JP2889463B2 - Oriented ferroelectric thin film device - Google Patents

Oriented ferroelectric thin film device

Info

Publication number
JP2889463B2
JP2889463B2 JP5163891A JP16389193A JP2889463B2 JP 2889463 B2 JP2889463 B2 JP 2889463B2 JP 5163891 A JP5163891 A JP 5163891A JP 16389193 A JP16389193 A JP 16389193A JP 2889463 B2 JP2889463 B2 JP 2889463B2
Authority
JP
Japan
Prior art keywords
mgo
thin film
substrate
epitaxial
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5163891A
Other languages
Japanese (ja)
Other versions
JPH06196018A (en
Inventor
恵一 梨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5163891A priority Critical patent/JP2889463B2/en
Publication of JPH06196018A publication Critical patent/JPH06196018A/en
Application granted granted Critical
Publication of JP2889463B2 publication Critical patent/JP2889463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エピタキシャルMgO
をバッファ層として用い、単結晶Si(100)基板上
に、エピタキシャルまたは配向性の強誘電体薄膜を形成
したものであって、不揮発性メモリーやキャパシター、
または光集積回路などの素子をSi半導体基板上に作製
する場合に利用することができる配向性強誘電体薄膜素
子に関する。
The present invention relates to an epitaxial MgO
Is used as a buffer layer, and an epitaxial or oriented ferroelectric thin film is formed on a single crystal Si (100) substrate.
Alternatively, the present invention relates to an oriented ferroelectric thin film element that can be used when an element such as an optical integrated circuit is formed on a Si semiconductor substrate.

【0002】[0002]

【従来の技術】従来、酸化物強誘電体薄膜は強誘電体の
もつ強誘電性、圧電性、焦電性、電気光学効果などの多
くの性質により不揮発性メモリーを始めとして表面弾性
波素子、赤外線焦電素子、音響光学素子、電気光学素子
など多くの応用が期待されている。これらの応用のう
ち、薄膜光導波路構造での低光損失化と単結晶なみの分
極特性や電気光学効果を得るために単結晶薄膜の作製が
不可欠である。そのため、BaTiO3 、PbTi
3 、Pb1-x Lax (Zry Ti1-y 1-x/4
3 (PLZT)、LiNbO3 、KNbO3 、Bi4
3 12などのエピタキシャル強誘電体薄膜がRf−マ
グネトロン・スパッタリング、イオン・ビーム・スパッ
タリング、レーザー・アブレーション(レーザー・デポ
ジション)、有機金属化学蒸着(MOCVD)などの方
法によって酸化物単結晶基板に形成することが種々試み
られている。
2. Description of the Related Art Conventionally, an oxide ferroelectric thin film has a number of properties such as ferroelectricity, piezoelectricity, pyroelectricity, and electro-optic effect of a ferroelectric material. Many applications such as infrared pyroelectric elements, acousto-optical elements, and electro-optical elements are expected. Among these applications, it is indispensable to produce a single crystal thin film in order to reduce the optical loss in the thin film optical waveguide structure and obtain the polarization characteristics and electro-optic effects comparable to those of a single crystal. Therefore, BaTiO 3 , PbTi
O 3, Pb 1-x La x (Zr y Ti 1-y) 1-x / 4 O
3 (PLZT), LiNbO 3 , KNbO 3 , Bi 4 T
An epitaxial ferroelectric thin film such as i 3 O 12 is formed on an oxide single crystal substrate by a method such as Rf-magnetron sputtering, ion beam sputtering, laser ablation (laser deposition), and metal organic chemical vapor deposition (MOCVD). Various attempts have been made to form them.

【0003】しかしながら、半導体素子との集積化のた
めには半導体基板上に強誘電体薄膜を作製することが必
要である。Si基板上における強誘電体薄膜のエピタキ
シャル成長は、高成長温度、Siと強誘電体との間の相
互拡散、Siの酸化などの為に難しい。これらの理由の
ため低温で半導体基板上にエピタキシャル成長し、強誘
電体薄膜のエピタキシャル成長を助け、かつ拡散バリア
としても働くキャッピング層をバッファ層として、半導
体基板上に形成することが必要である。さらに、強誘電
体と半導体との間に絶縁体を形成したFET素子におい
ては、そのようなバッファ層が存在すれば、強誘電体の
分極時に半導体からの電荷の注入を防ぐことができ、強
誘電体の分極状態を維持することが容易となる。また、
強誘電体の屈折率は一般にSiよりも小さいが、強誘電
体よりも小さい屈折率をもつバッファ層が得られればレ
ーザー光を強誘電体薄膜光導波路中に閉じ込めることが
可能になり、光集積回路をSi半導体集積回路上に作製
することが可能になる。
However, for integration with a semiconductor element, it is necessary to form a ferroelectric thin film on a semiconductor substrate. Epitaxial growth of a ferroelectric thin film on a Si substrate is difficult due to high growth temperature, interdiffusion between Si and the ferroelectric, oxidation of Si, and the like. For these reasons, it is necessary to form a buffer layer on the semiconductor substrate as a buffer layer, which serves as a buffer layer, which epitaxially grows on the semiconductor substrate at a low temperature, assists the epitaxial growth of the ferroelectric thin film, and also functions as a diffusion barrier. Furthermore, in an FET device in which an insulator is formed between a ferroelectric and a semiconductor, the presence of such a buffer layer can prevent charge injection from the semiconductor during polarization of the ferroelectric, and It is easy to maintain the polarization state of the dielectric. Also,
The refractive index of ferroelectrics is generally lower than that of Si, but if a buffer layer with a refractive index lower than that of ferroelectrics can be obtained, laser light can be confined in a ferroelectric thin film optical waveguide, and optical integration A circuit can be manufactured on a Si semiconductor integrated circuit.

【0004】これに対し、Si(100)単結晶上にM
gAl2 4 (100)またはMgO(100)をエピ
タキシャル成長させた基板上に強誘電体化合物をエピタ
キシャル成長させることが、特開昭61−185808
号公報に示されているが、Si(100)単結晶とMg
O(100)との結晶学的関係は明らかにはされていな
い。事実、その後の研究において(100)配向性のM
gOがSi(100)単結晶に形成された際にも、Mg
Oは(100)面がSi(100)面に平行であるだけ
で、面内方位はランダムな配向性多結晶MgOであるこ
とが明らかにされている(P.Tiwari et a
l.,J.Appl.Phys.69,8358(19
91)).その後、格子定数と熱安定性とにより強誘電
体や高温超電導体の基板としてよく用いられるMgO
は、Si上へエピタキシャル成長させることができるこ
とが初めて明らかにされ(D.K.Fork et a
l., Appl.Phys.Lett.58, 22
94(1991))、そしてそれを利用した超電導薄膜
が提案されている。
[0004] On the other hand, M
Japanese Patent Application Laid-Open No. 61-185808 discloses that a ferroelectric compound is epitaxially grown on a substrate on which gAl 2 O 4 (100) or MgO (100) is epitaxially grown.
As shown in Japanese Patent Application Publication No.
The crystallographic relationship with O (100) is not disclosed. In fact, in subsequent studies, the (100) -oriented M
When gO is formed on a Si (100) single crystal, MgO
O has been revealed that the (100) plane is only parallel to the Si (100) plane, and the in-plane orientation is random oriented polycrystalline MgO (P. Tiwari et a).
l. , J. et al. Appl. Phys. 69, 8358 (19
91)). Thereafter, MgO, which is often used as a substrate for ferroelectrics and high-temperature superconductors, due to its lattice constant and thermal stability,
Have been demonstrated for the first time to be able to grow epitaxially on Si (DK Fork et a
l. , Appl. Phys. Lett. 58, 22
94 (1991)), and a superconducting thin film using the same has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
技術では、単結晶Si基板上に強誘電体薄膜をエピタキ
シャル成長させることは困難であった。したがって、本
発明は、この問題点を解決することを目的とするもので
ある。すなわち、本発明の目的は、単結晶Si(10
0)基板上に、エピタキシャルまたは配向性の強誘電体
薄膜を形成した配向性強誘電体薄膜素子を提供すること
にある。本発明の他の目的は、高機能の不揮発性メモリ
ーやキャパシター、または光変調素子等の素子を半導体
基板上に作製する場合に利用可能な配向性強誘電体薄膜
素子を提供することにある。
As described above, it is difficult to epitaxially grow a ferroelectric thin film on a single-crystal Si substrate by the conventional technique. Therefore, an object of the present invention is to solve this problem. That is, an object of the present invention is to provide a single crystal Si (10
0) An object of the present invention is to provide an oriented ferroelectric thin film element having an epitaxial or oriented ferroelectric thin film formed on a substrate. Another object of the present invention is to provide an oriented ferroelectric thin film element that can be used when an element such as a high-performance nonvolatile memory, a capacitor, or a light modulation element is manufactured on a semiconductor substrate.

【0006】[0006]

【課題を解決するための手段】本発明者等は、気相成長
法によりMgOをSi(100)基板上へエピタキシャ
ル成長させ、また、MgOをバッファ層として用いると
強誘電体薄膜がSi(100)基板上へエピタキシャル
成長できることを発見し、本発明を完成するに至った。
本発明の配向性強誘電体薄膜素子は、単結晶Si(10
0)基板上にエピタキシャルMgOバッファ層が形成さ
れ、さらにその上にエピタキシャルまたは配向性のペロ
ブスカイトABO3 型強誘電体薄膜が形成されており、
前記単結晶Si(100)基板とエピタキシャルMgO
バッファ層の結晶学的関係が、MgO(100)//Si
(100)、面内方位MgO[001]//Si[00
1]であることを特徴とする。
Means for Solving the Problems The present inventors have grown MgO on a Si (100) substrate by vapor phase epitaxy, and when MgO is used as a buffer layer, the ferroelectric thin film becomes Si (100). The inventors have discovered that epitaxial growth can be performed on a substrate, and have completed the present invention.
The oriented ferroelectric thin film element of the present invention is composed of single crystal Si (10
0) An epitaxial MgO buffer layer is formed on a substrate, and an epitaxial or oriented perovskite ABO 3 type ferroelectric thin film is further formed thereon ,
The single crystal Si (100) substrate and epitaxial MgO
The crystallographic relationship of the buffer layer is MgO (100) // Si
(100), in-plane orientation MgO [001] // Si [00
1] .

【0007】以下、本発明について詳記する。本発明に
おいて、配向性強誘電体薄膜における結晶学的関係は、
例えばBaTiO3 については、BaTiO3 (00
1)//MgO(100)//Si(100)、面内方位B
aTiO3 [010]//MgO[001]//Si[00
1]であり、正方晶系の強誘電体の分極方向が基板面に
対して垂直な構造を作ることができる。MgOとSiと
の結晶学的関係は、格子不整が22.5%となるにもか
かわらず、MgOとSiの結晶方位の関係は、MgO
(100)//Si(100)、面内方位MgO[00
1]//Si[001]である。MgOとSiの界面を高
分解能透過型電子顕微鏡にて観察すると、約MgO:S
i=4:3の格子整合と考えられる構造が形成されてお
り、界面にはSiO2 などの生成はなく急峻な界面であ
ることが認められる。4:3の格子整合を考えると、格
子不整が9.7%となるMgO(100)//Si(10
0)、MgO[011]//Si[001]のエピタキシ
ャル成長の場合よりも小さな格子不整3.4%となり、
見掛け上は大きな格子不整合を持つにもかかわらず、M
gO[011]//Si[001]の場合よりも膜内応力
が緩和されて、MgO[001]//Si[001]のエ
ピタキシャル薄膜の膜質は良好なものとなる。したがっ
て、Si(100)単結晶上に、MgAl2 4 (10
0)もしくはMgO(100)をエピタキシャル成長し
た基板上に強誘電体化合物をエピタキシャル成長する場
合、MgO(100)//Si(100)でのMgOとS
iの面内結晶方位の関係はMgO[011]//Si[0
01]ではなく、MgO[001]//Si[001]で
あることが望ましい。
Hereinafter, the present invention will be described in detail. In the present invention, the crystallographic relationship in the oriented ferroelectric thin film is
For example, for BaTiO 3 , BaTiO 3 (00
1) // MgO (100) // Si (100), in-plane orientation B
aTiO 3 [010] // MgO [001] // Si [00
1], and a structure in which the polarization direction of the tetragonal ferroelectric is perpendicular to the substrate surface can be formed. Regarding the crystallographic relationship between MgO and Si, although the lattice misalignment is 22.5%, the relationship between the crystal orientations of MgO and Si is MgO.
(100) // Si (100), in-plane orientation MgO [00
1] // Si [001]. Observation of the interface between MgO and Si with a high-resolution transmission electron microscope reveals that about MgO: S
A structure considered to be lattice matching of i = 4: 3 is formed, and it is recognized that the interface is a steep interface without generation of SiO 2 or the like. Considering the lattice matching of 4: 3, MgO (100) // Si (10
0), 3.4% smaller lattice misalignment than in the case of epitaxial growth of MgO [011] // Si [001],
Despite the apparently large lattice mismatch, M
The stress in the film is relaxed as compared with the case of gO [011] // Si [001], and the film quality of the epitaxial thin film of MgO [001] // Si [001] is improved. Therefore, on a Si (100) single crystal, MgAl 2 O 4 (10
0) or when a ferroelectric compound is epitaxially grown on a substrate on which MgO (100) has been epitaxially grown, MgO and MgO (/) in MgO (100) // Si (100)
The relationship of the in-plane crystal orientation of i is MgO [011] // Si [0
[01], but not MgO [001] // Si [001].

【0008】本発明において、単結晶Si(100)基
板上にエピタキシャルMgOバッファ層を形成するが、
成膜条件として、室温〜1200℃の成膜温度および
0.01〜10.0オングストローム/secの成膜速
度が採用され、それによってエピタキシャルMgOバッ
ファ層を形成することができる。MgOの膜厚は、10
〜105 オングストロームの範囲が好ましい。上記のよ
うに単結晶Si(100)基板上にエピタキシャルMg
Oバッファ層を形成することにより、その上にエピタキ
シャルまたは配向性のペロブスカイトABO3 型強誘電
体薄膜を形成することが可能になる。具体的には、Ba
TiO3 、PbTiO3 、Pb1-x Lax (Zry Ti
1-y 1-x/4 3 (PLZT)、LiNbO3 、KNb
3 、Bi4 Ti3 12などの配向性のペロブスカイト
ABO3 型強誘電体薄膜を形成する。その膜厚は、0.
01〜10μmの範囲であるのが好ましい。これらの成
膜方法としては、エキシマ・レーザー・デポジション、
Rf−マグネトロン・スパッタリング、イオン・ビーム
・スパッタリング、電子ビーム蒸着、フラッシュ蒸着、
イオン・プレーティング、モレキュラー・ビーム・エピ
タキシー(MBE)、イオン化クラスター・ビーム・エ
ピタキシー、化学気相成長法(CVD)、有機金属化学
気相成長法(MOCVD)、プラズマCVDなどの気相
成長法が有効に使用できる。
In the present invention, an epitaxial MgO buffer layer is formed on a single crystal Si (100) substrate.
As the film forming conditions, a film forming temperature of room temperature to 1200 ° C. and a film forming rate of 0.01 to 10.0 Å / sec are employed, whereby an epitaxial MgO buffer layer can be formed. The thickness of MgO is 10
10 5 angstroms of the range is preferred. As described above, the epitaxial Mg on the single crystal Si (100) substrate
By forming the O buffer layer, it becomes possible to form an epitaxial or oriented perovskite ABO 3 type ferroelectric thin film thereon. Specifically, Ba
TiO 3, PbTiO 3, Pb 1 -x La x (Zr y Ti
1-y ) 1-x / 4 O 3 (PLZT), LiNbO 3 , KNb
An oriented perovskite ABO 3 type ferroelectric thin film such as O 3 or Bi 4 Ti 3 O 12 is formed. Its film thickness is 0.
It is preferably in the range of 01 to 10 μm. These deposition methods include excimer laser deposition,
Rf-magnetron sputtering, ion beam sputtering, electron beam evaporation, flash evaporation,
Vapor growth methods such as ion plating, molecular beam epitaxy (MBE), ionized cluster beam epitaxy, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), and plasma CVD Can be used effectively.

【0009】本発明において、前記単結晶Si(10
0)基板とエピタキシャルMgOバッファ層の結晶学的
関係が、MgO(100)//Si(100)、面内方位
MgO[001]//Si[001]であるが、前記エピ
タキシャルMgOバッファ層とエピタキシャルまたは配
向性のペロブスカイトABO3 型強誘電体薄膜の結晶学
的関係が、ABO3 (001)//MgO(100)また
はABO3 (100)//MgO(100)、面内方位A
BO3 [010]//MgO[001]またはABO
3 [001]//MgO[001]であるのが好ましい。
[0009] In the present invention, the single-crystal Si (10
0) crystallographic relation between the substrate and the epitaxial MgO buffer layer, MgO (100) // Si ( 100), the in-plane orientation MgO [001] // Si [001 ] Although Ru Der, said epitaxial MgO buffer layer The crystallographic relationship of the epitaxial or oriented perovskite ABO 3 type ferroelectric thin film is ABO 3 (001) // MgO (100) or ABO 3 (100) // MgO (100), and the in-plane orientation A
BO 3 [010] // MgO [001] or ABO
3 [001] // MgO [001] is preferred.

【0010】[0010]

【作用】本発明の配向性強誘電体薄膜素子は、上記の構
成を有するから、単結晶Si(100)基板上への強誘
電体薄膜のエピタキシャル成長が可能になる。すなわ
ち、エピタキシャルMgOバッファ層が、強誘電体薄膜
のエピタキシャル成長を助け、かつ拡散バリアとしても
働く。この際、格子不整が9.7%となるMgO(10
0)//Si(100)、MgO[011]//Si[00
1]のエピタキシャル成長よりも小さな格子不整3.4
%をもつMgO−Siの界面では、4:3の格子整合が
形成されていると考えられ、見掛け上は22.5%と大
きな格子不整合を持つにもかかわらず、MgO[01
1]//Si[001]の場合よりも、膜内応力が緩和さ
れてより良質なMgO[001]//Si[001]のエ
ピタキシャル成長が可能になる。さらに、強誘電体薄膜
の配向が制御できるために大きな残留分極値や大きな電
気光学定数などを得ることができ、強誘電体と半導体と
の間に絶縁体を形成したFET素子においては、強誘電
体の分極時の半導体からの電荷の注入を防ぐことがで
き、強誘電体の分極状態を維持することが容易となる。
また、強誘電体の屈折率は一般にSiよりも小さいが、
強誘電体よりも小さい屈折率をもつバッファ層が得られ
ればレーザー光を強誘電体薄膜光導波路中に閉じ込める
ことが可能になり、光集積回路をSi半導体集積回路上
に作製することが可能になる。
Since the oriented ferroelectric thin film element of the present invention has the above-described structure, epitaxial growth of a ferroelectric thin film on a single crystal Si (100) substrate becomes possible. That is, the epitaxial MgO buffer layer assists the epitaxial growth of the ferroelectric thin film and also functions as a diffusion barrier. At this time, MgO (10
0) // Si (100), MgO [011] // Si [00
3.4) lattice irregularity smaller than the epitaxial growth of [1].
% Of MgO—Si interface, it is considered that a lattice matching of 4: 3 is formed, and MgO [01] despite having an apparently large lattice mismatch of 22.5%.
1] // Si [001], the stress in the film is relaxed, and better quality MgO [001] // Si [001] epitaxial growth becomes possible. Furthermore, since the orientation of the ferroelectric thin film can be controlled, a large remanent polarization value and a large electro-optic constant can be obtained. In an FET device in which an insulator is formed between a ferroelectric and a semiconductor, the ferroelectric Injection of charges from the semiconductor during polarization of the body can be prevented, and the polarization state of the ferroelectric can be easily maintained.
Also, the refractive index of a ferroelectric is generally smaller than that of Si,
If a buffer layer with a refractive index smaller than that of a ferroelectric can be obtained, laser light can be confined in a ferroelectric thin-film optical waveguide, and an optical integrated circuit can be fabricated on a Si semiconductor integrated circuit. Become.

【0011】[0011]

【実施例】【Example】

実施例1 単結晶Si基板へのエピタキシャルMgOバッファ層の
形成は、ターゲット表面をUVレーザー・パルスにより
瞬間的に加熱し蒸着を行うエキシマ・レーザー・デポジ
ション法によって行った。レーザーはXeClエキシマ
・レーザー(波長308nm)を用い、パルス周期4H
z、パルス長17ns、エネルギー130mJ(ターゲ
ット表面でのエネルギー密度1.3J/cm2 )の条件
とした。ターゲットと基板の距離は50mmである。タ
ーゲットはMgOが波長308nmに吸収を持たないた
めに金属Mgを用いた。MgOは10eV以上の高い結
合エネルギーを持っているため、O2 を成膜中に導入す
ることによってMgは容易に酸化される。Si基板はハ
ロゲン・ランプによって加熱した。
Example 1 An epitaxial MgO buffer layer was formed on a single-crystal Si substrate by an excimer laser deposition method in which a target surface was instantaneously heated by a UV laser pulse to perform evaporation. The laser used was a XeCl excimer laser (wavelength 308 nm) with a pulse period of 4H.
z, pulse length 17 ns, energy 130 mJ (energy density on the target surface 1.3 J / cm 2 ). The distance between the target and the substrate is 50 mm. As the target, metallic Mg was used because MgO has no absorption at a wavelength of 308 nm. Since MgO has a high binding energy of 10 eV or more, Mg is easily oxidized by introducing O 2 during film formation. The Si substrate was heated by a halogen lamp.

【0012】単結晶Si基板としては、n型またはp
型、(100)面、6×6mmのウエハーを用いた。こ
れらの基板は溶剤洗浄の後、HF系溶液にてエッチング
を行った。さらにこの基板を脱イオン水とエタノールで
リンスし、最後に窒素流下でエタノールによるスピン乾
燥を行った。スピン乾燥後に基板を直ちにデポジション
・チャンバーに導入し、一定温度、バックグラウンド圧
力3×10-7Torr、500℃以上にて加熱を行っ
て、Si表面のH不動態層の脱離(昇華)を図り、続い
てMgOを200〜700℃、1×10-6〜1×10-3
Torr O2 の条件にて40〜300オングストロー
ムのMgOの成膜を行った。
As a single crystal Si substrate, n-type or p-type
A mold, a (100) plane, and a 6 × 6 mm wafer were used. These substrates were etched with a HF solution after solvent cleaning. Further, the substrate was rinsed with deionized water and ethanol, and finally spin-dried with ethanol under a nitrogen flow. Immediately after the spin drying, the substrate was introduced into a deposition chamber, and heated at a constant temperature, a background pressure of 3 × 10 −7 Torr, and 500 ° C. or higher, to remove (sublimate) the H passivation layer on the Si surface. And then MgO at 200 to 700 ° C., 1 × 10 −6 to 1 × 10 −3.
At Torr O 2 of the conditions was the formation of 40 to 300 angstroms of MgO.

【0013】X線回折によって解析するとSi基板上へ
成膜したMgOは広い範囲の条件にて(100)面単一
配向のエピタキシャル膜となったが、400〜600
℃、2×10-6〜1×10-5Torr O2 の条件にて
良質な薄膜となることが確認された。MgOとSiの面
内結晶方位の関係を同定するために、X線回折ファイ・
スキャンを行った。立方晶において(100)面に対し
て45°の角度をもっている(202)面についてのフ
ァイ・スキャンは、MgO(100)/Si(100)
のMgOに対して90°の回転周期をもつシャープなピ
ークを示し、この位置はSiのピーク位置に一致した。
これらのことから、MgOとSiとの結晶学的関係は、
格子不整が22.5%となるにもかかわらず、MgOと
Siの結晶方位の関係は、MgO(100)//Si(1
00)、面内方位MgO[001]//Si[001]で
あることが分かった。
When analyzed by X-ray diffraction, the MgO film formed on the Si substrate turned into an epitaxial film of (100) plane unidirectional orientation under a wide range of conditions.
It was confirmed that a good quality thin film could be obtained under the conditions of 2 ° C. and 2 × 10 −6 to 1 × 10 −5 Torr O 2 . In order to identify the relationship between the in-plane crystal orientations of MgO and Si, X-ray diffraction
A scan was performed. The phi scan on the (202) plane, which has a 45 ° angle with respect to the (100) plane in the cubic crystal, was performed using MgO (100) / Si (100).
Shows a sharp peak having a 90 ° rotation period with respect to MgO, and this position coincided with the Si peak position.
From these, the crystallographic relationship between MgO and Si is
Despite the lattice misalignment being 22.5%, the relationship between the crystal orientations of MgO and Si is that MgO (100) // Si (1
00), the in-plane orientation was MgO [001] // Si [001].

【0014】MgOとSiの界面を高分解能透過型電子
顕微鏡にて観察すると、約MgO:Si=4:3の格子
整合とみられる構造が形成されており、界面にはSiO
2 などの生成はなく急峻な界面であった。4:3の格子
整合を考えると、MgO:Si=4:3の場合は3.4
%となり、大きな格子不整合を持つにもかかわらず膜内
応力が緩和されたため、良質なMgO[001]//Si
[001]のエピタキシャル薄膜が得られたと考えられ
る。
When the interface between MgO and Si is observed with a high-resolution transmission electron microscope, a structure which is considered to have a lattice matching of about MgO: Si = 4: 3 is formed.
There was no generation of 2 etc. and the interface was steep. Considering the lattice matching of 4: 3, when MgO: Si = 4: 3, 3.4.
%, And the stress in the film was relaxed despite having a large lattice mismatch, so that high quality MgO [001] // Si
It is considered that an epitaxial thin film of [001] was obtained.

【0015】一方、代表的な強誘電体であるBaTiO
3 (正方晶系、ペロブスカイト構造)とSi(立方晶
系、ダイアモンド構造)との格子常数は大きく異なり格
子不整合は26.4%であるが、BaTiO3 (00
1)面とSi(100)面の面内45°回転、すなわち
BaTiO3 [110]//Si[001]の方位の関係
において格子整合性を考えると、格子不整合は4.0%
と比較的小さい。そこで、BaTiO3 をGaAs上に
直接成長を行った。成膜に際して、最初の100レーザ
ー・パルスの間、前記のように各種のO2 圧にし、その
後1.0mTorrO2 にて成膜を続けた。最初の10
0パルス間のO2 圧と成膜温度に依存してBaTiO3
の結晶性は変化したが、得られたものは、(110)/
(101)配向の多結晶膜であった。このように、エピ
タキシーは単純な格子整合性によっては決まらなかっ
た。
On the other hand, BaTiO, a typical ferroelectric,
Although the lattice constants of 3 (tetragonal system, perovskite structure) and Si (cubic system, diamond structure) are greatly different and the lattice mismatch is 26.4%, BaTiO 3 (00
1) When considering the lattice matching in the in-plane rotation of the plane and the Si (100) plane by 45 °, that is, the orientation of BaTiO 3 [110] // Si [001], the lattice mismatch is 4.0%.
And relatively small. Therefore, BaTiO 3 was directly grown on GaAs. Upon film formation, during the first 100 laser pulses, and the various O 2 pressure as described above, was continued deposited by subsequent 1.0mTorrO 2. First 10
BaTiO 3 depending on the O 2 pressure between 0 pulses and the film forming temperature
The crystallinity changed, but the obtained one was (110) /
It was a (101) oriented polycrystalline film. Thus, epitaxy was not determined by simple lattice matching.

【0016】BaTiO3 をSi上に直接成長させた場
合には、エピタキシーは前記のようにみられなかった
が、600〜800℃、1×10-4〜1×10-2Tor
r O2 の条件でMgOバッファー層上にその場成長し
た膜厚500〜2000オングストロームのBaTiO
3 は、MgOに対して格子不整合性が5.2%あるが全
てエピタキシャル成長をした。X線回折パターンを解析
するとBaTiO3 はc軸配向性であり、ファイ・スキ
ャンによって同定したBaTiO3 とMgO/Siの結
晶方位の関係は図1に示すように、BaTiO3 (00
1)//MgO(100)//Si(100)、BaTiO
3 [010]//MgO[001]//Si[001]であ
った。なお、図1において、1は単結晶Si基板(ダイ
ヤモンド構造)、2はMgO薄膜(NaCl構造)、3
はエピタキシャルBaTiO3 薄膜(ペロブスカイト構
造)を示す。
When BaTiO 3 was grown directly on Si, epitaxy was not observed as described above, but at 600 to 800 ° C., 1 × 10 -4 to 1 × 10 -2 Torr.
BaTiO having a thickness of 500 to 2,000 Å grown in situ on an MgO buffer layer under the condition of rO 2
Sample No. 3 had a lattice mismatch with MgO of 5.2%, but all were epitaxially grown. Analysis of the X-ray diffraction pattern shows that BaTiO 3 has c-axis orientation, and the relationship between the crystal orientations of BaTiO 3 and MgO / Si identified by the phi scan shows that BaTiO 3 (00
1) // MgO (100) // Si (100), BaTiO
3 [010] // MgO [001] // Si [001]. In FIG. 1, 1 is a single crystal Si substrate (diamond structure), 2 is an MgO thin film (NaCl structure), 3
Indicates an epitaxial BaTiO 3 thin film (perovskite structure).

【0017】走査型電子顕微鏡によって観察したBaT
iO3 の表面は極めて平滑であった。さらに原子間力顕
微鏡によってBaTiO3 の表面を1×1μm2 の範囲
について観察すると、光学研磨をしたガラス(50〜1
50オングストロームの表面粗さ)と同等レベルの平滑
性を持っていた。このことからこのBaTiO3 膜はそ
の表面平滑性においては、光導波路として良好な低光減
衰特性につながることが期待できる。また、Cr/20
00オングストローム−BaTiO3 /400オングス
トローム−MgO/Siのキャパシター構造においてB
aTiO3 の分極特性を測定すると、この構造によるP
−E特性はヒステリシス・ループを示し、BaTiO3
は構造解析によって推定したように、分極軸が単結晶S
i基板に垂直に配向した強誘電相(正方晶)であること
が分かった。
BaT observed with a scanning electron microscope
The surface of iO 3 was extremely smooth. Further, when the surface of BaTiO 3 was observed in an area of 1 × 1 μm 2 with an atomic force microscope, it was confirmed that the optically polished glass (50 to 1 μm) was used.
(Surface roughness of 50 angstroms). From this, it can be expected that this BaTiO 3 film leads to good low optical attenuation characteristics as an optical waveguide in terms of its surface smoothness. In addition, Cr / 20
B in 00 Angstroms -BaTiO 3/400 Å -MgO / Si capacitors structure
When the polarization characteristics of aTiO 3 are measured, P
The -E characteristic shows a hysteresis loop, and BaTiO 3
Has a polarization axis of single crystal S, as estimated by structural analysis.
It was found that the ferroelectric phase (tetragonal) was oriented perpendicular to the i-substrate.

【0018】実施例2 SiへのエピタキシャルMgOバッファ層の形成は、上
記実施例1と同様に行った。Si基板はn型またはp
型、(100)面、6×6mmのウエハーを用いた。こ
れらの基板を、実施例1と同様にエッチング、リンス、
乾燥を行った後に、基板を直ちにデポジション・チャン
バーに導入し、一定温度、バックグラウンド圧力3×1
-7Torr、500℃以上にて加熱を行ってSi表面
のH不動態層の脱離(昇華)を図った。続いてMgOを
600℃、1×10-5Torr O2 の条件にて約30
0オングストロームのMgOの成膜を行い、MgOとS
iの面内結晶方位の関係がMgO(100)//Si(1
00)、MgO[001]//Si[001]であるエピ
タキシャル薄膜を得た。650℃、1×10-2Torr
2 の条件でMgOバッファー層上へその場成長させ
た膜厚2000オングストロームのPbTiO3 は、a
軸配向成長をした。X線回折パターンによって同定した
PbTiO3 とMgO/Siの結晶方位の関係はPbT
iO3 (100)//MgO(100)//Si(100)
であった。
Example 2 An epitaxial MgO buffer layer was formed on Si in the same manner as in Example 1 above. Si substrate is n-type or p-type
A mold, a (100) plane, and a 6 × 6 mm wafer were used. These substrates were etched, rinsed,
After drying, the substrate was immediately introduced into the deposition chamber, at a constant temperature and a background pressure of 3 × 1.
Heating was performed at 0 -7 Torr and at 500 ° C. or higher to remove (sublimate) the H passivation layer on the Si surface. Subsequently, MgO was heated to about 30 ° C. at 600 ° C. and 1 × 10 −5 Torr O 2.
0 Å of MgO was deposited, and MgO and S
The relationship of the in-plane crystal orientation of i is MgO (100) // Si (1
00), an epitaxial thin film of MgO [001] // Si [001] was obtained. 650 ° C, 1 × 10 -2 Torr
PbTiO 3 with a thickness of 2000 Å grown in situ on the MgO buffer layer under the condition of O 2 is a
Axial growth was performed. The relationship between the crystal orientations of PbTiO 3 and MgO / Si identified by the X-ray diffraction pattern is PbT
iO 3 (100) // MgO (100) // Si (100)
Met.

【0019】走査型電子顕微鏡によって観察したPbT
iO3 の表面は、光導波路として良好な低光減衰特性に
つながると期待できる極めて平滑ものであった。また、
同様にしてPb1-x Lax (Zry Ti1-y 1-x/4
3 (PLZT)もエピタキシャルMgOバッファ層を用
いることによりSiへエピタキシャル成長させることが
できた。
PbT observed by scanning electron microscope
The surface of iO 3 was extremely smooth, which can be expected to lead to good low optical attenuation characteristics as an optical waveguide. Also,
Similarly, Pb 1-x La x (Zr y Ti 1-y) 1-x / 4 O
3 (PLZT) could also be epitaxially grown on Si by using an epitaxial MgO buffer layer.

【0020】実施例3 Si(100)単結晶基板へのMgOバッファ層の形成
を、電子ビーム蒸着法によって行った。ターゲットとし
てMgOを用い、ターゲットと基板の距離は130m
m、電子ビーム電流は5〜20mAとした。Si単結晶
基板はハロゲン・ランプによって加熱し、基板温度は3
00℃〜700℃とした。Si単結晶基板として、n型
またはp型で(100)面を持つ6×6mmのウエハー
を用いた。これらのSi単結晶基板を溶剤で洗浄した
後、HF系溶液にてエッチングを行った。さらに、最後
に窒素流下でエタノールによるスピン乾燥を行った。ス
ピン乾燥後、Si単結晶基板を直ちにデポジション・チ
ャンバーに導入し、バックグラウンド圧力に達した後、
Si単結晶基板を加熱し、一定の基板温度に達した時点
でMgOの成膜を行ない、膜厚500オングストローム
のMgO膜を形成した。X線回折によって回析すると、
電子ビーム電流を変えて成膜速度を変化させて成膜した
MgOは、成膜速度が0.5オングストローム/sec
で、成膜温度が610℃、および成膜速度が0.2オン
グストローム/secで、成膜温度が440℃の条件で
は、(100)面単一配向の膜となっていることが分か
った。
Example 3 An MgO buffer layer was formed on a Si (100) single crystal substrate by an electron beam evaporation method. Using MgO as target, distance between target and substrate is 130m
m, and the electron beam current was 5 to 20 mA. The Si single crystal substrate is heated by a halogen lamp and the substrate temperature is 3
00 ° C to 700 ° C. As an Si single crystal substrate, an n-type or p-type 6 × 6 mm wafer having a (100) plane was used. After cleaning these Si single crystal substrates with a solvent, etching was performed with an HF-based solution. Finally, spin drying with ethanol was performed under a nitrogen flow. After spin drying, immediately introduce the Si single crystal substrate into the deposition chamber, and after reaching the background pressure,
The Si single crystal substrate was heated, and when a certain substrate temperature was reached, an MgO film was formed to form a 500 Å-thick MgO film. Diffracted by X-ray diffraction,
MgO deposited by changing the deposition rate by changing the electron beam current has a deposition rate of 0.5 angstroms / sec.
It was found that under the conditions of a film forming temperature of 610 ° C., a film forming rate of 0.2 Å / sec, and a film forming temperature of 440 ° C., the film had a (100) plane unidirectional orientation.

【0021】MgOバッファー層をSi単結晶基板上に
作製した後、直ちにPZTをMgO上にゾル・ゲル法に
て作製した。PZTの作製は、まず、Ti(O−i−C
3 7 4 とZr(O−i−C3 7 4 を所定のモル
比にて2−メトキシエタノール:CH3 OCH2 CH2
OH(ROHと略記する。)に溶解し、続いてPb(C
3 COO)2 をPb:(Zr+Ti)=1.0:1.
0のモル組成比になるように配合して溶解した。その後
125℃にて一定時間蒸留することにより、金属錯体P
b(Zr,Ti)O2 (OR)2 を形成するとともに副
生成物CH3 COOCH2 CH2 OCH3 の除去を行っ
た。次に、この溶液に、Pb:H2 O:NH4 OH=
1:1:0.1となるようにH2 O:NH4 OHのRO
H溶液を加え、数時間還流することにより金属アルコキ
シドを部分的に加水分解した。この後、溶液を減圧濃縮
して最終的にPb濃度で0.6Mの安定な前駆体溶液を
得た。以上の操作はすべてN2 雰囲気中にて行った。こ
の前駆体溶液をMgOバッファ層が形成されたSi(1
00)基板に室温N2 雰囲気中にて2000rpmでス
ピンコーティングを行った。スピンコーティングされた
基板は、O2 雰囲気中で300℃にて加熱の後、650
℃に加熱し、結晶化させた。これにより、膜厚1000
オングストロームの薄膜が得られた。得られた正方晶組
成のPZT(Zr:Ti=50:50)は、(100)
面単一配向MgO上に(001)配向性を示し、分極軸
[001]が基板面に垂直に配向した正方晶PZTであ
った。
Immediately after the MgO buffer layer was formed on the Si single crystal substrate, PZT was formed on MgO by a sol-gel method. First, the production of PZT is performed using Ti (OiC
3 H 7) at 4 and Zr (O-i-C 3 H 7) 4 a predetermined molar ratio of 2-methoxyethanol: CH 3 OCH 2 CH 2
OH (abbreviated as ROH), followed by Pb (C
H 3 COO) 2 was converted to Pb: (Zr + Ti) = 1.0: 1.
It was blended and dissolved so as to have a molar composition ratio of 0. Thereafter, the mixture was distilled at 125 ° C. for a certain period of time to obtain a metal complex P
b (Zr, Ti) O 2 (OR) 2 was formed and the by-product CH 3 COOCH 2 CH 2 OCH 3 was removed. Next, Pb: H 2 O: NH 4 OH =
RO of H 2 O: NH 4 OH so as to be 1: 1: 0.1
The H solution was added and refluxed for several hours to partially hydrolyze the metal alkoxide. Thereafter, the solution was concentrated under reduced pressure to finally obtain a stable precursor solution having a Pb concentration of 0.6M. All of the above operations were performed in an N 2 atmosphere. This precursor solution was mixed with the Si (1) on which the MgO buffer layer was formed.
00) The substrate was spin-coated at 2000 rpm in a N 2 atmosphere at room temperature. Substrate was spin-coated, after heating at 300 ° C. in an O 2 atmosphere, 650
Heated to ° C. and crystallized. Thereby, the film thickness of 1000
An Angstrom thin film was obtained. The obtained tetragonal PZT (Zr: Ti = 50: 50) is (100)
It was tetragonal PZT having a (001) orientation on the plane single orientation MgO and a polarization axis [001] oriented perpendicular to the substrate surface.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】さらに、本実施例1〜では、エキシマ・
レーザー・デポジション法または電子ビーム蒸着法を用
いたが、成膜プロセスはこれに限定されるものではな
く、Rf−マグネトロン・スパッタリング、イオン・ビ
ーム・スパッタリング、フラッシュ蒸着、イオン・プレ
ーティング、モレキュラー・ビーム・エピタキシ(MB
E)、イオン化クラスター・ビーム・エピタキシ、化学
気相成長法(CVD)、有機金属化学気相成長法(MO
CVD)、プラズマCVDなどの気相成長法が同様に本
発明におけるMgO層の作製に有効である。
Further, in Examples 1 to 3 , the excimer
Although the laser deposition method or the electron beam evaporation method was used, the film formation process is not limited to this, and Rf-magnetron sputtering, ion beam sputtering, flash evaporation, ion plating, molecular Beam Epitaxy (MB
E), ionized cluster beam epitaxy, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MO)
Similarly, vapor phase growth methods such as CVD) and plasma CVD are effective for producing the MgO layer in the present invention.

【0026】[0026]

【発明の効果】本発明においては、従来用いられている
単結晶酸化物基板よりも安価な単結晶Si(100)基
板を使用して、その上で強誘電体薄膜をエピタキシャル
成長させることが可能になる。したがって、本発明の配
向性強誘電体薄膜素子は、不揮発性メモリー、キャパシ
ター、FET素子等の作製に有用であり、また光集積回
路などの素子をSi半導体基板上に作製するのに利用す
ることができる。
According to the present invention, a ferroelectric thin film can be epitaxially grown on a single-crystal Si (100) substrate which is less expensive than a conventionally used single-crystal oxide substrate. Become. Therefore, the oriented ferroelectric thin film device of the present invention is useful for manufacturing nonvolatile memories, capacitors, FET devices, and the like, and can be used for manufacturing devices such as optical integrated circuits on a Si semiconductor substrate. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エピタキシャルBaTiO3 薄膜およびMg
O薄膜の単結晶Si基板に対する結晶方位の関係を示す
説明図である。
FIG. 1. Epitaxial BaTiO 3 thin film and Mg
It is explanatory drawing which shows the relationship of the crystal orientation with respect to the single crystal Si substrate of the O thin film.

【符号の説明】[Explanation of symbols]

1…単結晶Si基板、2…MgO薄膜、3…エピタキシ
ャルBaTiO3 薄膜
1 ... monocrystalline Si substrate, 2 ... MgO thin film, 3 ... epitaxial BaTiO 3 thin film

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶Si(100)基板上にエピタキ
シャルMgOバッファ層が形成され、さらにその上にエ
ピタキシャルまたは配向性のペロブスカイトABO3
強誘電体薄膜が形成されており、前記単結晶Si(10
0)基板とエピタキシャルMgOバッファ層の結晶学的
関係が、MgO(100)//Si(100)、面内方位
MgO[001]//Si[001]であることを特徴と
する配向性強誘電体薄膜素子。
1. A single crystal Si (100) epitaxial MgO buffer layer on a substrate is formed, which is further the epitaxial or orientation of the perovskite ABO 3 type ferroelectric thin film on the form, the single-crystal Si ( 10
0) Crystallography of substrate and epitaxial MgO buffer layer
Relationship is MgO (100) // Si (100), in-plane orientation
An oriented ferroelectric thin film element comprising MgO [001] // Si [001] .
【請求項2】 前記エピタキシャルMgOバッファ層
が、室温〜1200℃の成膜温度および0.01〜1
0.0オングストローム/secの成膜速度において形
成されたものである請求項1記載の配向性強誘電体薄膜
素子。
2. The method according to claim 1, wherein the epitaxial MgO buffer layer has a film forming temperature of room temperature to 1200 ° C.
2. The oriented ferroelectric thin film element according to claim 1, formed at a film forming rate of 0.0 angstroms / sec.
【請求項3】 前記エピタキシャルMgOバッファ層と
エピタキシャルまたは配向性のペロブスカイトABO3
型強誘電体薄膜の結晶学的関係が、ABO3(001)/
/MgO(100)またはABO3 (100)//MgO
(100)、面内方位ABO3 [010]//MgO[0
01]またはABO3 [001]//MgO[001]で
ある請求項1記載の配向性強誘電体薄膜素子。
3. The epitaxial MgO buffer layer and an epitaxial or oriented perovskite ABO 3.
The crystallographic relation of the ferroelectric thin film is ABO 3 (001) /
/ MgO (100) or ABO 3 (100) // MgO
(100), in-plane orientation ABO 3 [010] // MgO [0
2. The oriented ferroelectric thin film element according to claim 1, wherein the element is ABO 3 [001] // MgO [001].
JP5163891A 1992-11-05 1993-06-10 Oriented ferroelectric thin film device Expired - Fee Related JP2889463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5163891A JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31922992 1992-11-05
JP4-319229 1992-11-05
JP5163891A JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Publications (2)

Publication Number Publication Date
JPH06196018A JPH06196018A (en) 1994-07-15
JP2889463B2 true JP2889463B2 (en) 1999-05-10

Family

ID=26489193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163891A Expired - Fee Related JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Country Status (1)

Country Link
JP (1) JP2889463B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576879A (en) * 1994-01-14 1996-11-19 Fuji Xerox Co., Ltd. Composite optical modulator
WO2001075985A1 (en) * 2000-03-30 2001-10-11 Fujitsu Limited Piezoelectric actuator, its manufacturing method, and ink-jet head comprising the same
CN113741068A (en) * 2021-09-06 2021-12-03 华为技术有限公司 Magneto-optical film, optical isolator and method of manufacturing magneto-optical film

Also Published As

Publication number Publication date
JPH06196018A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP2924574B2 (en) Oriented ferroelectric thin film device
US7020374B2 (en) Optical waveguide structure and method for fabricating the same
EP0661754B1 (en) Structure comprising a ferroelectric crystal thin film, its production method and a device using said structure
US5753934A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
US5514484A (en) Oriented ferroelectric thin film
US5776621A (en) Oriented ferroelectric thin film element
JP3310881B2 (en) Laminated thin film, substrate for electronic device, electronic device, and method of manufacturing laminated thin film
JP3047316B2 (en) Epitaxial ferroelectric thin film device and method for producing the same
KR100827216B1 (en) Microelectronic piezoelectric structure
JP2000067650A (en) Ferroelectrics thin film element and its manufacture
US20020006733A1 (en) Multilayer thin film and its fabrication process as well as electron device
KR100378276B1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
JP2864912B2 (en) Oriented ferroelectric thin film
JP4427925B2 (en) Laminated thin film manufacturing method and electronic device
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
WO2002009159A2 (en) Thin-film metallic oxide structure and process for fabricating same
JP2889463B2 (en) Oriented ferroelectric thin film device
JP4399059B2 (en) Thin film structure
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
JP2889492B2 (en) Preparation method of oxide thin film
JPH10120494A (en) Production of ferroelectric thin film
JPH06151602A (en) Production of oriented ferroelectric thin film
JPH07133199A (en) Ferroelectric substance thin film having orientation property
JP3513532B2 (en) Optical switching element
JP4368004B2 (en) Optical waveguide device and method for manufacturing optical waveguide device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees