JP2000086400A - Production of oxide single crystal substrate nd electronic device - Google Patents

Production of oxide single crystal substrate nd electronic device

Info

Publication number
JP2000086400A
JP2000086400A JP10272529A JP27252998A JP2000086400A JP 2000086400 A JP2000086400 A JP 2000086400A JP 10272529 A JP10272529 A JP 10272529A JP 27252998 A JP27252998 A JP 27252998A JP 2000086400 A JP2000086400 A JP 2000086400A
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
oxide
oxide single
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10272529A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Masanori Kawai
真紀 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Nikon Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, RIKEN Institute of Physical and Chemical Research filed Critical Nikon Corp
Priority to JP10272529A priority Critical patent/JP2000086400A/en
Publication of JP2000086400A publication Critical patent/JP2000086400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a method for production by which an oxide single crystal substrate having a substrate surface flat on the atomic level and good in crystallinity can efficiently and stably be produced at a low cost and an electronic device having an oxide superconductor thin film or an oxide insulator thin film good in crystallinity. SOLUTION: This method for producing an oxide single crystal substrate comprises (a) a polishing step for polishing the surface of the oxide single crystal substrate, (b) a surface removing step for applying ultrasonic vibration to the oxide single crystal substrate in a liquid and removing the surface part in which the stress due to the polishing remains and (c) a heat-treating step for heat-treating the oxide single crystal substrate after removing the surface. An oxide superconductor thin film or an oxide ferroelectric thin film is epitaxially grown on the oxide single crystal substrate after passing through the steps. Thereby, the oxide single crystal superconductor thin film or the oxide insulator thin film good in crystallinity can be formed on the surface of the oxide single crystal substrate. As a result the high-quality electronic device using the oxide single crystal superconductor thin film or the oxide insulator thin film can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超伝導体薄
膜または酸化物強誘電体薄膜をエピタキシャル成長させ
る酸化物単結晶基板の製造技術に属し、特に、基板表面
の結晶性が良好な酸化物単結晶基板の製造方法、及び、
酸化物強誘電体薄膜または酸化物強誘電体薄膜を有する
酸化物単結晶基板を用いた電子デバイスに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing an oxide single crystal substrate on which an oxide superconductor thin film or an oxide ferroelectric thin film is epitaxially grown, and particularly to an oxide having good crystallinity on the substrate surface. Single crystal substrate manufacturing method, and
The present invention relates to an electronic device using an oxide ferroelectric thin film or an oxide single crystal substrate having an oxide ferroelectric thin film.

【0002】[0002]

【従来の技術】酸化物超伝導体は高温超伝導特性を示す
物質として注目されており、その特性を応用した素子の
開発が進められている。その代表的な例として、絶縁体
を介在させた超伝導体間における超伝導特性を利用して
高速スイッチングを実現するジョゼフソン素子や、ジョ
ゼフソン接合の磁束感受特性を利用して脳などから発生
する微少電流を測定する超伝導量子干渉素子(SQUI
D)、さらには超伝導トランジスタ、電磁波センサなど
がある。また、酸化物強誘電体の強誘電特性を応用した
素子としては不揮発性メモリ、赤外線センサなどがあ
り、実用化、商品化が進められている。これらの素子の
多くは酸化物単結晶基板上に形成された酸化物超伝導体
薄膜あるいは酸化物強誘電体薄膜を用いて研究開発及び
製造が行われるため、酸化物単結晶基板は、酸化物超伝
導体薄膜や酸化物強誘電体薄膜のエピタキシャル成長用
基板として需要が増大している。
2. Description of the Related Art An oxide superconductor is attracting attention as a material exhibiting high-temperature superconductivity, and an element utilizing the property is being developed. Typical examples are a Josephson element that realizes high-speed switching by using superconducting characteristics between superconductors with an insulator interposed, and a brain generated by using the magnetic flux sensing characteristics of a Josephson junction. Superconducting quantum interference device (SQUI)
D), and superconducting transistors and electromagnetic wave sensors. In addition, devices utilizing the ferroelectric characteristics of oxide ferroelectrics include non-volatile memories and infrared sensors, which are being put to practical use and commercialized. Many of these devices are researched, developed, and manufactured using oxide superconductor thin films or oxide ferroelectric thin films formed on oxide single crystal substrates. There is an increasing demand for substrates for epitaxial growth of superconductor thin films and oxide ferroelectric thin films.

【0003】ところで、酸化物超伝導体および酸化物強
誘電体の電気特性には異方性すなわち結晶方位に強く依
存する性質があるため、安定した特性を持った高品質の
機能素子を得るには、結晶軸方向が揃った配向性の酸化
物超伝導体薄膜および酸化物強誘電体薄膜を用いる必要
がある。したがって、膜と格子定数及び熱膨張係数が近
く、膜と反応せず、さらに膜の使用温度範囲内で相転移
を生じない酸化物単結晶基板をエピタキシャル成長用基
板に用いる必要がある。このような条件を満たす酸化物
単結晶基板として、SrTiO3 (チタン酸ストロンチ
ウム)、LaAIO3 (ランタン酸アルミニウム)、L
aGaO3 (ガリウム酸ランタン)、NdGaO3 (ガ
リウム酸ネオジウム)、MgO(酸化マグネシウム)な
どがり、これらは広く研究開発において使用されてき
た。
[0003] Since the electrical properties of oxide superconductors and oxide ferroelectrics have anisotropy, that is, a property that strongly depends on the crystal orientation, it is necessary to obtain a high-quality functional element having stable properties. It is necessary to use an oxide superconductor thin film and an oxide ferroelectric thin film having an aligned crystal axis direction. Therefore, it is necessary to use an oxide single crystal substrate which is close to the film in lattice constant and coefficient of thermal expansion, does not react with the film, and does not cause a phase transition within the operating temperature range of the film, as the substrate for epitaxial growth. SrTiO 3 (strontium titanate), LaAIO 3 (aluminum lanthanate), Lr
aGaO 3 (lanthanum gallate), NdGaO 3 (neodymium gallate), MgO (magnesium oxide) and the like have been widely used in research and development.

【0004】しかし、酸化物単結晶基板に対して通常の
単結晶基板の表面仕上げの際に用いられるダイヤモンド
などの硬質砥粒による研磨処理を施すと、研磨により歪
んだ表面部分(加工変質層)が数μmの深さにも達し、
基板表面の結晶性や平坦性が著しく損なわれてしまう。
そこで従来より、コロイダルシリカなどの軟質砥粒によ
るメカノケミカルポリッシングや化学薬品によるケミカ
ルポリッシングなどで研磨処理したり、また成膜前に基
板表面をスパッタエッチング処理したりする表面処理方
法が採られてきた。しかしながら、このような表面処理
方法で処理された酸化物単結晶基板の表面の結晶性や平
坦性は、高品質の結晶特性をもった薄膜をエピタキシャ
ル成長させたり、それを人工格子や積層デバイスなどに
応用するには十分でなかった。
However, when the oxide single crystal substrate is polished with hard abrasive grains such as diamond used for the surface finishing of a normal single crystal substrate, the surface portion deformed due to polishing (work-affected layer) Reaches a depth of several μm,
The crystallinity and flatness of the substrate surface are significantly impaired.
Therefore, conventionally, a surface treatment method has been adopted in which a polishing treatment is performed by mechanochemical polishing using soft abrasive grains such as colloidal silica or a chemical polishing using a chemical agent, or a substrate surface is sputter-etched before film formation. . However, the crystallinity and flatness of the surface of the oxide single crystal substrate treated by such a surface treatment method can be improved by epitaxially growing a thin film having high-quality crystal characteristics, or by using it for an artificial lattice or a laminated device. It was not enough to apply.

【0005】そこで、結晶性の高い原子面が露出するよ
うな高品質の単結晶基板の表面仕上げ方法の研究開発が
SrTiO3 単結晶を対象としてなされてきた。その研
究成果の一つとして、結晶は原子や分子の間の結合力に
よってこれらが格子状に規則正しく配列された、それぞ
れ固有の結晶構造を持っており、一旦歪んだ結晶の一部
も熱処理によって再配列することに着目し、SrTiO
3 単結晶(結晶面(100 ))を空気中で950℃にて熱
処理することにより、種々の加工で歪んだ表面部分の原
子や分子を再配列させて1結晶格子単位(a軸長:3.9
Å)の段差を持ったテーブル状の原子ステップ面が表れ
た基板表面を得る方法が報告されている(R.Sum;
Physica C,235 ‐ 240(1994)621-622 )。また、Sr
TiO3 単結晶基板(結晶面(100 ))を酸溶液(例え
ば、フッ酸とフッ化アンモニウムとの混合溶液)と水と
に交互に浸漬して基板表面を繰り返しエッチング処理す
ることにより、同じく1結晶格子単位(a軸長:3.9
Å)の段差を持ったステップ面が表れた基板表面を得る
方法も提案された(特願平07-267800 号、特願平08-920
00号)。
Therefore, research and development of a surface finishing method for a high-quality single-crystal substrate in which an atomic plane having high crystallinity is exposed has been made for SrTiO 3 single crystal. One of the results of this research is that crystals have a unique crystal structure in which they are regularly arranged in a lattice pattern due to the bonding force between atoms and molecules. Focusing on the arrangement, SrTiO
3 A single crystal (crystal plane (100)) is heat-treated at 950 ° C. in air to rearrange the atoms and molecules on the surface portion distorted by various processings, thereby forming one crystal lattice unit (a-axis length: 3.9).
Å) A method for obtaining a substrate surface having a table-like atomic step surface having a step (R. Sum;
Physica C, 235-240 (1994) 621-622). Also, Sr
A TiO 3 single crystal substrate (crystal face (100)) is alternately immersed in an acid solution (for example, a mixed solution of hydrofluoric acid and ammonium fluoride) and water to repeatedly etch the substrate surface, thereby obtaining a single crystal substrate. Crystal lattice unit (a-axis length: 3.9
(Ii) A method of obtaining a substrate surface having a step surface having a step has also been proposed (Japanese Patent Application Nos. 07-267800 and 08-920).
No. 00).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、研磨し
た基板の表面部には研磨加工による応力が残留している
ため、それを単に熱処理して得られた基板表面の結晶性
はあまり良好ではない。一例として、図5(a)に研磨
後のチタン酸ストロンチウム基板(結晶面(100))の
原子間力顕微鏡による表面形状像を示す。この表面形状
像が示すとおり、研磨した段階では、1nm以下の平坦
性はあるが原子ステップは観察されず結晶性が良いとは
いえない。高速反射電子回折像も結晶性が良好ならば円
周上にスポット状の明点が観察されるはずであるが、結
果はストリーク状であり同様に結晶性が良いとはいえな
い。また、この状態で熱処理を行って表面の結晶を再配
列させても、図5(b)の原子間力顕微鏡による表面形
状像が示すとおり、原子ステップがある程度観察される
ことから結晶性は改善されるが十分ではない。また、基
板を酸溶液と水とに交互に浸漬して基板表面を繰り返し
エッチング処理する方法は、結晶性の良好な基板表面を
得ることはできるが、エッチング処理を繰り返し行うた
め作業が煩雑であり、またエッチングに使用する酸溶液
の温度やpHの管理を厳密に行わなければならないた
め、工場などで大量の基板を効率良く安定して製造する
方法としては適していない。そこで本発明が解決すべき
課題は、原子レベルで平坦でかつ結晶性の良好な基板表
面を有する酸化物単結晶基板を効率良く安価に、かつ安
定して製造することができる酸化物単結晶基板の製造方
法を提供し、さらに、酸化物単結晶基板の表面に結晶性
の良好な酸化物超伝導体薄膜または酸化物絶縁体薄膜を
形成してなる電子デバイスを提供することにある。
However, since stress due to polishing remains on the polished surface of the substrate, the crystallinity of the substrate surface obtained by simply heat-treating it is not very good. As an example, FIG. 5A shows a surface shape image of the polished strontium titanate substrate (crystal face (100)) by an atomic force microscope. As shown in this surface profile image, at the stage of polishing, although there is flatness of 1 nm or less, atomic steps are not observed and crystallinity cannot be said to be good. If the high-speed reflection electron diffraction image also has good crystallinity, a spot-like bright spot should be observed on the circumference, but the result is streak-like and the crystallinity cannot be said to be good. In addition, even if heat treatment is performed in this state to rearrange the crystals on the surface, as shown in the surface shape image by the atomic force microscope in FIG. But not enough. In addition, the method of repeatedly immersing the substrate in an acid solution and water and repeatedly etching the substrate surface can obtain a substrate surface with good crystallinity, but the work is complicated because the etching process is repeated. In addition, since the temperature and pH of an acid solution used for etching must be strictly controlled, it is not suitable as a method for efficiently and stably producing a large number of substrates in a factory or the like. The problem to be solved by the present invention is to provide an oxide single crystal substrate which can efficiently and inexpensively and stably produce an oxide single crystal substrate having a substrate surface which is flat at the atomic level and has good crystallinity. Another object of the present invention is to provide an electronic device formed by forming an oxide superconductor thin film or an oxide insulator thin film having good crystallinity on the surface of an oxide single crystal substrate.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る酸化物単結晶基板の製造方法では、研
磨後の酸化物単結晶基板に、液体中にて超音波振動を与
えることにより、基板表面の平坦性を残しつつ、研磨に
よる応力が残留した表面部分(加工変質層)を超音波振
動によって強制的に除去した後、酸化物単結晶基板を熱
処理(アニール)して基板表面の結晶を再配列させるよ
うにした。この製造方法において、超音波振動によって
強制的に除去する表面部分は、基板表面から厚さ方向に
10nm以内の部分とすることが望ましい。また、その
際酸化物単結晶基板を浸漬する液体は、基板の化学的性
質に応じて、純水、またはエタノール、アセトン、イソ
プロピルアルコールなどの有機溶剤を適宜使い分けるこ
とが望ましい。また、表面処理後の熱処理は、絶対温度
で酸化物単結晶基板の融点のほぼ1/2の温度で行うこ
とが望ましい。また、表面処理後の熱処理は、空気中ま
たは酸素中で行うことが望ましい。また、本発明に係る
電子デバイスは、本発明の方法により製造した酸化物単
結晶基板の表面に、酸化物超伝導体薄膜または酸化物強
誘電体薄膜をエピタキシャル成長させたものである。こ
の電子デバイスの酸化物単結晶基板の材料として、Sr
TiO3 (チタン酸ストロンチウム)、LaAIO3
(ランタン酸アルミニウム)、LaGaO3 (ガリウム
酸ランタン)、NdGaO3 (ガリウム酸ネオジウ
ム)、MgO(酸化マグネシウム)の何れかを用いるこ
とが望ましい。
In order to solve the above problems, in a method for manufacturing an oxide single crystal substrate according to the present invention, an ultrasonic vibration is applied to a polished oxide single crystal substrate in a liquid. Thus, while the surface of the substrate remains flat, the surface portion where the stress due to polishing remains (processed layer) is forcibly removed by ultrasonic vibration, and then the oxide single crystal substrate is subjected to heat treatment (annealing). The crystals on the surface were rearranged. In this manufacturing method, it is desirable that the surface portion forcibly removed by the ultrasonic vibration be a portion within 10 nm in the thickness direction from the substrate surface. In this case, it is desirable to appropriately use pure water or an organic solvent such as ethanol, acetone, or isopropyl alcohol depending on the chemical properties of the substrate as the liquid in which the oxide single crystal substrate is immersed. Further, it is preferable that the heat treatment after the surface treatment be performed at a temperature that is approximately half the melting point of the oxide single crystal substrate in absolute temperature. The heat treatment after the surface treatment is desirably performed in air or oxygen. Further, an electronic device according to the present invention is obtained by epitaxially growing an oxide superconductor thin film or an oxide ferroelectric thin film on the surface of an oxide single crystal substrate manufactured by the method of the present invention. Sr is used as a material of the oxide single crystal substrate of this electronic device.
TiO 3 (strontium titanate), LaAIO 3
(Aluminum lanthanate), LaGaO 3 (lanthanum gallate), NdGaO 3 (neodymium gallate), or MgO (magnesium oxide) is preferably used.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明に係る製造方法の実施の形態を示す
工程説明図である。図示するように、本発明に係る製造
方法は、(1)研磨工程、(2)表面除去工程および
(3)熱処理工程を含む。 (1)研磨工程では、所望の結晶方位に沿って板状にス
ライスした酸化物単結晶基板に、ダイヤモンドなどの硬
質砥粒あるいはコロイダルシリカなどの軟質砥粒による
研磨処理を施す。 (2)表面除去工程では、研磨処理後の酸化物単結晶基
板を液体(例えば、純水、有機溶剤など)の入った容器
内に配置し、公知の超音波洗浄装置を用いて超音波振動
を与えることにより、研磨による応力が残留した基板表
面及び表面近傍部分を、基板表面の平坦性を残しつつ強
制的に除去する。ただし、この工程で除去する酸化物単
結晶基板の表面部分は、基板表面から厚さ方向に10n
m以内の部分とする。10nmを越えると基板表面の平
坦性を損なう可能性があるからである。 (3)熱処理工程では、表面除去後の酸化物単結晶基板
を電気炉内に移して熱処理することにより、基板表面の
結晶を再配列させる。この熱処理は、絶対温度で酸化物
単結晶基板の融点のほぼ1/2の温度で行うことが望ま
しい。熱処理の温度が高過ぎると基板の結晶性を損なう
可能性があり、低過ぎると結晶の再配列を良好に促すこ
とができないからである。また、この熱処理は、酸素中
で行うことが望ましい。酸素以外の物質を多くむ雰囲気
中で熱処理を行うと、酸化物単結晶基板の結晶成分が変
化してしまうからである。
Embodiments of the present invention will be described below. FIG. 1 is a process explanatory view showing an embodiment of a manufacturing method according to the present invention. As shown, the manufacturing method according to the present invention includes (1) a polishing step, (2) a surface removing step, and (3) a heat treatment step. (1) In the polishing step, an oxide single crystal substrate sliced in a plate shape along a desired crystal orientation is subjected to polishing using hard abrasive grains such as diamond or soft abrasive grains such as colloidal silica. (2) In the surface removing step, the polished oxide single crystal substrate is placed in a container containing a liquid (eg, pure water, an organic solvent, or the like) and subjected to ultrasonic vibration using a known ultrasonic cleaning device. Is applied, the substrate surface and the vicinity of the surface where the polishing stress remains are forcibly removed while leaving the substrate surface flat. However, the surface portion of the oxide single crystal substrate to be removed in this step is 10n from the substrate surface in the thickness direction.
m. If the thickness exceeds 10 nm, the flatness of the substrate surface may be impaired. (3) In the heat treatment step, the oxide single crystal substrate from which the surface has been removed is transferred into an electric furnace and subjected to heat treatment, whereby the crystal on the substrate surface is rearranged. This heat treatment is desirably performed at a temperature that is almost half the melting point of the oxide single crystal substrate in absolute temperature. If the temperature of the heat treatment is too high, the crystallinity of the substrate may be impaired, and if the temperature is too low, the crystal rearrangement cannot be favorably promoted. This heat treatment is desirably performed in oxygen. This is because when heat treatment is performed in an atmosphere including a large amount of a substance other than oxygen, the crystal component of the oxide single crystal substrate changes.

【0009】上記のように、研磨後の酸化物単結晶基板
に、液体中にて超音波振動を与えることにより、基板表
面の平坦性を残しつつ、研磨による応力が残留した表面
部分を超音波振動によって強制的に除去した後、酸化物
単結晶基板を熱処理して基板表面の結晶を再配列させる
ことによって、原子レベルで平坦でかつ表面の結晶性の
良い酸化物単結晶基板を作成することができる。したが
って、上記の方法で製造した酸化物単結晶基板上に酸化
物超伝導体薄膜あるいは酸化物強誘電体薄膜をエピタキ
シャル成長させることにより、酸化物単結晶基板の表面
に結晶性の良好な酸化物超伝導体薄膜または酸化物絶縁
体薄膜を形成することができ、これにより酸化物超伝導
体薄膜または酸化物絶縁体薄膜を用いた高品質の電子デ
バイスを得ることができる。また、上記の方法は、基板
を酸溶液と水とに交互に浸漬して基板表面を繰り返しエ
ッチング処理する従来の方法と比較して、処理工程数を
大幅に少なくでき、かつエッチングに使用する酸溶液の
温度やpHの管理ほど厳密性を要する工程を含まないの
で、工場などで大量の基板を効率良く安定して製造する
方法として有効である。
As described above, by subjecting the polished oxide single crystal substrate to ultrasonic vibration in a liquid, the surface portion where the polishing stress remains remains while maintaining the substrate surface flatness. To produce an oxide single-crystal substrate that is flat at the atomic level and has good surface crystallinity by heat-treating the oxide single-crystal substrate and rearranging the crystals on the substrate surface after forcible removal by vibration. Can be. Therefore, the oxide superconductor thin film or oxide ferroelectric thin film is epitaxially grown on the oxide single crystal substrate manufactured by the above method, so that the oxide single crystal substrate has good crystallinity on the surface thereof. A conductor thin film or an oxide insulator thin film can be formed, whereby a high-quality electronic device using the oxide superconductor thin film or the oxide insulator thin film can be obtained. In addition, the above method can significantly reduce the number of processing steps and reduce the acid used for etching as compared with the conventional method in which the substrate surface is repeatedly etched by immersing the substrate in an acid solution and water alternately. Since the method does not include a process that requires more rigor than control of the temperature and pH of the solution, it is effective as a method for efficiently and stably producing a large amount of substrates in a factory or the like.

【0010】[0010]

【実施例】以下、本発明を実施例により更に具体的に説
明する。ただし、本発明はこれらの例に限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

【0011】[実施例1]SrTiO3 基板(結晶面(1
00) )を表面処理し、処理面上にc軸配向のYBa2
37 単結晶薄膜を作成した。まず研磨後のSrTi
3 基板(結晶面(100) )の表面の有機物、無機物の汚
れを取り除いた後、SrTiO3 基板を超音波洗浄装置
の液槽内に配置し、液体中で超音波振動を与えることに
より、SrTiO3 基板の表面部分を機械的に除去し
た。液体にはアセトンを使用し、超音波洗浄装置には市
販のもの(40kHz −150W)を使用した。上記表面処理後
のSrTiO3 基板の表面は、図1(a)の原子間力顕
微鏡による表面形状像が示すとおり、研磨による応力が
残留した表面部分が均一に除去され、凹凸は1nmに保
たれている。この後、空気中で熱処理を行った。昇温速
度は毎分10℃で、1000℃で2時間保持した後、降
温速度毎分10℃で室温まで下げた。上記熱処理後のS
rTiO3 基板の表面は、図1(b)の原子間力顕微鏡
による表面形状像が示すとおり、明確な原子ステップが
観察され、その高さはSrTiO3 のa軸長に当たる約
4Åであった。図1(c)は図1(b)の一部を拡大し
たものであり、1結晶格子単位の段差を持ったテーブル
状の原子ステップ面が明確に観察される。超音波洗浄処
理を行わずに熱処理を行ったSrTiO3 基板の表面形
状像(図5(b))と比較して原子ステップは非常に明
確であり、超音波洗浄処理を行ってから熱処理すること
でSrTiO3 基板表面の結晶性が著しく向上したこと
がわかる。また図2に示すとおり、(100) 方向から電子
線を入射させた高速反射電子回折像も円周上にスポット
状の明点が観察され、表面の結晶性が非常に良好である
ことを示している。
Example 1 An SrTiO 3 substrate (crystal face (1
00)), and c-axis-oriented YBa 2 C
A u 3 O 7 single crystal thin film was prepared. First, SrTi after polishing
After removing the organic and inorganic contaminants on the surface of the O 3 substrate (crystal face (100)), the SrTiO 3 substrate is placed in a liquid tank of an ultrasonic cleaning apparatus, and ultrasonic vibration is applied in the liquid to obtain the SrTiO 3 substrate. The surface portion of the SrTiO 3 substrate was mechanically removed. Acetone was used as the liquid, and a commercially available ultrasonic cleaning device (40 kHz-150 W) was used. On the surface of the SrTiO 3 substrate after the surface treatment, as shown in the surface shape image by the atomic force microscope in FIG. 1A, the surface portion where the stress due to polishing remained was uniformly removed, and the unevenness was maintained at 1 nm. ing. Thereafter, heat treatment was performed in air. The temperature was raised at a rate of 10 ° C./min and kept at 1000 ° C. for 2 hours, and then lowered to room temperature at a rate of 10 ° C./min. S after the heat treatment
On the surface of the rTiO 3 substrate, clear atomic steps were observed as shown in the surface shape image by the atomic force microscope in FIG. 1B, and the height was about 4 ° corresponding to the a-axis length of SrTiO 3 . FIG. 1 (c) is an enlarged view of a part of FIG. 1 (b), and a table-like atomic step plane having a step of one crystal lattice unit is clearly observed. The atomic steps are very clear compared to the surface shape image of the SrTiO 3 substrate heat-treated without performing the ultrasonic cleaning treatment (FIG. 5B), and the heat treatment is performed after performing the ultrasonic cleaning treatment. It can be seen that the crystallinity of the SrTiO 3 substrate surface was significantly improved. As shown in FIG. 2, a spot-like bright spot was also observed on the high-speed reflection electron diffraction image in which an electron beam was incident from the (100) direction, indicating that the crystallinity of the surface was very good. ing.

【0012】このようにして作成したSrTiO3 基板
(結晶面(100) )上に分子線エピタキシャル法でYBa
2 Cu37 薄膜を成長させた。薄膜の結晶性を高速反
射電子回折像で観察した結果、YBa2 Cu37 薄膜
はSrTiO3 基板の結晶性に合致するc軸配向にエピ
タキシャル成長していた。従来の方法で製造したSrT
iO3 基板にYBa2 Cu37 薄膜を成長させた場
合、膜厚が厚くなるとともに薄膜の結晶性は劣化してい
くが、本発明の方法で製造したSrTiO3 基板上にY
Ba2 Cu37 薄膜を成長させた場合は、膜厚が厚く
なっても薄膜の結晶性は劣化は無く、均一で高品質の薄
膜を作成することができた。
On the SrTiO 3 substrate (crystal plane (100)) thus prepared, YBa is applied by molecular beam epitaxy.
The 2 Cu 3 O 7 films were grown. As a result of observing the crystallinity of the thin film with a high-speed reflection electron diffraction image, the YBa 2 Cu 3 O 7 thin film was epitaxially grown in a c-axis orientation matching the crystallinity of the SrTiO 3 substrate. SrT manufactured by conventional method
When a YBa 2 Cu 3 O 7 thin film is grown on an iO 3 substrate, the film thickness increases and the crystallinity of the thin film deteriorates, but the YBa 2 Cu 3 O 7 thin film deteriorates on the SrTiO 3 substrate manufactured by the method of the present invention.
When a Ba 2 Cu 3 O 7 thin film was grown, the crystallinity of the thin film did not deteriorate even when the film thickness was increased, and a uniform and high quality thin film could be formed.

【0013】[実施例2]MgO基板(結晶面(100) )
を表面処理し、処理面上にc軸配向のチタン酸ジルコン
酸塩(PZT:Pb(Zr0.52Ti0.48)O3 )単結晶
薄膜を作成した。まず研磨後のMgO基板(結晶面(10
0) )の表面の有機物、無機物の汚れを取り除いた後、
MgO基板を超音波洗浄装置の液槽内に配置し、液体中
で超音波振動を与えることにより、MgO基板の表面部
分を機械的に除去した。MgOは水に僅かながら可溶で
あるため、ここではイソプロピルアルコール中でMgO
基板の超音波洗浄を行った。超音波洗浄装置には市販の
もの(40kHz −150W)を使用した。上記表面処理後のM
gO基板の表面は、図4(a)の原子間力顕微鏡による
表面形状像が示すとおり、研磨による応力が残留した表
面部分が均一に除去され、凹凸は1nmに保たれてい
る。この後、空気中で熱処理を行った。昇温速度は毎分
5℃で、1100℃で2時間保持した後、降温速度毎分
5℃で室温まで下げた。上記熱処理後のMgO基板の表
面は、図4(b)の原子間力顕微鏡による表面形状像が
示すとおり、明確な原子ステップが観察され、その高さ
はMgOのa軸長に当たる約4.2Åであった。超音波
洗浄処理を行わずに熱処理を行ったものと比べて、原子
ステップは非常に明確で、原子レベルで平坦な結晶面が
観察された。超音波洗浄処理を行ってから熱処理するこ
とでMgO基板表面の結晶性が著しく向上したことがわ
かる。
[Example 2] MgO substrate (crystal face (100))
The surface-treated, zirconium titanate c-axis oriented on treated surface (PZT: Pb (Zr0.52Ti0.48) O 3) created the single crystal thin film. First, the polished MgO substrate (crystal face (10
0)) After removing organic and inorganic stains on the surface,
The surface portion of the MgO substrate was mechanically removed by placing the MgO substrate in a liquid tank of an ultrasonic cleaning device and applying ultrasonic vibration in the liquid. Since MgO is slightly soluble in water, MgO is used here in isopropyl alcohol.
The substrate was subjected to ultrasonic cleaning. A commercially available ultrasonic cleaning device (40 kHz-150 W) was used. M after the above surface treatment
On the surface of the gO substrate, as shown in the surface shape image by the atomic force microscope in FIG. 4A, the surface portion where the stress due to polishing remained remains uniformly removed, and the unevenness is maintained at 1 nm. Thereafter, heat treatment was performed in air. The temperature was raised at a rate of 5 ° C./min, kept at 1100 ° C. for 2 hours, and then lowered to a room temperature at a rate of 5 ° C./min. On the surface of the MgO substrate after the heat treatment, clear atomic steps were observed as shown by the surface shape image by the atomic force microscope in FIG. 4B, and the height was about 4.2 ° corresponding to the a-axis length of MgO. Met. Atomic steps were very clear and a crystal plane flat at the atomic level was observed, as compared with the case where the heat treatment was performed without performing the ultrasonic cleaning treatment. It can be seen that the heat treatment after the ultrasonic cleaning treatment significantly improved the crystallinity of the MgO substrate surface.

【0014】このようにして作成したMgO基板(結晶
面(100) )上に600゜Cで高周波スパッタ法にて白金
(Pt)薄膜(結晶面(100) )をエピタキシャル成長さ
せた後、その上に同様に600゜Cで高周波スパッタ法
にてPZT薄膜を200nm成長させた。高速反射電子
回折像によるPZT薄膜の解析の結果、PZT薄膜はM
gO3 基板の結晶性に合致するc軸配向にエピタキシャ
ル成長していた。PZT薄膜上に直径0.25mmの金
(Au)電極を作成し、Au電極とPt薄膜との間のP
ZT薄膜の誘電特性および強誘電特性を測定した。その
結果、比誘電率100、誘電損失0.04、残留分極2
0μC/cm2 、抗電界100kV /cmであり、良好な電
気特性を示した。
A platinum (Pt) thin film (crystal face (100)) is epitaxially grown on the MgO substrate (crystal face (100)) thus prepared at 600 ° C. by a high-frequency sputtering method. Similarly, a PZT thin film was grown at 600 ° C. by a high frequency sputtering method to a thickness of 200 nm. As a result of analyzing the PZT thin film by the high-speed reflection electron diffraction image,
Epitaxial growth was performed in a c-axis orientation matching the crystallinity of the gO 3 substrate. A gold (Au) electrode having a diameter of 0.25 mm is formed on a PZT thin film, and a P electrode between the Au electrode and the Pt thin film is formed.
The dielectric and ferroelectric properties of the ZT thin film were measured. As a result, relative dielectric constant 100, dielectric loss 0.04, remanent polarization 2
0 μC / cm 2 and coercive electric field of 100 kV / cm, showing good electrical characteristics.

【0015】[0015]

【発明の効果】以上説明したように、本発明に係る酸化
物単結晶基板の製造方法によれば、原子レベルで平坦で
かつ結晶性の良好な基板表面を有する酸化物単結晶基板
を効率良く安価に、かつ安定して製造することができ
る。また、この製造方法により製造された酸化物単結晶
基板の表面に酸化物超伝導体薄膜または酸化物絶縁体薄
膜をエピタキシャル成長させてなる本発明の電子デバイ
スは、結晶性の良好な酸化物超伝導体薄膜または酸化物
絶縁体薄膜を有するため、これらの薄膜を用いた各種素
子を良質に作成できる。
As described above, according to the method for manufacturing an oxide single crystal substrate according to the present invention, an oxide single crystal substrate having a substrate surface that is flat at the atomic level and has good crystallinity can be efficiently formed. It can be manufactured stably at low cost. In addition, the electronic device of the present invention, in which an oxide superconductor thin film or an oxide insulator thin film is epitaxially grown on the surface of the oxide single crystal substrate manufactured by this manufacturing method, has an excellent oxide superconductivity. Since the semiconductor device has a body thin film or an oxide insulator thin film, various devices using these thin films can be manufactured with high quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製造方法の実施の形態を示す工程
説明図である。
FIG. 1 is a process explanatory view showing an embodiment of a manufacturing method according to the present invention.

【図2】(a)は本発明に係る製造方法における表面処
理後のSrTiO3 基板の表面形状像を示す図、(b)
は本発明に係る製造方法における熱処理後のSrTiO
3 基板の表面形状像を示す図、(c)は(b)の一部を
拡大した表面形状像を示す図である。
FIG. 2A is a view showing a surface shape image of a SrTiO 3 substrate after surface treatment in a manufacturing method according to the present invention, and FIG.
Is SrTiO after heat treatment in the manufacturing method according to the present invention.
3 shows a surface shape image of the substrate, (c) are diagrams showing a surface shape image of a partially enlarged in (b).

【図3】本発明に係る製造方法における熱処理後のSr
TiO3 基板の高速反射電子回折像を示す図である。
FIG. 3 shows Sr after heat treatment in the manufacturing method according to the present invention.
FIG. 3 is a diagram showing a high-speed reflection electron diffraction image of a TiO 3 substrate.

【図4】(a)は本発明に係る製造方法における表面処
理後のMgO基板の表面形状像を示す図、(b)は本発
明に係る製造方法における熱処理後のMgO基板の表面
形状像を示す図である。
4A is a diagram showing a surface shape image of an MgO substrate after a surface treatment in the manufacturing method according to the present invention, and FIG. 4B is a diagram showing a surface shape image of the MgO substrate after the heat treatment in the manufacturing method according to the present invention. FIG.

【図5】(a)は研磨後のSrTiO3 基板の表面形状
像を示す図、(b)は従来の製造方法における熱処理後
のSrTiO3 基板の表面形状像を示す図である。
5A is a diagram showing a surface shape image of a polished SrTiO 3 substrate, and FIG. 5B is a diagram showing a surface shape image of a SrTiO 3 substrate after a heat treatment in a conventional manufacturing method.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸化物単結晶基板の表面を研磨する研磨
工程と、 酸化物単結晶基板に液体中にて超音波振動を与えて、研
磨による応力が残留した表面部分を除去する表面除去工
程と、 表面除去後の酸化物単結晶基板を熱処理する熱処理工程
とを含むことを特徴とする酸化物単結晶基板の製造方
法。
A polishing step of polishing a surface of the oxide single crystal substrate; and a surface removing step of applying ultrasonic vibration to the oxide single crystal substrate in a liquid to remove a surface portion where stress due to polishing remains. And a heat treatment step of heat-treating the oxide single crystal substrate after surface removal.
【請求項2】 前記表面除去工程により除去する表面部
分は、基板表面から厚さ方向に10nm以下の部分であ
ることを特徴とする請求項1記載の酸化物単結晶基板の
製造方法。
2. The method for manufacturing an oxide single crystal substrate according to claim 1, wherein a surface portion to be removed in the surface removing step is a portion having a thickness of 10 nm or less from a substrate surface.
【請求項3】 前記熱処理工程における熱処理温度は、
絶対温度で酸化物単結晶基板の融点のほぼ1/2である
ことを特徴とする請求項1または2記載の酸化物単結晶
基板の製造方法。
3. The heat treatment temperature in the heat treatment step is as follows:
3. The method for producing an oxide single crystal substrate according to claim 1, wherein the melting point of the oxide single crystal substrate is substantially half of the melting point of the oxide single crystal substrate.
【請求項4】 前記熱処理工程における熱処理は、空気
中または酸素中で行うことを特徴とする請求項1〜3の
何れかに記載の酸化物単結晶基板の製造方法。
4. The method for manufacturing an oxide single crystal substrate according to claim 1, wherein the heat treatment in the heat treatment step is performed in air or oxygen.
【請求項5】 前記表面除去工程における液体は、有機
溶剤であることを特徴とする請求項1〜4の何れかに記
載の酸化物単結晶基板の製造方法。
5. The method according to claim 1, wherein the liquid in the surface removing step is an organic solvent.
【請求項6】 請求項1〜5の何れかに記載の製造方法
により製造した酸化物単結晶基板の表面に、酸化物超伝
導体薄膜をエピタキシャル成長させたことを特徴とする
電子デバイス。
6. An electronic device, comprising an oxide superconductor thin film epitaxially grown on a surface of an oxide single crystal substrate manufactured by the manufacturing method according to claim 1.
【請求項7】 請求項1〜5の何れかに記載の製造方法
により製造した酸化物単結晶基板の表面に、酸化物強誘
電体薄膜をエピタキシャル成長させたことを特徴とする
電子デバイス。
7. An electronic device, wherein an oxide ferroelectric thin film is epitaxially grown on a surface of an oxide single crystal substrate manufactured by the manufacturing method according to claim 1.
【請求項8】 前記酸化物単結晶基板の材料として、チ
タン酸ストロンチウム、ランタン酸アルミニウム、ガリ
ウム酸ランタン、ガリウム酸ネオジウム、酸化マグネシ
ウムの何れかを用いたことを特徴とする請求項6または
7記載の電子デバイス。
8. The oxide single crystal substrate according to claim 6, wherein one of strontium titanate, aluminum lanthanate, lanthanum gallate, neodymium gallate, and magnesium oxide is used as the material of the oxide single crystal substrate. Electronic devices.
JP10272529A 1998-09-09 1998-09-09 Production of oxide single crystal substrate nd electronic device Pending JP2000086400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272529A JP2000086400A (en) 1998-09-09 1998-09-09 Production of oxide single crystal substrate nd electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272529A JP2000086400A (en) 1998-09-09 1998-09-09 Production of oxide single crystal substrate nd electronic device

Publications (1)

Publication Number Publication Date
JP2000086400A true JP2000086400A (en) 2000-03-28

Family

ID=17515173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272529A Pending JP2000086400A (en) 1998-09-09 1998-09-09 Production of oxide single crystal substrate nd electronic device

Country Status (1)

Country Link
JP (1) JP2000086400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070855A1 (en) * 2004-12-28 2006-07-06 Tateho Chemical Industries Co., Ltd. Magnesium oxide single crystal having controlled crystallinity and method for preparation thereof, and substrate using said single crystal
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
WO2012124507A1 (en) * 2011-03-14 2012-09-20 富士電機株式会社 Crystalline body, substrate, and manufacturing method thereof
WO2014207946A1 (en) * 2013-06-28 2014-12-31 National Institute Of Advanced Industrial Science And Technology Surface layer superconductor and fabrication method of the same
CN114639591A (en) * 2020-12-16 2022-06-17 环球晶圆股份有限公司 Epitaxial layer removal method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070855A1 (en) * 2004-12-28 2006-07-06 Tateho Chemical Industries Co., Ltd. Magnesium oxide single crystal having controlled crystallinity and method for preparation thereof, and substrate using said single crystal
JP2006182620A (en) * 2004-12-28 2006-07-13 Tateho Chem Ind Co Ltd Crystallinity-controlled magnesium oxide single crystal and its manufacturing method, and substrate using the single crystal
KR100883228B1 (en) 2004-12-28 2009-02-18 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide single crystal having controlled crystallinity and method for preparation thereof, and substrate using said single crystal
US7544345B2 (en) 2004-12-28 2009-06-09 Tateho Chemical Industries Co., Ltd. Magnesium oxide single crystal having controlled crystallinity and method for producing the same
JP4686181B2 (en) * 2004-12-28 2011-05-18 タテホ化学工業株式会社 Crystallinity-controlled magnesium oxide single crystal, method for producing the same, and substrate using the single crystal
US7691200B2 (en) 2005-03-25 2010-04-06 Tateho Chemical Industries Co., Ltd Magnesium oxide single crystal and method for producing the same
WO2012124507A1 (en) * 2011-03-14 2012-09-20 富士電機株式会社 Crystalline body, substrate, and manufacturing method thereof
CN103429799A (en) * 2011-03-14 2013-12-04 富士电机株式会社 Crystalline body, substrate, and manufacturing method thereof
US8932699B2 (en) 2011-03-14 2015-01-13 Fuji Electric Co., Ltd. Crystalline substance, substrate, and method for producing crystalline substance
JP5725156B2 (en) * 2011-03-14 2015-05-27 富士電機株式会社 Crystal, substrate and method for producing the same
WO2014207946A1 (en) * 2013-06-28 2014-12-31 National Institute Of Advanced Industrial Science And Technology Surface layer superconductor and fabrication method of the same
JP2016531061A (en) * 2013-06-28 2016-10-06 国立研究開発法人産業技術総合研究所 Method for producing surface superconductor and surface superconductor
CN114639591A (en) * 2020-12-16 2022-06-17 环球晶圆股份有限公司 Epitaxial layer removal method

Similar Documents

Publication Publication Date Title
US5418216A (en) Superconducting thin films on epitaxial magnesium oxide grown on silicon
US5801105A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
JP2923361B2 (en) C-axis perovskite thin film grown on silicon dioxide
US7020374B2 (en) Optical waveguide structure and method for fabricating the same
US6921741B2 (en) Substrate structure for growth of highly oriented and/or epitaxial layers thereon
US6743292B2 (en) Oriented conductive oxide electrodes on SiO2/Si and glass
Yoon et al. Growth of (111) oriented MgO film on Si substrate by the sol‐gel method
JP3310881B2 (en) Laminated thin film, substrate for electronic device, electronic device, and method of manufacturing laminated thin film
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
US6750067B2 (en) Microelectronic piezoelectric structure and method of forming the same
JP4427925B2 (en) Laminated thin film manufacturing method and electronic device
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
JP2000086400A (en) Production of oxide single crystal substrate nd electronic device
WO2002009159A2 (en) Thin-film metallic oxide structure and process for fabricating same
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
JP3013418B2 (en) Dielectric thin film, thin film device, and method for producing them
JP3212158B2 (en) Manufacturing method of crystalline thin film
JPH06112504A (en) Manufacture of crystalline thin film
JP2889463B2 (en) Oriented ferroelectric thin film device
JP2717094B2 (en) Method of forming superconducting wiring
JP4310430B2 (en) Strontium titanate thin film laminate
Dhote et al. Low temperature growth and reliability of ferroelectric memory cell integrated on Si with conducting barrier stack
US5855668A (en) Surface treating method of single crystal
JP3562120B2 (en) Composite structure of stabilized zirconia thin film and single-crystal silicon substrate and method for producing the same
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040427