Application granted granted Critical
Publication of JP4567892B2 publication Critical patent/JP4567892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属板の表面に光触媒活性を付与した金属板及びその製造方法に関する。
【0002】
【従来の技術】
酸化チタンをはじめとする光触媒材料は、紫外光励起の結果、強力な酸化反応によって、環境汚染物質の分解除去、防臭、防汚、殺菌作用を発揮することが知られ、様々な適用および実用化が検討されている。光触媒材料が光励起する場合、照射された光子数に比例して生じた電子と正孔が光触媒材料表面で酸化還元反応を引き起こす。生じた電子と正孔が再結合すると、表面での酸化還元反応に寄与しないことになり、効率を下げることになる。
【0003】
一般に、酸化チタンの光酸化還元反応の効率(量子収率)は、照射光の強度と相関関係を持つが、せいぜい10%程度と見込まれている(「酸化チタン光触媒の開発と環境・エネルギー分野への応用展開」技術情報協会発行、1997年)。つまり、照射された光の10%以下しか、光触媒反応に利用できていないのが現状である。
また、太陽光は、全体の3%が紫外線で1cm2あたりのエネルギーで表すと、屋外で1mW程度だが、屋外建材のように長期間の放置によれば、現状でも防汚効果等の光触媒効果がみられるとされている(「光触媒のしくみ」(株)日本実業出版社発行、2000年)。しかし、室内で使用する場合、蛍光灯等の室内照明では、1μW以下と3桁低い紫外線強度となり、光触媒による抗菌効果や防汚効果を室内で発揮させるには、従来の光触媒材料の活性では不充分であった。
【0004】
このため、より活性の高い光触媒材料が求められていた。反応の効率を高めるために、表面積を大きくする試みがなされている。たとえば、特開平5-341563号公報では、チタニアゾルにポリエチレングリコールやエチレンオキサイドを添加し、ゾルゲル法で基板にコーテイングし、600℃から700℃で大気中焼成することによって、細孔を有するアナタ‐ゼ多孔質膜を作成する記載がある。また、特開平6-293519号公報では、15〜25nm程度の酸化チタン微粒子を溶液中に懸濁させ、塗布後、450℃程度の温度で焼成し、基板に固着させる記載がある。いずれも、酸化チタン膜表面の比表面積を上げ、総反応量を高めようというものである。
【0005】
しかし、これらの結晶表面は、大気中あるいは、水溶液中で結晶化、成長させているため、十分に安定化しており、反応の場所となる欠陥は比較的少ない。また、焼成に500℃程度の高温度が必要なため、ステンレスなどの金属板には適用の限界があった。上記のゾルゲル法では、塗料の粘度や塗布条件によって形成される皮膜の厚さが変化し易く、皮膜の性能を高めるために厚膜化すると、乾燥の際の皮膜の収縮が大きいため皮膜と基材表面との間の密着性が低くなり、剥離しやすくなるなどの問題点がある。さらに、酸化チタン皮膜の結晶性を高めるためには、被覆後に乾燥させ、さらに焼成という3つの工程が必須であり、酸化チタンのうち光触媒活性が高いとされるアナタ‐ゼ相を安定に形成させるには、一般的には大気中で焼成温度を500℃以上という高温で行う必要があった。さらに、一回の塗布で得られる膜厚は、0.1μm程度の場合が多く、厚い膜にするためには、上記の塗布、乾燥、焼成を数回繰り返す等の複雑な工程を経る必要があった。
高温で大気中で何回も焼成した場合、基材からの元素の拡散が避けられず、特に1μm程度の厚さの皮膜の場合には、皮膜全体に基材中の元素が拡散し、酸化チタンの光触媒活性を低下させる等の問題があった。たとえば、ステンレス鋼の場合、Crが酸化チタン膜中に拡散することが、知られている。
【0006】
以上のように、従来の皮膜では、反応の効率に限界があり、広範囲な実用化を妨げている。また、皮膜形成法についても、皮膜の均質性、密着性の向上には限界があり、処理工程も複雑で、効率のよい製造方法が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明は、上記のような事情に着目してなされたものであって、光触媒作用に由来する環境汚染物質の分解除去、防臭、防汚、殺菌作用を、より効率的に発揮した金属板およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記の目的を達成するため、鋭意研究を重ねた結果、皮膜表面に反応の活性点となるステップを多数設けることで、光触媒反応の効率を著しく上げることを見出し、本発明をなすにいたった。すなわち、表面に0.5μm〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が光触媒活性を有する材料からなるか、あるいはこれを含み、該表面の垂直断面においてテラス間の段差を形成する構造であるステップ構造を有する表面状態であり、前記表面の該ステップ構造を少なくとも4つ有する矩形領域における、前記ステップ構造の曲線状に連なるステップの長さの総長が、前記矩形領域の縦横の長さの和以上であることを特徴とする光触媒活性を有する金属板である。また、表面に0.5μm〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が金属板から表面に向かって、光触媒活性を有する材料からなる内層と、該表面の垂直断面においてテラス間の段差を形成する構造であるステップ構造を有する表面状態である内層と組成が異なる透光性材料からなる外層からなる2層構造であり、前記表面の該ステップ構造を少なくとも4つ有する矩形領域における、前記ステップ構造の曲線状に連なるステップの長さの総長が、前記矩形領域の縦横の長さの和以上であることを特徴とする光触媒活性を有する金属板である。
【0009】
さらに、前記光触媒活性を有する材料がアナターゼ型酸化チタン、ルチル型酸化チタン、あるいは、Fe2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeTiO3、SrTiO3、Nb2O3、ZnO、SnO2又はZrO2から選ばれる少なくとも一種であり、前記金属板が、炭素鋼、ステンレス鋼、チタン又はチタン基合金である光触媒活性を有する金属板である。
【0010】
また、これらの光触媒活性を有する金属板の皮膜形成方法であって、減圧下で、金属蒸気またはイオン化した金属蒸気と、酸素の分圧をそれぞれ別々に制御するPVD法を用い、500℃以下の金属板の温度、毎分0.02μm〜0.2μmの成膜速度で皮膜を形成させることを特徴とする光触媒活性を有する金属板の製造方法である。さらに、前記PVD法が、スパッタリングまたはイオンプレーテイングであることを特徴とする光触媒活性を有する金属板の製造方法である。
【0011】
【発明の実施の形態】
ステップは、原子レベルでは格子面が異なる段差であり、二次元周期性が途切れた場所であり、多くのダングリングボンド(共有結合の相手がない結合手)が存在する場所である。ダングリングボンドは、化学的に活性で、光励起反応で生じた正孔が優先的に酸化反応する活性点である。また、表面の原子の吸着も優先的に起こる。図1の試料A及び試料Bに模式的に示すように、平面で観察すると曲線で示され、断面ではテラス間の段差として認められる。大規模集積回路技術においては、シリコンウエーハ表面の平坦性を保つ意味で、排除すべきものであるため、SEM、STM等の各種表面観察手段によってステップの配列や挙動に関する理解が進んでいる(たとえば、荻野ほか、応用物理、第66巻、第12号、p.1289、1997)。ステップの形成は、エピタキシャルあるいは、ヘテロエピタキシャル成長して結晶が形成されるときに特徴的にみられ、大気中焼成などの熱平衡状態では形成されにくい。
【0012】
光触媒材料が照射された光子によって励起された場合、その光子量に対応して正孔と電子が生じる。特に正孔は、表面で強力な酸化作用によって接触する物質を分解するが、表面の活性点に到達する前に、電子や不純物と再結合して消失してしまうと、反応に関与できない。表面に活性点が多数ある場合には、正孔の再結合が少なくなり、光触媒による酸化作用の効率が高くなる。表面に形成されたステップは、この反応の活性点を多数作っているという意味で重要である。ステップが形成されている表面を図1及び図2のような平面で観察したとき、曲線状に連なるステップの長さの総長が、観察面の縦横の長さの和の以上であるとき、この表面には多数のステップが形成されているということができ、活性の高い光触媒反応が期待できるので好ましい。例えば、図1で示すように、縦の長さa(μm)、横の長さもa(μm)である平面を観察し、ステップが同心円状に形成されている場合では、平面的に観察されるステップの総長さは、5πa/4(μm)となり、縦横の長さの和である2a(μm)より大きい。このように多数のステップで表面が形成されていることが重要である。多数のステップで構成された表面の材料は、光触媒材料であってもよいし、光触媒材料でなくても透光性材料であればよい。光触媒材料としては、アナターゼ型酸化チタン、ルチル型酸化チタン、Fe2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeTiO3、SrTiO3、Nb2O3、ZnO、SnO2、ZrO2などが、比較的生成が容易で光触媒効果に優れ好ましい。
【0013】
最表面の材料としては、透光性でステップ構造が安定に形成できていれば基本的にどのようなものでも良く、たとえばSiO2、Al2O3、TiO2、YAG、KNbO3のような無機酸化物材料は、化学的に安定で耐食性や機械的な強度も優れるので好ましい。
金属板表面の皮膜の厚さは、0.5μm〜5.0μmとする。0.5μm未満では、光触媒効果が少なく、5.0μmより厚くてもその効果は変わらないため、不経済となる。
0.5μm以上の膜厚で、光を効率的に吸収し、光触媒として機能できる。最も効率的な光吸収には、1.0μm以上がさらに望ましい。また、膜厚が、5.0μmを越えると、変形や曲げ加工性が極端に劣るので、5.0μm以下が好ましい。最も望ましくは、3.0μm以下である。2層構造とする場合には、外層の透光性材料は、1.0μm以下であることが好ましく、厚くなると光の透過効率が下がり、内層で生成した正孔や電子が外層の表面で効率的に反応できない。水の分解等では、光触媒材料に白金等の貴金属を担持すると反応効率があがることが知られているが、貴金属の担持で反応の効率が上がる場合には、本発明の皮膜に適用しても差し支えない。
【0014】
光触媒反応では、光励起で正孔とともに生じた電子も、表面に留まることなく、反応の場から移動することが重要である。電子が、逃げ場所がなく、いわゆる材料内でチャージアップした状態になると、反応の効率を下げる。このために、基材は導電性であることが好ましい。実際の部材への適用を考えると、金属板が最適であり、中でも汎用性、加工性、機能性に優れた炭素鋼、ステンレス鋼、チタン又はチタン基合金が好ましい。これらは、建築材、空調機器、排ガス機器、浄水機器等に用いられる各種部材としてすでに使用され、実績もあるため、適用がしやすい。
【0015】
上記のような光触媒活性を有する金属板は、PVD(Physical Vapor Deposition)法等により、皮膜を金属板表面に形成することで製造できる。PVD法は、基材への温度による負荷が少なく、緻密で微細粒からなる結晶質皮膜が形成できる特徴がある。上記皮膜形成に適しているPVD法として、具体的には、真空蒸着、スパッタリング、イオンプレーティングの各種手法が適している。金属板基材の熱による変形や、金属板基材から皮膜への元素拡散等による光触媒活性の劣化等の問題を生じないために、皮膜形成時の基材温度は500℃以下とする。上記3手法は、いずれも基材の温度が500℃以下で皮膜形成可能で、十分な皮膜密着性と皮膜の結晶性が得られ、金属板基材の熱による変形や、金属板基材から皮膜への元素拡散等による光触媒活性の劣化等の問題は発生しにくい。上記3手法は,成膜速度が毎分0.02μm〜0.2μm程度で、例えば1μmの皮膜を得るのに5分〜50分と実用的である。
【0016】
PVD法を上記皮膜の形成に適用する場合、減圧下で電子ビーム等で金属を溶解蒸発させ、反応ガスとしては酸素を導入するといった金属蒸気と酸素を別々に供給する方法が、光触媒材料の組成の制御性に優れ、適している。光触媒活性を示す皮膜としては、前述のような酸化物が好ましいが、これらの内、酸素と金属との比が異なることで、別の酸化物が安定に形成される場合があるので、成膜プロセスの組成制御性は重要である。たとえば、Fe2O3を生成する場合、鉄と酸素の比によってFeO やFe3O4も生成する可能性がある。この場合、鉄の蒸気または、イオン化した蒸気に、Fe2O3を生成する過不足ない酸素分圧に制御して反応させることが重要である。
【0017】
また、このプロセスは、形成される結晶相の制御がしやすく、後熱処理等は必要ない。たとえば、成膜時の基材温度が490℃で、金属チタンを蒸発させる電子ビームの電流を200mA(加速電圧20KV)、酸素圧力を0.05Pa として、アーク放電活性化イオンプレーテイング装置で、イオン化を40V、10Aで行った場合、チタン蒸発源から45cm上部に設置させたステンレス鋼SUS304試料を基板とし、10分間の成膜をおこなった場合、0.8μmのルチル主体の皮膜を生成することができる。これに対して、同じ装置、試料で、基材温度300℃で20分間の成膜をした場合、約1.5μmのアナターゼを主体にした皮膜が形成できる。このように、PVD法では、イオン化、雰囲気圧力を適性に保ち、基材の温度、成膜時間等を制御することで、結晶相や膜厚を目的のものにすることができる。成膜速度も早いので、同様のプロセスを繰り返す必要もなく、従来のゾルゲル法と比べると、簡便かつ短時間で、管理しやすく、製造コストも低くできる。
【0018】
減圧下での成膜は、光触媒材料の形成反応を進める上で重要である。また、成膜中に、500℃以下で金属板基材を加熱すると、基材の温度による劣化を抑えつつ、皮膜の密着性、結晶性が向上するので好ましい。基材の加熱は、減圧下で行うので、大気中で焼成する場合より、基材表面の酸化は少ない。減圧にすることで、金属の蒸発が効率良くできる。
【0019】
真空蒸着は、真空下で、金属を電子ビーム等の熱源を用いて溶解し、金属の蒸気を発生させ、これを基材に蒸着する方法である。装置構成が比較的簡単で、皮膜形成コストは上記3手法のうち最も安い。スパッタリングは、イオン化したアルゴン等のガス成分をターゲットである金属に照射し、このターゲットからたたき出された金属成分を基材に成膜する方法である。イオンプレーティングは、電子ビーム等の熱源を用いて溶解し、金属の蒸気を発生させ、プラズマでイオン化された金属成分を基材上で反応させ成膜する方法で、基材に電荷をかけることでイオンを呼び寄せ、緻密な皮膜形成に有利で、基材温度が低くても高い密着性が得られる。イオンプレーティング法では、微細粒の結晶よりなる皮膜形成が容易で、たとえば、イオンプレーティング法の一種であるアーク放電活性化イオンプレーティング法を使い、基材の温度400℃で、酸素圧力0.05Paで成膜した厚さ1μmのアナターゼ皮膜では、結晶粒が約0.01μm程度の微細粒となる。このように目的とする皮膜の特性に応じて、成膜法を選ぶことができる。上記3方法のうち、スパッタリングおよびイオンプレーティング法は、プラズマによって金属蒸気をイオン化あるいは励起活性化させるので、反応性に富み、基材の温度が低くても、高い皮膜の結晶性、密着性が得られ、皮膜も緻密で微細粒から構成される。成膜速度の点からは、電子銃蒸発源を使った、真空蒸着やイオンプレーティング法が有利である。たとえば、アナターゼ相主体の皮膜を実用的な成膜速度で形成するには、基材の温度を200℃〜450℃とし、チタンの蒸発速度が毎分0.06μm〜0.15μmに対して、酸素雰囲気で圧力が0.02〜0.08Pa で成膜することが好ましい。
【0020】
【実施例】
以下に、本発明の実施例及び比較例を示す。
工業用純チタン板、炭素鋼SS41及びステンレス鋼SUS304を金属板基材とし、PVD法等で皮膜形成を行って、得られた試料について、皮膜の性状(構成、膜厚、結晶層、密着性)を調べ、さらにそれぞれの試料について、光触媒活性(ヨウ化カリウム分解度、脱臭効果、抗菌活性)を評価した。皮膜形成の諸条件や評価結果について、表1に示す。チタン基合金は、Al、Zr、Hf、V、Nb、Ta、Mn、Fe、Co、Ni、Cr等を0.5質量%〜5質量%含むものが一般的であるが、ここでは、Alを0.5質量%含むチタン基合金を使用した。
【0021】
皮膜の構成、膜厚、結晶層は、オージェ電子分光法、X線光電子分光法、グロー放電発光分析法、ラマン散乱分析法およびX線回折法によって求めた。
密着性は、45度曲げ試験によって評価した。密着性評価用の基材は、SUS304のφ30mm、厚さ0.3mmの円盤状基材を使い、この表面に皮膜を形成した。この試料を曲げ角45度に加工変形し、最も変形の大きい部分(折れ曲がった部分)を反射顕微鏡で倍率100倍で観察した。皮膜が完全に剥離した場合を、密着性×、一部皮膜の剥離が起こり、部分的に皮膜が付着している場合を、密着性△、顕微鏡観察では剥離が認められない場合を、密着性○とした。
【0022】
光触媒活性の評価は、以下に示すゾルゲル法で酸化チタン膜をSUS304ステンレス鋼鈑(40mm角、厚さ1mm)に生成し、この光触媒活性との相対評価を行った。ゾルゲル法による作成は、作花(「ゾル-ゲル法の科学」、アグネ承風社、1988)の方法によった。具体的には、チタンテトライソプロポキシドを100mLの無水エタノールで濃度284g/Lに希釈し、攪拌しながら、2N塩酸2mLを100mLの無水エタノールで希釈した溶液に滴下、透明なゾルを調整した。次に、ディップコーイング-乾燥(100℃)の処理を繰り返し、基板上にゲル状化合物を生成させ、電気炉内650℃で5時間焼成を行った。5回繰り返し生成した皮膜の厚さは、0.6μmであった。
【0023】
ヨウ化カリウム分解度は、100mMヨウ化カリウム水溶液に各試料を浸漬し、紫外線強度の高いブラックライト(4mW/cm2)を照射することによって生成するヨウ素錯イオン(I3 -)の生成量を評価した。上記ゾルゲル法で生成した皮膜を上記方法で試験したヨウ素錯イオンの生成量を基準に、各試料で試験したヨウ素生成量が、基準量の0.5倍以下の場合を評価×、0.5倍〜1.5倍までを△、1.5倍以上を○とした。
【0024】
脱臭効果については、各試料を置いた石英管の外部から一定速度の紫外線(ブラックライト:5W/cm2)を照射しつつ、一定流量のアルデヒドを流し、出口部でのアルデヒド残存濃度を測定することによって評価した。上記ゾルゲル法で生成した皮膜を上記方法で試験したアルデヒド残存濃度を基準に、各試料で試験した残存濃度が、基準濃度の2倍以上の場合を評価×、0.5倍〜2倍までを△、0.5倍以下を○とした。
【0025】
抗菌活性については、大腸菌を一定濃度で懸濁した生理食塩水を各試料の表面に滴下し、紫外線を1時間照射した後の大腸菌の生存率によって評価した。上記ゾルゲル法で生成した皮膜を上記方法で試験した大腸菌の生存率を基準に、各試料で試験した大腸菌の生存率が、基準濃度の1.5倍以上の場合を評価×、0.5倍〜1.5倍までを△、0.5倍以下を○とした。
【0026】
ステップが形成されている表面(試料A, B)を図2のような平面で観察したとき、曲線状に連なるステップの長さの総長が、観察面の縦横の長さの和以上であるとき、この表面には多数のステップが形成されていると表1には記載した。観察は、高分解能SEMで5万倍の倍率で、5視野無作為に行ない評価した。
表1の、No.1〜8が比較例で、No.9〜18までが実施例である。ゾルゲル法に比べ、密着性と光触媒活性がともに、同等以上の特性がみられたのが実施例である。
No.1は、皮膜形成をしていないブランクの基材そのものの評価結果である。
【0027】
皮膜生成法で、スパッタリング法では、ターゲットに金属を使い、酸素ガスを反応ガスとして導入した。アルゴンガスでプラズマの活性化を行い、ガス圧は1 Paとした。内層と外層と組成が異なる場合には、外層生成時にターゲットを目的の金属に替え、生成した。装置内に、複数のターゲットを入れることができ、真空を破らずに行うことができる。
【0028】
真空蒸着およびイオンプレーテイングによる皮膜の形成は、いずれも、酸素雰囲気で圧力0.05 Pa下で、電子銃による金属の蒸発を行った。膜厚の制御は、蒸着時間を変化させることで行った。膜厚は、蒸着時間が長くなると直線的に増加する。蒸着速度は、たとえば、No.17のイオンプレーテイングでは、0.05μm/分で、金属チタンの蒸発速度とほぼ同じであった。
【0029】
No.2のゾルゲル法による被覆は、化学修飾アルコキシド法(セラミックス、Vol.30、1995年、No.11、p.1021)を用い、チタンテトライソプロポキシド、エタノール、ジエタノールアミン、水からなる溶液に、分子量4000のポリエチレングリコールを5質量%添加した前駆体溶液を用いて調整した。
No.3の溶射は、酸化チタン粒子をプラズマ照射した。基板の温度の上昇を避けるために、圧縮空気によって基板の後部から冷却しながら手早く溶射した。溶射法では、緻密で薄膜を制御性よく作成するのは限界があるので、十分な密着性が得られなかった。
【0030】
No.17の皮膜表面を高分解能SEMで観察した結果を図3に示す。0.1μm以下の結晶粒内に、細かいステップ構造が重なって形成されていることが観察できる。同様に、No.2の皮膜表面を高分解能SEMで観察した結果を図4に示す。結晶は形成されていることをX線回折で確認しているが、表面は多孔質ではあり、ステップ構造が見られず、ミクロな凹凸が少ない点で大きく表面構造が異なっている。
【0031】
表1の実施例(No.9〜18)で明らかなように、表面の皮膜を0.5μm〜5.0μmの厚さとし、導電性金属板上に、少なくとも内層が光触媒活性を有し、多数のステップで表面が構成されている皮膜を形成することで、光触媒活性に優れた金属板が得られる。これらは、金属蒸気またはイオン化した金属蒸気と、酸素の分圧を別々に制御するPVD法によって効率的かつ有効に製造できることがわかる。
【0032】
【表1】

Figure 0004567892
【0033】
【発明の効果】
本発明によれば、光触媒活性を有する金属板の広範囲な実用化が可能になる。
皮膜表面に多数のステップをつくることで、反応の効率が向上し、室内の使用においても十分な触媒活性を有する金属板が提供できる。また、皮膜形成において工程管理がしやすく製造コスト削減、作業効率向上に有利であり、皮膜形成時の金属板基材の温度も低いため、熱による金属板の変形や意匠性の変化、皮膜の光触媒活性の低下等は避けられる。
【図面の簡単な説明】
【図1】平面でのステップ観察。
【図2】ステップ模式図。
【図3】実施例の皮膜表面観察結果。
【図4】比較例の皮膜表面観察結果。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal plate provided with photocatalytic activity on the surface of the metal plate and a method for producing the same.
[0002]
[Prior art]
Photocatalytic materials such as titanium oxide are known to exhibit environmental pollutant decomposition, deodorization, antifouling, and bactericidal action by a strong oxidation reaction as a result of ultraviolet light excitation. It is being considered. When the photocatalytic material is photoexcited, electrons and holes generated in proportion to the number of irradiated photons cause a redox reaction on the surface of the photocatalytic material. When the generated electrons and holes are recombined, they do not contribute to the oxidation-reduction reaction on the surface, and the efficiency is lowered.
[0003]
In general, the efficiency (quantum yield) of the photooxidation-reduction reaction of titanium oxide correlates with the intensity of irradiation light, but it is expected to be at most 10% (`` Development of Titanium Oxide Photocatalyst and Environment / Energy Fields) Application to Japan ”(published by Technical Information Association, 1997). That is, at present, only 10% or less of the irradiated light can be used for the photocatalytic reaction.
In addition, 3% of the total sunlight is ultraviolet rays and the energy per 1 cm 2 is about 1 mW outdoors. However, if it is left for a long time like outdoor building materials, it still has a photocatalytic effect such as antifouling effect. ("Photocatalytic mechanism", published by Nihon Jitsugyo Publishing Co., Ltd., 2000). However, when used indoors, indoor lighting such as fluorescent lamps has an ultraviolet intensity of 1 μW or less, which is three orders of magnitude lower. In order to exhibit the antibacterial and antifouling effects of photocatalysts indoors, the activity of conventional photocatalytic materials is not sufficient. It was enough.
[0004]
For this reason, a photocatalytic material with higher activity has been demanded. In order to increase the efficiency of the reaction, attempts have been made to increase the surface area. For example, in Japanese Patent Application Laid-Open No. 5-341563, polyethylene glycol or ethylene oxide is added to titania sol, coated on a substrate by a sol-gel method, and baked in the atmosphere at 600 to 700 ° C., thereby anatase having pores. There is a description of creating a porous membrane. Japanese Laid-Open Patent Publication No. 6-23519 / 1992 discloses that titanium oxide fine particles of about 15 to 25 nm are suspended in a solution, baked at a temperature of about 450 ° C., and fixed to a substrate. In either case, the specific surface area of the titanium oxide film surface is increased to increase the total reaction amount.
[0005]
However, since these crystal surfaces are crystallized and grown in the air or in an aqueous solution, they are sufficiently stabilized, and there are relatively few defects serving as reaction sites. Moreover, since a high temperature of about 500 ° C. is required for firing, there is a limit to application to metal plates such as stainless steel. In the above sol-gel method, the thickness of the film formed easily changes depending on the viscosity of the paint and the coating conditions. When the film thickness is increased to improve the performance of the film, the film shrinks greatly during drying. There are problems such as low adhesion to the surface of the material and easy peeling. Furthermore, in order to enhance the crystallinity of the titanium oxide film, three steps of drying after coating and further firing are essential, and the anatase phase, which is considered to have high photocatalytic activity among titanium oxides, can be stably formed. In general, it was necessary to carry out the firing at a high temperature of 500 ° C. or higher in the atmosphere. Furthermore, the film thickness obtained by one application is often about 0.1 μm, and in order to make a thick film, it is necessary to go through complicated steps such as repeating the above application, drying and baking several times. It was.
When firing several times in the atmosphere at high temperatures, the diffusion of elements from the substrate is inevitable, especially in the case of a film with a thickness of about 1 μm, the elements in the substrate diffuse throughout the film, and oxidation occurs. There were problems such as reducing the photocatalytic activity of titanium. For example, in the case of stainless steel, it is known that Cr diffuses into the titanium oxide film.
[0006]
As described above, the conventional film has a limit in reaction efficiency, which hinders wide-ranging practical use. Further, with respect to the film forming method, there is a limit to improving the homogeneity and adhesion of the film, and the processing process is complicated, and an efficient manufacturing method has been desired.
[0007]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above circumstances, and is a metal plate that exhibits the decomposition and removal of environmental pollutants derived from photocatalysis, deodorization, antifouling, and sterilization more efficiently, and It aims at providing the manufacturing method.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventor has found that the efficiency of the photocatalytic reaction can be remarkably increased by providing a number of steps that become active points of the reaction on the surface of the film as a result of intensive studies. I went to the eggplant. That is, a metal plate having a film having a thickness of 0.5 μm to 5.0 μm on the surface, the film being made of or including a material having photocatalytic activity, and a step between the terraces in the vertical cross section of the surface. is a structure formed Ri surface condition der having a step structure, in the rectangular region having at least four said stepped structure of the surface, the length of the total length of the step leading to the curved step structure, of the rectangular region the der Rukoto than the sum of the length and width of a metal plate having a photocatalytic activity characterized. Further, a metal plate having a film having a thickness of 0.5 μm to 5.0 μm on the surface, the film being formed from a metal plate toward the surface, an inner layer made of a material having photocatalytic activity, and a terrace in a vertical section of the surface 2-layer structure der a step is an inner layer and composition is a surface state having a stepped structure is a structure forming consists outer layer of a different transparent material between is, rectangular with at least four said stepped structure of said surface in the area, curved to extend the length of the total length of the step of the step structure is a metal plate having a photocatalytic activity, characterized in length der Rukoto least the sum of the vertical and horizontal of the rectangular region.
[0009]
Further, the material having photocatalytic activity is anatase type titanium oxide, rutile type titanium oxide, or Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , Metal plate having photocatalytic activity, which is at least one selected from FeTiO 3 , SrTiO 3 , Nb 2 O 3 , ZnO, SnO 2 or ZrO 2 , and the metal plate is carbon steel, stainless steel, titanium or a titanium-based alloy. It is.
[0010]
Further, it is a method for forming a film of a metal plate having these photocatalytic activities, using a PVD method in which the metal vapor or the ionized metal vapor and the partial pressure of oxygen are separately controlled under reduced pressure, respectively, at 500 ° C. or lower. A method for producing a metal plate having photocatalytic activity, wherein a film is formed at a temperature of the metal plate at a film forming rate of 0.02 μm to 0.2 μm per minute . Furthermore, the PVD method is sputtering or ion plating, and is a method for producing a metal plate having photocatalytic activity.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The step is a step where the lattice planes are different at the atomic level, where the two-dimensional periodicity is interrupted, and where there are many dangling bonds (bonds having no covalent bond partner). A dangling bond is an active point that is chemically active and preferentially oxidizes holes generated by a photoexcitation reaction. Also, adsorption of atoms on the surface occurs preferentially. As schematically shown in Sample A and Sample B in FIG. 1, when viewed on a plane, it is shown as a curve, and in the cross section, it is recognized as a step between terraces. In large-scale integrated circuit technology, since it should be excluded in the sense of maintaining the flatness of the silicon wafer surface, various surface observation means such as SEM and STM have advanced understanding of the arrangement and behavior of steps (for example, Kanno et al., Applied Physics, Vol. 66, No. 12, p.1289, 1997). The formation of steps is characteristic when crystals are formed by epitaxial or heteroepitaxial growth, and is difficult to form in a thermal equilibrium state such as firing in the atmosphere.
[0012]
When the photocatalytic material is excited by irradiated photons, holes and electrons are generated corresponding to the amount of photons. In particular, holes decompose substances that come into contact with each other by a strong oxidizing action on the surface, but they cannot participate in the reaction if they recombine with electrons and impurities before reaching the active site on the surface and disappear. When there are many active sites on the surface, the recombination of holes is reduced and the efficiency of the oxidation action by the photocatalyst is increased. The step formed on the surface is important in the sense that it creates many active sites for this reaction. When the surface on which the step is formed is observed in a plane as shown in FIGS. 1 and 2, when the total length of the steps connected in a curved line is equal to or greater than the sum of the vertical and horizontal lengths of the observation surface, It can be said that a large number of steps are formed on the surface, and a highly active photocatalytic reaction can be expected, which is preferable. For example, as shown in FIG. 1, when a plane having a vertical length a (μm) and a horizontal length a (μm) is observed, and the steps are formed concentrically, they are observed in a plane. The total length of the steps is 5πa / 4 (μm), which is larger than 2a (μm), which is the sum of the vertical and horizontal lengths. It is important that the surface is formed in such a number of steps. The material of the surface constituted by a number of steps may be a photocatalytic material, or may be a light-transmitting material, not a photocatalytic material. Photocatalyst materials include anatase type titanium oxide, rutile type titanium oxide, Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , FeTiO 3 , SrTiO 3 , Nb 2 O 3 , ZnO, SnO 2 , ZrO 2 and the like are preferable because they are relatively easy to produce and have excellent photocatalytic effects.
[0013]
As the material of the outermost surface, basically any material may be used as long as it is translucent and the step structure can be stably formed, such as SiO 2 , Al 2 O 3 , TiO 2 , YAG, KNbO 3 . Inorganic oxide materials are preferred because they are chemically stable and have excellent corrosion resistance and mechanical strength.
The thickness of the coating on the surface of the metal plate is 0.5 μm to 5.0 μm. If it is less than 0.5 μm, the photocatalytic effect is small, and even if it is thicker than 5.0 μm, the effect does not change, which is uneconomical.
With a film thickness of 0.5 μm or more, it can absorb light efficiently and function as a photocatalyst. For the most efficient light absorption, 1.0 μm or more is further desirable. Further, when the film thickness exceeds 5.0 μm, deformation and bending workability are extremely inferior, so 5.0 μm or less is preferable. Most desirably, it is 3.0 μm or less. In the case of a two-layer structure, the light-transmitting material of the outer layer is preferably 1.0 μm or less, and when it becomes thicker, the light transmission efficiency decreases, and holes and electrons generated in the inner layer are more efficient on the surface of the outer layer. Cannot respond to. In the case of water decomposition, etc., it is known that the reaction efficiency increases when a noble metal such as platinum is supported on the photocatalyst material. However, if the reaction efficiency is increased by the support of the noble metal, it can be applied to the coating of the present invention. There is no problem.
[0014]
In the photocatalytic reaction, it is important that electrons generated together with holes by photoexcitation also move from the reaction field without staying on the surface. If the electrons have no escape area and are charged up in a so-called material, the efficiency of the reaction is lowered. For this reason, it is preferable that the base material is conductive. Considering application to actual members, a metal plate is optimal, and among them, carbon steel, stainless steel, titanium, or a titanium-based alloy having excellent versatility, workability, and functionality is preferable. These are already used as various members used in building materials, air conditioning equipment, exhaust gas equipment, water purification equipment, etc., and have a track record, so they are easy to apply.
[0015]
The metal plate having photocatalytic activity as described above can be produced by forming a film on the surface of the metal plate by a PVD (Physical Vapor Deposition) method or the like. The PVD method is characterized in that a dense crystalline film consisting of fine grains can be formed with little load on the substrate due to temperature. Specifically, various methods such as vacuum deposition, sputtering, and ion plating are suitable as the PVD method suitable for the film formation. In order not to cause problems such as deformation of the metal plate base material due to heat and deterioration of photocatalytic activity due to element diffusion from the metal plate base material to the film, the base material temperature during film formation is set to 500 ° C. or lower. The above three methods are all capable of forming a film at a substrate temperature of 500 ° C. or less, and sufficient film adhesion and film crystallinity can be obtained. Problems such as degradation of photocatalytic activity due to element diffusion into the film are unlikely to occur. The above three methods are practical at a film formation rate of about 0.02 μm to 0.2 μm per minute, for example, 5 minutes to 50 minutes to obtain a film of 1 μm.
[0016]
When the PVD method is applied to the formation of the above film, the method of supplying the metal vapor and oxygen separately, such as dissolving and evaporating the metal with an electron beam or the like under reduced pressure and introducing oxygen as the reaction gas, is the composition of the photocatalytic material. Excellent controllability and suitable. As the film showing photocatalytic activity, the above-mentioned oxides are preferable, but among these, another oxide may be stably formed due to different ratio of oxygen and metal. The process controllability of the process is important. For example, when producing Fe 2 O 3 , FeO and Fe 3 O 4 may also be produced depending on the ratio of iron to oxygen. In this case, it is important to react with iron vapor or ionized vapor by controlling the oxygen partial pressure so as to generate Fe 2 O 3 without excess or deficiency.
[0017]
Further, this process makes it easy to control the crystal phase to be formed, and no post heat treatment or the like is required. For example, when the substrate temperature during film formation is 490 ° C, the current of the electron beam that evaporates metal titanium is 200 mA (acceleration voltage 20 KV), the oxygen pressure is 0.05 Pa, and ionization is performed with an arc discharge activated ion plating device. When performed at 40 V and 10 A, a stainless steel SUS304 sample placed 45 cm above the titanium evaporation source is used as a substrate, and when a film is formed for 10 minutes, a 0.8 μm rutile-based film can be formed. On the other hand, when a film is formed for 20 minutes at a substrate temperature of 300 ° C. with the same apparatus and sample, a film mainly composed of about 1.5 μm of anatase can be formed. As described above, in the PVD method, the crystal phase and the film thickness can be achieved by maintaining appropriate ionization and atmospheric pressure and controlling the temperature of the substrate, the film formation time, and the like. Since the film forming speed is also high, it is not necessary to repeat the same process, and it is easy and manageable in a short time, and the manufacturing cost can be reduced as compared with the conventional sol-gel method.
[0018]
Film formation under reduced pressure is important for promoting the formation reaction of the photocatalytic material. In addition, it is preferable to heat the metal plate substrate at 500 ° C. or lower during film formation because the adhesion and crystallinity of the film are improved while suppressing deterioration due to the temperature of the substrate. Since the heating of the substrate is performed under reduced pressure, the surface of the substrate is less oxidized than when baking in the air. By reducing the pressure, the metal can be efficiently evaporated.
[0019]
Vacuum deposition is a method in which a metal is melted under a vacuum using a heat source such as an electron beam to generate a vapor of the metal and deposit this on a substrate. The system configuration is relatively simple and the film formation cost is the lowest among the above three methods. Sputtering is a method of irradiating a target metal with a gas component such as ionized argon and depositing a metal component knocked out of the target on a substrate. Ion plating uses a heat source such as an electron beam to melt, generate metal vapor, and react with metal components ionized by plasma to form a film by applying a charge to the substrate. In this way, ions are attracted, which is advantageous for forming a dense film, and high adhesion can be obtained even when the substrate temperature is low. In the ion plating method, it is easy to form a film made of fine-grained crystals. For example, an arc discharge activated ion plating method, which is a kind of ion plating method, is used, and the substrate temperature is 400 ° C. and the oxygen pressure is 0.05. In an anatase film having a thickness of 1 μm formed with Pa, the crystal grains become fine grains of about 0.01 μm. Thus, a film forming method can be selected according to the characteristics of the target film. Of the above three methods, the sputtering and ion plating methods ionize or activate the metal vapor by plasma, so they are highly reactive and have high film crystallinity and adhesion even at low substrate temperatures. The resulting film is dense and composed of fine particles. From the viewpoint of film formation speed, vacuum deposition and ion plating using an electron gun evaporation source are advantageous. For example, in order to form a film mainly composed of anatase phase at a practical film formation rate, the substrate temperature is set to 200 ° C. to 450 ° C., and the evaporation rate of titanium is 0.06 μm to 0.15 μm per minute. The film is preferably formed at a pressure of 0.02 to 0.08 Pa.
[0020]
【Example】
Examples of the present invention and comparative examples are shown below.
Using a pure titanium plate for industrial use, carbon steel SS41 and stainless steel SUS304 as a metal plate base material, and performing film formation by PVD method, etc., the properties of the film (configuration, film thickness, crystal layer, adhesion) In addition, the photocatalytic activity (degree of decomposition of potassium iodide, deodorizing effect, antibacterial activity) was evaluated for each sample. Table 1 shows various conditions for film formation and evaluation results. Titanium-based alloys generally contain 0.5% to 5% by mass of Al, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Cr, etc. A titanium-based alloy containing mass% was used.
[0021]
The composition, film thickness, and crystal layer of the film were determined by Auger electron spectroscopy, X-ray photoelectron spectroscopy, glow discharge emission analysis, Raman scattering analysis, and X-ray diffraction.
Adhesion was evaluated by a 45 degree bend test. As a base material for evaluating adhesion, a disk-shaped base material of SUS304 having a diameter of 30 mm and a thickness of 0.3 mm was used, and a film was formed on this surface. This sample was processed and deformed to a bending angle of 45 degrees, and the portion with the largest deformation (bent portion) was observed with a reflection microscope at a magnification of 100 times. When the film is completely peeled off, adhesion x, when part of the film is peeled off, and when the film is partially attached, when adhesion Δ, when peeling is not observed by microscopic observation, ○.
[0022]
The photocatalytic activity was evaluated by forming a titanium oxide film on a SUS304 stainless steel plate (40 mm square, 1 mm thick) by the sol-gel method shown below, and performing relative evaluation with this photocatalytic activity. The production by the sol-gel method was based on the method of Sakuhana ("Sol-gel science", Agne Jofusha, 1988). Specifically, titanium tetraisopropoxide was diluted with 100 mL of absolute ethanol to a concentration of 284 g / L, and while stirring, was dropped into a solution obtained by diluting 2 mL of 2N hydrochloric acid with 100 mL of absolute ethanol to prepare a transparent sol. Next, the dip-coating-drying (100 ° C.) process was repeated to form a gel compound on the substrate, and the resultant was baked in an electric furnace at 650 ° C. for 5 hours. The thickness of the film repeatedly produced 5 times was 0.6 μm.
[0023]
The degree of decomposition of potassium iodide is defined as the amount of iodine complex ions (I 3 ) generated by immersing each sample in 100 mM potassium iodide aqueous solution and irradiating it with black light (4 mW / cm 2 ) with high UV intensity. evaluated. Based on the amount of iodine complex ions produced by the above-mentioned method, the film produced by the sol-gel method was evaluated for the case where the amount of iodine produced in each sample was 0.5 times or less of the reference amount x, 0.5 to 1.5 times Up to △, and 1.5 times or more as ◯.
[0024]
Regarding the deodorizing effect, measure the residual aldehyde concentration at the outlet by irradiating a constant flow of aldehyde while irradiating ultraviolet light (black light: 5 W / cm 2 ) at a constant speed from the outside of the quartz tube where each sample is placed. Was evaluated by Based on the aldehyde residual concentration tested by the above method for the film produced by the sol-gel method, the evaluation was performed when the residual concentration tested in each sample was 2 times or more of the reference concentration x, △ 0.5 to 2 times △, A value of 0.5 times or less was marked as ◯.
[0025]
The antibacterial activity was evaluated by the survival rate of Escherichia coli after a physiological saline in which Escherichia coli was suspended at a constant concentration was dropped on the surface of each sample and irradiated with ultraviolet rays for 1 hour. Based on the survival rate of Escherichia coli tested by the above method for the film produced by the sol-gel method, evaluation was made when the survival rate of E. coli tested in each sample was 1.5 times or more of the standard concentration x, 0.5 times to 1.5 times △, and 0.5 times or less as ◯.
[0026]
When the surface on which the step is formed (samples A and B) is observed on a plane as shown in Fig. 2, the total length of the steps connected in a curved line is greater than or equal to the sum of the length and width of the observation surface Table 1 shows that this surface has many steps. The observation was performed at a magnification of 50,000 times with a high-resolution SEM and randomly evaluated for 5 fields of view.
In Table 1, Nos. 1 to 8 are comparative examples, and Nos. 9 to 18 are examples. Compared with the sol-gel method, both the adhesiveness and the photocatalytic activity showed the same or better characteristics in the examples.
No. 1 is an evaluation result of a blank base material itself in which no film is formed.
[0027]
In the film formation method, the sputtering method uses a metal as a target and introduces oxygen gas as a reaction gas. Plasma was activated with argon gas, and the gas pressure was 1 Pa. When the inner layer and the outer layer had different compositions, the target was changed to the target metal when the outer layer was generated. A plurality of targets can be placed in the apparatus and can be performed without breaking the vacuum.
[0028]
In both film formation by vacuum deposition and ion plating, the metal was evaporated by an electron gun in an oxygen atmosphere under a pressure of 0.05 Pa. The film thickness was controlled by changing the deposition time. The film thickness increases linearly as the deposition time increases. The deposition rate was, for example, 0.05 μm / min in No. 17 ion plating, which was almost the same as the evaporation rate of titanium metal.
[0029]
The No. 2 coating by the sol-gel method uses a chemically modified alkoxide method (ceramics, Vol. 30, 1995, No. 11, p. 1021) to form a solution consisting of titanium tetraisopropoxide, ethanol, diethanolamine, and water. A precursor solution to which 5% by mass of polyethylene glycol having a molecular weight of 4000 was added was prepared.
For thermal spraying No. 3, titanium oxide particles were irradiated with plasma. In order to avoid an increase in the temperature of the substrate, thermal spraying was performed quickly while cooling from the rear of the substrate with compressed air. In the thermal spraying method, there is a limit to producing a dense and thin film with good controllability, so that sufficient adhesion cannot be obtained.
[0030]
Fig. 3 shows the results of observation of the surface of No. 17 film by high resolution SEM. It can be observed that fine step structures are overlapped in the crystal grains of 0.1 μm or less. Similarly, FIG. 4 shows the results of observation of the surface of No. 2 film with a high resolution SEM. Although it has been confirmed by X-ray diffraction that crystals are formed, the surface is porous, the step structure is not seen, and the surface structure is greatly different in that there are few micro irregularities.
[0031]
As is clear from the examples in Table 1 (Nos. 9 to 18), the surface coating is 0.5 μm to 5.0 μm thick, and on the conductive metal plate, at least the inner layer has photocatalytic activity, and has many steps. By forming a film having a surface composed of, a metal plate having excellent photocatalytic activity can be obtained. It can be seen that these can be produced efficiently and effectively by the metal vapor or ionized metal vapor and the PVD method in which the partial pressure of oxygen is controlled separately.
[0032]
[Table 1]
Figure 0004567892
[0033]
【The invention's effect】
According to the present invention, a wide range of practical use of a metal plate having photocatalytic activity becomes possible.
By creating a number of steps on the surface of the film, the efficiency of the reaction is improved, and a metal plate having sufficient catalytic activity even in indoor use can be provided. In addition, it is easy to manage the process during film formation, which is advantageous for reducing manufacturing costs and improving work efficiency. The temperature of the metal plate base material during film formation is low, so deformation of the metal plate due to heat, changes in design properties, Reduction in photocatalytic activity is avoided.
[Brief description of the drawings]
FIG. 1 Step observation on a plane.
FIG. 2 is a schematic diagram of steps.
FIG. 3 is a result of observing the film surface of the example.
FIG. 4 shows the result of observation of the film surface of a comparative example.

Claims (8)

表面に0.5μm〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が光触媒活性を有する材料を含み、該表面の垂直断面においてテラス間の段差を形成する構造であるステップ構造を有する表面状態であり、前記表面の該ステップ構造を少なくとも4つ有する矩形領域における、前記ステップ構造の曲線状に連なるステップの長さの総長が、前記矩形領域の縦横の長さの和以上であることを特徴とする光触媒活性を有する金属板。A metal plate having a film with a thickness of 0.5 μm to 5.0 μm on the surface, wherein the film includes a material having photocatalytic activity, and has a step structure that forms a step between terraces in a vertical cross section of the surface. surface condition der having is, the stepped structure of the surface in the rectangular region having at least four, total length length of the curve shape continuous step of the step structure, with more than the sum length and width of the rectangular area metal plate having photocatalytic activity characterized by Rukoto Oh. 表面に0.5μm〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が光触媒活性を有する材料からなり、該表面の垂直断面においてテラス間の段差を形成する構造であるステップ構造を有する表面状態であり、前記表面の該ステップ構造を少なくとも4つ有する矩形領域における、前記ステップ構造の曲線状に連なるステップの長さの総長が、前記矩形領域の縦横の長さの和以上であることを特徴とする光触媒活性を有する金属板。A metal plate having a film with a thickness of 0.5 μm to 5.0 μm on the surface, wherein the film is made of a material having photocatalytic activity, and has a step structure that forms a step between terraces in a vertical section of the surface. surface condition der having is, the stepped structure of the surface in the rectangular region having at least four, total length length of the curve shape continuous step of the step structure, with more than the sum length and width of the rectangular area metal plate having photocatalytic activity characterized by Rukoto Oh. 表面に0.5μm〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が金属板から表面に向かって、光触媒活性を有する材料からなる内層と、該表面の垂直断面においてテラス間の段差を形成する構造であるステップ構造を有する表面状態である内層と組成が異なる透光性材料からなる外層からなる2層構造であり、前記表面の該ステップ構造を少なくとも4つ有する矩形領域における、前記ステップ構造の曲線状に連なるステップの長さの総長が、前記矩形領域の縦横の長さの和以上であることを特徴とする光触媒活性を有する金属板。A metal plate having a coating having a thickness of 0.5 μm to 5.0 μm on the surface, the coating being formed between the inner layer made of a material having photocatalytic activity from the metal plate toward the surface, and between the terraces in a vertical cross section of the surface are two-layer structure der inner layer and the composition is a surface state having a stepped structure is a structure forming step comprises an outer layer made of different transparent material, in the rectangular region having at least four said stepped structure of said surface the total length of the curved shape continuous length of steps of the step structure, a metal plate having a photocatalytic activity, characterized in length der Rukoto least the sum of the vertical and horizontal of the rectangular region. 前記光触媒活性を有する材料が、アナターゼ型酸化チタン又はルチル型酸化チタンである請求項1〜3の何れかに記載の光触媒活性を有する金属板。  The metal plate having photocatalytic activity according to any one of claims 1 to 3, wherein the material having photocatalytic activity is anatase type titanium oxide or rutile type titanium oxide. 前記光触媒活性を有する材料が、Fe2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeTiO3、SrTiO3、Nb2O3、ZnO、SnO2又はZrO2から選ばれる少なくとも一種である請求項1〜3の何れかに記載の光触媒活性を有する金属板。The material having the photocatalytic activity is Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , FeTiO 3 , SrTiO 3 , Nb 2 O 3 , ZnO, The metal plate having photocatalytic activity according to claim 1, which is at least one selected from SnO 2 and ZrO 2 . 前記金属板が、炭素鋼、ステンレス鋼、チタン又はチタン基合金である請求項1〜3の何れかに記載の光触媒活性を有する金属板。  The metal plate having photocatalytic activity according to claim 1, wherein the metal plate is carbon steel, stainless steel, titanium, or a titanium-based alloy. 請求項1〜6の何れかに記載の光触媒活性を有する金属板の皮膜形成方法であって、減圧下で、金属蒸気又はイオン化した金属蒸気と、酸素の分圧をそれぞれ別々に制御するPVD法を用い、500℃以下の金属板の温度、毎分0.02μm〜0.2μmの成膜速度で皮膜を形成させることを特徴とする光触媒活性を有する金属板の製造方法。A method for forming a film on a metal plate having photocatalytic activity according to any one of claims 1 to 6, wherein the metal vapor or ionized metal vapor and the partial pressure of oxygen are separately controlled under reduced pressure. A method for producing a metal plate having photocatalytic activity, wherein a film is formed at a temperature of a metal plate of 500 ° C. or less at a film formation rate of 0.02 μm to 0.2 μm per minute . 前記PVD法が、スパッタリング又はイオンプレーテイングであることを特徴とする請求項7記載の光触媒活性を有する金属板の製造方法。  The method for producing a metal plate having photocatalytic activity according to claim 7, wherein the PVD method is sputtering or ion plating.
JP2001015971A 2001-01-24 2001-01-24 Metal plate having photocatalytic activity and method for producing the same Expired - Fee Related JP4567892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015971A JP4567892B2 (en) 2001-01-24 2001-01-24 Metal plate having photocatalytic activity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015971A JP4567892B2 (en) 2001-01-24 2001-01-24 Metal plate having photocatalytic activity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002219769A JP2002219769A (en) 2002-08-06
JP4567892B2 true JP4567892B2 (en) 2010-10-20

Family

ID=18882427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015971A Expired - Fee Related JP4567892B2 (en) 2001-01-24 2001-01-24 Metal plate having photocatalytic activity and method for producing the same

Country Status (1)

Country Link
JP (1) JP4567892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375026B2 (en) * 2008-10-27 2013-12-25 日産自動車株式会社 Epitaxial thin film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH06196762A (en) * 1992-10-30 1994-07-15 Nec Corp Oxide superconductor junction and formation thereof
JPH10152396A (en) * 1996-09-24 1998-06-09 Kosei Kk Material having crystalline oriented membrane of titanium dioxide and its production
JPH10268118A (en) * 1997-03-21 1998-10-09 Rikagaku Kenkyusho Multi-step structure, diffraction grating for very short wave light and its manufacture
JP2000126613A (en) * 1998-10-22 2000-05-09 Sharp Corp Production of photocatalyst
JP2000159600A (en) * 1998-11-24 2000-06-13 Agency Of Ind Science & Technol Substrate with step of unit crystal lattice length and its preparation
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2001170494A (en) * 1999-12-14 2001-06-26 Mitsubishi Plastics Ind Ltd Method of activating photocatalyst layer
JP2002080300A (en) * 2000-09-08 2002-03-19 Protein Wave Kk Method and apparatus of growing crystal of biopolymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH06196762A (en) * 1992-10-30 1994-07-15 Nec Corp Oxide superconductor junction and formation thereof
JPH10152396A (en) * 1996-09-24 1998-06-09 Kosei Kk Material having crystalline oriented membrane of titanium dioxide and its production
JPH10268118A (en) * 1997-03-21 1998-10-09 Rikagaku Kenkyusho Multi-step structure, diffraction grating for very short wave light and its manufacture
JP2000279905A (en) * 1998-02-06 2000-10-10 Toto Ltd Method of cleaning composite material and self-cleaning composite mechanism
JP2000126613A (en) * 1998-10-22 2000-05-09 Sharp Corp Production of photocatalyst
JP2000159600A (en) * 1998-11-24 2000-06-13 Agency Of Ind Science & Technol Substrate with step of unit crystal lattice length and its preparation
JP2001170494A (en) * 1999-12-14 2001-06-26 Mitsubishi Plastics Ind Ltd Method of activating photocatalyst layer
JP2002080300A (en) * 2000-09-08 2002-03-19 Protein Wave Kk Method and apparatus of growing crystal of biopolymer

Also Published As

Publication number Publication date
JP2002219769A (en) 2002-08-06

Similar Documents

Publication Publication Date Title
Macak et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications
US8445401B2 (en) Rutile-type titanium dioxide photocatalyst
US10000841B2 (en) Hydrophilic-hydrophobic transformable composite film and the method of fabricating the same
US20060105911A1 (en) Photocatalyst material and process for producing the same
JP5515030B2 (en) Visible light responsive rutile titanium dioxide photocatalyst
Grao et al. Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications
US7566438B2 (en) Method for manufacturing nanostructured manganese oxide having dendritic structure, and oxygen reduction electrode comprising nanostructured transition metal oxide having dendritic structure
JP2000096212A (en) Photocatalyst film coated member and its production
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
WO2009130924A1 (en) Dendritic substances and structures containing the same
JP4567892B2 (en) Metal plate having photocatalytic activity and method for producing the same
JP4163374B2 (en) Photocatalytic membrane
JP2009262049A (en) Photocatalytic structure and method for producing the same
JP4620844B2 (en) Metal plate with photocatalytic activity
JP4620846B2 (en) Metal plate with photocatalytic activity
JP4010558B2 (en) Multifunctional material
CN1298883C (en) Ag/TiO2 composite film with adjustable contact angle and preparation method thereof
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP5683594B2 (en) Superporous photocatalytic material, method for producing the same, and use thereof
JP5158575B2 (en) Method for producing photocatalytic element
JP4822245B2 (en) Power supply equipment
JP5141310B2 (en) Titanium dioxide produced by anodization
JP5532504B2 (en) Photocatalytic element
JP7418477B2 (en) Photocatalytic device and method for manufacturing photocatalytic device
JP4450320B2 (en) Communication equipment or equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4567892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees