JPH06196018A - Oriented ferroelectric substance thin film element - Google Patents

Oriented ferroelectric substance thin film element

Info

Publication number
JPH06196018A
JPH06196018A JP5163891A JP16389193A JPH06196018A JP H06196018 A JPH06196018 A JP H06196018A JP 5163891 A JP5163891 A JP 5163891A JP 16389193 A JP16389193 A JP 16389193A JP H06196018 A JPH06196018 A JP H06196018A
Authority
JP
Japan
Prior art keywords
mgo
thin film
substrate
epitaxial
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5163891A
Other languages
Japanese (ja)
Other versions
JP2889463B2 (en
Inventor
Keiichi Nashimoto
恵一 梨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5163891A priority Critical patent/JP2889463B2/en
Publication of JPH06196018A publication Critical patent/JPH06196018A/en
Application granted granted Critical
Publication of JP2889463B2 publication Critical patent/JP2889463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce an element for a nonvolatile memory, a capacitor, light switch or the like on an Si semiconductor substrate by forming an epitaxial or oriented ferroelectric substance thin film on a singlecrystal Si(100) substrate. CONSTITUTION:An oriented ferroelectric substance thin film element has a structure in which an epitaxial MgO buffer layer is formed on a singlecrystal Si(100) substrate, and further on this buffer layer, an epitaxial or oriented perovskite ABO3 ferroelectric sustance thin film is formed. A crystallographic relation of the singlecrystal Si(100) substrate and the epitaxial MgO buffer layer is MgO(100)//Si(100), in-plane azimuth MgO [100]//Si [100], and the crystallographic relation of the epitaxial MgO buffer layer and the perovskite ABO3 ferroelectric substance thin film is ABO3 (001)//MgO(100) or ABO3(100)//MgO (100), in-plane azimuth ABO3[010]//MgO[001] or ABO3[001]//MgO[001].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エピタキシャルMgO
をバッファ層として用い、単結晶Si(100)基板上
に、エピタキシャルまたは配向性の強誘電体薄膜を形成
したものであって、不揮発性メモリーやキャパシター、
または光集積回路などの素子をSi半導体基板上に作製
する場合に利用することができる配向性強誘電体薄膜素
子に関する。
FIELD OF THE INVENTION The present invention relates to epitaxial MgO.
Is used as a buffer layer to form an epitaxial or oriented ferroelectric thin film on a single crystal Si (100) substrate, which is a nonvolatile memory, a capacitor,
Further, the present invention relates to an oriented ferroelectric thin film element that can be used when an element such as an optical integrated circuit is formed on a Si semiconductor substrate.

【0002】[0002]

【従来の技術】従来、酸化物強誘電体薄膜は強誘電体の
もつ強誘電性、圧電性、焦電性、電気光学効果などの多
くの性質により不揮発性メモリーを始めとして表面弾性
波素子、赤外線焦電素子、音響光学素子、電気光学素子
など多くの応用が期待されている。これらの応用のう
ち、薄膜光導波路構造での低光損失化と単結晶なみの分
極特性や電気光学効果を得るために単結晶薄膜の作製が
不可欠である。そのため、BaTiO3 、PbTi
3 、Pb1-x Lax (Zry Ti1-y 1-x/4
3 (PLZT)、LiNbO3 、KNbO3 、Bi4
3 12などのエピタキシャル強誘電体薄膜がRf−マ
グネトロン・スパッタリング、イオン・ビーム・スパッ
タリング、レーザー・アブレーション(レーザー・デポ
ジション)、有機金属化学蒸着(MOCVD)などの方
法によって酸化物単結晶基板に形成することが種々試み
られている。
2. Description of the Related Art Conventionally, an oxide ferroelectric thin film is a surface acoustic wave device such as a non-volatile memory due to many properties of a ferroelectric substance such as ferroelectricity, piezoelectricity, pyroelectricity and electro-optical effect. Many applications such as infrared pyroelectric elements, acousto-optical elements, and electro-optical elements are expected. Among these applications, the production of single crystal thin films is indispensable in order to achieve low optical loss in thin film optical waveguide structures, polarization characteristics similar to single crystals, and electro-optical effects. Therefore, BaTiO 3 , PbTi
O 3 , Pb 1-x La x (Zr y Ti 1-y ) 1-x / 4 O
3 (PLZT), LiNbO 3 , KNbO 3 , Bi 4 T
The epitaxial ferroelectric thin film such as i 3 O 12 is an oxide single crystal substrate by a method such as Rf-magnetron sputtering, ion beam sputtering, laser ablation (laser deposition), and metal organic chemical vapor deposition (MOCVD). Various attempts have been made to form them.

【0003】しかしながら、半導体素子との集積化のた
めには半導体基板上に強誘電体薄膜を作製することが必
要である。Si基板上における強誘電体薄膜のエピタキ
シャル成長は、高成長温度、Siと強誘電体との間の相
互拡散、Siの酸化などの為に難しい。これらの理由の
ため低温で半導体基板上にエピタキシャル成長し、強誘
電体薄膜のエピタキシャル成長を助け、かつ拡散バリア
としても働くキャッピング層をバッファ層として、半導
体基板上に形成することが必要である。さらに、強誘電
体と半導体との間に絶縁体を形成したFET素子におい
ては、そのようなバッファ層が存在すれば、強誘電体の
分極時に半導体からの電荷の注入を防ぐことができ、強
誘電体の分極状態を維持することが容易となる。また、
強誘電体の屈折率は一般にSiよりも小さいが、強誘電
体よりも小さい屈折率をもつバッファ層が得られればレ
ーザー光を強誘電体薄膜光導波路中に閉じ込めることが
可能になり、光集積回路をSi半導体集積回路上に作製
することが可能になる。
However, it is necessary to form a ferroelectric thin film on a semiconductor substrate for integration with a semiconductor element. Epitaxial growth of a ferroelectric thin film on a Si substrate is difficult because of a high growth temperature, mutual diffusion between Si and a ferroelectric, oxidation of Si, and the like. For these reasons, it is necessary to form a capping layer, which is epitaxially grown on a semiconductor substrate at a low temperature, assists the epitaxial growth of a ferroelectric thin film, and also functions as a diffusion barrier, as a buffer layer on the semiconductor substrate. Further, in the FET element in which the insulator is formed between the ferroelectric substance and the semiconductor, the presence of such a buffer layer makes it possible to prevent the injection of charges from the semiconductor at the time of polarization of the ferroelectric substance. It becomes easy to maintain the polarization state of the dielectric. Also,
The refractive index of the ferroelectric is generally smaller than that of Si, but if a buffer layer having a smaller refractive index than the ferroelectric is obtained, it becomes possible to confine the laser light in the ferroelectric thin film optical waveguide. It becomes possible to fabricate a circuit on a Si semiconductor integrated circuit.

【0004】これに対し、Si(100)単結晶上にM
gAl2 4 (100)またはMgO(100)をエピ
タキシャル成長させた基板上に強誘電体化合物をエピタ
キシャル成長させることが、特開昭61−185808
号公報に示されているが、Si(100)単結晶とMg
O(100)との結晶学的関係は明らかにはされていな
い。事実、その後の研究において(100)配向性のM
gOがSi(100)単結晶に形成された際にも、Mg
Oは(100)面がSi(100)面に平行であるだけ
で、面内方位はランダムな配向性多結晶MgOであるこ
とが明らかにされている(P.Tiwari et a
l.,J.Appl.Phys.69,8358(19
91)).その後、格子定数と熱安定性とにより強誘電
体や高温超電導体の基板としてよく用いられるMgO
は、Si上へエピタキシャル成長させることができるこ
とが初めて明らかにされ(D.K.Fork et a
l., Appl.Phys.Lett.58, 22
94(1991))、そしてそれを利用した超電導薄膜
が提案されている。
On the other hand, M on Si (100) single crystal
JP-A-61-185808 discloses that a ferroelectric compound is epitaxially grown on a substrate on which gAl 2 O 4 (100) or MgO (100) is epitaxially grown.
As disclosed in Japanese Patent Publication No. JP-A-2003-96, Si (100) single crystal and Mg
The crystallographic relationship with O (100) has not been clarified. In fact, in subsequent studies, M with (100) orientation
Even when gO is formed in Si (100) single crystal, Mg
It has been clarified that O has a (100) plane that is parallel to the Si (100) plane, and that the in-plane orientation is oriented polycrystalline MgO (P. Tiwari et a.
l. J. Appl. Phys. 69, 8358 (19
91)). After that, MgO is often used as a substrate for ferroelectrics and high-temperature superconductors due to its lattice constant and thermal stability.
Has been revealed for the first time that it can be epitaxially grown on Si (DK Fork et a.
l. , Appl. Phys. Lett. 58, 22
94 (1991)), and superconducting thin films using the same have been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
技術では、単結晶Si基板上に強誘電体薄膜をエピタキ
シャル成長させることは困難であった。したがって、本
発明は、この問題点を解決することを目的とするもので
ある。すなわち、本発明の目的は、単結晶Si(10
0)基板上に、エピタキシャルまたは配向性の強誘電体
薄膜を形成した配向性強誘電体薄膜素子を提供すること
にある。本発明の他の目的は、高機能の不揮発性メモリ
ーやキャパシター、または光変調素子等の素子を半導体
基板上に作製する場合に利用可能な配向性強誘電体薄膜
素子を提供することにある。
As described above, according to the conventional technique, it is difficult to epitaxially grow the ferroelectric thin film on the single crystal Si substrate. Therefore, the present invention aims to solve this problem. That is, the object of the present invention is to obtain single crystal Si (10
0) To provide an oriented ferroelectric thin film element in which an epitaxial or oriented ferroelectric thin film is formed on a substrate. Another object of the present invention is to provide an oriented ferroelectric thin film element that can be used when a high-performance nonvolatile memory, a capacitor, or an element such as a light modulation element is formed on a semiconductor substrate.

【0006】[0006]

【課題を解決するための手段】本発明者等は、気相成長
法によりMgOをSi(100)基板上へエピタキシャ
ル成長させ、また、MgOをバッファ層として用いると
強誘電体薄膜がSi(100)基板上へエピタキシャル
成長できることを発見し、本発明を完成するに至った。
本発明の配向性強誘電体薄膜素子は、単結晶Si(10
0)基板上にエピタキシャルMgOバッファ層が形成さ
れ、さらにその上にエピタキシャルまたは配向性のペロ
ブスカイトABO3 型強誘電体薄膜が形成されてなるこ
とを特徴とする。
The present inventors have found that when MgO is epitaxially grown on a Si (100) substrate by a vapor phase epitaxy method and MgO is used as a buffer layer, the ferroelectric thin film becomes Si (100). It was discovered that epitaxial growth can be performed on a substrate, and the present invention has been completed.
The oriented ferroelectric thin film element of the present invention is a single crystal Si (10
0) An epitaxial MgO buffer layer is formed on a substrate, and an epitaxial or oriented perovskite ABO 3 type ferroelectric thin film is further formed on the epitaxial MgO buffer layer.

【0007】以下、本発明について詳記する。本発明に
おいて、配向性強誘電体薄膜における結晶学的関係は、
例えばBaTiO3 については、BaTiO3 (00
1)//MgO(100)//Si(100)、面内方位B
aTiO3 [010]//MgO[001]//Si[00
1]であり、正方晶系の強誘電体の分極方向が基板面に
対して垂直な構造を作ることができる。MgOとSiと
の結晶学的関係は、格子不整が22.5%となるにもか
かわらず、MgOとSiの結晶方位の関係は、MgO
(100)//Si(100)、面内方位MgO[00
1]//Si[001]である。MgOとSiの界面を高
分解能透過型電子顕微鏡にて観察すると、約MgO:S
i=4:3の格子整合と考えられる構造が形成されてお
り、界面にはSiO2 などの生成はなく急峻な界面であ
ることが認められる。4:3の格子整合を考えると、格
子不整が9.7%となるMgO(100)//Si(10
0)、MgO[011]//Si[001]のエピタキシ
ャル成長の場合よりも小さな格子不整3.4%となり、
見掛け上は大きな格子不整合を持つにもかかわらず、M
gO[011]//Si[001]の場合よりも膜内応力
が緩和されて、MgO[001]//Si[001]のエ
ピタキシャル薄膜の膜質は良好なものとなる。したがっ
て、Si(100)単結晶上に、MgAl2 4 (10
0)もしくはMgO(100)をエピタキシャル成長し
た基板上に強誘電体化合物をエピタキシャル成長する場
合、MgO(100)//Si(100)でのMgOとS
iの面内結晶方位の関係はMgO[011]//Si[0
01]ではなく、MgO[001]//Si[001]で
あることが望ましい。
The present invention will be described in detail below. In the present invention, the crystallographic relationship in the oriented ferroelectric thin film is
For example, for BaTiO 3 , BaTiO 3 (00
1) // MgO (100) // Si (100), in-plane orientation B
aTiO 3 [010] // MgO [001] // Si [00
1], it is possible to form a structure in which the polarization direction of the tetragonal ferroelectric is perpendicular to the substrate surface. Regarding the crystallographic relationship between MgO and Si, although the lattice mismatch is 22.5%, the relationship between the crystal orientations of MgO and Si is MgO.
(100) // Si (100), in-plane orientation MgO [00
1] // Si [001]. When observing the interface between MgO and Si with a high resolution transmission electron microscope, about MgO: S
A structure considered to be lattice-matched with i = 4: 3 is formed, and it is recognized that the interface is a steep interface without the generation of SiO 2 or the like. Considering the lattice matching of 4: 3, MgO (100) // Si (10
0), which has a lattice mismatch of 3.4%, which is smaller than in the case of epitaxial growth of MgO [011] // Si [001],
Despite the apparent large lattice mismatch, M
The in-film stress is relaxed as compared with the case of gO [011] // Si [001], and the film quality of the MgO [001] // Si [001] epitaxial thin film is improved. Therefore, on the Si (100) single crystal, MgAl 2 O 4 (10
0) or MgO (100) is epitaxially grown on the substrate, when a ferroelectric compound is epitaxially grown, MgO (100) // Si (100) in MgO and S
The relationship of the in-plane crystal orientation of i is MgO [011] // Si [0
01], but MgO [001] // Si [001] is desirable.

【0008】本発明において、単結晶Si(100)基
板上にエピタキシャルMgOバッファ層を形成するが、
成膜条件として、室温〜1200℃の成膜温度および
0.01〜10.0オングストローム/secの成膜速
度が採用され、それによってエピタキシャルMgOバッ
ファ層を形成することができる。MgOの膜厚は、10
〜105 オングストロームの範囲が好ましい。上記のよ
うに単結晶Si(100)基板上にエピタキシャルMg
Oバッファ層を形成することにより、その上にエピタキ
シャルまたは配向性のペロブスカイトABO3 型強誘電
体薄膜を形成することが可能になる。具体的には、Ba
TiO3 、PbTiO3 、Pb1-x Lax (Zry Ti
1-y 1-x/4 3 (PLZT)、LiNbO3 、KNb
3 、Bi4 Ti3 12などの配向性のペロブスカイト
ABO3 型強誘電体薄膜を形成する。その膜厚は、0.
01〜10μmの範囲であるのが好ましい。これらの成
膜方法としては、エキシマ・レーザー・デポジション、
Rf−マグネトロン・スパッタリング、イオン・ビーム
・スパッタリング、電子ビーム蒸着、フラッシュ蒸着、
イオン・プレーティング、モレキュラー・ビーム・エピ
タキシー(MBE)、イオン化クラスター・ビーム・エ
ピタキシー、化学気相成長法(CVD)、有機金属化学
気相成長法(MOCVD)、プラズマCVDなどの気相
成長法が有効に使用できる。
In the present invention, an epitaxial MgO buffer layer is formed on a single crystal Si (100) substrate.
As film forming conditions, a film forming temperature of room temperature to 1200 ° C. and a film forming rate of 0.01 to 10.0 angstrom / sec are adopted, whereby an epitaxial MgO buffer layer can be formed. MgO film thickness is 10
A range of -10 5 Angstroms is preferred. As described above, the epitaxial Mg was formed on the single crystal Si (100) substrate.
By forming the O buffer layer, it becomes possible to form an epitaxial or oriented perovskite ABO 3 type ferroelectric thin film thereon. Specifically, Ba
TiO 3 , PbTiO 3 , Pb 1-x La x (Zr y Ti
1-y ) 1-x / 4 O 3 (PLZT), LiNbO 3 , KNb
An oriented perovskite ABO 3 type ferroelectric thin film such as O 3 or Bi 4 Ti 3 O 12 is formed. The film thickness is 0.
It is preferably in the range of 01 to 10 μm. These film forming methods include excimer laser deposition,
Rf-magnetron sputtering, ion beam sputtering, electron beam evaporation, flash evaporation,
Ion plating, molecular beam epitaxy (MBE), ionization cluster beam epitaxy, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), plasma CVD and other vapor phase deposition methods are available. It can be used effectively.

【0009】本発明において、前記単結晶Si(10
0)基板とエピタキシャルMgOバッファ層の結晶学的
関係が、MgO(100)//Si(100)、面内方位
MgO[001]//Si[001]であるのが好まし
い。また、前記エピタキシャルMgOバッファ層とエピ
タキシャルまたは配向性のペロブスカイトABO3 型強
誘電体薄膜の結晶学的関係が、ABO3 (001)//M
gO(100)またはABO3 (100)//MgO(1
00)、面内方位ABO3 [010]//MgO[00
1]またはABO3 [001]//MgO[001]であ
るのが好ましい。
In the present invention, the single crystal Si (10
0) The crystallographic relationship between the substrate and the epitaxial MgO buffer layer is preferably MgO (100) // Si (100) and in-plane orientation MgO [001] // Si [001]. The crystallographic relationship between the epitaxial MgO buffer layer and the epitaxial or oriented perovskite ABO 3 type ferroelectric thin film is ABO 3 (001) // M
gO (100) or ABO 3 (100) // MgO (1
00), in-plane orientation ABO 3 [010] // MgO [00
1] or ABO 3 [001] // MgO [001].

【0010】[0010]

【作用】本発明の配向性強誘電体薄膜素子は、上記の構
成を有するから、単結晶Si(100)基板上への強誘
電体薄膜のエピタキシャル成長が可能になる。すなわ
ち、エピタキシャルMgOバッファ層が、強誘電体薄膜
のエピタキシャル成長を助け、かつ拡散バリアとしても
働く。この際、格子不整が9.7%となるMgO(10
0)//Si(100)、MgO[011]//Si[00
1]のエピタキシャル成長よりも小さな格子不整3.4
%をもつMgO−Siの界面では、4:3の格子整合が
形成されていると考えられ、見掛け上は22.5%と大
きな格子不整合を持つにもかかわらず、MgO[01
1]//Si[001]の場合よりも、膜内応力が緩和さ
れてより良質なMgO[001]//Si[001]のエ
ピタキシャル成長が可能になる。さらに、強誘電体薄膜
の配向が制御できるために大きな残留分極値や大きな電
気光学定数などを得ることができ、強誘電体と半導体と
の間に絶縁体を形成したFET素子においては、強誘電
体の分極時の半導体からの電荷の注入を防ぐことがで
き、強誘電体の分極状態を維持することが容易となる。
また、強誘電体の屈折率は一般にSiよりも小さいが、
強誘電体よりも小さい屈折率をもつバッファ層が得られ
ればレーザー光を強誘電体薄膜光導波路中に閉じ込める
ことが可能になり、光集積回路をSi半導体集積回路上
に作製することが可能になる。
Since the oriented ferroelectric thin film element of the present invention has the above-mentioned structure, the ferroelectric thin film can be epitaxially grown on the single crystal Si (100) substrate. That is, the epitaxial MgO buffer layer assists the epitaxial growth of the ferroelectric thin film and also acts as a diffusion barrier. At this time, MgO (10
0) // Si (100), MgO [011] // Si [00
Lattice misalignment smaller than the epitaxial growth of 1] 3.4
%, It is considered that 4: 3 lattice matching is formed at the interface of MgO-Si, which has a large lattice mismatch of 22.5%, but MgO [01
1] // Si [001], the stress in the film is relaxed, and higher quality MgO [001] // Si [001] epitaxial growth is possible. Further, since the orientation of the ferroelectric thin film can be controlled, a large remanent polarization value and a large electro-optical constant can be obtained. In the FET element in which the insulator is formed between the ferroelectric and the semiconductor, the ferroelectric It is possible to prevent injection of charges from the semiconductor during polarization of the body, and it becomes easy to maintain the polarization state of the ferroelectric substance.
Further, although the refractive index of the ferroelectric substance is generally smaller than that of Si,
If a buffer layer having a refractive index smaller than that of a ferroelectric substance can be obtained, laser light can be confined in a ferroelectric thin film optical waveguide, and an optical integrated circuit can be fabricated on a Si semiconductor integrated circuit. Become.

【0011】[0011]

【実施例】 実施例1 単結晶Si基板へのエピタキシャルMgOバッファ層の
形成は、ターゲット表面をUVレーザー・パルスにより
瞬間的に加熱し蒸着を行うエキシマ・レーザー・デポジ
ション法によって行った。レーザーはXeClエキシマ
・レーザー(波長308nm)を用い、パルス周期4H
z、パルス長17ns、エネルギー130mJ(ターゲ
ット表面でのエネルギー密度1.3J/cm2 )の条件
とした。ターゲットと基板の距離は50mmである。タ
ーゲットはMgOが波長308nmに吸収を持たないた
めに金属Mgを用いた。MgOは10eV以上の高い結
合エネルギーを持っているため、O2 を成膜中に導入す
ることによってMgは容易に酸化される。Si基板はハ
ロゲン・ランプによって加熱した。
Example 1 An epitaxial MgO buffer layer was formed on a single crystal Si substrate by an excimer laser deposition method in which a target surface was instantaneously heated by a UV laser pulse for vapor deposition. Laser is XeCl excimer laser (wavelength 308nm), pulse period 4H
The conditions were z, pulse length 17 ns, and energy 130 mJ (energy density 1.3 J / cm 2 on the target surface). The distance between the target and the substrate is 50 mm. Metal Mg was used as the target because MgO has no absorption at a wavelength of 308 nm. Since MgO has a high binding energy of 10 eV or more, Mg is easily oxidized by introducing O 2 during the film formation. The Si substrate was heated by a halogen lamp.

【0012】単結晶Si基板としては、n型またはp
型、(100)面、6×6mmのウエハーを用いた。こ
れらの基板は溶剤洗浄の後、HF系溶液にてエッチング
を行った。さらにこの基板を脱イオン水とエタノールで
リンスし、最後に窒素流下でエタノールによるスピン乾
燥を行った。スピン乾燥後に基板を直ちにデポジション
・チャンバーに導入し、一定温度、バックグラウンド圧
力3×10-7Torr、500℃以上にて加熱を行っ
て、Si表面のH不動態層の脱離(昇華)を図り、続い
てMgOを200〜700℃、1×10-6〜1×10-3
Torr O2 の条件にて40〜300オングストロー
ムのMgOの成膜を行った。
As a single crystal Si substrate, n-type or p-type
A mold, a (100) plane, and a 6 × 6 mm wafer were used. These substrates were washed with a solvent and then etched with an HF solution. The substrate was rinsed with deionized water and ethanol, and finally spin-dried with ethanol under a nitrogen stream. After spin-drying, the substrate was immediately introduced into the deposition chamber and heated at a constant temperature, a background pressure of 3 × 10 −7 Torr, and 500 ° C. or higher to desorb (sublimate) the H passivation layer on the Si surface Then, MgO is added at 200 to 700 ° C., 1 × 10 −6 to 1 × 10 −3.
A film of MgO having a thickness of 40 to 300 angstrom was formed under the condition of Torr O 2 .

【0013】X線回折によって解析するとSi基板上へ
成膜したMgOは広い範囲の条件にて(100)面単一
配向のエピタキシャル膜となったが、400〜600
℃、2×10-6〜1×10-5Torr O2 の条件にて
良質な薄膜となることが確認された。MgOとSiの面
内結晶方位の関係を同定するために、X線回折ファイ・
スキャンを行った。立方晶において(100)面に対し
て45°の角度をもっている(202)面についてのフ
ァイ・スキャンは、MgO(100)/Si(100)
のMgOに対して90°の回転周期をもつシャープなピ
ークを示し、この位置はSiのピーク位置に一致した。
これらのことから、MgOとSiとの結晶学的関係は、
格子不整が22.5%となるにもかかわらず、MgOと
Siの結晶方位の関係は、MgO(100)//Si(1
00)、面内方位MgO[001]//Si[001]で
あることが分かった。
When analyzed by X-ray diffraction, the MgO film formed on the Si substrate became an epitaxial film having a single orientation of the (100) plane under a wide range of conditions.
It was confirmed that a good quality thin film was formed under the conditions of 2 ° C -6 to 1x10 -5 Torr O 2 . In order to identify the relationship between the in-plane crystal orientations of MgO and Si, X-ray diffraction
Scanned. In the cubic crystal, the phi scan for the (202) plane, which has an angle of 45 ° with respect to the (100) plane, is MgO (100) / Si (100)
Shows a sharp peak with a rotation period of 90 ° with respect to MgO, and this position coincided with the peak position of Si.
From these, the crystallographic relationship between MgO and Si is
Despite the lattice mismatch of 22.5%, the relationship between the crystal orientations of MgO and Si is MgO (100) // Si (1
00), and the in-plane orientation was MgO [001] // Si [001].

【0014】MgOとSiの界面を高分解能透過型電子
顕微鏡にて観察すると、約MgO:Si=4:3の格子
整合とみられる構造が形成されており、界面にはSiO
2 などの生成はなく急峻な界面であった。4:3の格子
整合を考えると、MgO:Si=4:3の場合は3.4
%となり、大きな格子不整合を持つにもかかわらず膜内
応力が緩和されたため、良質なMgO[001]//Si
[001]のエピタキシャル薄膜が得られたと考えられ
る。
When the interface between MgO and Si is observed with a high resolution transmission electron microscope, a structure that appears to be a lattice match of about MgO: Si = 4: 3 is formed, and SiO 2 is present at the interface.
There was no generation of 2 etc. and it was a steep interface. Considering the lattice matching of 4: 3, 3.4 in the case of MgO: Si = 4: 3.
%, The stress in the film was relaxed despite having a large lattice mismatch, so that good quality MgO [001] // Si
It is considered that the epitaxial thin film of [001] was obtained.

【0015】一方、代表的な強誘電体であるBaTiO
3 (正方晶系、ペロブスカイト構造)とSi(立方晶
系、ダイアモンド構造)との格子常数は大きく異なり格
子不整合は26.4%であるが、BaTiO3 (00
1)面とSi(100)面の面内45°回転、すなわち
BaTiO3 [110]//Si[001]の方位の関係
において格子整合性を考えると、格子不整合は4.0%
と比較的小さい。そこで、BaTiO3 をGaAs上に
直接成長を行った。成膜に際して、最初の100レーザ
ー・パルスの間、前記のように各種のO2 圧にし、その
後1.0mTorrO2 にて成膜を続けた。最初の10
0パルス間のO2 圧と成膜温度に依存してBaTiO3
の結晶性は変化したが、得られたものは、(110)/
(101)配向の多結晶膜であった。このように、エピ
タキシーは単純な格子整合性によっては決まらなかっ
た。
On the other hand, BaTiO which is a typical ferroelectric substance
The lattice constants of 3 (tetragonal system, perovskite structure) and Si (cubic system, diamond structure) are greatly different, and the lattice mismatch is 26.4%, but BaTiO 3 (00
Considering the lattice matching in the in-plane 45 ° rotation of the 1) plane and the Si (100) plane, that is, the orientation relation of BaTiO 3 [110] // Si [001], the lattice mismatch is 4.0%.
And relatively small. Therefore, BaTiO 3 was directly grown on GaAs. Upon film formation, during the first 100 laser pulses, and the various O 2 pressure as described above, was continued deposited by subsequent 1.0mTorrO 2. First 10
Depending on the O 2 pressure between 0 pulses and the film formation temperature, BaTiO 3
The crystallinity of was changed, but the obtained one was (110) /
The polycrystalline film had a (101) orientation. Thus, epitaxy was not determined by simple lattice matching.

【0016】BaTiO3 をSi上に直接成長させた場
合には、エピタキシーは前記のようにみられなかった
が、600〜800℃、1×10-4〜1×10-2Tor
r O2 の条件でMgOバッファー層上にその場成長し
た膜厚500〜2000オングストロームのBaTiO
3 は、MgOに対して格子不整合性が5.2%あるが全
てエピタキシャル成長をした。X線回折パターンを解析
するとBaTiO3 はc軸配向性であり、ファイ・スキ
ャンによって同定したBaTiO3 とMgO/GaAs
の結晶方位の関係は図1に示すように、BaTiO
3 (001)//MgO(100)//Si(100)、B
aTiO3 [010]//MgO[001]//Si[00
1]であった。なお、図1において、1は単結晶Si基
板(ダイヤモンド構造)、2はMgO薄膜(NaCl構
造)、3はエピタキシャルBaTiO3 薄膜(ペロブス
カイト構造)を示す。
When BaTiO 3 was directly grown on Si, epitaxy was not observed as described above, but 600 to 800 ° C., 1 × 10 −4 to 1 × 10 −2 Tor.
BaTiO 3 with a film thickness of 500 to 2000 angstroms grown in situ on the MgO buffer layer under the condition of r O 2.
No. 3 had a lattice mismatch of 5.2% with MgO, but all were epitaxially grown. When the X-ray diffraction pattern was analyzed, BaTiO 3 was c-axis oriented, and BaTiO 3 and MgO / GaAs were identified by Phi scan.
As shown in FIG. 1, the relationship between the crystal orientations of
3 (001) // MgO (100) // Si (100), B
aTiO 3 [010] // MgO [001] // Si [00
1]. In FIG. 1, 1 is a single crystal Si substrate (diamond structure), 2 is a MgO thin film (NaCl structure), and 3 is an epitaxial BaTiO 3 thin film (perovskite structure).

【0017】走査型電子顕微鏡によって観察したBaT
iO3 の表面は極めて平滑であった。さらに原子間力顕
微鏡によってBaTiO3 の表面を1×1μm2 の範囲
について観察すると、光学研磨をしたガラス(50〜1
50オングストロームの表面粗さ)と同等レベルの平滑
性を持っていた。このことからこのBaTiO3 膜はそ
の表面平滑性においては、光導波路として良好な低光減
衰特性につながることが期待できる。また、Cr/20
00オングストローム−BaTiO3 /400オングス
トローム−MgO/Siのキャパシター構造においてB
aTiO3 の分極特性を測定すると、この構造によるP
−E特性はヒステリシス・ループを示し、BaTiO3
は構造解析によって推定したように、分極軸が単結晶S
i基板に垂直に配向した強誘電相(正方晶)であること
が分かった。
BaT observed by scanning electron microscope
The surface of iO 3 was extremely smooth. Further, observing the surface of BaTiO 3 in an area of 1 × 1 μm 2 with an atomic force microscope, the optically polished glass (50 to 1
The surface roughness was equivalent to 50 angstrom surface roughness). From this fact, it can be expected that this BaTiO 3 film has a good low light attenuation characteristic as an optical waveguide in terms of its surface smoothness. Also, Cr / 20
B in 00 Angstroms -BaTiO 3/400 Å -MgO / Si capacitors structure
When the polarization characteristics of aTiO 3 are measured, P
-E characteristic shows a hysteresis loop, and BaTiO 3
Is a single crystal S with a polarization axis as estimated by structural analysis.
It was found to be a ferroelectric phase (tetragonal) oriented perpendicular to the i substrate.

【0018】実施例2 SiへのエピタキシャルMgOバッファ層の形成は、上
記実施例1と同様に行った。Si基板はn型またはp
型、(100)面、6×6mmのウエハーを用いた。こ
れらの基板を、実施例1と同様にエッチング、リンス、
乾燥を行った後に、基板を直ちにデポジション・チャン
バーに導入し、一定温度、バックグラウンド圧力3×1
-7Torr、500℃以上にて加熱を行ってSi表面
のH不動態層の脱離(昇華)を図った。続いてMgOを
600℃、1×10-5Torr O2 の条件にて約30
0オングストロームのMgOの成膜を行い、MgOとS
iの面内結晶方位の関係がMgO(100)//Si(1
00)、MgO[001]//Si[001]であるエピ
タキシャル薄膜を得た。650℃、1×10-2Torr
2 の条件でMgOバッファー層上へその場成長させ
た膜厚2000オングストロームのPbTiO3 は、a
軸配向成長をした。X線回折パターンによって同定した
PbTiO3 とMgO/GaAsの結晶方位の関係はP
bTiO3 (100)//MgO(100)//Si(10
0)であった。
Example 2 The epitaxial MgO buffer layer was formed on Si in the same manner as in Example 1 above. Si substrate is n type or p
A mold, a (100) plane, and a 6 × 6 mm wafer were used. These substrates were etched, rinsed, and processed in the same manner as in Example 1.
After drying, the substrate was immediately introduced into the deposition chamber at constant temperature and background pressure 3 × 1.
The H passivation layer on the Si surface was desorbed (sublimated) by heating at 0 −7 Torr and 500 ° C. or higher. Subsequently, MgO was added at about 30 ° C. under conditions of 600 ° C. and 1 × 10 −5 Torr O 2.
A film of MgO of 0 angstrom is formed, and MgO and S
The relationship of the in-plane crystal orientation of i is MgO (100) // Si (1
00), an epitaxial thin film of MgO [001] // Si [001] was obtained. 650 ° C, 1 × 10 -2 Torr
PbTiO 3 having a film thickness of 2000 angstroms grown in situ on the MgO buffer layer under the condition of O 2 is a
Axial orientation growth was performed. The relationship between the crystal orientations of PbTiO 3 and MgO / GaAs identified by the X-ray diffraction pattern is P
bTiO 3 (100) // MgO (100) // Si (10
It was 0).

【0019】走査型電子顕微鏡によって観察したPbT
iO3 の表面は、光導波路として良好な低光減衰特性に
つながると期待できる極めて平滑ものであった。また、
同様にしてPb1-x Lax (Zry Ti1-y 1-x/4
3 (PLZT)もエピタキシャルMgOバッファ層を用
いることによりSiへエピタキシャル成長させることが
できた。
PbT observed by scanning electron microscope
The surface of io 3 was extremely smooth, which can be expected to lead to good low light attenuation characteristics as an optical waveguide. Also,
Similarly, Pb 1-x La x (Zr y Ti 1-y ) 1-x / 4 O
3 (PLZT) could also be epitaxially grown on Si by using an epitaxial MgO buffer layer.

【0020】実施例3 Si(100)単結晶基板へのMgOバッファ層の形成
を、電子ビーム蒸着法によって行った。ターゲットとし
てMgOを用い、ターゲットと基板の距離は130m
m、電子ビーム電流は5〜20mAとした。Si単結晶
基板はハロゲン・ランプによって加熱し、基板温度は3
00℃〜700℃とした。Si単結晶基板として、n型
またはp型で(100)面を持つ6×6mmのウエハー
を用いた。これらのSi単結晶基板を溶剤で洗浄した
後、HF系溶液にてエッチングを行った。さらに、最後
に窒素流下でエタノールによるスピン乾燥を行った。ス
ピン乾燥後、Si単結晶基板を直ちにデポジション・チ
ャンバーに導入し、バックグラウンド圧力に達した後、
Si単結晶基板を加熱し、一定の基板温度に達した時点
でMgOの成膜を行ない、膜厚500オングストローム
のMgO膜を形成した。X線回折によって回析すると、
電子ビーム電流を変えて成膜速度を変化させて成膜した
MgOは、成膜速度が0.5オングストローム/sec
で、成膜温度が610℃、および成膜速度が0.2オン
グストローム/secで、成膜温度が440℃の条件で
は、(100)面単一配向の膜となっていることが分か
った。
Example 3 A MgO buffer layer was formed on a Si (100) single crystal substrate by an electron beam evaporation method. MgO is used as the target, and the distance between the target and the substrate is 130 m
m, and the electron beam current was 5 to 20 mA. The Si single crystal substrate is heated by a halogen lamp and the substrate temperature is 3
It was set to 00 ° C to 700 ° C. An n-type or p-type 6 × 6 mm wafer having a (100) plane was used as a Si single crystal substrate. After cleaning these Si single crystal substrates with a solvent, etching was performed with an HF-based solution. Finally, spin drying with ethanol was performed under a nitrogen flow. After spin drying, the Si single crystal substrate was immediately introduced into the deposition chamber and after reaching the background pressure,
The Si single crystal substrate was heated, and MgO film was formed when a certain substrate temperature was reached to form a MgO film having a film thickness of 500 Å. When diffracted by X-ray diffraction,
The MgO film formed by changing the electron beam current to change the film forming speed has a film forming speed of 0.5 angstrom / sec.
It was found that under the conditions that the film forming temperature was 610 ° C., the film forming rate was 0.2 angstrom / sec, and the film forming temperature was 440 ° C., the film had a single orientation of (100) plane.

【0021】MgOバッファー層をSi単結晶基板上に
作製した後、直ちにPZTをMgO上にゾル・ゲル法に
て作製した。PZTの作製は、まず、Ti(O−i−C
3 7 4 とZr(O−i−C3 7 4 を所定のモル
比にて2−メトキシエタノール:CH3 OCH2 CH2
OH(ROHと略記する。)に溶解し、続いてPb(C
3 COO)2 をPb:(Zr+Ti)=1.0:1.
0のモル組成比になるように配合して溶解した。その後
125℃にて一定時間蒸留することにより、金属錯体P
b(Zr,Ti)O2 (OR)2 を形成するとともに副
生成物CH3 COOCH2 CH2 OCH3 の除去を行っ
た。次に、この溶液に、Pb:H2 O:NH4 OH=
1:1:0.1となるようにH2 O:NH4 OHのRO
H溶液を加え、数時間還流することにより金属アルコキ
シドを部分的に加水分解した。この後、溶液を減圧濃縮
して最終的にPb濃度で0.6Mの安定な前駆体溶液を
得た。以上の操作はすべてN2 雰囲気中にて行った。こ
の前駆体溶液をMgOバッファ層が形成されたSi(1
00)基板に室温N2 雰囲気中にて2000rpmでス
ピンコーティングを行った。スピンコーティングされた
基板は、O2 雰囲気中で300℃にて加熱の後、650
℃に加熱し、結晶化させた。これにより、膜厚1000
オングストロームの薄膜が得られた。得られた正方晶組
成のPZT(Zr:Ti=50:50)は、(100)
面単一配向MgO上に(001)配向性を示し、分極軸
[001]が基板面に垂直に配向した正方晶PZTであ
った。
After the MgO buffer layer was formed on the Si single crystal substrate, PZT was immediately formed on MgO by the sol-gel method. The fabrication of PZT begins with Ti (OiC).
3 H 7) at 4 and Zr (O-i-C 3 H 7) 4 a predetermined molar ratio of 2-methoxyethanol: CH 3 OCH 2 CH 2
It is dissolved in OH (abbreviated as ROH), and then Pb (C
H 3 COO) 2 with Pb: (Zr + Ti) = 1.0: 1.
It was blended and dissolved so that the molar composition ratio was 0. After that, the metal complex P was distilled at 125 ° C. for a certain period of time.
b (Zr, Ti) O 2 (OR) 2 was formed and by-products CH 3 COOCH 2 CH 2 OCH 3 were removed. Next, Pb: H 2 O: NH 4 OH =
RO of H 2 O: NH 4 OH to be 1: 1: 0.1
The H solution was added and the metal alkoxide was partially hydrolyzed by refluxing for several hours. Then, the solution was concentrated under reduced pressure to finally obtain a stable precursor solution having a Pb concentration of 0.6 M. All of the above operations were performed in an N 2 atmosphere. This precursor solution was added to Si (1
(00) The substrate was spin-coated at 2000 rpm in a N 2 atmosphere at room temperature. The spin-coated substrate was heated at 300 ° C. in an O 2 atmosphere and then 650
It was heated to ℃ and crystallized. This gives a film thickness of 1000
An angstrom thin film was obtained. The obtained tetragonal composition PZT (Zr: Ti = 50: 50) is (100)
The tetragonal PZT exhibited (001) orientation on the plane-oriented MgO and the polarization axis [001] was oriented perpendicular to the substrate surface.

【0022】実施例4 GaAs基板へのMgOバッファ層の形成を、実施例3
と同様に電子ビーム蒸着法によって行った。ターゲット
としてMgOを用い、ターゲットとGaAs基板の距離
は200mm、電子ビーム電流は5〜20mAとした。
GaAs基板はハロゲン・ランプによって加熱し、基板
温度は200℃〜600℃とした。上記GaAs基板と
して、n型、(100)±0.2°、6×6 mmのウ
エハーを用いた。これらのGaAs基板は、溶剤洗浄の
後、H2 SO4 系の溶液にてエッチングを行った。さら
にこのGaAs基板を脱イオン水とエタノールでリンス
し、最後に窒素流下でエタノールによるスピン乾燥を行
った。スピン乾燥後に基板を直ちにデポジション・チャ
ンバーに導入し、バックグラウンド圧力に達した後、基
板を加熱し、一定の基板温度に達した時点でMgOの成
膜を行ない、膜厚400オングストロームのMgO膜を
形成した。
Example 4 The formation of the MgO buffer layer on the GaAs substrate was carried out according to Example 3
Similarly to the above, the electron beam evaporation method was used. MgO was used as the target, the distance between the target and the GaAs substrate was 200 mm, and the electron beam current was 5 to 20 mA.
The GaAs substrate was heated by a halogen lamp and the substrate temperature was 200 ° C to 600 ° C. As the GaAs substrate, an n-type (100) ± 0.2 °, 6 × 6 mm wafer was used. These GaAs substrates were etched with a H 2 SO 4 based solution after cleaning with a solvent. Further, this GaAs substrate was rinsed with deionized water and ethanol, and finally spin-dried with ethanol under a nitrogen flow. Immediately after spin drying, the substrate was introduced into the deposition chamber, the background pressure was reached, the substrate was heated, and MgO film was formed when the substrate temperature reached a certain value. Was formed.

【0023】X線回折によって解析すると成膜したMg
Oは、成膜速度が0.3オングストローム/secで、
成膜温度が280℃、370℃、440℃、500℃の
条件にて、(100)面単一配向のエピタキシャル膜と
なっていた。MgOとGaAsの界面を高分解能透過型
電子顕微鏡にて観察すると、MgO−GaAs界面では
MgO:GaAs=4:3の格子整合が形成されてお
り、界面には二次層等の生成はなく、急峻な界面であっ
た。4:3の格子整合を考えると、MgO:GaAs=
4:3では0.7%となり、大きな格子不整合を持つに
もかかわらず、膜内応力が緩和されてMgO[001]
//GaAs[001]のエピタキシャル成長が実現され
たと考えられる。
Formed Mg when analyzed by X-ray diffraction
O has a film forming rate of 0.3 angstrom / sec,
Under the conditions of the film forming temperature of 280 ° C., 370 ° C., 440 ° C., and 500 ° C., the epitaxial film had a (100) plane unidirectional orientation. When observing the interface between MgO and GaAs with a high resolution transmission electron microscope, a lattice match of MgO: GaAs = 4: 3 is formed at the MgO-GaAs interface, and no secondary layer is formed at the interface. It was a steep interface. Considering 4: 3 lattice matching, MgO: GaAs =
At 4: 3, it was 0.7%, and despite the large lattice mismatch, the in-film stress was relaxed and MgO [001]
It is considered that // GaAs [001] epitaxial growth was realized.

【0024】次に、(100)面単一配向MgO上にB
aTiO3 を700℃の条件で成膜して、BaTiO3
をエピタキシャル成長させた。X線回折パターンを解析
すると、BaTiO3 は正方晶の[001]軸配向性で
あり、ファイ・スキャンによって同定したBaTiO3
とMgO/GaAsの結晶方位の関係は、BaTiO3
(001)//MgO(100)//GaS(100)、B
aTiO3 [100]//MgO[001]//GaAs
[001]であった。
Next, B is formed on the (100) plane unidirectionally oriented MgO.
aTiO 3 was formed into a film at 700 ° C., and BaTiO 3
Was epitaxially grown. When the X-ray diffraction pattern was analyzed, BaTiO 3 was tetragonal [001] axis-oriented, and BaTiO 3 was identified by Phi Scan.
And the crystal orientation of MgO / GaAs is BaTiO 3
(001) // MgO (100) // GaS (100), B
aTiO 3 [100] // MgO [001] // GaAs
It was [001].

【0025】さらに、本実施例1〜4では、エキシマ・
レーザー・デポジション法または電子ビーム蒸着法を用
いたが、成膜プロセスはこれに限定されるものではな
く、Rf−マグネトロン・スパッタリング、イオン・ビ
ーム・スパッタリング、フラッシュ蒸着、イオン・プレ
ーティング、モレキュラー・ビーム・エピタキシ(MB
E)、イオン化クラスター・ビーム・エピタキシ、化学
気相成長法(CVD)、有機金属化学気相成長法(MO
CVD)、プラズマCVDなどの気相成長法が同様に本
発明におけるMgO層の作製に有効である。
Furthermore, in Examples 1 to 4, the excimer
Although the laser deposition method or the electron beam evaporation method was used, the film forming process is not limited to this, and Rf-magnetron sputtering, ion beam sputtering, flash evaporation, ion plating, molecular deposition Beam epitaxy (MB
E), ionized cluster beam epitaxy, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MO)
Similarly, vapor phase growth methods such as CVD) and plasma CVD are effective for producing the MgO layer in the present invention.

【0026】[0026]

【発明の効果】本発明においては、従来用いられている
単結晶酸化物基板よりも安価な単結晶Si(100)基
板を使用して、その上で強誘電体薄膜をエピタキシャル
成長させることが可能になる。したがって、本発明の配
向性強誘電体薄膜素子は、不揮発性メモリー、キャパシ
ター、FET素子等の作製に有用であり、また光集積回
路などの素子をSi半導体基板上に作製するのに利用す
ることができる。
According to the present invention, it is possible to epitaxially grow a ferroelectric thin film on a single crystal Si (100) substrate which is cheaper than the conventionally used single crystal oxide substrate. Become. Therefore, the oriented ferroelectric thin film element of the present invention is useful for producing a non-volatile memory, a capacitor, an FET element and the like, and can be used for producing an element such as an optical integrated circuit on a Si semiconductor substrate. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 エピタキシャルBaTiO3 薄膜およびMg
O薄膜の単結晶Si基板に対する結晶方位の関係を示す
説明図である。
FIG. 1 Epitaxial BaTiO 3 thin film and Mg
It is explanatory drawing which shows the relationship of the crystal orientation with respect to the single crystal Si substrate of O thin film.

【符号の説明】[Explanation of symbols]

1…単結晶Si基板、2…MgO薄膜、3…エピタキシ
ャルBaTiO3 薄膜
1 ... Single crystal Si substrate, 2 ... MgO thin film, 3 ... Epitaxial BaTiO 3 thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単結晶Si(100)基板上にエピタキ
シャルMgOバッファ層が形成され、さらにその上にエ
ピタキシャルまたは配向性のペロブスカイトABO3
強誘電体薄膜が形成されていることを特徴とする配向性
強誘電体薄膜素子。
1. An orientation characterized in that an epitaxial MgO buffer layer is formed on a single crystal Si (100) substrate, and an epitaxial or oriented perovskite ABO 3 type ferroelectric thin film is further formed on the epitaxial MgO buffer layer. Ferroelectric thin film element.
【請求項2】 前記単結晶Si(100)基板とエピタ
キシャルMgOバッファ層の結晶学的関係が、MgO
(100)//Si(100)、面内方位MgO[00
1]//Si[001]である請求項1記載の配向性強誘
電体薄膜素子。
2. The crystallographic relationship between the single crystal Si (100) substrate and the epitaxial MgO buffer layer is MgO.
(100) // Si (100), in-plane orientation MgO [00
1] // Si [001]. The oriented ferroelectric thin film element according to claim 1.
【請求項3】 前記エピタキシャルMgOバッファ層
が、室温〜1200℃の成膜温度および0.01〜1
0.0オングストローム/secの成膜速度において形
成されたものである請求項1記載の配向性強誘電体薄膜
素子。
3. The epitaxial MgO buffer layer has a film forming temperature of room temperature to 1200 ° C. and 0.01 to 1
The oriented ferroelectric thin film element according to claim 1, which is formed at a film forming rate of 0.0 angstrom / sec.
【請求項4】 前記エピタキシャルMgOバッファ層と
エピタキシャルまたは配向性のペロブスカイトABO3
型強誘電体薄膜の結晶学的関係が、ABO3(001)/
/MgO(100)またはABO3 (100)//MgO
(100)、面内方位ABO3 [010]//MgO[0
01]またはABO3 [001]//MgO[001]で
ある請求項1記載の配向性強誘電体薄膜素子。
4. An epitaxial or oriented perovskite ABO 3 with the epitaxial MgO buffer layer.
Type ferroelectric thin film has a crystallographic relationship of ABO 3 (001) /
/ MgO (100) or ABO 3 (100) // MgO
(100), in-plane orientation ABO 3 [010] // MgO [0
01] or ABO 3 [001] // MgO [001]. 3. The oriented ferroelectric thin film element according to claim 1.
JP5163891A 1992-11-05 1993-06-10 Oriented ferroelectric thin film device Expired - Fee Related JP2889463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5163891A JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-319229 1992-11-05
JP31922992 1992-11-05
JP5163891A JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Publications (2)

Publication Number Publication Date
JPH06196018A true JPH06196018A (en) 1994-07-15
JP2889463B2 JP2889463B2 (en) 1999-05-10

Family

ID=26489193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163891A Expired - Fee Related JP2889463B2 (en) 1992-11-05 1993-06-10 Oriented ferroelectric thin film device

Country Status (1)

Country Link
JP (1) JP2889463B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576879A (en) * 1994-01-14 1996-11-19 Fuji Xerox Co., Ltd. Composite optical modulator
WO2001075985A1 (en) * 2000-03-30 2001-10-11 Fujitsu Limited Piezoelectric actuator, its manufacturing method, and ink-jet head comprising the same
WO2023030397A1 (en) * 2021-09-06 2023-03-09 华为技术有限公司 Magneto-optical thin film, optical isolator, and method for manufacturing magneto-optical thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576879A (en) * 1994-01-14 1996-11-19 Fuji Xerox Co., Ltd. Composite optical modulator
WO2001075985A1 (en) * 2000-03-30 2001-10-11 Fujitsu Limited Piezoelectric actuator, its manufacturing method, and ink-jet head comprising the same
US6781290B2 (en) 2000-03-30 2004-08-24 Fujitsu Limited Piezoelectric actuator, method of manufacturing the same, ink-jet head using the same, and ink-jet printer
WO2023030397A1 (en) * 2021-09-06 2023-03-09 华为技术有限公司 Magneto-optical thin film, optical isolator, and method for manufacturing magneto-optical thin film

Also Published As

Publication number Publication date
JP2889463B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US7020374B2 (en) Optical waveguide structure and method for fabricating the same
JP2924574B2 (en) Oriented ferroelectric thin film device
EP0661754B1 (en) Structure comprising a ferroelectric crystal thin film, its production method and a device using said structure
US5801105A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
US5776621A (en) Oriented ferroelectric thin film element
JP3193302B2 (en) Film structure, electronic device, recording medium, and method of manufacturing ferroelectric thin film
US6709776B2 (en) Multilayer thin film and its fabrication process as well as electron device
JP3482883B2 (en) Ferroelectric thin film element and method of manufacturing the same
JP3310881B2 (en) Laminated thin film, substrate for electronic device, electronic device, and method of manufacturing laminated thin film
JP3047316B2 (en) Epitaxial ferroelectric thin film device and method for producing the same
KR100827216B1 (en) Microelectronic piezoelectric structure
US20020006733A1 (en) Multilayer thin film and its fabrication process as well as electron device
JP4427925B2 (en) Laminated thin film manufacturing method and electronic device
JP2864912B2 (en) Oriented ferroelectric thin film
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
JP2004505444A (en) Thin film metal oxide structure and method of manufacturing the same
KR19990006318A (en) Deposition of Ferroelectric Films and Ferroelectric Capacitor Devices
JP2889463B2 (en) Oriented ferroelectric thin film device
JPH10120494A (en) Production of ferroelectric thin film
JP2889492B2 (en) Preparation method of oxide thin film
US20020009612A1 (en) Microelectronic piezoelectric structure and method of forming the same
JPH06151602A (en) Production of oriented ferroelectric thin film
JPH07133199A (en) Ferroelectric substance thin film having orientation property
JPH08181289A (en) Composite structure of ferroelectric thin film and substrate
JP3562120B2 (en) Composite structure of stabilized zirconia thin film and single-crystal silicon substrate and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees