JP2000159600A - Substrate with step of unit crystal lattice length and its preparation - Google Patents
Substrate with step of unit crystal lattice length and its preparationInfo
- Publication number
- JP2000159600A JP2000159600A JP10332932A JP33293298A JP2000159600A JP 2000159600 A JP2000159600 A JP 2000159600A JP 10332932 A JP10332932 A JP 10332932A JP 33293298 A JP33293298 A JP 33293298A JP 2000159600 A JP2000159600 A JP 2000159600A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- crystal lattice
- unit crystal
- lattice length
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 94
- 239000013078 crystal Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title description 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 10
- 238000004381 surface treatment Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 21
- 239000000243 solution Substances 0.000 description 25
- 238000000089 atomic force micrograph Methods 0.000 description 16
- 229910002367 SrTiO Inorganic materials 0.000 description 13
- 238000005530 etching Methods 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、酸化物超伝導体、
酸化物磁性材料、誘電体などペロブスカイト(perovski
te)結晶構造を有する薄膜を形成するための基板、特に
清浄化かつ平坦性を有するテラスを形成した単位結晶格
子長の階段を有する基板及びその作製方法に関する。The present invention relates to an oxide superconductor,
Perovskites such as oxide magnetic materials and dielectrics
te) The present invention relates to a substrate for forming a thin film having a crystal structure, in particular, a substrate having a step of a unit crystal lattice length in which a terrace having cleanliness and flatness is formed, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】薄膜を多層配置して集積回路を作製する
に際し、薄膜は、電気的性能だけではなく、結晶性、表
面平坦性が要求される。一般に表面に原子層レベルでの
階段(ステップ)を有する基板上の薄膜成長では、原子
はステップに取り込まれ3次元核の形成が抑制されるこ
とが知られている。そのため、高品質の薄膜を形成する
ためには、原子層レベル高さのステップを有しかつその
全表面に亘り清浄で平坦なテラスを形成した単位結晶格
子長の階段を有する基板が必要である。2. Description of the Related Art When fabricating integrated circuits by arranging thin films in multiple layers, the thin films are required to have not only electrical performance but also crystallinity and surface flatness. In general, it is known that in the growth of a thin film on a substrate having a step at the atomic layer level on its surface, atoms are incorporated into the steps and the formation of three-dimensional nuclei is suppressed. Therefore, in order to form a high-quality thin film, a substrate having a unit crystal lattice length step having a step at an atomic layer level and forming a clean and flat terrace over the entire surface is required. .
【0003】pH4.8付近におけるBHF溶液(NH4F-HF緩衝溶
液)による化学エッチング、又は酸素中900℃熱処理によ
り、正規基板で原子層レベルの階段を有する基板が作製
されることが報告されている。(それぞれM.Kawasaki
他, Sciene 266(1994) p1540〜1542、N.Ikemiya他,
J.Crystal Growth, 160(1996) p104〜110参照)It has been reported that chemical etching with a BHF solution (NH 4 F-HF buffer solution) at around pH 4.8 or heat treatment at 900 ° C. in oxygen produces a regular substrate having an atomic layer level step. ing. (Each M. Kawasaki
Sciene 266 (1994) p1540-1542, N. Ikemiya et al.,
(See J. Crystal Growth, 160 (1996) pp. 104-110)
【0004】しかし、上記の作製方法では次のような問
題点がある。pH4.8、BHF溶液で正規基板表面を2分間以
上(10分が最適と報告されている。)で化学処理する
と、基板の製作段階で発生した研磨傷および結晶欠陥に
起因する正方形の穴が、基板表面に常に生じる。図6は
SrTiO3(100)面の正規基板(市販製品、面傾斜誤
差0.15度)をpH4.8、BHF溶液で10分間エッチング処理
したときの基板表面のAFM(原子間力顕微鏡)像であ
る。平均幅150nmオーダーのテラス、約0.4nmのステップ
を有するステップ構造表面が形成されている。図6では
研磨傷、結晶欠陥に起因する正方形の穴、高さ1〜3nm
の島が観測される。However, the above-described manufacturing method has the following problems. When a regular substrate surface is chemically treated with a pH 4.8, BHF solution for more than 2 minutes (10 minutes is reported to be optimal), square holes caused by polishing scratches and crystal defects generated during the substrate fabrication stage are produced. Always occurs on the substrate surface. Figure 6
It is an AFM (atomic force microscope) image of a substrate surface when a regular substrate of SrTiO 3 (100) plane (commercial product, plane inclination error 0.15 degrees) is subjected to etching treatment with a BHF solution at pH 4.8 for 10 minutes. A terrace having an average width of 150 nm order and a step structure surface having steps of about 0.4 nm are formed. In FIG. 6, a square hole caused by polishing scratches and crystal defects, height 1-3 nm
Islands are observed.
【0005】同様に、2分以上酸素中の熱処理だけで
は、研磨基板の場合良くそろったステップ・テラス構造
の基板表面を作製するのは困難である。更に、酸素中の
高温処理では、基板表面に段丘が容易に形成される。Similarly, it is difficult to produce a substrate surface having a step terrace structure that is well-aligned in the case of a polished substrate only by heat treatment in oxygen for 2 minutes or more. In addition, high-temperature treatment in oxygen easily forms terraces on the substrate surface.
【0006】このように、従来の作製方法では、理想的
なステップ・テラス構造の表面を部分的に有する基板表
面は作製できるが、各テラスの全表面に亘って平坦性を
有するステップ基板を作製することは困難であるという
欠点があった。又、傾斜基板よるステップ基板の作製で
は、非常に凹凸の激しい基板表面が作製されるだけであ
った。As described above, according to the conventional manufacturing method, a substrate surface partially having the surface of an ideal step terrace structure can be manufactured, but a step substrate having flatness over the entire surface of each terrace is manufactured. There was a drawback that it was difficult to do. Further, in the production of a step substrate using an inclined substrate, only a substrate surface having extremely severe irregularities was produced.
【0007】[0007]
【発明が解決しようとする課題】本発明は、正規または
傾斜基板の表面を、全表面が原子レベルで平坦性を有し
かつ単位結晶格子長のステップ列を有する構造表面の基
板及びその作製方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention relates to a regular or inclined substrate having a structure having a structure in which the entire surface is flat at the atomic level and has a step sequence of a unit crystal lattice length, and a method of manufacturing the same. The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】発明者は、pH4.8のBHF溶
液エッチング処理後に酸素中熱処理を1時間行うと、正
規基板表面にあった正方形穴の角は丸くなり、多数の円
形穴は消失し、かつテラスが明瞭に形成されることを確
認した(図6のAFM像と図7のAFM像との比較参照)。特
に、2分間以上BHF溶液で処理した基板表面では、酸素
ガス流中で1000℃、1時間熱処理すると、テラス構造や
正方形角はより丸みを帯びることが確認された(図7
(b)のAFM像参照)。Means for Solving the Problems The inventors of the present invention have conducted a heat treatment in oxygen for one hour after a BHF solution etching treatment at pH 4.8, the square holes on the regular substrate surface have rounded corners, and many circular holes have It was confirmed that they disappeared and the terrace was clearly formed (see the comparison between the AFM image in FIG. 6 and the AFM image in FIG. 7). In particular, on the substrate surface treated with the BHF solution for 2 minutes or more, it was confirmed that the terrace structure and the square corners became more rounded when heat treatment was performed at 1000 ° C. for 1 hour in an oxygen gas flow (FIG. 7).
(Refer to the AFM image in (b)).
【0009】上記の2つの処理に対応する現象は次のよ
うに解釈される。BHF溶液エッチング処理は表面構造を
改変し、組織を変化する。SrTiO3結晶は、SrOとTiO2
の原子面からなるペロブスカイト型結晶である。BHF溶
液処理により、基板(100)面のSrO面が溶け、基板
表面は原子状平坦性を有するTiO2 面で終端する面とな
る。The phenomena corresponding to the above two processes are interpreted as follows. The BHF solution etching process alters the surface structure and changes the texture. SrTiO 3 crystals consist of SrO and TiO 2
Is a perovskite crystal composed of atomic planes of By the BHF solution treatment, the SrO surface of the substrate (100) is melted, and the substrate surface becomes a surface terminated with a TiO 2 surface having atomic flatness.
【0010】酸素中熱処理は組織を変化させることがで
きないが、テラス表面に残存する粒子の移動、酸素欠陥
の集中又は整列に伴う表面構造を変化させる。熱処理
は、残存粒子をテラスの端へと移動させ角に丸みを帯び
させる。一方、酸素ガス雰囲気は、表面の酸素欠陥構造
を変化させる。このことから、正方形の穴がなく、清浄
な原子層レベルでの平坦性を有する表面を作製する方法
として、短時間のBHF溶液処理と次の低温酸素熱処理と
が適切であると考えられる。The heat treatment in oxygen cannot change the structure, but changes the surface structure accompanying the movement of particles remaining on the terrace surface, the concentration or alignment of oxygen defects. The heat treatment moves the remaining particles to the edge of the terrace, causing the corners to be rounded. On the other hand, the oxygen gas atmosphere changes the oxygen defect structure on the surface. From this, it is considered that short-time BHF solution treatment and subsequent low-temperature oxygen heat treatment are appropriate as methods for producing a clean surface without square holes and having flatness at the atomic layer level.
【0011】本発明は、正規基板又は傾斜基板をBHF溶
液(NH4F-HF緩衝溶液)により短時間表面処理し、その
後酸素ガス流中熱処理を行うことにより、清浄で平坦な
テラス及び単位結晶格子長の階段を形成した構造表面を
有する基板及びその作製方法である。The present invention provides a clean and flat terrace and unit crystal by subjecting a regular substrate or an inclined substrate to a surface treatment with a BHF solution (NH 4 F-HF buffer solution) for a short time and then performing a heat treatment in an oxygen gas flow. A substrate having a structural surface in which steps of a lattice length are formed and a method for manufacturing the same.
【0012】[0012]
【発明の実施の態様】本発明のステップ基板の作製プロ
セス例を図1〜5により説明する。図1の(a)〜
(f)は作製プロセス例のそれぞれの工程(a)〜
(f)を表す。先ず、正規基板による作製プロセス及び
それにより作製された基板について説明する。工程
(a).SrTiO3(100)面の正規基板(市販製品、平
面傾斜誤差0.1°〜0.2°)をステップ・テラス基板の
基板材料として使用する。基板の表面はランダム構造で
非常に平坦で、0.2〜0.4nm程度のクラスターが不規則に
散在し、ステップ・テラス構造表面を形成していない状
態にある。DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a process for manufacturing a step substrate according to the present invention will be described with reference to FIGS. (A) of FIG.
(F) shows respective steps (a) to (f) of the manufacturing process example.
(F). First, a manufacturing process using a regular substrate and a substrate manufactured by the process will be described. Step (a). A regular substrate of SrTiO 3 (100) plane (commercial product, plane inclination error of 0.1 ° to 0.2 °) is used as a substrate material of the step terrace substrate. The surface of the substrate is very flat with a random structure, clusters of about 0.2 to 0.4 nm are scattered irregularly, and the step terrace structure surface is not formed.
【0013】工程(b).正規基板をpH4.8のBHF溶液
(緩衝NH4F-HF溶液)に1〜2分間浸し、表面エッチン
グ処理する。基板表面は不明瞭なテラス構造で、その表
面は乱雑な構造をしている。この工程(b)では、原子
レベルでの平坦性を得るには不十分である。図2(a)
はBHF溶液で2分間表面エッチング処理した場合のAFM像
である。しかし、図6の従来の処理と比較して大きく、
深い正方形のエッチング穴がなく、次の熱処理で消失す
る程度の非常に小さく、狭いエッチング穴が僅かに存在
する。2分以上BHF溶液処理を行うと、その後の熱処理
を行っても図7のようにエッチング穴を消失させること
はできない。 工程(c).純粋アルコールで洗浄する。 工程(d).乾燥窒素を吹き付けて乾かす。Step (b). The regular substrate is immersed in a pH 4.8 BHF solution (buffered NH 4 F-HF solution) for 1 to 2 minutes to perform a surface etching treatment. The substrate surface has an unclear terrace structure, and the surface has a random structure. This step (b) is insufficient for obtaining flatness at the atomic level. FIG. 2 (a)
Is an AFM image when the surface is etched with a BHF solution for 2 minutes. However, compared to the conventional processing of FIG.
There are no deep square etching holes and only a few very small and narrow etching holes that disappear in the next heat treatment. If the BHF solution treatment is performed for 2 minutes or more, the etching hole cannot be eliminated as shown in FIG. 7 even if the subsequent heat treatment is performed. Step (c). Wash with pure alcohol. Step (d). Blow dry with dry nitrogen.
【0014】工程(e).基板を溶解石英管に入れ、酸
素ガス流の中で電気炉を使い1時間以上900℃で熱処理
する。 図2(b)は、正規SrTiO3基板をBHF溶液で2分
間表面エッチング処理した後、酸素ガス流中900℃で1
時間熱処理した場合の基板表面のAFM像である。ほとん
ど並列に高度に整列した単位結晶格子長のステップ構造
が観測される。しばしば一方向に沿って整列した一連の
並列ステップである。工程(f).基板を電気炉より取
り出し、基板を室温まで急冷する。Step (e). The substrate is placed in a fused silica tube and heat-treated at 900 ° C. for 1 hour or more in an oxygen furnace using an electric furnace. FIG. 2 (b) shows that a regular SrTiO 3 substrate was surface-etched with a BHF solution for 2 minutes, and then subjected to 900 ° C. in an oxygen gas flow.
4 is an AFM image of a substrate surface after heat treatment for an hour. A step structure of unit crystal lattice length highly aligned almost in parallel is observed. Often a series of parallel steps aligned along one direction. Step (f). The substrate is taken out of the electric furnace, and the substrate is rapidly cooled to room temperature.
【0015】図2(c)は図1の作製プロセスにより正
規基板で作製された単位結晶格子長のステップを有する
基板を模式的に表した図である。図2(c)の実施例の
ステップ・テラス基板は図2(b)のAFM像からみて、
平均テラス幅が125nm、ステップ高さが1結晶格子長高
さの構造表面を有している。基板表面は製造プロセスに
より清浄な表面となっている。なお、市販されている基
板製品は特性にバラツキがあるので、これに合わせて工
程(b)の溶液処理時間を1〜2分の範囲で、工程
(e)の熱処理時間を1時間以上の適切な時間にして処
理する必要がある。FIG. 2C is a diagram schematically showing a substrate having a unit crystal lattice length step manufactured on a regular substrate by the manufacturing process of FIG. The step terrace substrate of the embodiment of FIG. 2C is viewed from the AFM image of FIG.
It has a structural surface with an average terrace width of 125 nm and a step height of one crystal lattice length. The substrate surface is a clean surface due to the manufacturing process. Note that commercially available substrate products have variations in characteristics, and accordingly, the solution processing time in the step (b) is set within a range of 1 to 2 minutes, and the heat treatment time in the step (e) is set to 1 hour or more. Time is required.
【0016】以上、正規基板による単位結晶格子長の階
段を有する基板の作製について説明したが、傾斜基板に
よるステップ・テラス基板の作製についても図1の作製
プロセスで作製できる。傾斜基板の場合、図1の工程
(b)のBHF溶液処理では、正規基板の場合に比較し
て、非常に乱雑な基板表面が形成される。しかしなが
ら、傾斜基板の傾斜角度、図1の(e)工程の熱処理時
間、温度を適切な値とすることにより所定数単位結晶格
子長のステップ高さ、所定テラス幅を有するステップ・
テラス構造表面が作製できる。Although the fabrication of a substrate having a unit crystal lattice length step using a regular substrate has been described above, the fabrication of a step terrace substrate using an inclined substrate can also be achieved by the fabrication process of FIG. In the case of the inclined substrate, the BHF solution treatment in the step (b) of FIG. 1 forms a very rough substrate surface as compared with the case of the regular substrate. However, by setting the inclination angle of the inclined substrate, the heat treatment time in the step (e) of FIG. 1 and the temperature to appropriate values, a step height having a predetermined number of unit crystal lattice lengths and a step having a predetermined terrace width can be obtained.
A terrace structure surface can be manufactured.
【0017】図3は、SrTiO3(100)面の[001]
方向に2°傾斜した2度傾斜基板により、単位結晶格子
長の階段を有する基板を作製した実施例を説明する図で
ある。図3(a)は図1の(b)工程のBHF溶液2分間
表面エッチング処理した基板表面のAFM像である。基板
表面は50〜100nmのクラスター構造を有する乱雑な面で
あり、ステップ構造が形成されていない。BHF溶液処理
期間を長く、例えば5分又は10分にすると10〜30
nmのオーダーの粗さ(RMS)の表面となる。FIG. 3 shows [001] of SrTiO 3 (100) plane.
It is a figure explaining the Example which produced the board | substrate which has the step of unit crystal lattice length by the 2 degree | times inclination board | substrate inclined by 2 degrees in the direction. FIG. 3A is an AFM image of the substrate surface subjected to the surface etching treatment for 2 minutes in the BHF solution in the step of FIG. 1B. The substrate surface is a random surface having a cluster structure of 50 to 100 nm, and no step structure is formed. If the BHF solution treatment period is long, for example, 5 minutes or 10 minutes, 10-30
The surface has a roughness (RMS) on the order of nm.
【0018】図3(b)は、図1の作製プロセスにおい
て前記2度傾斜SrTiO3基板をBHF溶液で2分間表面エッ
チング処理し(図1工程(b))た後、酸素ガス流中90
0℃熱処理し(図1工程(e))た基板表面のAFM像を示
す。[001]方向に沿って延び、直角に終端する規則
正しいテラス構造が観測される。図3(c)は、図1の
作製プロセスにより前記2度傾斜基板から作製された単
位結晶格子長のステップを有する基板を模式的に表した
図である。基板表面は、図3(b)のAFM像からみ
て、平均テラス幅が35nm、平均ステップ高さ3単位結晶
格子層(ML)、1.2nmの構造表面である。FIG. 3B shows that the SrTiO 3 substrate inclined at 2 degrees is subjected to a surface etching treatment with a BHF solution for 2 minutes (step (b) in FIG. 1) in the manufacturing process of FIG.
An AFM image of the substrate surface that has been heat-treated at 0 ° C. (step (e) in FIG. 1) is shown. A regular terrace structure extending along the [001] direction and terminating at a right angle is observed. FIG. 3C is a view schematically showing a substrate having a unit crystal lattice length step manufactured from the twice-inclined substrate by the manufacturing process of FIG. The substrate surface is a structural surface having an average terrace width of 35 nm, an average step height of 3 unit crystal lattice layers (ML), and 1.2 nm as viewed from the AFM image of FIG. 3B.
【0019】図4は、SrTiO3(100)面の[001]
方向に6°傾斜した6度傾斜SrTiO3基板をBHF溶液で1
分間表面エッチング処理した後、酸素ガス流中900℃1
時間熱処理して作製した実施例の基板表面AFM像であ
る。直線的ステップは周期的に約1.5μmで不規則に終端
する。ステップの高さは3〜5単位結晶格子層(ML)で
ある。FIG. 4 shows [001] of SrTiO 3 (100) plane.
6-degree tilted SrTiO 3 substrate tilted 6 ° in the direction with BHF solution 1
After a surface etching treatment for 1 minute, 900 ° C
5 is an AFM image of a substrate surface of an example produced by heat treatment for a time. The linear steps periodically terminate irregularly at about 1.5 μm. The step height is 3-5 unit crystal lattice layers (ML).
【0020】図5は、図1の作製プロセスにおいて5.7
度傾斜SrTiO3基板をBHF溶液で1分間表面エッチング処
理し、その後900℃、2時間酸素ガス流中熱処理して作
製した実施例の基板表面AFM像である。図1の工程
(e)の熱処理時間を図4の場合よりも長くしたので、
図5の実施例ではステップ高さが平均6単位格子層(M
L)となっている。FIG. 5 shows the result of the fabrication process of FIG.
9 is an AFM image of a substrate surface of an example produced by subjecting a graded SrTiO 3 substrate to a surface etching treatment with a BHF solution for 1 minute and then performing a heat treatment in an oxygen gas flow at 900 ° C. for 2 hours. Since the heat treatment time in the step (e) of FIG. 1 is longer than that of FIG.
In the embodiment of FIG. 5, the average step height is 6 unit lattice layers (M
L).
【0021】[0021]
【発明の効果】本発明のステップ・テラス基板は、全表
面が原子レベルで平坦性を有しかつ任意の単位格子層の
ステップ列を有しているので、その表面には規則正し
く、平坦性を有する高品位の薄膜が形成できる。従っ
て、高温超伝導SQIDや超伝導マイクロ波回路、磁気抵抗
素子、誘電体メモリなどを集積する基板として優れてい
る。基板表面の傾斜角、BHF溶液処理時間、酸素ガス流
熱処理の処理時間若しくは温度を所定値とすることによ
り、所定の階段高さの、所定のテラス幅のステップ・テ
ラス基板を作製することができる。According to the step terrace substrate of the present invention, the entire surface is flat at the atomic level and has a step sequence of an arbitrary unit lattice layer. A high-quality thin film can be formed. Therefore, it is excellent as a substrate on which a high-temperature superconducting SQUID, a superconducting microwave circuit, a magnetoresistive element, a dielectric memory, and the like are integrated. By setting the inclination angle of the substrate surface, the BHF solution treatment time, the oxygen gas flow heat treatment time or the temperature to a predetermined value, a step terrace substrate having a predetermined step height and a predetermined terrace width can be manufactured. .
【図1】本発明の作製フローを示す図である。FIG. 1 is a diagram showing a manufacturing flow of the present invention.
【図2】SrTiO3正規基板による実施例の基板及びその作
製を説明する図で、(a)はBHF溶液による2分間表面
処理した場合の、(b)はその後、900℃、1時間酸素
ガス流中熱処理した場合の基板表面のAFM像を、(c)
は作製された基板の表面構造を模式的に示す図である。FIGS. 2A and 2B are diagrams for explaining a substrate of an example using a SrTiO 3 regular substrate and its production, wherein FIG. 2A shows a case where surface treatment is performed for 2 minutes with a BHF solution, and FIG. An AFM image of the substrate surface after heat treatment in the flow is shown in (c)
FIG. 3 is a diagram schematically showing a surface structure of a manufactured substrate.
【図3】SrTiO3傾斜基板(2°傾斜)による実施例の基
板及びその作製を説明する図で、で、(a)はBHF溶液
による2分間表面処理した場合の、(b)はその後、90
0℃、1時間酸素ガス流中熱処理した場合の基板表面のA
FM像を、(c)は作製されたステップ基板の模式的に示
す図である。FIGS. 3A and 3B are diagrams illustrating a substrate of an example using a SrTiO 3 tilted substrate (2 ° tilt) and its preparation, wherein FIG. 3A shows a case where surface treatment is performed for 2 minutes with a BHF solution, and FIG. 90
A on the substrate surface when heat-treated in oxygen gas flow at 0 ° C for 1 hour
It is a figure which shows the FM image and (c) which shows the produced step board typically.
【図4】傾斜SrTiO3基板(6°傾斜)により作製した実
施例の基板表面AFM像を示す図である。FIG. 4 is a diagram illustrating an AFM image of a substrate surface of an example manufactured using a tilted SrTiO 3 substrate (6 ° tilt).
【図5】5.7度傾斜SrTiO3基板(5.7°傾斜)により作製
した実施例の基板表面のAFM像を示す図である。FIG. 5 is a diagram showing an AFM image of a substrate surface of an example manufactured using a 5.7-degree tilted SrTiO 3 substrate (5.7-degree tilt).
【図6】正規基板をBHF溶液で10分間エッチング処理
して作製した従来の基板表面AFM像を示す図である。FIG. 6 is a diagram showing a conventional substrate surface AFM image produced by etching a regular substrate with a BHF solution for 10 minutes.
【図7】10分間以上BHF溶液エッチング処理後に酸素
中高温熱処理した実験例の基板表面AFM像を示す図であ
る。FIG. 7 is a view showing an AFM image of a substrate surface of an experimental example in which a high-temperature heat treatment in oxygen is performed after a BHF solution etching treatment for 10 minutes or more.
21、31 基板 22、32 ステップ(階段) 23、33 テラス 21, 31 Substrate 22, 32 Step (stairs) 23, 33 Terrace
フロントページの続き (72)発明者 小柳 正男 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 Fターム(参考) 4G077 DB01 ED06 EE04 EE10 HA12 TK01 TK04 TK10 4M113 AD36 AD40 BA01 BA29 BC05 BC15 Continued on the front page (72) Inventor Masao Koyanagi 1-4-1 Umezono, Tsukuba, Ibaraki Pref. BC15
Claims (2)
し、900℃の酸素ガス中で1時間以上熱処理して、平坦性
テラス、単位結晶格子長の階段を形成したことを特徴と
する単位結晶格子長の階段を有する基板。1. A surface treatment with a BHF solution having a pH of 4.8 for 1 to 2 minutes, and a heat treatment in an oxygen gas at 900 ° C. for 1 hour or more to form a flat terrace and a step of a unit crystal lattice length. A substrate having a unit crystal lattice length step.
処理し、900℃の酸素ガス中で1時間以上熱処理したこと
を特徴とする単位結晶格子長の階段を有する基板の作製
方法。2. A substrate having a unit crystal lattice length step, wherein the substrate is subjected to a surface treatment with a BHF solution having a pH of 4.8 for 1 to 2 minutes and a heat treatment in an oxygen gas at 900 ° C. for 1 hour or more. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10332932A JP2000159600A (en) | 1998-11-24 | 1998-11-24 | Substrate with step of unit crystal lattice length and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10332932A JP2000159600A (en) | 1998-11-24 | 1998-11-24 | Substrate with step of unit crystal lattice length and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000159600A true JP2000159600A (en) | 2000-06-13 |
Family
ID=18260433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10332932A Pending JP2000159600A (en) | 1998-11-24 | 1998-11-24 | Substrate with step of unit crystal lattice length and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000159600A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219769A (en) * | 2001-01-24 | 2002-08-06 | Nippon Steel Corp | Metal plate having photocatalytic activity and method for manufacturing the same |
WO2002077331A1 (en) * | 2001-03-16 | 2002-10-03 | Japan Science And Technology Corporation | Method for flattening surface of oxide crystal to ultra high degree |
WO2012124507A1 (en) * | 2011-03-14 | 2012-09-20 | 富士電機株式会社 | Crystalline body, substrate, and manufacturing method thereof |
WO2012157368A1 (en) * | 2011-05-19 | 2012-11-22 | 富士電機株式会社 | Thermoelectric conversion structure and production method thereof |
WO2012157369A1 (en) * | 2011-05-19 | 2012-11-22 | 富士電機株式会社 | Thermoelectric conversion structure and production method thereof |
CN103746071A (en) * | 2014-01-09 | 2014-04-23 | 北京工业大学 | Self-assembling LaAlO3 nanowires, preparation and application |
JPWO2013094171A1 (en) * | 2011-12-22 | 2015-04-27 | キヤノンアネルバ株式会社 | Method for forming SrRuO3 film |
-
1998
- 1998-11-24 JP JP10332932A patent/JP2000159600A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219769A (en) * | 2001-01-24 | 2002-08-06 | Nippon Steel Corp | Metal plate having photocatalytic activity and method for manufacturing the same |
JP4567892B2 (en) * | 2001-01-24 | 2010-10-20 | 新日本製鐵株式会社 | Metal plate having photocatalytic activity and method for producing the same |
WO2002077331A1 (en) * | 2001-03-16 | 2002-10-03 | Japan Science And Technology Corporation | Method for flattening surface of oxide crystal to ultra high degree |
US7029528B2 (en) | 2001-03-16 | 2006-04-18 | Japan Science And Technology Corporation | Method for flattening surface of oxide crystal to ultra high degree |
CN1327048C (en) * | 2001-03-16 | 2007-07-18 | 独立行政法人科学技术振兴机构 | Method for flattening surface of oxide crystal to ultra high degree |
CN103429799A (en) * | 2011-03-14 | 2013-12-04 | 富士电机株式会社 | Crystalline body, substrate, and manufacturing method thereof |
WO2012124507A1 (en) * | 2011-03-14 | 2012-09-20 | 富士電機株式会社 | Crystalline body, substrate, and manufacturing method thereof |
US8932699B2 (en) | 2011-03-14 | 2015-01-13 | Fuji Electric Co., Ltd. | Crystalline substance, substrate, and method for producing crystalline substance |
JP5725156B2 (en) * | 2011-03-14 | 2015-05-27 | 富士電機株式会社 | Crystal, substrate and method for producing the same |
WO2012157368A1 (en) * | 2011-05-19 | 2012-11-22 | 富士電機株式会社 | Thermoelectric conversion structure and production method thereof |
WO2012157369A1 (en) * | 2011-05-19 | 2012-11-22 | 富士電機株式会社 | Thermoelectric conversion structure and production method thereof |
JP5472533B2 (en) * | 2011-05-19 | 2014-04-16 | 富士電機株式会社 | Thermoelectric conversion structure and manufacturing method thereof |
JP5472534B2 (en) * | 2011-05-19 | 2014-04-16 | 富士電機株式会社 | Thermoelectric conversion structure and manufacturing method thereof |
US8872016B2 (en) | 2011-05-19 | 2014-10-28 | Fuji Electric Co., Ltd. | Thermoelectric conversion structure and method of manufacturing same |
US9070816B2 (en) | 2011-05-19 | 2015-06-30 | Fuji Electric Co., Ltd. | Thermoelectric conversion structure and method of manufacturing same |
JPWO2013094171A1 (en) * | 2011-12-22 | 2015-04-27 | キヤノンアネルバ株式会社 | Method for forming SrRuO3 film |
CN103746071A (en) * | 2014-01-09 | 2014-04-23 | 北京工业大学 | Self-assembling LaAlO3 nanowires, preparation and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6429098B1 (en) | Process for obtaining a layer of single-crystal germanium or silicon on a substrate of single-crystal silicon or germanium, respectively, and multilayer products obtained | |
JP3237888B2 (en) | Semiconductor substrate and method of manufacturing the same | |
KR100384552B1 (en) | Epitaxial wafer and method for the preparation thereof | |
CN111969100B (en) | Josephson junction based on TaN and preparation method thereof | |
JP2008124480A (en) | Process for revealing crystalline defects and/or stress fields at molecular adhesion interface of two solid materials | |
WO2004055871A1 (en) | Method for manufacturing soi wafer | |
JP2000159600A (en) | Substrate with step of unit crystal lattice length and its preparation | |
JPS61270830A (en) | Surface cleaning method | |
JP2001074954A (en) | Production of three dimensional photonic crystal structure | |
JPH05251771A (en) | Artificial grain boundary type josephson junction element and manufacture thereof | |
JPH0799239A (en) | Semiconductor device and manufacture thereof | |
EP0701009B1 (en) | Surface treatment of an oxide LnBa2Cu3O7-x single crystal | |
WO1993001617A1 (en) | Method for the manufacture of a semiconductor component | |
JPH09310170A (en) | Silicon carbide thin coating structural body and its production | |
US6482538B2 (en) | Microelectronic piezoelectric structure and method of forming the same | |
Nie et al. | Control of step arrays on normal and vicinal SrTiO3 (100) substrates | |
EP0592671A1 (en) | Silicon wafer and its cleaning method | |
JP4943172B2 (en) | Method for forming SOS substrate having silicon epitaxial film | |
JPH05267270A (en) | Manufacture of porous semiconductor and porous semiconductor substrate | |
JP2000086400A (en) | Production of oxide single crystal substrate nd electronic device | |
JP3762978B2 (en) | Method for producing in-plane lattice constant adjusting substrate and in-plane lattice constant adjusting substrate | |
JPH03125458A (en) | Method of forming single crystal region, and single crystal article using same | |
JPH0324719A (en) | Forming method of single crystal film and crystal products | |
Hojo et al. | Topography change due to multilayer oxidation at SiO2/Si (111) interfaces | |
US20240312781A1 (en) | Method for making a radio frequency silicon-on-insulator (rfsoi) wafer including a superlattice |