JPH09310170A - Silicon carbide thin coating structural body and its production - Google Patents

Silicon carbide thin coating structural body and its production

Info

Publication number
JPH09310170A
JPH09310170A JP15008596A JP15008596A JPH09310170A JP H09310170 A JPH09310170 A JP H09310170A JP 15008596 A JP15008596 A JP 15008596A JP 15008596 A JP15008596 A JP 15008596A JP H09310170 A JPH09310170 A JP H09310170A
Authority
JP
Japan
Prior art keywords
silicon carbide
thin film
carbide thin
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15008596A
Other languages
Japanese (ja)
Inventor
Hideaki Mitsui
英明 三ツ井
Hiroyuki Nagasawa
弘幸 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP15008596A priority Critical patent/JPH09310170A/en
Publication of JPH09310170A publication Critical patent/JPH09310170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide thin coating structural body having high surface flatness and high mechanical strength and having a structure in which silicon carbide thin coating whose surface is clean is formed on an insulator. SOLUTION: Silicon carbide thin coating 22 is deposited on a flat substrate 21, a part of the substrate is removed and an opening part 23 is provided to expose the boundary of the silicon carbide thin coating faced to the substrate, then, an oxidized coating layer 24 covering the same is applied, and furthermore, the part of the oxidized coating layer on the silicon carbide thin coating on the side of the opening part is removed to expose the silicon carbide thin coating, by which a silicon carbide thin coating structural body 20 having the flat and clean silicon carbide thin coating face is formed. Moreover, the part of the silicon carbide thin coating with the oxidized coating layer on the opening part of the substrate is separated, by which an independent silicon carbide thin coating structural body can also be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種デバイス材
料、センサー材料、光学薄膜材料およびマイクロマシニ
ングに代表される各種微細加工材料として好適に用いら
れる炭化珪素薄膜構造体に関し、特に、良質かつ安定し
た炭化珪素薄膜表面を有するのみならず、高機能性を付
与した材料として提供することを目的とした炭化珪素薄
膜構造体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide thin film structure suitably used as various device materials, sensor materials, optical thin film materials, and various microfabrication materials represented by micromachining. TECHNICAL FIELD The present invention relates to a silicon carbide thin film structure intended to be provided as a material having not only a silicon carbide thin film surface but also high functionality, and a method for producing the same.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は、熱的、化学的に
安定であり、優れた機械的強度を有する物質であること
が古くから知られており、構造材、耐環境素材といった
用途に応用されている。また、炭化珪素はシリコンなど
に比べて禁制帯幅が広い半導体材料であることから高出
力電力素子はもとより、各種半導体デバイス材料、セン
サー材料、およびこれらを構成するための微細加工用薄
膜材料としても注目されている。炭化珪素薄膜を作製す
る方法としては、基体上への堆積が一般的である。この
際用いる堆積法としては、熱、光、プラズマを用いた化
学気相堆積法(CVD法)や分子線エピタキシー法、ス
パッタリング法などが挙げられる。これらの堆積法は、
数百℃から1350℃という比較的低い温度で炭化珪素
薄膜の堆積が実施できる点や、大型の下地基板を採用す
れば大面積の炭化珪素薄膜が得られるという点、さらに
アモルフアス構造、多結晶構造、単結晶構造など任意の
構造を有する炭化珪素薄膜が得られるといった点で有効
である。例えば、特開平7−118854号公報には、
下地基体として珪素基板を用い、この基板上に結晶性炭
化珪素薄膜を高い量産性のもとで作製する方法が開示さ
れている。なお、インゴット成長が可能な炭化珪素作製
方法として昇華法があるが、2000℃近くの高温を必
要とする点、インゴット径の大型化が困難な点、切り出
しによる加工が必要な点など、その応用範囲や量産性に
制限があって、実用化が困難である。
2. Description of the Related Art Silicon carbide (SiC) has been known for a long time as a substance that is thermally and chemically stable and has excellent mechanical strength, and is used for structural materials and environmental resistance materials. It is applied. Further, since silicon carbide is a semiconductor material having a wider forbidden band width than silicon or the like, it can be used not only as a high output power element but also as various semiconductor device materials, sensor materials, and thin film materials for microfabrication for constituting these. Attention has been paid. As a method for producing a silicon carbide thin film, deposition on a substrate is generally used. Examples of the deposition method used at this time include a chemical vapor deposition method (CVD method) using heat, light, and plasma, a molecular beam epitaxy method, and a sputtering method. These deposition methods are
A silicon carbide thin film can be deposited at a relatively low temperature of several hundreds of degrees Celsius to 1350 degrees Celsius, a large-area silicon carbide thin film can be obtained by using a large base substrate, and an amorphous structure and a polycrystalline structure. It is effective in that a silicon carbide thin film having an arbitrary structure such as a single crystal structure can be obtained. For example, in Japanese Patent Laid-Open No. 7-118854,
A method is disclosed in which a silicon substrate is used as a base substrate and a crystalline silicon carbide thin film is formed on this substrate with high mass productivity. Although there is a sublimation method as a method for producing silicon carbide capable of ingot growth, its application is such that it requires a high temperature near 2000 ° C., it is difficult to increase the ingot diameter, and processing by cutting is required. It is difficult to put it into practical use due to its limited range and mass productivity.

【0003】[0003]

【発明が解決しようとする課題】炭化珪素堆積膜は、そ
の作製方法により膜質、結晶性、表面粗さなどの態様が
異なる。例えばスパッタリング法を用いて作製した炭化
珪素薄膜の場合、ターゲット組成、ガス、圧力、堆積温
度、下地基板などの作製条件にもよるが、形成される炭
化珪素薄膜はアモルフアスまたは多結晶体であり、その
表面は中心線表面粗さにして数十から数百nmRaの表
面粗さを有する。一方、CVD法を用いて適当な基板の
上に炭化珪素薄膜をへテロエピタキシャル成長させて作
製した場合、単結晶あるいは多結晶の炭化珪素薄膜を得
ることができる。しかしヘテロエピタキシャル成長の特
性上、下地基板材料と炭化珪素との界面に生ずる格子不
整合により炭化珪素層の結晶性が損なわれたり、表面モ
フォロジーが悪化するといった問題が生じる。この問題
は結晶性の良い炭化珪素層や、平滑な炭化珪素薄膜表面
を必要とする場合の障害となる。対策として基体として
珪素基板を用い、珪素基板の表面をあらかじめ炭化して
(表面炭化)、その上に炭化珪素薄膜を作製する方法
(小野他、電子通信学会信学技報、SSD80、(1980)1
25)が提案されているが、この表面炭化法の効果は必ず
しも十分ではないとの報告(H.Nagasawa et.a1.,J.Cry
s.Crow.,115,(1991),612)もなされており、実際に得ら
れる炭化珪素薄膜の表面粗さも中心線平均粗さの値で3
nmRa程度と、下地に用いる珪素基板の表面粗さ(S
i(100)面研磨ウェハー、1nmRa以下)ほどで
はない。炭化珪素結晶との格子不整合の無い基板材料と
して、前述の昇華法により作製された炭化珪素や、炭化
チタンを選択する方法もあるが、いずれも基板自体が高
価であったり小口径品しか得られないという問題があ
り、量産化技術としての優位性に乏しい。
The silicon carbide deposited film has different aspects such as film quality, crystallinity, and surface roughness depending on its manufacturing method. For example, in the case of a silicon carbide thin film manufactured by using a sputtering method, the silicon carbide thin film formed is amorphous or polycrystalline, depending on the target composition, gas, pressure, deposition temperature, and the manufacturing conditions such as the underlying substrate. The surface has a center line surface roughness of several tens to several hundreds nm Ra. On the other hand, when a silicon carbide thin film is heteroepitaxially grown on an appropriate substrate using the CVD method, a single crystal or polycrystalline silicon carbide thin film can be obtained. However, due to the characteristics of heteroepitaxial growth, problems such as the crystallinity of the silicon carbide layer being impaired and the surface morphology being deteriorated due to the lattice mismatch occurring at the interface between the underlying substrate material and silicon carbide. This problem becomes an obstacle when a silicon carbide layer having good crystallinity or a smooth silicon carbide thin film surface is required. As a countermeasure, a silicon substrate is used as a substrate, and the surface of the silicon substrate is carbonized in advance (surface carbonization) to form a silicon carbide thin film on it (Ono et al., IEICE Technical Report, SSD80, (1980). 1
25) has been proposed, but the effect of this surface carbonization method is not necessarily sufficient (H. Nagasawa et.a1., J. Cry.
s. Crow., 115, (1991), 612), and the surface roughness of the silicon carbide thin film actually obtained is 3 in terms of the center line average roughness.
nmRa and the surface roughness (S
i (100) surface polished wafer, 1 nmRa or less). There is also a method of selecting silicon carbide produced by the above-mentioned sublimation method or titanium carbide as a substrate material that does not have a lattice mismatch with the silicon carbide crystal, but in either case, the substrate itself is expensive or only a small diameter product can be obtained. There is a problem that it is not possible, and it is not superior as a mass production technology.

【0004】量産化技術という観点から、表面粗さの改
善のため炭化珪素薄膜形成後に表面を研磨する方法もあ
るが、例えば炭化珪素の研磨に有効であるといわれるメ
カノケミカル研磨を用いても、研磨工程における異物や
不純物の付着、研磨不良による表面状態の悪化、さらに
は扱う対象が薄膜であるため、膜厚が薄い場合に十分な
研磨しろが得られないといった問題が未解決である。さ
らに薄膜材料としての炭化珪素薄膜はその特性上、薄膜
単独の状態で非常に破損しやすく、その取り扱いが難し
い。例えば特開平6−112107号公報にはX線マス
クメンブレンとして自立した炭化珪素薄膜が開示されて
いるが、取り扱いを容易にするためにメンブレンを保持
するシリコン支持体が必要となる。また、電子材料の観
点から炭化珪素薄膜の応用を考えた場合、下地基板と炭
化珪素で素子構造(例えばpn接合)を形成させる場合
等を除いて、炭化珪素自体の電気的特性を活用するため
には、下地基板との電気的絶縁が必要不可欠である。ち
なみに、次世代半導体材料として期待されている単結晶
炭化珪素薄膜を絶縁体基板上、例えばサファイア基板上
に直接へテロエピタキシャル成長させた構造は未だ開発
段階の域を出ていない。
From the viewpoint of mass production technology, there is a method of polishing the surface after forming a silicon carbide thin film to improve the surface roughness. For example, even if mechanochemical polishing which is said to be effective for polishing silicon carbide is used, The problems such as adhesion of foreign matters and impurities in the polishing step, deterioration of the surface state due to poor polishing, and the fact that a thin film cannot be used to obtain a sufficient polishing margin are unsolved. Further, the silicon carbide thin film as a thin film material is very easy to be damaged in the state of the thin film alone due to its characteristics, and its handling is difficult. For example, Japanese Unexamined Patent Publication No. 6-112107 discloses a self-supporting silicon carbide thin film as an X-ray mask membrane, but a silicon support for holding the membrane is required for easy handling. Further, in consideration of application of the silicon carbide thin film from the viewpoint of electronic material, in order to utilize the electrical characteristics of silicon carbide itself, except when forming an element structure (for example, a pn junction) with a base substrate and silicon carbide. For this reason, electrical insulation from the underlying substrate is essential. By the way, a structure in which a single crystal silicon carbide thin film, which is expected as a next-generation semiconductor material, is directly heteroepitaxially grown on an insulating substrate, for example, a sapphire substrate, has not yet reached the stage of development.

【0005】しかしながらこの様に多くの問題を残す一
方で、大面積で比較的品質の良い炭化珪素薄膜の形成が
容易となった現在、その応用面からのニーズは急増して
おり、良質の炭化珪素薄膜の供給が急務である。そのた
めには、珪素基板に匹敵する表面の平坦性あるいは表面
粗さ水準の実現、薄膜の機械的な取り扱い易さの向上、
電気的絶縁性の付与、結晶性の改善などを解決する必要
がある。本発明の目的は上記のような炭化珪素薄膜に関
して、高度な表面平坦性を有しながら炭化珪素薄膜が絶
縁体上に形成されている構造、あるいは絶縁体を付与さ
れている構造が容易に実現されると同時に、膜の機械的
強度の向上と表面清浄化処理が達成できる炭化珪素薄膜
構造体の作製方法を提供し、良質な炭化珪素薄膜構造体
を提供することにある。
However, while many problems remain as described above, it is now easy to form a silicon carbide thin film having a large area and a relatively good quality, and the needs from the application side thereof are rapidly increasing. There is an urgent need to supply silicon thin films. For that purpose, the surface flatness or surface roughness level comparable to that of a silicon substrate is realized, the mechanical handling of the thin film is improved,
It is necessary to solve the problems of imparting electrical insulation and improving crystallinity. The object of the present invention is to easily realize a structure in which a silicon carbide thin film is formed on an insulator while having a high degree of surface flatness, or a structure to which an insulator is added, with respect to the above-mentioned silicon carbide thin film. At the same time, an object of the present invention is to provide a method for producing a silicon carbide thin film structure capable of improving the mechanical strength of the film and achieving surface cleaning treatment, and to provide a high-quality silicon carbide thin film structure.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明にかかる炭化珪素薄膜構造体の作製方法
は、基板上に炭化珪素薄膜を堆積させ、基板の一部を除
去して開口部を設けて基板に面している炭化珪素薄膜界
面を露出させ、少なくとも露出した炭化珪素薄膜の一部
を覆う酸化膜層を付与し、さらに酸化膜層のうち基板開
口部側の炭化珪素薄膜上に形成した酸化膜層部分を除去
して炭化珪素薄膜を露出させて、炭化珪素薄膜構造体と
することを特徴とする。また、さらに、基板開口部の酸
化膜層付き炭化珪素薄膜の部分を基板から分離させるこ
とにより炭化珪素薄膜構造体を得ることを特徴とする。
基板からの分離には、炭化珪素膜が露出した部分を切り
出す方法や、基板を炭化珪素膜から剥離する方法などを
用いることができる。
In order to solve the above-mentioned problems, a method of manufacturing a silicon carbide thin film structure according to the present invention comprises depositing a silicon carbide thin film on a substrate and removing a part of the substrate. An opening is provided to expose an interface of the silicon carbide thin film facing the substrate, an oxide film layer is provided to cover at least a part of the exposed silicon carbide thin film, and the silicon carbide on the substrate opening side of the oxide film layer is further provided. A silicon carbide thin film structure is characterized by removing the oxide film layer portion formed on the thin film to expose the silicon carbide thin film. Furthermore, the silicon carbide thin film structure is obtained by separating the portion of the silicon carbide thin film with the oxide film layer in the opening of the substrate from the substrate.
For separation from the substrate, a method of cutting out the exposed portion of the silicon carbide film, a method of peeling the substrate from the silicon carbide film, or the like can be used.

【0007】なお、上述の炭化珪素薄膜上への酸化膜層
の付与を、酸素を含む雰囲気中において酸化する方法、
あるいは酸化作用を有する溶液中にて湿式酸化する方
法、あるいは酸素を含む材料からなる膜を炭化珪素膜上
に形成した後に熱処理を施す方法のいずれかにより行う
ようにしてもよい。さらに具体的には、乾式あるいは湿
式さらに水素燃焼式の熱酸化や、例えば過酸化水素と硫
酸の混合液など酸化作用を有する溶液中で酸化膜作製を
行う溶液酸化、あるいはスパッタやCVDなどで例えば
酸化珪素など酸素を含む材料の薄膜を堆積させた後で2
00℃から900℃で熱処理する方法などが適宜使用で
きる。さらに、上記の炭化珪素薄膜を堆積する基板が珪
素基板であって、炭化珪素薄膜が立方晶炭化珪素薄膜で
あってもよい。また、炭化珪素薄膜の作製を化学気相堆
積法により行うことが好ましい。
A method of oxidizing the above-mentioned oxide film layer on the silicon carbide thin film in an atmosphere containing oxygen,
Alternatively, it may be performed by either a method of performing wet oxidation in a solution having an oxidizing action, or a method of performing a heat treatment after forming a film made of a material containing oxygen on the silicon carbide film. More specifically, dry or wet or hydrogen combustion thermal oxidation, solution oxidation for forming an oxide film in a solution having an oxidizing action such as a mixed solution of hydrogen peroxide and sulfuric acid, or sputtering or CVD After depositing a thin film of a material containing oxygen such as silicon oxide, 2
A method such as heat treatment at 00 ° C. to 900 ° C. can be appropriately used. Further, the substrate on which the silicon carbide thin film is deposited may be a silicon substrate, and the silicon carbide thin film may be a cubic silicon carbide thin film. Further, it is preferable to produce the silicon carbide thin film by a chemical vapor deposition method.

【0008】さらに、上記の課題を解決するために、本
発明にかかる炭化珪素薄膜構造体は、炭化珪素薄膜の裏
面に酸化膜層を重層させた炭化珪素薄膜構造体であっ
て、炭化珪素薄膜の表面が炭化珪素薄膜を堆積させた基
板を除去して露出させた部分であることを特徴とする。
また、上述の炭化珪素薄膜構造体の作製方法により作製
されたものであることを特徴とする。
Further, in order to solve the above problems, a silicon carbide thin film structure according to the present invention is a silicon carbide thin film structure in which an oxide film layer is laminated on the back surface of the silicon carbide thin film. Is a portion exposed by removing the substrate on which the silicon carbide thin film is deposited.
Further, it is characterized by being manufactured by the method for manufacturing a silicon carbide thin film structure described above.

【0009】本発明にかかる炭化珪素薄膜構造体の作製
方法によれば、基板上に炭化珪素薄膜を堆積させた後、
基板の一部を除去して基板に面している炭化珪素薄膜界
面を露出させるから、炭化珪素からなる薄膜が基板から
自立した構造が得られる。しかも、基板開口部に露出し
た炭化珪素薄膜は基板の表面形状を反映して基板表面と
同等の表面粗さを有するようになるので、表面粗さの小
さい基板を使用することにより極めて平坦に形成され
る。例えば、珪素基板あるいは溶融石英基板といった基
板材料では超平坦研磨の適用により表面粗さにして1n
mRa以下の値が達成されているが、この様に平坦な基
板を本発明に適用することで、上述の表面粗さに匹敵し
た良好な表面性状を有する炭化珪素薄膜が容易に得られ
る。このような炭化珪素薄膜に酸化膜層を付与すること
により、周囲を基板材が取り巻いた自立した絶縁膜付き
炭化珪素薄膜構造体を得ることができる。
According to the method of manufacturing a silicon carbide thin film structure of the present invention, after depositing a silicon carbide thin film on a substrate,
Since a part of the substrate is removed to expose the interface of the silicon carbide thin film facing the substrate, a structure in which the thin film made of silicon carbide is free-standing from the substrate is obtained. Moreover, the silicon carbide thin film exposed in the opening of the substrate reflects the surface shape of the substrate and has a surface roughness equivalent to that of the substrate surface. Therefore, by using a substrate having a small surface roughness, it can be formed extremely flat. To be done. For example, in the case of a substrate material such as a silicon substrate or a fused silica substrate, the surface roughness is set to 1 n by applying ultra-flat polishing.
Although a value of mRa or less has been achieved, by applying such a flat substrate to the present invention, a silicon carbide thin film having good surface properties comparable to the above-mentioned surface roughness can be easily obtained. By providing an oxide film layer on such a silicon carbide thin film, it is possible to obtain a self-supporting silicon carbide thin film structure with an insulating film surrounding the substrate material.

【0010】基板の一部を除去するためには一般的な諸
方法を利用することができるが、炭化珪素自体が酸やア
ルカリに対して化学的に非常に高い耐性を有する材料で
あるという観点から、基板を酸やアルカリで溶解させる
湿式エッチング法が特に有効である。例えば前述の特開
平6−112107号公報には、自立した炭化珪素薄膜
を作製するために、下地基板として用いた珪素基板をフ
ッ酸と硝酸の混合溶液や水酸化ナトリウム溶液を用いて
除去する方法が開示されている。酸やアルカリは、下地
基板の材質により適宜選択すればよい。また、反応性イ
オンエッチングや、機械的切削などにより下地基板に開
口部を設ける方法もある。ただし、反応性イオンエッチ
ングはエッチング速度が湿式エツチングに比べ遅いため
基板全体を除去するには時間がかかりすぎる点や、プラ
ズマにより炭化珪素表面がダメージをうけるといった点
が問題になる。また、下地基板を機械的に切削除去する
方法では、切削面や炭化珪素表面に機械的なダメージが
発生する恐れがあることが問題である。しかし、下地基
板の除去に、湿式エッチング法とこれらの方法を適宜組
み合わせて用いることによりこれらの問題を緩和するこ
とは十分可能である。
Although various general methods can be used to remove a part of the substrate, silicon carbide itself is a material having a very high resistance to acid and alkali. Therefore, the wet etching method of dissolving the substrate with acid or alkali is particularly effective. For example, in the above-mentioned Japanese Patent Laid-Open No. 6-112107, a method of removing a silicon substrate used as a base substrate by using a mixed solution of hydrofluoric acid and nitric acid or a sodium hydroxide solution in order to manufacture a self-supporting silicon carbide thin film. Is disclosed. The acid or alkali may be appropriately selected depending on the material of the base substrate. There is also a method of providing an opening in the base substrate by reactive ion etching or mechanical cutting. However, since reactive ion etching has a slower etching rate than wet etching, it takes too much time to remove the entire substrate, and the surface of silicon carbide is damaged by plasma. Further, the method of mechanically cutting and removing the base substrate has a problem that mechanical damage may occur on the cutting surface or the silicon carbide surface. However, it is sufficiently possible to alleviate these problems by using a wet etching method and these methods in combination as appropriate for removing the base substrate.

【0011】前述の工程により露出せしめられた炭化珪
素薄膜を含む構造体全体あるいは一部に酸化膜層を付与
することにより、特に炭化珪素薄膜部分に機械的な強度
と電気的な絶縁性を付与することが可能となる。さらに
酸化膜は炭化珪素膜表面へのダストなどの付着を防止す
る保護膜としても活用できる。実質的な酸化膜の厚みと
しては、炭化珪素膜を気体酸素中に曝して酸化させた自
然酸化膜程度の厚みから酸化珪素を堆積させて形成する
数十μn以上まで目的により適宜設定することが可能で
ある。さらに、付与した酸化膜層のうち基板開口部側の
炭化珪素薄膜表面に形成した酸化膜層を犠牲酸化層とし
て、結晶欠陥等を移転させかつ不純物等と共に除去して
再度炭化珪素薄膜面を露出せしめることにより、清浄化
された炭化珪素薄膜表面を得ることが可能となる。上述
のように、本発明の作製方法を実施することにより、下
地基板と同程度に平坦な表面を有し、かつ膜部分の機械
的強度と電気的絶縁性が付与され、さらに極めて清浄な
表面を有する炭化珪素薄膜構造体が容易に得られるよう
になる。さらに、上記方法により得られる炭化珪素薄膜
構造体の周辺部の基板を除去して基板開口部の酸化膜層
付き炭化珪素薄膜の部分を分離させる方法によれば、酸
化膜層により機械的強度と電気的絶縁性が付与された炭
化珪素薄膜部分のみからなる炭化珪素薄膜構造体が容易
に得られるようになる。
By providing an oxide film layer on the whole or a part of the structure including the silicon carbide thin film exposed by the above-mentioned process, mechanical strength and electrical insulation are imparted particularly to the silicon carbide thin film portion. It becomes possible to do. Further, the oxide film can also be utilized as a protective film for preventing dust and the like from adhering to the surface of the silicon carbide film. The substantial thickness of the oxide film may be appropriately set depending on the purpose, from a thickness of about a natural oxide film obtained by exposing a silicon carbide film to gaseous oxygen to oxidize it to several tens of μn or more formed by depositing silicon oxide. It is possible. Further, of the applied oxide film layer, the oxide film layer formed on the surface of the silicon carbide thin film on the substrate opening side is used as a sacrificial oxide layer to transfer crystal defects and remove the impurities together with the silicon carbide thin film surface again. By making it possible, it becomes possible to obtain a cleaned silicon carbide thin film surface. As described above, by carrying out the manufacturing method of the present invention, it has a surface as flat as that of the base substrate, and the mechanical strength and electrical insulation of the film portion are imparted, and a very clean surface is obtained. Thus, the silicon carbide thin film structure having is easily obtained. Further, according to the method of removing the substrate in the peripheral portion of the silicon carbide thin film structure obtained by the above method to separate the portion of the silicon carbide thin film with the oxide film layer in the opening of the substrate, the oxide film layer provides mechanical strength and A silicon carbide thin film structure including only a silicon carbide thin film portion provided with electrical insulation can be easily obtained.

【0012】なお、上述の炭化珪素薄膜上への酸化膜層
の付与を、酸素を含む雰囲気中において酸化する方法、
あるいは酸化作用を有する溶液中にて湿式酸化する方
法、あるいは酸素を含む材料からなる膜を炭化珪素膜上
に形成した後に熱処理を施す方法などにより行うように
すれば、産業上利用できる工業的なプロセスにより所望
の炭化珪素薄膜構造体を作製することが可能である。ま
た、本酸化膜は特に犠牲酸化層として取り扱うことが可
能である。炭化珪素薄膜上に酸化層を形成すると、炭化
珪素薄膜形成時に基板と炭化珪素界面に発生した格子欠
陥、積層欠陥、不純物欠陥などの微小な結晶欠陥や、ダ
スト、コンタミネーションを酸化層に吸収させることが
できるので、基板開口部の炭化珪素薄膜上に形成させた
酸化層を除去して再度炭化珪素薄膜面を露出させるよう
にすると、酸化層と共にこれらの欠陥等を効果的に除去
することが期待できる。上記のような欠陥除去効果の高
い犠牲酸化層を形成するためには、欠陥部分の移転が起
こりやすい熱酸化方式を用いることが好ましい。酸化膜
層の除去方法には適当な方法が利用できるが、炭化珪素
が強い化学的耐久性を有するという特徴を利用して、5
%程度の希フッ酸溶液を用いる方法により、炭化珪素薄
膜表面にダメージを与えることなく容易に酸化層を除去
することができる。上記方法によると、極めて平坦でか
つ欠陥の少ない炭化珪素薄膜表面を有する炭化珪素薄膜
基板が容易に得られるようになる。
A method of oxidizing the above-mentioned oxide film layer on the silicon carbide thin film in an atmosphere containing oxygen,
Alternatively, a method of performing wet oxidation in a solution having an oxidizing action, or a method of performing heat treatment after forming a film made of a material containing oxygen on the silicon carbide film is industrially applicable industrially. A desired silicon carbide thin film structure can be produced by the process. Further, the present oxide film can be handled especially as a sacrificial oxide layer. When an oxide layer is formed on a silicon carbide thin film, minute crystal defects such as lattice defects, stacking faults, and impurity defects generated at the interface between the substrate and silicon carbide during the formation of the silicon carbide thin film, and dust and contamination are absorbed by the oxide layer. Therefore, by removing the oxide layer formed on the silicon carbide thin film in the opening of the substrate and exposing the silicon carbide thin film surface again, these defects and the like can be effectively removed together with the oxide layer. Can be expected. In order to form the sacrificial oxide layer having a high effect of removing defects as described above, it is preferable to use a thermal oxidation method in which transfer of defective portions easily occurs. Although an appropriate method can be used for removing the oxide film layer, the characteristic of silicon carbide having strong chemical durability is used.
%, The oxide layer can be easily removed without damaging the surface of the silicon carbide thin film. According to the above method, a silicon carbide thin film substrate having an extremely flat silicon carbide thin film surface with few defects can be easily obtained.

【0013】さらに、炭化珪素薄膜の堆積に用いる下地
基板を珪素基板とし、その上に立方晶炭化珪素薄膜を堆
積するようにすると、半導体特性に優れ、極めて平坦な
表面を有し、かつ電気的絶縁体上に炭化珪素薄膜が形成
された構造を持つ、炭化珪素基板が容易に供給できるよ
うになる。このようにして、各種半導体デバイスあるい
はセンサー材料として好適な炭化珪素基板を容易に得る
ことが可能となる。また、上記のような炭化珪素薄膜部
分の作製方法として化学気相堆積法を用いて、下地基板
に珪素基板を用いたヘテロエピタキシャル成長をおこな
うことにより、大面積で高品質な単結晶炭化珪素薄膜を
高い量産性の下で作製することができる。このように、
化学気相堆積法を用いることにより、容易にかつ高い生
産性をもって各種半導体デバイスやセンサー材料として
好適な炭化珪素基板を得ることが可能となる。
Further, when the underlying substrate used for depositing the silicon carbide thin film is a silicon substrate and the cubic silicon carbide thin film is deposited on the silicon substrate, it has excellent semiconductor characteristics, has an extremely flat surface, and has an electrical property. A silicon carbide substrate having a structure in which a silicon carbide thin film is formed on an insulator can be easily supplied. In this way, it becomes possible to easily obtain a silicon carbide substrate suitable for various semiconductor devices or sensor materials. In addition, a high-quality single crystal silicon carbide thin film having a large area is obtained by performing a heteroepitaxial growth using a silicon substrate as a base substrate by using a chemical vapor deposition method as a method of manufacturing the silicon carbide thin film portion as described above. It can be manufactured under high mass productivity. in this way,
By using the chemical vapor deposition method, a silicon carbide substrate suitable for various semiconductor devices and sensor materials can be easily obtained with high productivity.

【0014】[0014]

【発明の実施の形態】以下、図面によって本発明に係る
炭化珪素薄膜構造体およびその作製方法を詳細に説明す
る。図1は本発明の炭化珪素薄膜構造体の作製方法に用
いる装置の概略図、図2は本発明の第1実施例にかかる
炭化珪素薄膜構造体の作製方法に関する工程図、図3は
本発明の第2実施例にかかる炭化珪素薄膜構造体の作製
方法に関する工程図、図4は本発明の第3実施例にかか
る炭化珪素薄膜構造体の作製方法に関する工程図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A silicon carbide thin film structure and a method for manufacturing the same according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram of an apparatus used in the method for producing a silicon carbide thin film structure of the present invention, FIG. 2 is a process diagram relating to the method for producing a silicon carbide thin film structure according to the first embodiment of the present invention, and FIG. 4A to 4D are process diagrams relating to the method for producing a silicon carbide thin film structure according to the second embodiment of the present invention, and FIG.

【0015】[0015]

【実施例1】本実施例では、炭化珪素薄膜堆積用基板と
して、単結晶珪素基板(Si(100)面、直径4イン
チ、厚さ0.5mm、表面平坦度0.9nmRa)を用
い炭化珪素薄膜を堆積した。炭化珪素薄膜の珪素基板上
への堆積には、ホットウォール型の減圧気相成長法(以
下LPCVDと記述する)を用いた。図1にLPCVD
に使用する装置の概略を示す。図中、12は成長炉であ
る。成長炉12内には材料をセットするボート13が配
設されており、成長炉12の周囲には炉内の温度を制御
するためのヒータ15が備えられている。成長炉12の
一端には原料ガス等を供給する配管が接続され、他端に
は真空排気装置と繋がる真空配管が接続されている。基
板である珪素ウェハー11はボート13上に立てて配置
した。なお、本実施例においては炭化珪素薄膜の堆積前
にアセチレンと水素の雰囲気中で珪素基板の表面炭化を
おこなった。炭化珪素薄膜堆積はジクロルシランとアセ
チレンを原料ガスとし水素をキャリアガスとして行い、
珪素基板11の炭化した表面上に炭化珪素薄膜14を形
成した。表面炭化の条件および炭化珪素薄膜堆積の条件
を表1に示す。
Example 1 In this example, a single crystal silicon substrate (Si (100) surface, diameter 4 inches, thickness 0.5 mm, surface flatness 0.9 nm Ra) was used as a silicon carbide thin film deposition substrate. A thin film was deposited. To deposit the silicon carbide thin film on the silicon substrate, a hot wall type low pressure vapor deposition method (hereinafter referred to as LPCVD) was used. LPCVD in Figure 1
The outline of the apparatus used for is shown. In the figure, 12 is a growth reactor. A boat 13 for setting materials is arranged in the growth furnace 12, and a heater 15 for controlling the temperature inside the growth furnace 12 is provided around the growth furnace 12. A pipe for supplying a raw material gas or the like is connected to one end of the growth furnace 12, and a vacuum pipe connected to a vacuum exhaust device is connected to the other end. The silicon wafer 11, which is a substrate, was placed upright on the boat 13. In this example, the surface of the silicon substrate was carbonized in an atmosphere of acetylene and hydrogen before depositing the silicon carbide thin film. The silicon carbide thin film is deposited by using dichlorosilane and acetylene as source gases and hydrogen as a carrier gas,
Silicon carbide thin film 14 was formed on the carbonized surface of silicon substrate 11. Table 1 shows the conditions for surface carbonization and the conditions for depositing a silicon carbide thin film.

【0016】[0016]

【表1】 [Table 1]

【0017】図2は本発明の実施例1にかかる炭化珪素
薄膜構造体の作製方法に関する工程図である。以下作製
工程について図をおって説明する。図2(a)は表1に
示した条件により珪素基板の表面上に炭化珪素薄膜を形
成した構造を表す。珪素基板21の炭化した表面上に約
1μm厚の炭化珪素薄膜22を形成する。得られた炭化
珪素薄膜22は、反射型高速電子線回折(RHEED)
パターンの解析により、単結晶炭化珪素であることを確
認した。次に、作製した炭化珪素薄膜堆積基板表面の炭
化珪素薄膜22のいずれか一方の面22aまたは22b
を任意の面積で除去する。これは下地珪素基板21を除
去するためのものであり、同時に下地基板をエッチング
するためのマスクとして作用する。炭化珪素薄膜の除去
は、CF4と02の混合ガス(混合比は容量で4:1)を
用いた反応性イオンエッチングにておこない、図2
(b)に示すように5cmX5cmの大きさのウィンド
ウ23を作製した。
FIG. 2 is a process chart relating to a method of manufacturing a silicon carbide thin film structure according to the first embodiment of the present invention. The manufacturing process will be described below with reference to the drawings. FIG. 2A shows a structure in which a silicon carbide thin film is formed on the surface of a silicon substrate under the conditions shown in Table 1. A silicon carbide thin film 22 having a thickness of about 1 μm is formed on the carbonized surface of silicon substrate 21. The obtained silicon carbide thin film 22 is reflected by high-speed electron beam diffraction (RHEED).
By pattern analysis, it was confirmed to be single crystal silicon carbide. Next, either surface 22a or 22b of the silicon carbide thin film 22 on the surface of the produced silicon carbide thin film deposition substrate
Are removed in an arbitrary area. This is for removing the underlying silicon substrate 21, and at the same time acts as a mask for etching the underlying substrate. The silicon carbide thin film is removed by reactive ion etching using a mixed gas of CF 4 and O 2 (mixing ratio is 4: 1 by volume).
As shown in (b), a window 23 having a size of 5 cm × 5 cm was prepared.

【0018】この後、炭化珪素ウィンドウ部に露出した
珪素基板21をフッ酸と硝酸の混合液(混合比は容量で
8:1)を用いて溶解除去し、図2(c)に示すような
基板開口部23において炭化珪素薄膜22が自立した構
造を作製した。この後、熱酸化炉における水蒸気酸化
(酸化温度=1000℃、水蒸気流量=2ml/分)に
より、図2(d)に示す、構造体の全面に熱酸化膜24
を形成した酸化膜付き構造を得た。そして最終的に5%
希フッ酸を用いて基板開口部23の炭化珪素薄膜22上
に付与した酸化膜24を除去することにより、図2
(e)に示すような、酸化膜付き炭化珪素薄膜構造体2
0を得ることができた。
After that, the silicon substrate 21 exposed in the silicon carbide window portion is dissolved and removed using a mixed solution of hydrofluoric acid and nitric acid (mixing ratio is 8: 1 by volume), as shown in FIG. 2 (c). A structure was produced in which the silicon carbide thin film 22 was self-supporting in the substrate opening 23. Thereafter, by steam oxidation (oxidation temperature = 1000 ° C., steam flow rate = 2 ml / min) in a thermal oxidation furnace, a thermal oxide film 24 is formed on the entire surface of the structure shown in FIG. 2D.
A structure with an oxide film was formed. And finally 5%
By removing the oxide film 24 provided on the silicon carbide thin film 22 in the substrate opening 23 by using dilute hydrofluoric acid, as shown in FIG.
Silicon carbide thin film structure 2 with an oxide film as shown in (e)
I got 0.

【0019】作製した薄膜構造体20の炭化珪素22表
面露出部22cの表面粗さを走査型トンネル顕微鏡ST
H(Scanning Tunneling Microscope)を用いて測定し
たところ、1.2nmRaという極めて良好な平坦性を
示した。ちなみに、図2(a)に示した炭化珪素薄膜堆
積基板表面(22a表面)の表面粗さは4.5nmRa
であり、下地基板である珪素基板21の表面粗さに比
べ、本実施例で作製した炭化珪素薄膜22の表面が遜色
のない値を有することが確認できた。また、酸化膜24
の付与により機械強度の点でも炭化珪素薄膜単体の状態
に比べて改善されていることが膜の破壊試験により確認
できた。一方、炭化珪素薄膜面22cの面抵抗率を測定
した結果、0.05Ω・cmであったのに対し、炭化珪
素薄膜表面側22cとそれを支持する酸化膜24との問
の抵抗率はG(ギガ)Ω・cm以上の値を示し、炭化珪
素薄膜22が電気的に絶縁された構造にあることを確認
した。さらに、得られた炭化珪素薄膜表面22c部分を
ESCA(Electron Spectroscopy for ChemicaI Ana1y
sis)で分析した結果、炭素と珪素以外に顕著な信号を
もたらす元素は観測されなかった。上記工程はいずれも
量産化技術として確立が容易であり、したがって、本発
明を実施することにより、極めて良好な表面平坦性を有
し、機械的強度が改善され、さらに絶縁膜の付与された
炭化珪素薄膜構造体を供給することができる。
The surface roughness of the exposed surface 22c of the silicon carbide 22 of the manufactured thin film structure 20 was measured with a scanning tunneling microscope ST.
When measured using H (Scanning Tunneling Microscope), it showed extremely good flatness of 1.2 nmRa. Incidentally, the surface roughness of the silicon carbide thin film deposition substrate surface (22a surface) shown in FIG. 2 (a) is 4.5 nm Ra.
Therefore, it was confirmed that the surface of the silicon carbide thin film 22 produced in this example had a value comparable to the surface roughness of the silicon substrate 21 as the base substrate. In addition, the oxide film 24
It has been confirmed by the film breaking test that the mechanical strength of the silicon carbide thin film is improved compared with the case of the silicon carbide thin film alone. On the other hand, as a result of measuring the surface resistivity of the silicon carbide thin film surface 22c, it was 0.05 Ω · cm, whereas the resistivity between the silicon carbide thin film surface side 22c and the oxide film 24 supporting it was G. (Giga) Ω · cm or more was confirmed, and it was confirmed that the silicon carbide thin film 22 had an electrically insulated structure. Further, the surface 22c of the obtained silicon carbide thin film is subjected to ESCA (Electron Spectroscopy for ChemicaI Ana1y).
As a result of the analysis by sis), no elements other than carbon and silicon which gave a remarkable signal were observed. Any of the above steps can be easily established as a mass production technique, and therefore, by carrying out the present invention, it has extremely good surface flatness, mechanical strength is improved, and carbonization with an insulating film is performed. A silicon thin film structure can be provided.

【0020】[0020]

【実施例2】本実施例では、炭化珪素薄膜堆積用基板と
して、単結晶珪素基板(Si(100)面、直径約10
0mm(4インチ)、厚さ0.5mm、表面平坦度0.
9nmRa)を用いた。本実施例においても実施例1と
同様にLPCVDを用いて炭化珪素薄膜の堆積をおこな
ったが、堆積の条件を変えることで多結晶炭化珪素薄膜
を得た。多結晶炭化珪素薄膜の作製条件を表2に示す。
Example 2 In this example, as a substrate for depositing a silicon carbide thin film, a single crystal silicon substrate (Si (100) plane, diameter of about 10) was used.
0 mm (4 inches), thickness 0.5 mm, surface flatness 0.
9 nm Ra) was used. In this example as well, a silicon carbide thin film was deposited using LPCVD as in Example 1, but a polycrystalline silicon carbide thin film was obtained by changing the deposition conditions. Table 2 shows the conditions for producing the polycrystalline silicon carbide thin film.

【0021】[0021]

【表2】 [Table 2]

【0022】図3は実施例2にかかる炭化珪素薄膜構造
体の作製方法に関する工程図である。以下作製工程につ
いて図をおって説明する。図3(a)は表2に示した条
件により珪素基板の表面上に炭化珪素薄膜を形成した構
造を表す。珪素基板31の上に約5μm厚の炭化珪素薄
膜32を形成した。得られた炭化珪素薄膜32は、反射
型高速電子線回折(RHEED)パターンの解析によ
り、多結晶炭化珪素であることを確認した。また表面粗
さは28nmRaであった。作製した炭化珪素薄膜堆積
基板について実施例1と同様の工程を施すことにより、
図3(b)に示すような基板開口部33において炭化珪
素薄膜32が自立した構造を作製した。図3(c)に示
す酸化膜34は、硫酸と過酸化水素の混合液(混合比は
容量で3:1)を用いて約120°Cで120分間湿式
酸化することにより形成した。
FIG. 3 is a process diagram relating to a method of manufacturing a silicon carbide thin film structure according to the second embodiment. The manufacturing process will be described below with reference to the drawings. FIG. 3A shows a structure in which a silicon carbide thin film is formed on the surface of a silicon substrate under the conditions shown in Table 2. A silicon carbide thin film 32 having a thickness of about 5 μm was formed on a silicon substrate 31. The obtained silicon carbide thin film 32 was confirmed to be polycrystalline silicon carbide by analysis of a reflection type high-speed electron beam diffraction (RHEED) pattern. The surface roughness was 28 nmRa. By performing the same steps as in Example 1 on the produced silicon carbide thin film deposition substrate,
A structure in which the silicon carbide thin film 32 was self-standing in the substrate opening 33 as shown in FIG. 3B was produced. The oxide film 34 shown in FIG. 3C was formed by wet oxidation for 120 minutes at about 120 ° C. using a mixed solution of sulfuric acid and hydrogen peroxide (mixing ratio is 3: 1 by volume).

【0023】本実施例では、さらに図3(d)に示すよ
うに、石英夕一ゲットを使用したArガススパッタによ
るRFマグネトロンスパッタ法を用いて、上記で得られ
た酸化膜付き構造体の下面に新たに酸化珪素スパッタ膜
35を約1μm付与して酸化膜を補強した。続く工程で
は実施例1と同様にして、得られた構造体の基板開口部
33内の酸化膜34を除去することで、図3(e)に示
すような炭化珪素薄膜表面32cが露出した構造の基板
を得た。そして最終的に、基板開口部33の炭化珪素薄
膜32をこれに積層した酸化膜34および酸化珪素スパ
ッタ膜35と一緒に機械的に分離して図3(f)に示す
ような炭化珪素薄膜構造体30を得た。
In the present embodiment, as shown in FIG. 3D, the lower surface of the structure with an oxide film obtained by using the RF magnetron sputtering method by Ar gas sputtering using a quartz counter get. A silicon oxide sputtered film 35 was newly provided to about 1 μm to reinforce the oxide film. In the subsequent step, the structure in which the silicon carbide thin film surface 32c as shown in FIG. 3E is exposed by removing the oxide film 34 in the substrate opening 33 of the obtained structure in the same manner as in Example 1. The substrate of was obtained. Then, finally, the silicon carbide thin film 32 in the substrate opening 33 is mechanically separated together with the oxide film 34 and the silicon oxide sputtered film 35 laminated thereon to form a silicon carbide thin film structure as shown in FIG. I got a body 30.

【0024】得られた炭化珪素薄膜構造体30を評価し
たところ、炭化珪素表面粗さは1.3nmRaであり良
好な平坦性を示した。また、表面清浄性および下地酸化
膜34と35による絶縁性ともに実施例1と同様に良好
な炭化珪素薄膜構造体が得られた。
When the obtained silicon carbide thin film structure 30 was evaluated, the surface roughness of silicon carbide was 1.3 nmRa, which showed good flatness. In addition, a silicon carbide thin film structure having good surface cleanability and insulating properties due to the underlying oxide films 34 and 35 was obtained as in Example 1.

【0025】[0025]

【実施例3】図4は実施例3にかかる炭化珪素薄膜構造
体の作製方法に関する工程図である。以下作製工程につ
いて図をおって説明する。実施例3では、炭化珪素薄膜
堆積用基板として、直径約76mm(3インチ)、厚さ
0.8mm、表面平坦度0.8nmRaの石英基板を用
いた。本実施例では炭化珪素焼結体をターゲットに、A
rガスをスパッタガスに用いたRFマグネトロンスパッ
タを行い、図4(a)に示すように石英基板41上に膜
厚約3μmのアモルファス炭化珪素薄膜42を得た。な
お、得られたアモルファス炭化珪素薄膜42の表面粗さ
は43nmRaであった。次いで図4(b)に示すよう
に、作製した炭化珪素薄膜堆積基板の石英基板41にフ
ッ酸と硝酸の混合溶液によるエッチングを用いて20m
m×20mm角の開口部43を設けた。さらに、石英を
夕ーゲットとしたArガススパッタによるRFマグネト
ロンスパツタ法を用いて、図4(c)に示すように堆積
基板両面に酸化珪素からなる酸化膜44a、44bを約
2μm厚で付与した。さらに基板構造全体をAr雰囲気
中に置き650℃で30分間アニーリングした後、5%
希フッ酸にて開口部43側の酸化膜部44aを完全に除
去することにより、図4(d)に示すような酸化膜付き
炭化珪素薄膜構造体40が容易に作製できた。得られた
薄膜構造体40は実施例1および2の結果と同様に平坦
性と膜強度に優れていた。
[Embodiment 3] FIG. 4 is a process diagram relating to a method of manufacturing a silicon carbide thin film structure according to Embodiment 3. The manufacturing process will be described below with reference to the drawings. In Example 3, a quartz substrate having a diameter of about 76 mm (3 inches), a thickness of 0.8 mm, and a surface flatness of 0.8 nmRa was used as the silicon carbide thin film deposition substrate. In this embodiment, the target is a silicon carbide sintered body, and
RF magnetron sputtering using r gas as a sputtering gas was performed to obtain an amorphous silicon carbide thin film 42 having a film thickness of about 3 μm on a quartz substrate 41 as shown in FIG. The surface roughness of the obtained amorphous silicon carbide thin film 42 was 43 nmRa. Next, as shown in FIG. 4 (b), the quartz substrate 41 of the silicon carbide thin film deposition substrate thus prepared was etched to 20 m by etching with a mixed solution of hydrofluoric acid and nitric acid.
An opening 43 of m × 20 mm square was provided. Further, as shown in FIG. 4 (c), oxide films 44a and 44b made of silicon oxide having a thickness of about 2 μm are formed on both surfaces of the deposition substrate by using an RF magnetron sputtering method using Ar gas sputtering with quartz as the target. . Further, the whole substrate structure is placed in an Ar atmosphere and annealed at 650 ° C. for 30 minutes, then 5%
By completely removing the oxide film portion 44a on the opening 43 side with dilute hydrofluoric acid, the silicon carbide thin film structure 40 with an oxide film as shown in FIG. 4D could be easily manufactured. The obtained thin film structure 40 was excellent in flatness and film strength as in the results of Examples 1 and 2.

【0026】[0026]

【発明の効果】以上詳述したように、本発明の炭化珪素
薄膜構造体作製方法は、平滑な基板上に炭化珪素薄膜を
形成した後、基板部分を除去して炭化珪素薄膜上に酸化
膜を付与し、さらに基板に面していた部分の酸化膜を除
去することにより、炭化珪素薄膜構造体を作製する。従
って、炭化珪素薄膜の基板との界面側が利用に供される
ようになる上、犠牲酸化膜の働きで薄膜表面の欠陥等が
排除されるから、高い表面平坦性を有しながら炭化珪素
薄膜が絶縁体上に形成されている薄膜構造体、あるいは
絶縁体が付与された炭化珪素薄膜構造体であって、膜の
機械的強度の向上と表面清浄化処理がされた炭化珪素薄
膜基板を工業的に提供することが可能となった。
As described above in detail, according to the method of manufacturing a silicon carbide thin film structure of the present invention, after forming a silicon carbide thin film on a smooth substrate, the substrate portion is removed to form an oxide film on the silicon carbide thin film. Is added, and the oxide film in the portion facing the substrate is removed to produce a silicon carbide thin film structure. Therefore, the interface side of the silicon carbide thin film with the substrate becomes available, and defects of the surface of the thin film are eliminated by the function of the sacrificial oxide film, so that the silicon carbide thin film has high surface flatness. A silicon carbide thin film structure formed on an insulator or a silicon carbide thin film structure to which an insulator is applied, which has a mechanical strength of the film improved and a surface-cleaned silicon carbide thin film substrate is industrially manufactured. Can be provided to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭化珪素薄膜構造体の作製方法に用い
る装置の概略図である。
FIG. 1 is a schematic view of an apparatus used in a method for producing a silicon carbide thin film structure of the present invention.

【図2】本発明の第1実施例にかかる炭化珪素薄膜構造
体の作製方法に関する工程図である。
FIG. 2 is a process drawing related to the method for manufacturing the silicon carbide thin film structure according to the first example of the present invention.

【図3】本発明の第2実施例にかかる炭化珪素薄膜構造
体の作製方法に関する工程図である。
FIG. 3 is a process drawing related to the method for manufacturing the silicon carbide thin film structure according to the second embodiment of the present invention.

【図4】本発明の第3実施例にかかる炭化珪素薄膜構造
体の作製方法に関する工程図である。
FIG. 4 is a process drawing related to the method for manufacturing the silicon carbide thin film structure according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 珪素基板 12 成長炉 13 ボート 14 炭化珪素薄膜 15 ヒータ 20、30、40 炭化珪素薄膜構造体 21、31、41 珪素基板 22、32、42 炭化珪素薄膜 23、33、43 基板開口部 24、34、44 酸化膜 35 酸化珪素スパッタ膜 41 石英基板 11 Silicon Substrate 12 Growth Furnace 13 Boat 14 Silicon Carbide Thin Film 15 Heater 20, 30, 40 Silicon Carbide Thin Film Structure 21, 31, 41 Silicon Substrate 22, 32, 42 Silicon Carbide Thin Film 23, 33, 43 Substrate Opening 24, 34 , 44 Oxide film 35 Silicon oxide sputter film 41 Quartz substrate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に炭化珪素薄膜を堆積させ、基板
の一部を除去して開口部を設け、基板に面している炭化
珪素薄膜界面を露出させ、少なくとも露出した炭化珪素
薄膜の一部を覆う酸化膜層を付与し、該酸化膜層のうち
基板開口部側の炭化珪素薄膜上に形成した酸化膜層部分
を除去して該炭化珪素薄膜を露出させることを特徴とし
た炭化珪素薄膜構造体の作製方法。
1. A silicon carbide thin film is deposited on a substrate, a part of the substrate is removed to provide an opening, and a silicon carbide thin film interface facing the substrate is exposed, and at least one exposed silicon carbide thin film is formed. A silicon carbide thin film is formed by providing an oxide film layer covering the portion, and removing the oxide film layer portion formed on the silicon carbide thin film on the substrate opening side of the oxide film layer to expose the silicon carbide thin film. Method for manufacturing thin film structure.
【請求項2】 基板上に炭化珪素薄膜を堆積させ、基板
の一部を除去して開口部を設け、基板に面している炭化
珪素薄膜界面を露出させ、少なくとも露出した炭化珪素
薄膜の一部を覆う酸化膜層を付与し、該酸化膜層のうち
基板開口部側の炭化珪素薄膜上に形成した酸化膜層部分
を除去して該炭化珪素薄膜を露出させ、前記基板開口部
の酸化膜層付き炭化珪素薄膜を該基板から分離させるこ
とを特徴とする炭化珪素薄膜構造体の作製方法。
2. A silicon carbide thin film is deposited on a substrate, a part of the substrate is removed to form an opening, and a silicon carbide thin film interface facing the substrate is exposed, and at least one exposed silicon carbide thin film is formed. A portion of the oxide film layer formed on the silicon carbide thin film on the substrate opening side of the oxide film layer is removed to expose the silicon carbide thin film to oxidize the substrate opening. A method for manufacturing a silicon carbide thin film structure, comprising separating a silicon carbide thin film with a film layer from the substrate.
【請求項3】 前記炭化珪素薄膜上への酸化膜層の付与
を、酸素を含む雰囲気中において酸化する方法、あるい
は酸化作用を有する溶液中にて湿式酸化する方法、ある
いは酸素を含む材料からなる膜を炭化珪素膜上に形成し
た後に熱処理を施す方法のいずれかにより行うことを特
徴とした請求項1および2記載の炭化珪素薄膜構造体の
作製方法。
3. A method of applying an oxide film layer onto the silicon carbide thin film, wherein the method is oxidizing in an atmosphere containing oxygen, or is wet oxidizing in a solution having an oxidizing action, or is made of a material containing oxygen. The method for producing a silicon carbide thin film structure according to claim 1 or 2, wherein the method is performed by any one of a method of performing a heat treatment after forming the film on the silicon carbide film.
【請求項4】 前記炭化珪素薄膜を堆積する基板が珪素
基板であって、炭化珪素薄膜が立方晶炭化珪素薄膜であ
ることを特徴とした請求項1ないし3のいずれかに記載
の炭化珪素薄膜構造体の作製方法。
4. The silicon carbide thin film according to claim 1, wherein the substrate on which the silicon carbide thin film is deposited is a silicon substrate and the silicon carbide thin film is a cubic silicon carbide thin film. A method for manufacturing a structure.
【請求項5】 前記炭化珪素薄膜の作製を、化学気相堆
積法により行うことを特徴とした請求項1ないし4のい
ずれかに記載の炭化珪素薄膜構造体の作製方法。
5. The method for producing a silicon carbide thin film structure according to claim 1, wherein the silicon carbide thin film is produced by a chemical vapor deposition method.
【請求項6】 炭化珪素薄膜の裏面に酸化膜層を重層さ
せた炭化珪素薄膜構造体であって、該炭化珪素薄膜の表
面が炭化珪素薄膜を堆積させた基板を除去して露出させ
た部分であることを特徴とした炭化珪素薄膜構造体。
6. A silicon carbide thin film structure in which an oxide film layer is laminated on the back surface of a silicon carbide thin film, wherein the surface of the silicon carbide thin film is exposed by removing the substrate on which the silicon carbide thin film is deposited. A silicon carbide thin film structure characterized in that
【請求項7】 請求項1ないし5のいずれかに記載の方
法により作製されたことを特徴とした炭化珪素薄膜構造
体。
7. A silicon carbide thin film structure manufactured by the method according to any one of claims 1 to 5.
JP15008596A 1996-05-21 1996-05-21 Silicon carbide thin coating structural body and its production Pending JPH09310170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15008596A JPH09310170A (en) 1996-05-21 1996-05-21 Silicon carbide thin coating structural body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008596A JPH09310170A (en) 1996-05-21 1996-05-21 Silicon carbide thin coating structural body and its production

Publications (1)

Publication Number Publication Date
JPH09310170A true JPH09310170A (en) 1997-12-02

Family

ID=15489192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008596A Pending JPH09310170A (en) 1996-05-21 1996-05-21 Silicon carbide thin coating structural body and its production

Country Status (1)

Country Link
JP (1) JPH09310170A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037708A1 (en) * 1998-12-22 2000-06-29 Bridgestone Corporation Laminate structure and production method therefor
JP2003144906A (en) * 2001-11-16 2003-05-20 National Institute Of Advanced Industrial & Technology Method for removing carbonaceous substance bonded to wall surface
JP2008511435A (en) * 2004-09-03 2008-04-17 ジェン−エックス パワー コーポレイション Electrochemical device
JP2015013352A (en) * 2013-07-08 2015-01-22 日本電信電話株式会社 Method of making fine mechanical structure
WO2017141835A1 (en) * 2016-02-19 2017-08-24 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and method for manufacturing compound semiconductor substrate
JP2017150064A (en) * 2016-02-19 2017-08-31 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and production method of compound semiconductor substrate
WO2017213264A1 (en) 2016-06-10 2017-12-14 エア・ウォーター株式会社 Method for producing substrate
JP2018035014A (en) * 2016-08-29 2018-03-08 エア・ウォーター株式会社 Production method of pellicle
JP2018115094A (en) * 2017-01-20 2018-07-26 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and production method of compound semiconductor substrate
WO2019031361A1 (en) 2017-08-08 2019-02-14 エア・ウォーター株式会社 Pellicle and method for producing pellicle
TWI721107B (en) * 2016-02-19 2021-03-11 日商愛沃特股份有限公司 Compound semiconductor substrate, film film and manufacturing method of compound semiconductor substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037708A1 (en) * 1998-12-22 2000-06-29 Bridgestone Corporation Laminate structure and production method therefor
US6746776B1 (en) 1998-12-22 2004-06-08 Bridgestone Corporation Laminated structure, and manufacturing method thereof
JP2003144906A (en) * 2001-11-16 2003-05-20 National Institute Of Advanced Industrial & Technology Method for removing carbonaceous substance bonded to wall surface
JP2008511435A (en) * 2004-09-03 2008-04-17 ジェン−エックス パワー コーポレイション Electrochemical device
JP2015013352A (en) * 2013-07-08 2015-01-22 日本電信電話株式会社 Method of making fine mechanical structure
CN108699687A (en) * 2016-02-19 2018-10-23 爱沃特株式会社 The manufacturing method of compound semiconductor substrate, pellicle and compound semiconductor substrate
JP2017150064A (en) * 2016-02-19 2017-08-31 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and production method of compound semiconductor substrate
US11626283B2 (en) 2016-02-19 2023-04-11 Air Water Inc. Compound semiconductor substrate, a pellicle film, and a method for manufacturing a compound semiconductor substrate
TWI721107B (en) * 2016-02-19 2021-03-11 日商愛沃特股份有限公司 Compound semiconductor substrate, film film and manufacturing method of compound semiconductor substrate
WO2017141835A1 (en) * 2016-02-19 2017-08-24 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and method for manufacturing compound semiconductor substrate
CN109196145A (en) * 2016-06-10 2019-01-11 爱沃特株式会社 The manufacturing method of substrate
KR20190018472A (en) 2016-06-10 2019-02-22 에어 워터 가부시키가이샤 Method of manufacturing substrate
WO2017213264A1 (en) 2016-06-10 2017-12-14 エア・ウォーター株式会社 Method for producing substrate
EP3470555A4 (en) * 2016-06-10 2019-12-25 Air Water Inc. Method for producing substrate
US10563307B2 (en) 2016-06-10 2020-02-18 Air Water Inc. Method for manufacturing substrate
JP2018035014A (en) * 2016-08-29 2018-03-08 エア・ウォーター株式会社 Production method of pellicle
KR20190045261A (en) * 2016-08-29 2019-05-02 에어 워터 가부시키가이샤 Manufacturing method of pellicle
US11119402B2 (en) 2016-08-29 2021-09-14 Air Water Inc. Method for manufacturing of pellicle
JP2018115094A (en) * 2017-01-20 2018-07-26 エア・ウォーター株式会社 Compound semiconductor substrate, pellicle film, and production method of compound semiconductor substrate
WO2019031361A1 (en) 2017-08-08 2019-02-14 エア・ウォーター株式会社 Pellicle and method for producing pellicle
CN110998436A (en) * 2017-08-08 2020-04-10 爱沃特株式会社 Skin layer and method for producing skin layer
KR20200033337A (en) 2017-08-08 2020-03-27 에어 워터 가부시키가이샤 Pelicle and a method of manufacturing the pellicle
US11231647B2 (en) 2017-08-08 2022-01-25 Air Water Inc. Pellicle and method for manufacturing pellicle
JP2019032444A (en) * 2017-08-08 2019-02-28 エア・ウォーター株式会社 Pellicle and method for producing pellicle
CN110998436B (en) * 2017-08-08 2023-10-27 爱沃特株式会社 Cortex and method for producing cortex

Similar Documents

Publication Publication Date Title
KR0177514B1 (en) Method for the growth of industrial crystals
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
JPS58130517A (en) Manufacture of single crystal thin film
JPH09312245A (en) Thin-film-deposited substrate and manufacture thereof
EP1130135B1 (en) Silicon carbide film and method for manufacturing the same
JP2000357663A (en) Method of manufacturing iii nitride base compound semiconductor substrate
JPH09310170A (en) Silicon carbide thin coating structural body and its production
JPS6194318A (en) Semiconductor substrate and manufacture thereof
JP2009209028A (en) Process of manufacturing diamond polycrystal substrate and diamond polycrystal substrate
US8222153B2 (en) Textured single crystal
JPH0556851B2 (en)
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
JPH02143415A (en) Formation of single crystal silicon film
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
CN108447772A (en) A kind of manufacturing method of COOLMOS silicon epitaxial wafers
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JP3171463B2 (en) Manufacturing method of semiconductor substrate
JPH02105517A (en) Manufacture of semiconductor device
JP2003197547A (en) Method of manufacturing silicon epitaxial wafer
JP2588377B2 (en) Semiconductor wafer holder and method of manufacturing the same
JP2000306915A (en) Manufacture of silicon wafer
JP2683005B2 (en) Manufacturing method of dielectric isolation substrate
JPS59110119A (en) Surface processing for semiconductor layer
JPH082984A (en) Production of aluminum nitride thin-film substrate
JPS62119939A (en) Insulating substrate for semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A02