JP2009209028A - Process of manufacturing diamond polycrystal substrate and diamond polycrystal substrate - Google Patents

Process of manufacturing diamond polycrystal substrate and diamond polycrystal substrate Download PDF

Info

Publication number
JP2009209028A
JP2009209028A JP2008094454A JP2008094454A JP2009209028A JP 2009209028 A JP2009209028 A JP 2009209028A JP 2008094454 A JP2008094454 A JP 2008094454A JP 2008094454 A JP2008094454 A JP 2008094454A JP 2009209028 A JP2009209028 A JP 2009209028A
Authority
JP
Japan
Prior art keywords
diamond
substrate
polycrystalline
producing
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094454A
Other languages
Japanese (ja)
Other versions
JP5181785B2 (en
Inventor
Kiichi Meguro
貴一 目黒
Takahiro Imai
貴浩 今井
Yuichiro Seki
裕一郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008094454A priority Critical patent/JP5181785B2/en
Publication of JP2009209028A publication Critical patent/JP2009209028A/en
Application granted granted Critical
Publication of JP5181785B2 publication Critical patent/JP5181785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond polycrystal substrate which has a high quality and a large area and is obtained by gas phase synthesis without requiring a continuous operation and to provide its manufacturing process. <P>SOLUTION: The diamond polycrystal substrate is obtained by making available a film-forming seed substrate different from diamond, forming diamond polycrystals with a thickness of less than 500 μm by a gas phase synthesis method from the seed substrate, separating the diamond polycrystals from the seed substrate to obtain a diamond polycrystal self-supporting substrate, further growing diamond polycrystals on the diamond polycrystal self-supporting substrate to obtain a diamond polycrystal substrate with a thickness of not less than 500 μm and polishing both sides of the substrate. The diamond polycrystal substrate obtained has a transmittance of light with a wavelength of 400 nm of not less than 35%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はダイヤモンド多結晶基板の製造方法及びダイヤモンド多結晶基板に関し、特に、紫外から赤外光、マイクロ波、高周波用の窓や、そのミラー、レンズ等の光学部品に適用可能な、大面積で高品質なダイヤモンド多結晶基板の製造法、及びダイヤモンド多結晶基板に関するものである。   The present invention relates to a method for producing a polycrystalline diamond substrate and a polycrystalline diamond substrate, and in particular, has a large area applicable to optical parts such as windows for ultraviolet to infrared light, microwaves, and high frequencies, and mirrors and lenses thereof. The present invention relates to a method for producing a high-quality diamond polycrystalline substrate and a diamond polycrystalline substrate.

ダイヤモンドはエックス線、紫外から赤外光、さらにマイクロ波領域にわたる広い波長領域で透明であり、常温での熱伝導率は現存する物質中最高である。さらにマイクロ波の誘電損失が小さく、かつ硬度・ヤング率が高く歪みにくいことから、特に熱的負荷の大きい赤外レーザーやマイクロ波用の透過窓として有望である。このような光学用途に適用される人工ダイヤモンドとしては、気相合成法で得られる大面積、厚板のダイヤモンド多結晶基板が必要である。ところが通常の気相合成条件で得られる500μm厚以上のダイヤモンド多結晶基板は、基板全体として褐色ないし黒色を呈し、吸収ロスや誘電損失のため光学部品用としての使用には適さない。これに対し、例えば特許文献1に例示するような方法により、紫外から赤外、さらにはマイクロ波領域まで透明で、高品質かつ厚板のダイヤモンド多結晶基板を得ることができる。   Diamond is transparent in a wide wavelength range from X-rays, ultraviolet to infrared light, and even in the microwave region, and its thermal conductivity at room temperature is the highest among existing materials. Furthermore, since the dielectric loss of microwaves is small, and the hardness and Young's modulus are high and are not easily distorted, it is particularly promising as a transmission window for infrared lasers and microwaves with a large thermal load. As an artificial diamond applied to such an optical use, a large-area, thick diamond polycrystalline substrate obtained by a vapor phase synthesis method is required. However, a diamond polycrystalline substrate having a thickness of 500 μm or more obtained under normal gas phase synthesis conditions is brown or black as a whole and is not suitable for use as an optical component due to absorption loss and dielectric loss. On the other hand, for example, by a method exemplified in Patent Document 1, a high-quality and thick diamond polycrystalline substrate that is transparent from the ultraviolet region to the infrared region and further into the microwave region can be obtained.

特許文献1には、モリブデン基体上に30日間連続してダイヤモンドを合成した例が示されている。これは、冷却時に熱応力で基体とダイヤモンドが分離するために、500μmの厚板を得るには必然的に連続合成が要求されるからである。適切な技術を用いずに途中で合成を終了すると、基体とダイヤモンドがきれいに分離できず、分解する等の問題がある。即ち、特許文献1のような長期間連続運転は、工業的な大量生産には適さず、歩留まり悪化や生産コスト上昇等の問題がある。
特開平10−067596号公報
Patent Document 1 shows an example in which diamond is synthesized on a molybdenum substrate for 30 days continuously. This is because continuous synthesis is inevitably required to obtain a 500 μm thick plate because the substrate and diamond are separated by thermal stress during cooling. If the synthesis is terminated in the middle without using an appropriate technique, there is a problem that the substrate and diamond cannot be separated cleanly and decomposed. That is, the long-term continuous operation as in Patent Document 1 is not suitable for industrial mass production, and there are problems such as deterioration in yield and increase in production cost.
JP-A-10-067596

本発明は前記問題を解決すべくなされたもので、連続運転不要な気相合成法により得られる、高品質で大面積のダイヤモンド多結晶基板及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-quality and large-area diamond polycrystalline substrate obtained by a gas phase synthesis method that does not require continuous operation and a method for producing the same.

前記課題を解決するため、本発明は以下の態様を有する。
(1)気相合成法によるダイヤモンド多結晶基板の製造方法であって、ダイヤモンドと異なる成膜用種基板を用意し、気相合成法により厚さ500μm未満のダイヤモンド多結晶を成膜した後、ダイヤモンド多結晶と種基板を分離してダイヤモンド多結晶自立板とし、ダイヤモンド多結晶自立板上に、さらに気相合成法によりダイヤモンド多結晶を追加成長して、板厚500μm以上のダイヤモンド多結晶基板とすることを特徴とする、ダイヤモンド多結晶基板の製造方法。
In order to solve the above problems, the present invention has the following aspects.
(1) A method for producing a polycrystalline diamond substrate by a vapor phase synthesis method, comprising preparing a seed substrate for film formation different from diamond and depositing a polycrystalline diamond having a thickness of less than 500 μm by a vapor phase synthesis method, A diamond polycrystal and a seed substrate are separated to form a diamond polycrystal self-supporting plate. Further, a diamond polycrystal is further grown on the diamond polycrystal self-supporting plate by a vapor phase synthesis method to obtain a diamond polycrystal substrate having a thickness of 500 μm or more. A method for producing a diamond polycrystalline substrate, comprising:

(2)前記、成膜用種基板は珪素、窒化珪素、窒化アルミニウム、炭化珪素、モリブデン及びタングステンから選択される1種であることを特徴とする、前記(1)に記載のダイヤモンド多結晶基板の製造方法。   (2) The polycrystalline diamond substrate according to (1), wherein the seed substrate for film formation is one selected from silicon, silicon nitride, aluminum nitride, silicon carbide, molybdenum and tungsten Manufacturing method.

(3)前記、成膜用種基板の表面にはダイヤモンドの成膜前に、酸化珪素が成膜されていることを特徴とする、前記(2)に記載のダイヤモンド多結晶基板の製造方法。   (3) The method for producing a polycrystalline diamond substrate according to (2), wherein silicon oxide is deposited on the surface of the seed substrate for deposition before the deposition of diamond.

(4)前記、成膜用種基板の表面にはダイヤモンドの成膜前に、種基板と異なる金属の1種以上が成膜されていることを特徴とする、前記(2)に記載のダイヤモンド多結晶基板の製造方法。   (4) The diamond according to (2) above, wherein at least one kind of metal different from the seed substrate is formed on the surface of the seed substrate for film formation before the film formation of diamond. A method for producing a polycrystalline substrate.

(5)前記、成膜用種基板上に成膜するダイヤモンド多結晶の厚さは150μm以上350μm以下であることを特徴とする、前記(1)から(4)いずれかに記載のダイヤモンド多結晶基板の製造方法。   (5) The diamond polycrystal according to any one of (1) to (4), wherein the diamond polycrystal formed on the seed substrate for film formation has a thickness of 150 μm or more and 350 μm or less. A method for manufacturing a substrate.

(6)前記、ダイヤモンド多結晶自立基板のダイヤモンド成長側の面に、反応性イオンエッチング、ECRプラズマエッチング、及びマイクロ波プラズマエッチングの1つ以上を行ってから、ダイヤモンド多結晶を追加成長することを特徴とする、前記(1)から(5)いずれかに記載のダイヤモンド多結晶基板の製造方法。   (6) Performing one or more of reactive ion etching, ECR plasma etching, and microwave plasma etching on the surface of the diamond polycrystalline free-standing substrate on the diamond growth side, and then further growing the polycrystalline diamond. The method for producing a polycrystalline diamond substrate according to any one of (1) to (5), which is characterized in that

(7)前記ダイヤモンド多結晶自立基板の成膜用種基板の存在した側の面に、反応性イオンエッチング、ECRプラズマエッチング、及びマイクロ波プラズマエッチングの1つ以上を行ってから、ダイヤモンド多結晶を追加成長することを特徴とする、前記(1)から(6)のいずれかに記載のダイヤモンド多結晶基板の製造方法。   (7) After performing one or more of reactive ion etching, ECR plasma etching, and microwave plasma etching on the surface of the diamond polycrystal free-standing substrate where the seed substrate for film formation exists, The method for producing a diamond polycrystalline substrate according to any one of (1) to (6), wherein the growth is further performed.

(8)前記、ダイヤモンド多結晶を追加成長する工程は、2回以上繰り返すことを特徴とする、前記(1)から(7)いずれかに記載のダイヤモンド多結晶基板の製造方法。   (8) The method for producing a polycrystalline diamond substrate according to any one of (1) to (7), wherein the step of additionally growing the polycrystalline diamond is repeated twice or more.

(9)気相合成法により製造された、板厚500μm以上のダイヤモンド多結晶基板であって、該ダイヤモンド基板両面を研磨後の、波長400nmの光透過率が35%以上であり、前記ダイヤモンド基板中には直径50μm以上の黒色斑点が存在せず、前記ダイヤモンド基板の断面又は側面を、光学顕微鏡又は電子顕微鏡で観察した際に、複数回の気相合成を繰り返した層が認められることを特徴とする、ダイヤモンド多結晶基板。   (9) A diamond polycrystalline substrate having a thickness of 500 μm or more manufactured by a vapor phase synthesis method, and having a light transmittance of 35% or more after polishing both surfaces of the diamond substrate, the diamond substrate There are no black spots with a diameter of 50 μm or more, and when the cross section or side surface of the diamond substrate is observed with an optical microscope or an electron microscope, a layer in which a plurality of vapor phase synthesis is repeated is observed. A diamond polycrystalline substrate.

(10)前記ダイヤモンド多結晶基板の板厚は1mm以上であることを特徴とする、前記(9)に記載のダイヤモンド多結晶基板。   (10) The diamond polycrystalline substrate according to (9), wherein a thickness of the diamond polycrystalline substrate is 1 mm or more.

(11)前記ダイヤモンド多結晶基板の、波長400nmの光透過率は50%以上であることを特徴とする、前記(9)又は(10)に記載のダイヤモンド多結晶基板。   (11) The diamond polycrystalline substrate according to (9) or (10) above, wherein the diamond polycrystalline substrate has a light transmittance of 50% or more at a wavelength of 400 nm.

(12)前記ダイヤモンド多結晶基板中には、直径10μm以上の黒色斑点が存在しないことを特徴とする、前記(9)から(11)いずれかに記載のダイヤモンド多結晶基板。   (12) The diamond polycrystalline substrate according to any one of (9) to (11) above, wherein no black spots having a diameter of 10 μm or more are present in the diamond polycrystalline substrate.

本発明のダイヤモンド多結晶基板の製造方法を用いれば、紫外から赤外光、マイクロ波、高周波用の窓や、そのミラー、レンズ等の光学部品に適用可能な、大面積で高品質なダイヤモンド多結晶基板を、長時間の連続合成をしないで得ることができる。   By using the method for manufacturing a polycrystalline diamond substrate of the present invention, a large-area, high-quality diamond multi-layer that can be applied to optical parts such as windows for ultraviolet to infrared light, microwaves, and high frequencies, mirrors, and lenses thereof. A crystal substrate can be obtained without continuous synthesis for a long time.

本発明者らは特許文献1の問題を解決するため、まず、シリコン基板上にダイヤモンドを断続的に成長させる実験を行った。シリコン基板以外の合成条件は特許文献1を模した条件として、合計4回、延べ30日間の追加合成を行い、合成後にシリコン基板をフッ硝酸でエッチング除去して、ダイヤモンド多結晶自立基板を得た。そして、このダイヤモンド多結晶自立基板の両面を機械的に研磨した結果、部分的には透明であったものの、顕微鏡観察によりダイヤモンド基板内部に図1に例示するような黒色の斑点2が多数認められた。次に、比較としてマイクロ波プラズマCVD法による同様のガス条件で、シリコン基板上に連続的にダイヤモンド多結晶を成長させる実験を行った。30日間の連続合成後、同様に処理して基板内部を観察した結果、内部には断続合成時と同様の黒色の斑点が多数認められた。   In order to solve the problem of Patent Document 1, the inventors first conducted an experiment in which diamond was intermittently grown on a silicon substrate. The synthesis conditions other than the silicon substrate were conditions similar to those of Patent Document 1, and a total of four additional synthesis was performed for a total of 30 days. After synthesis, the silicon substrate was etched away with hydrofluoric acid to obtain a diamond polycrystalline free-standing substrate. . As a result of mechanically polishing both surfaces of the diamond polycrystalline free-standing substrate, a number of black spots 2 as illustrated in FIG. 1 were observed inside the diamond substrate by microscopic observation, although it was partially transparent. It was. Next, as a comparison, an experiment was conducted in which diamond polycrystals were continuously grown on a silicon substrate under the same gas conditions by a microwave plasma CVD method. After 30 days of continuous synthesis, the same processing was performed and the inside of the substrate was observed. As a result, many black spots similar to those during intermittent synthesis were observed.

この黒色の斑点を詳細に観察すると、ダイヤモンド多結晶の結晶粒界及び結晶粒内に、直径10から500μm程度の微小な割れがあり、この割れ領域で光を吸収して黒い斑点となっていることがわかった。また、先に実施した断続成長の例では、追成長の境界面に埋め込まれたゴミ等が存在し、これらも黒色斑点となっていることがわかった。本発明者らは、この微小な割れは、ダイヤモンド多結晶内部に応力が蓄積されたことが原因と考え、本発明を想起するに至った。   When the black spots are observed in detail, there are minute cracks having a diameter of about 10 to 500 μm in the crystal grain boundaries and crystal grains of the polycrystalline diamond, and light is absorbed in the cracked areas to form black spots. I understood it. Moreover, in the example of the intermittent growth implemented previously, the dust etc. which were embedded in the boundary surface of additional growth existed, and it turned out that these are also black spots. The present inventors considered that the minute cracks were caused by the accumulation of stress inside the polycrystalline diamond, and came to recall the present invention.

すなわち本発明では、ダイヤモンドと異なる成膜用種基板を用意し、気相合成法により厚さ500μm未満のダイヤモンド多結晶を成膜した後、ダイヤモンド多結晶と種基板を分離してダイヤモンド多結晶自立板とし、ダイヤモンド多結晶自立板上に、さらに気相合成法によりダイヤモンド多結晶を追加成長して、板厚500μm以上のダイヤモンド多結晶基板とすることを特徴とする。ダイヤモンド多結晶内部の応力は、主としてダイヤモンドと種基板の熱膨張係数差により、合成時の温度(約900℃)から常温に冷却する際に不可避的に生じる。この内部応力がダイヤモンドの弾性限度を超えたとき、塑性変形と共に微小割れとして黒色斑点が発生する。本発明らは、ダイヤモンド多結晶の板厚と、黒色斑点の生成率、サイズを詳細に調査した結果、成長の板厚が500μm未満であれば、黒色斑点が生じないか、生じても光学部品等として実用上問題ないレベルであることを突き止めた。本発明で言う黒色斑点とは、基板中の微小な割れや、成長界面におけるゴミ等を総称したものであり、厳密な黒色でなく褐色や灰色等を呈していても、成因が同一であれば同じものとする。   That is, in the present invention, a seed substrate for film formation different from diamond is prepared, a diamond polycrystal having a thickness of less than 500 μm is formed by a vapor phase synthesis method, and then the diamond polycrystal and the seed substrate are separated to form a self-supporting diamond polycrystal. A diamond polycrystal substrate having a thickness of 500 μm or more is obtained by further growing a diamond polycrystal on the diamond polycrystal free-standing plate by vapor phase synthesis. The stress inside the polycrystalline diamond is inevitably generated when cooling from the temperature during synthesis (about 900 ° C.) to room temperature, mainly due to the difference in thermal expansion coefficient between the diamond and the seed substrate. When this internal stress exceeds the elastic limit of diamond, black spots appear as microcracks along with plastic deformation. As a result of detailed investigations on the diamond polycrystal plate thickness, black spot generation rate, and size, the present inventors have found that if the growth plate thickness is less than 500 μm, black spots do not occur or even if they occur, optical components As a result, we found out that it was at a level where there was no practical problem. The black spots referred to in the present invention are a general term for minute cracks in the substrate, dust at the growth interface, etc. Same thing.

種基板を分離する前のダイヤモンド多結晶層の厚さは、500μm未満であればよいが、好ましくは150μm以上350μm以下が望ましい。これにより、微小割れが少なく、かつ種基板分離後の取扱も容易で、ダイヤモンド多結晶の追成長がしやすくなる。この、500μm未満のダイヤモンド多結晶層は連続的に1回で成長しても、断続的に数回追成長してもよい。断続的に追成長で得る場合には、追成長前に反応性イオンエッチング、ECRプラズマエッチング、又はマイクロ波プラズマエッチングで表面層をエッチングする方がよい。ダイヤモンド多結晶を得るための気相合成法は、熱フィラメント法、直流プラズマ法、アークジェット法等、公知の技術いずれもが利用できるが、好ましくは大面積で高品質、かつ、連続運転安定性に優れる、マイクロ波プラズマ法が望ましい。   The thickness of the diamond polycrystalline layer before separating the seed substrate may be less than 500 μm, but preferably 150 μm or more and 350 μm or less. Thereby, there are few micro cracks, the handling after seed substrate isolation | separation is easy, and the follow-up growth of a diamond polycrystal becomes easy. This diamond polycrystalline layer of less than 500 μm may be continuously grown once or intermittently several times later. If the surface layer is obtained intermittently by additional growth, it is better to etch the surface layer by reactive ion etching, ECR plasma etching, or microwave plasma etching before additional growth. As a gas phase synthesis method for obtaining a polycrystalline diamond, any of known techniques such as a hot filament method, a direct current plasma method, an arc jet method, etc. can be used, but preferably a large area with high quality and continuous operation stability. The microwave plasma method is preferable because of its excellent resistance.

成膜用種基板は、珪素、窒化珪素、窒化アルミニウム、炭化珪素、モリブデン及びタングステンの中から選択することが望ましい。これらの材料を種基板に用いることにより、ダイヤモンドと適度な密着性を持ち、内部応力が少ないダイヤモンド多結晶層を成長することができる。そして、ダイヤモンド多結晶の耐剥離性や成長初期のダイヤモンド核発生を考慮し、ダイヤモンド成長前の表面に酸化珪素、又は異種金属の中から1種類以上が成膜されていることが望ましい。   The seed substrate for film formation is preferably selected from silicon, silicon nitride, aluminum nitride, silicon carbide, molybdenum and tungsten. By using these materials for the seed substrate, it is possible to grow a diamond polycrystalline layer having moderate adhesiveness with diamond and low internal stress. In consideration of the peeling resistance of the polycrystalline diamond and the generation of diamond nuclei at the initial stage of growth, it is desirable that one or more types of silicon oxide or different metals are formed on the surface before the diamond growth.

この後、種基板上に成長したダイヤモンド多結晶基板を分離する際、選択的に種基板を取り除く方法として、電解エッチング、酸エッチング、研削加工、レーザー加工及びドライエッチング等の公知の方法が利用できる。種基板を分離後のダイヤモンド多結晶基板は、引き続き所望の厚さまで気相合成法で追成長することができる。追成長を行う面は、ダイヤモンド多結晶基板の上下どちらの面に対しても行うことができる。この時、種基板によるダイヤモンドの拘束がないので、本質的に熱応力が生じず、従って微小割れを生じることもない。この結果、従来技術では黒色斑点が生じる厚さまでダイヤモンド多結晶基板を厚くした時でも、本発明技術では黒色斑点が生じないか、生じても光学部品等に実用上問題ないレベルである。一例として、黒色斑点の大きさは直径50μm未満、より好ましくは10μm未満となる。黒色斑点の大きさが直径50μmとは、黒色斑点の中心を円の中心と仮定した直径50μmの円の範囲内に黒色斑点が存在することを意味する。   Thereafter, when separating the polycrystalline diamond substrate grown on the seed substrate, known methods such as electrolytic etching, acid etching, grinding, laser processing, and dry etching can be used as a method for selectively removing the seed substrate. . The diamond polycrystalline substrate after separating the seed substrate can be further grown to a desired thickness by vapor phase synthesis. The surface on which the additional growth is performed can be performed on either the upper or lower surface of the diamond polycrystalline substrate. At this time, since the diamond is not restrained by the seed substrate, there is essentially no thermal stress, and therefore no microcracking occurs. As a result, even when the diamond polycrystalline substrate is thickened to a thickness at which black spots are generated in the conventional technique, the black spots are not generated in the technique of the present invention, or even if they are generated, there is no practical problem in optical parts. As an example, the size of black spots is less than 50 μm in diameter, more preferably less than 10 μm. The size of the black spot having a diameter of 50 μm means that the black spot is present within a circle having a diameter of 50 μm assuming that the center of the black spot is the center of the circle.

黒色斑点は微小割れだけでなく、追成長時の表面ゴミ等も原因となる。この影響を排除するため、追成長前にダイヤモンド多結晶自立板のダイヤモンド成長側の面(表面)に対して、反応性イオンエッチング、ECRプラズマエッチング、又はマイクロ波プラズマエッチングをする方がよい。表面側のエッチング厚さは、10nm以上5μm以下が望ましい。この程度の厚さでエッチングすることにより、ゴミの影響だけでなく、追成長前の表面変質層の除去が可能になり、ダイヤモンド成長時の内部応力を低減することができる。更に、成膜用種基板の存在した側の面(裏面)に対しても、上記のエッチングをすることが望ましい。裏面側のエッチング厚さは、1μm以上100μm以下が望ましい。裏面側は、種基板に依存したダイヤモンドの核生成バラツキが発生するため、その初期成長層にはバラツキが存在する。このバラツキが追成長時に内部応力の原因となる場合があるため、予め前記厚さのエッチングを施すことにより、黒色斑点の生成を抑制することができる。   Black spots cause not only minute cracks, but also surface dust during additional growth. In order to eliminate this influence, it is better to perform reactive ion etching, ECR plasma etching, or microwave plasma etching on the surface (surface) of the diamond polycrystalline free-standing plate on the diamond growth side before additional growth. The etching thickness on the surface side is desirably 10 nm or more and 5 μm or less. Etching with such a thickness enables not only the influence of dust but also the removal of the surface-modified layer before the additional growth, thereby reducing internal stress during diamond growth. Furthermore, it is desirable to perform the above-described etching also on the surface (back surface) where the seed substrate for film formation exists. The etching thickness on the back side is desirably 1 μm or more and 100 μm or less. Since the nucleation variation of diamond depending on the seed substrate is generated on the back surface side, the initial growth layer has variations. Since this variation may cause internal stress at the time of further growth, the generation of black spots can be suppressed by performing etching with the thickness in advance.

追成長は所望の厚さまで2回以上繰り返しても問題がない。これにより、任意の時間に成長を停止、再開することができ、従来技術のような成長時間の拘束が少なく、生産性が向上する。2回以上繰り返す場合でも、それぞれの追成長前には前記エッチングをすることが望ましい。種基板分離前と、分離後の追成長では、同じ合成装置でダイヤモンド多結晶を合成することが望ましいが、別の合成装置で追成長してもよい。追成長の面は、元々の種基板から成長した面にそのまま追成長することが好ましいが、反対面(種基板側の面)に追成長することもできる。   There is no problem even if the additional growth is repeated twice or more to the desired thickness. As a result, the growth can be stopped and restarted at an arbitrary time, and there are few restrictions on the growth time as in the prior art, and the productivity is improved. Even when repeated two or more times, it is desirable to perform the etching before each additional growth. It is desirable to synthesize diamond polycrystals with the same synthesizer before and after seed substrate separation, but they may be additionally grown with another synthesizer. As for the surface of the additional growth, it is preferable to perform additional growth as it is on the surface grown from the original seed substrate, but it is also possible to perform additional growth on the opposite surface (the surface on the seed substrate side).

こうして得られたダイヤモンド多結晶基板は、その後、両面を機械的に研磨することで光学板として利用したり、ドライエッチングやレーザー加工等を施してミラー、レンズとして利用できる。その際には、両面研磨後の波長400nmの光透過率が35%以上、好ましくは50%以上あることが望ましい。この方法で得られたダイヤモンド多結晶基板は、その成長側面又は断面を観察することで容易に追成長の有無を判断できる。例えば、レーザー等で多結晶基板を割断して断面を研磨した後に、水素雰囲気のマイクロ波プラズマでエッチング処理をする。この面を光学顕微鏡あるいは電子顕微鏡で観察すると、図2に例示するように、追成長境界面3が明確に現れることで判断できる。   The diamond polycrystalline substrate thus obtained can then be used as an optical plate by mechanically polishing both sides, or can be used as a mirror or a lens after being subjected to dry etching or laser processing. In that case, the light transmittance at a wavelength of 400 nm after double-side polishing is 35% or more, preferably 50% or more. The diamond polycrystalline substrate obtained by this method can easily determine the presence or absence of additional growth by observing the growth side surface or cross section. For example, after a polycrystalline substrate is cleaved with a laser or the like and the cross section is polished, etching is performed with microwave plasma in a hydrogen atmosphere. When this surface is observed with an optical microscope or an electron microscope, it can be determined by clearly showing the additional growth boundary surface 3 as illustrated in FIG.

本発明のダイヤモンド多結晶基板について、実施例に基づいてさらに具体的に説明する。   The diamond polycrystalline substrate of the present invention will be described more specifically based on examples.

まず、直径50mm、厚さ3mmの多結晶シリコン基板をダイヤモンド成長用種基板として用意した。シリコン基板表面はラッピング済みであり、この表面に対して、#800のダイヤモンド砥粒で傷つけ処理を行った。次に、公知のマイクロ波プラズマCVD装置内にシリコン基板を配置した。そして、この種基板上にマイクロ波プラズマ合成法でダイヤモンド多結晶を成長させた。成長条件を表1に示す。   First, a polycrystalline silicon substrate having a diameter of 50 mm and a thickness of 3 mm was prepared as a seed substrate for diamond growth. The surface of the silicon substrate has been lapped, and the surface was scratched with # 800 diamond abrasive grains. Next, a silicon substrate was placed in a known microwave plasma CVD apparatus. Then, a polycrystalline diamond was grown on this seed substrate by a microwave plasma synthesis method. Table 1 shows the growth conditions.

Figure 2009209028
Figure 2009209028

この成長により、図3に模式的に示すような、ダイヤモンド多結晶5がシリコン種基板4上に成長した基板が得られた。気相合成ダイヤモンド多結晶層の厚さは210μmであった。次に、成長表面を機械的に鏡面研磨して、フッ硝酸によりシリコン基板をエッチング除去した(図4)。得られたダイヤモンド多結晶自立基板6は目視で透明であり、光学顕微鏡で内部を観察した結果、直径10μm以上の黒色斑点は1つも観察されなかった。   By this growth, a substrate in which the diamond polycrystal 5 was grown on the silicon seed substrate 4 as schematically shown in FIG. 3 was obtained. The thickness of the gas phase synthetic diamond polycrystalline layer was 210 μm. Next, the growth surface was mechanically mirror-polished and the silicon substrate was removed by etching with hydrofluoric acid (FIG. 4). The obtained polycrystalline diamond free-standing substrate 6 was visually transparent, and as a result of observing the inside with an optical microscope, no black spots with a diameter of 10 μm or more were observed.

次に、このダイヤモンド多結晶自立基板6を最初の成長と同じマイクロ波プラズマCVD装置内に配置し、表1と同様の条件でダイヤモンド多結晶の追成長を行った。但し、ダイヤモンド基板の反り等による温度変化を排除するため、ダイヤモンド基板を配置する保持台の熱抵抗を変化させて、前記シリコン基板上への成長の時と同じ基板表面温度となるように制御した。追成長時間は350時間とした。この結果、合計板厚550μmのダイヤモンド多結晶自立基板が得られた(図5)。そして、この多結晶基板の両面を機械的に研磨し、板厚510μmの両面鏡面自立基板(図6)として、内部を評価したところ、直径10μm以上の黒色斑点は1つも観察されなかった。波長400nmにおける光透過率は60%で、紫外〜赤外用の光学部品として利用可能な良好な特性を示した。   Next, this diamond polycrystalline free-standing substrate 6 was placed in the same microwave plasma CVD apparatus as the first growth, and diamond polycrystalline was further grown under the same conditions as in Table 1. However, in order to eliminate temperature changes due to warpage of the diamond substrate, the thermal resistance of the holding table on which the diamond substrate is placed was changed to control the substrate surface temperature to be the same as that when growing on the silicon substrate. . The additional growth time was 350 hours. As a result, a diamond polycrystalline free-standing substrate having a total thickness of 550 μm was obtained (FIG. 5). Then, both sides of this polycrystalline substrate were mechanically polished, and the inside was evaluated as a double-sided mirror-surface free-standing substrate having a thickness of 510 μm (FIG. 6). As a result, no black spots with a diameter of 10 μm or more were observed. The light transmittance at a wavelength of 400 nm was 60%, showing good characteristics that could be used as an optical component for ultraviolet to infrared.

(比較例1)
本比較例では、使用する種基板や成長条件等は実施例1と同様とし、合成時間を550時間として連続的にダイヤモンド多結晶を成長した。成長後のダイヤモンド多結晶の板厚は560μmであった。成長面を研磨後、シリコン基板を酸エッチング除去し、さらに基板面も機械的に研磨した結果、結晶内部には図1に示すような直径50μm以上の黒色斑点が多数認められた。黒色斑点部分以外は透明であったが、黒色斑点の影響のため、波長400nmにおける基板全体の平均的な光透過率は30%と、光学部品として利用するには不十分な値であった。
(Comparative Example 1)
In this comparative example, the seed substrate used, the growth conditions, and the like were the same as those in Example 1, and diamond polycrystals were continuously grown with a synthesis time of 550 hours. The thickness of the polycrystalline diamond after the growth was 560 μm. After the growth surface was polished, the silicon substrate was removed by acid etching, and the substrate surface was mechanically polished. As a result, many black spots having a diameter of 50 μm or more as shown in FIG. It was transparent except for the black spots, but due to the influence of black spots, the average light transmittance of the entire substrate at a wavelength of 400 nm was 30%, which was insufficient for use as an optical component.

本実施例では、ダイヤモンド多結晶成膜用種基板として直径30mm、厚さ5mmのタングステン基板を用意し、まず、このタングステン基板の表面に公知のマグネトロンスパッタ装置により酸化珪素を500nmに厚みに成膜した。この種基板に、実施例1と同じダイヤモンド合成装置を用いてダイヤモンド多結晶を成長した。成長条件は表2の通りである。   In this embodiment, a tungsten substrate having a diameter of 30 mm and a thickness of 5 mm is prepared as a seed substrate for forming a polycrystalline diamond film. First, silicon oxide is deposited on the surface of the tungsten substrate to a thickness of 500 nm by a known magnetron sputtering apparatus. did. A polycrystalline diamond was grown on this seed substrate using the same diamond synthesizer as in Example 1. The growth conditions are as shown in Table 2.

Figure 2009209028
Figure 2009209028

成長後、ダイヤモンド多結晶基板は基板冷却時に酸化珪素膜とタングステン基板の界面で分離した。分離した際もダイヤモンドは一体を維持していた。その後、フッ酸で酸化珪素膜をエッチング除去し、ダイヤモンド多結晶自立基板として板厚を評価したところ340μmであった。引き続き、この自立基板表面をダイヤモンド合成装置内に配置して、表2と同じ条件でダイヤモンド多結晶を追加成長した。但し、成長は100時間ごとに装置を停止して、一旦取り出しと評価を行い、これを7回繰り返した。なお、それぞれの成長前には1時間、表2の条件からCHを除いた水素/酸素雰囲気のエッチング条件で表面をエッチングした。この結果、合計板厚1050μmのダイヤモンド多結晶自立基板が得られた。この両面を機械的に研磨し、評価したところ、板厚は1000μmで基板内部には直径50μm以上の黒色斑点は存在せず、大部分は透明であった。また、波長400nmにおける光透過率は42%と、光学部品として使用に耐える値であった。この基板をレーザーで割断後、断面を研磨し、さらに水素雰囲気のマイクロ波プラズマ処理を行って走査型電子顕微鏡で断面を評価したところ、7回の追成長界面が明暗差となって現れ、追成長基板であることを確認できた。 After the growth, the diamond polycrystalline substrate was separated at the interface between the silicon oxide film and the tungsten substrate when the substrate was cooled. The diamond remained integral when separated. Thereafter, the silicon oxide film was removed by etching with hydrofluoric acid, and the plate thickness was evaluated as a diamond polycrystalline free-standing substrate. Subsequently, this free-standing substrate surface was placed in a diamond synthesizer, and diamond polycrystals were additionally grown under the same conditions as in Table 2. However, the growth was stopped every 100 hours, once taken out and evaluated, and this was repeated seven times. It should be noted that the surface was etched under an etching condition in a hydrogen / oxygen atmosphere in which CH 4 was removed from the conditions shown in Table 2 for 1 hour before each growth. As a result, a diamond polycrystalline free-standing substrate having a total plate thickness of 1050 μm was obtained. When both surfaces were mechanically polished and evaluated, the plate thickness was 1000 μm, black spots having a diameter of 50 μm or more did not exist inside the substrate, and most were transparent. Further, the light transmittance at a wavelength of 400 nm was 42%, which was a value that could be used as an optical component. After cutting this substrate with a laser, the cross section was polished, and further subjected to microwave plasma treatment in a hydrogen atmosphere, and the cross section was evaluated with a scanning electron microscope. It was confirmed that it was a growth substrate.

本実施例では種々の種基板を用意し、種基板上への成長、自立基板後の成長それぞれの合成時間を変化させた例を述べる。種基板サイズはいずれも直径50mm、厚さ3mmである。合成装置は先の実施例1,2と同様とし、合成条件は実施例1と同じとした。追成長を行う際には、合成前に全て実施例2と同様の、水素/酸素雰囲気による表面エッチングを行った。それぞれの評価結果を表3に示す。なお、表3の窒化珪素+Mo200nm成膜とは、窒化珪素の基板に、スパッタにより、Moを200nmの厚みに成膜したものである。   In the present embodiment, an example will be described in which various seed substrates are prepared and the synthesis time of growth on the seed substrate and growth after the freestanding substrate are changed. The seed substrate size is 50 mm in diameter and 3 mm in thickness. The synthesizing apparatus was the same as in Examples 1 and 2, and the synthesis conditions were the same as in Example 1. When performing the post-growth, the same surface etching in a hydrogen / oxygen atmosphere as in Example 2 was performed before the synthesis. The respective evaluation results are shown in Table 3. In Table 3, “silicon nitride + Mo 200 nm film formation” refers to a film of Mo formed on a silicon nitride substrate by sputtering to a thickness of 200 nm.

Figure 2009209028
Figure 2009209028

表3のように、得られたダイヤモンド多結晶基板の黒色斑点や400nm透過率は、種基板や成長繰り返し時間、板厚によりまちまちであるが、いずれもダイヤモンド光学部品として使用に耐える結果となり、これは使用目的の用途に応じて使い分けることができる。   As shown in Table 3, the black spots and 400 nm transmittance of the obtained diamond polycrystalline substrate vary depending on the seed substrate, the growth repetition time, and the plate thickness. Can be selected according to the intended use.

本実施例では、直径25mm、厚さ2mmの研磨済み多結晶炭化珪素基板をダイヤモンド成長用種基板として用意した。この多結晶炭化珪素基板の表面を500番のダイヤモンド粉末で傷付け処理を行い、その後、表2と同様のダイヤモンド成長条件でダイヤモンド多結晶を成長した。   In this example, a polished polycrystalline silicon carbide substrate having a diameter of 25 mm and a thickness of 2 mm was prepared as a diamond growth seed substrate. The surface of this polycrystalline silicon carbide substrate was scratched with No. 500 diamond powder, and then polycrystalline diamond was grown under the same diamond growth conditions as in Table 2.

成長後、炭化珪素基板部分を研削除去し、ダイヤモンド多結晶自立基板として板厚を評価したところ、400μmであった。この種基板を除去した面(裏面)を、市販の反応性イオンエッチング装置を用いて、エッチングを行った。エッチングガスは酸素で、裏面のエッチング厚さは50μmになるようにエッチング時間を調整した。エッチング後、この裏面側が追加成長面になるようにダイヤモンドの合成装置内に配置し、表2と同じ条件でダイヤモンド多結晶を追加成長した。但し、成長は200時間ごとに装置を停止して、一旦取り出しと評価を行い、これを4回繰り返した。なお、それぞれの追加成長前には前記反応性イオンエッチングにより追加成長側の面を1μmエッチングした。この結果、合計板厚1100μmのダイヤモンド多結晶自立基板が得られた。この両面を機械的に研磨し、評価したところ、板厚が1050μmで、基板内部には直径10μm以上の黒色斑点は存在せず、全面透明であった。波長400nmにおける光透過率は62%で、紫外から赤外光までの広い波長用の光学部品として利用可能な良好な特性を示した。   After the growth, the silicon carbide substrate portion was ground and removed, and the plate thickness was evaluated as a diamond polycrystalline free-standing substrate. As a result, it was 400 μm. The surface (back surface) from which this seed substrate was removed was etched using a commercially available reactive ion etching apparatus. The etching time was adjusted so that the etching gas was oxygen and the etching thickness on the back surface was 50 μm. After the etching, it was placed in a diamond synthesizer so that the back side was an additional growth surface, and diamond polycrystal was additionally grown under the same conditions as in Table 2. However, the growth was stopped every 200 hours, once taken out and evaluated, and this was repeated four times. Before each additional growth, the surface on the additional growth side was etched by 1 μm by the reactive ion etching. As a result, a diamond polycrystalline free-standing substrate having a total plate thickness of 1100 μm was obtained. When both surfaces were mechanically polished and evaluated, the plate thickness was 1050 μm, black spots having a diameter of 10 μm or more did not exist inside the substrate, and the entire surface was transparent. The light transmittance at a wavelength of 400 nm was 62%, and it showed good characteristics that can be used as an optical component for a wide wavelength from ultraviolet to infrared light.

以上説明したように、本発明のダイヤモンド多結晶基板の製造方法を用いれば、紫外〜赤外光、マイクロ波、高周波用の窓や、そのミラー、レンズ等の光学部品に適用可能な、大面積で高品質なダイヤモンド多結晶基板を、連続合成不要で得ることができる。   As described above, if the method for producing a polycrystalline diamond substrate of the present invention is used, a large area that can be applied to optical parts such as windows for ultraviolet to infrared light, microwaves, and high frequencies, and mirrors and lenses thereof. And a high-quality diamond polycrystalline substrate can be obtained without the need for continuous synthesis.

ダイヤモンド多結晶自立基板主面から見た黒色斑点の模式図である。It is the schematic diagram of the black spot seen from the diamond polycrystal free-standing substrate main surface. 追成長を行ったダイヤモンド多結晶自立基板断面の走査型電子顕微鏡写真である。It is the scanning electron micrograph of the cross section of the diamond polycrystal self-supporting substrate which performed additional growth. シリコン基板上にダイヤモンド多結晶基板を成長したときの側面図である。It is a side view when a diamond polycrystalline substrate is grown on a silicon substrate. ダイヤモンド多結晶層表面を研磨後、シリコン基板と分離して自立基板とした側面図である。FIG. 3 is a side view of a self-supporting substrate separated from a silicon substrate after polishing the surface of the polycrystalline diamond layer. ダイヤモンド多結晶上にダイヤモンド多結晶を追成長した後の側面図である。It is a side view after further growing a diamond polycrystal on a diamond polycrystal. ダイヤモンド多結晶自立基板の両面を研磨後の側面図である。It is a side view after polishing both surfaces of a diamond polycrystalline freestanding substrate.

符号の説明Explanation of symbols

1 黒色斑点含有ダイヤモンド多結晶基板
2 黒色斑点
3 ダイヤモンド多結晶追成長界面
4 シリコン基板
5 ダイヤモンド多結晶層
6 ダイヤモンド多結晶基板
7 ダイヤモンド多結晶追成長層
DESCRIPTION OF SYMBOLS 1 Black spotted diamond polycrystalline substrate 2 Black spot 3 Diamond polycrystal additional growth interface 4 Silicon substrate 5 Diamond polycrystal layer 6 Diamond polycrystal substrate 7 Diamond polycrystal additional growth layer

Claims (12)

気相合成法によるダイヤモンド多結晶基板の製造方法であって、ダイヤモンドと異なる成膜用種基板を用意し、気相合成法により厚さ500μm未満のダイヤモンド多結晶を成膜した後、ダイヤモンド多結晶と種基板を分離してダイヤモンド多結晶自立板とし、該ダイヤモンド多結晶自立板上に、さらに気相合成法によりダイヤモンド多結晶を追加成長して、板厚500μm以上のダイヤモンド多結晶基板とすることを特徴とする、ダイヤモンド多結晶基板の製造方法。   A method for producing a polycrystalline diamond substrate by vapor phase synthesis, comprising preparing a seed substrate for film formation different from diamond, forming a polycrystalline diamond having a thickness of less than 500 μm by vapor phase synthesis, and then producing the polycrystalline diamond And separating the seed substrate into a diamond polycrystalline free-standing plate, and further growing the polycrystalline diamond on the diamond polycrystalline free-standing plate by vapor phase synthesis to obtain a diamond polycrystalline substrate having a thickness of 500 μm or more. A method for producing a polycrystalline diamond substrate, comprising: 前記成膜用種基板は珪素、窒化珪素、窒化アルミニウム、炭化珪素、モリブデン及びタングステンから選択される1種であることを特徴とする、請求項1に記載のダイヤモンド多結晶基板の製造方法。   2. The method for manufacturing a polycrystalline diamond substrate according to claim 1, wherein the seed substrate for film formation is one selected from silicon, silicon nitride, aluminum nitride, silicon carbide, molybdenum and tungsten. 前記成膜用種基板の表面にはダイヤモンドの成膜前に、酸化珪素が成膜されていることを特徴とする、請求項2に記載のダイヤモンド多結晶基板の製造方法。   3. The method for producing a polycrystalline diamond substrate according to claim 2, wherein a silicon oxide film is formed on the surface of the seed substrate for film formation before the diamond film is formed. 前記成膜用種基板の表面にはダイヤモンドの成膜前に、種基板と異なる金属の1種以上が成膜されていることを特徴とする、請求項2に記載のダイヤモンド多結晶基板の製造方法。   3. The method for producing a diamond polycrystalline substrate according to claim 2, wherein at least one kind of metal different from the seed substrate is formed on the surface of the seed substrate for film formation before the diamond is formed. Method. 前記成膜用種基板上に成膜するダイヤモンド多結晶の厚さは150μm以上350μm以下であることを特徴とする、請求項1から4のいずれか1項に記載のダイヤモンド多結晶基板の製造方法。   5. The method for producing a diamond polycrystalline substrate according to claim 1, wherein a thickness of the diamond polycrystalline film formed on the seed substrate for film formation is 150 μm or more and 350 μm or less. . 前記ダイヤモンド多結晶自立基板のダイヤモンド成長側の面に、反応性イオンエッチング、ECRプラズマエッチング、及びマイクロ波プラズマエッチングの1つ以上を行ってから、ダイヤモンド多結晶を追加成長することを特徴とする、請求項1から5のいずれか1項に記載のダイヤモンド多結晶基板の製造方法。   The diamond polycrystal free-standing substrate is subjected to one or more of reactive ion etching, ECR plasma etching, and microwave plasma etching on the surface of the diamond growth side of the diamond polycrystal free-standing substrate, and diamond polycrystal is additionally grown. The method for producing a diamond polycrystalline substrate according to any one of claims 1 to 5. 前記ダイヤモンド多結晶自立基板の成膜用種基板の存在した側の面に、反応性イオンエッチング、ECRプラズマエッチング、及びマイクロ波プラズマエッチングの1つ以上を行ってから、ダイヤモンド多結晶を追加成長することを特徴とする、請求項1から6のいずれか1項に記載のダイヤモンド多結晶基板の製造方法。   One or more of reactive ion etching, ECR plasma etching, and microwave plasma etching are performed on the surface of the diamond polycrystal free-standing substrate where the seed substrate for film formation exists, and then the diamond polycrystal is additionally grown. The method for producing a polycrystalline diamond substrate according to claim 1, wherein the method is characterized in that: 前記ダイヤモンド多結晶を追加成長する工程は、2回以上繰り返すことを特徴とする、請求項1から7のいずれか1項に記載のダイヤモンド多結晶基板の製造方法。   The method for producing a polycrystalline diamond substrate according to any one of claims 1 to 7, wherein the step of additionally growing the polycrystalline diamond is repeated two or more times. 気相合成法により製造された、板厚500μm以上のダイヤモンド多結晶基板であって、該ダイヤモンド基板両面を研磨後の、波長400nmの光透過率が35%以上であり、前記ダイヤモンド基板中には直径50μm以上の黒色斑点が存在せず、前記ダイヤモンド基板の断面又は側面を、光学顕微鏡又は電子顕微鏡で観察した際に、複数回の気相合成を繰り返した層が認められることを特徴とする、ダイヤモンド多結晶基板。   A diamond polycrystalline substrate having a plate thickness of 500 μm or more manufactured by a vapor phase synthesis method, and having a light transmittance of 35% or more at a wavelength of 400 nm after polishing both surfaces of the diamond substrate, There are no black spots with a diameter of 50 μm or more, and when the cross-section or side surface of the diamond substrate is observed with an optical microscope or an electron microscope, a layer obtained by repeating a plurality of vapor phase synthesis is recognized, Diamond polycrystalline substrate. 前記ダイヤモンド多結晶基板の板厚は1mm以上であることを特徴とする、請求項9に記載のダイヤモンド多結晶基板。   The diamond polycrystalline substrate according to claim 9, wherein the diamond polycrystalline substrate has a thickness of 1 mm or more. 前記ダイヤモンド多結晶基板の、波長400nmの光透過率は50%以上であることを特徴とする、請求項9又は10に記載のダイヤモンド多結晶基板。   The diamond polycrystalline substrate according to claim 9 or 10, wherein the diamond polycrystalline substrate has a light transmittance of 50% or more at a wavelength of 400 nm. 前記ダイヤモンド多結晶基板中には、直径10μm以上の黒色斑点が存在しないことを特徴とする、請求項9から11のいずれか1項に記載のダイヤモンド多結晶基板。   The diamond polycrystalline substrate according to any one of claims 9 to 11, characterized in that no black spots having a diameter of 10 µm or more are present in the diamond polycrystalline substrate.
JP2008094454A 2008-02-08 2008-04-01 Method for producing diamond polycrystalline substrate Expired - Fee Related JP5181785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094454A JP5181785B2 (en) 2008-02-08 2008-04-01 Method for producing diamond polycrystalline substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008028921 2008-02-08
JP2008028921 2008-02-08
JP2008094454A JP5181785B2 (en) 2008-02-08 2008-04-01 Method for producing diamond polycrystalline substrate

Publications (2)

Publication Number Publication Date
JP2009209028A true JP2009209028A (en) 2009-09-17
JP5181785B2 JP5181785B2 (en) 2013-04-10

Family

ID=41182549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094454A Expired - Fee Related JP5181785B2 (en) 2008-02-08 2008-04-01 Method for producing diamond polycrystalline substrate

Country Status (1)

Country Link
JP (1) JP5181785B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220635A (en) * 2011-12-16 2014-12-17 六号元素技术有限公司 Large area optical quality synthetic polycrystalline diamond window
WO2016024564A1 (en) * 2014-08-11 2016-02-18 住友電気工業株式会社 Diamond composite body, substrate, diamond, tool provided with diamond and diamond manufacturing method
JP2017508699A (en) * 2014-01-24 2017-03-30 トゥー‐シックス・インコーポレイテッド Substrate comprising a diamond layer and a composite layer comprising diamond and silicon carbide and optionally containing silicon
WO2017108328A1 (en) * 2015-12-21 2017-06-29 Element Six Technologies Limited Thick optical quality synthetic polycrystalline diamond material with low bulk absorption and low microfeature density
KR20170141721A (en) * 2015-04-16 2017-12-26 투-식스 인코포레이티드 Optically closed thin diamond substrate or window with high aspect ratio and method of making same
JPWO2020230520A1 (en) * 2019-05-10 2020-11-19
CN113423863A (en) * 2019-03-29 2021-09-21 六号元素技术有限公司 Polycrystalline synthetic diamond material
CN114318287A (en) * 2021-12-23 2022-04-12 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film
KR20230024484A (en) * 2021-08-11 2023-02-21 중앙대학교 산학협력단 Method for manufacturing hierarchical Diamond structure using regrowth by etching and Chemical Vapor Deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232106A (en) * 1989-03-03 1990-09-14 Sumitomo Electric Ind Ltd Polycrystal diamond for tool
JPH0393695A (en) * 1989-09-07 1991-04-18 Sumitomo Electric Ind Ltd Polycrystal diamond and production thereof
JP2007284285A (en) * 2006-04-14 2007-11-01 Kobe Steel Ltd Diamond film and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232106A (en) * 1989-03-03 1990-09-14 Sumitomo Electric Ind Ltd Polycrystal diamond for tool
JPH0393695A (en) * 1989-09-07 1991-04-18 Sumitomo Electric Ind Ltd Polycrystal diamond and production thereof
JP2007284285A (en) * 2006-04-14 2007-11-01 Kobe Steel Ltd Diamond film and method for manufacturing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220635A (en) * 2011-12-16 2014-12-17 六号元素技术有限公司 Large area optical quality synthetic polycrystalline diamond window
JP2015504972A (en) * 2011-12-16 2015-02-16 エレメント シックス テクノロジーズ リミテッド Large area high optical properties type synthetic polycrystalline diamond window
JP2017508699A (en) * 2014-01-24 2017-03-30 トゥー‐シックス・インコーポレイテッド Substrate comprising a diamond layer and a composite layer comprising diamond and silicon carbide and optionally containing silicon
WO2016024564A1 (en) * 2014-08-11 2016-02-18 住友電気工業株式会社 Diamond composite body, substrate, diamond, tool provided with diamond and diamond manufacturing method
JP6024860B2 (en) * 2014-08-11 2016-11-16 住友電気工業株式会社 Diamond composite and method for producing diamond
JP2017052690A (en) * 2014-08-11 2017-03-16 住友電気工業株式会社 Diamond composite, substrate, diamond, tool with diamond, and production method of diamond
US11001938B2 (en) 2014-08-11 2021-05-11 Sumitomo Electric Industries, Ltd. Diamond composite body, substrate, diamond, tool including diamond, and method for manufacturing diamond
KR102661632B1 (en) * 2015-04-16 2024-05-02 투-식스 인코포레이티드 Optically finished thin diamond substrate or window with high aspect ratio and method for manufacturing the same
CN107873063A (en) * 2015-04-16 2018-04-03 Ii-Vi有限公司 The thin diamond base material of Optical finishing or window and its manufacture method of high length-diameter ratio
JP2018511551A (en) * 2015-04-16 2018-04-26 トゥー‐シックス・インコーポレイテッド Optically finished thin high aspect ratio diamond substrate or window and methods of manufacturing the same
US11618945B2 (en) 2015-04-16 2023-04-04 Ii-Vi Delaware, Inc. Methods of producing optically-finished thin diamond substrates or windows of high aspect ratio
JP7108410B2 (en) 2015-04-16 2022-07-28 トゥー‐シックス・インコーポレイテッド Optically finished thin high aspect ratio diamond substrates or windows and methods of making same
KR20170141721A (en) * 2015-04-16 2017-12-26 투-식스 인코포레이티드 Optically closed thin diamond substrate or window with high aspect ratio and method of making same
CN108603286B (en) * 2015-12-21 2022-05-27 六号元素技术有限公司 Thick optical quality synthetic polycrystalline diamond material with low bulk absorption and low micro feature density
JP2020180042A (en) * 2015-12-21 2020-11-05 エレメント シックス テクノロジーズ リミテッド Thick poly crystal diamond material having high optical quality, low bulk absorptivity and low minute feature part density
WO2017108328A1 (en) * 2015-12-21 2017-06-29 Element Six Technologies Limited Thick optical quality synthetic polycrystalline diamond material with low bulk absorption and low microfeature density
US11261521B2 (en) 2015-12-21 2022-03-01 Element Six Technologies Ltd Thick optical quality synthetic polycrystalline diamond material with low bulk absorption and low microfeature density
JP7045415B2 (en) 2015-12-21 2022-03-31 エレメント シックス テクノロジーズ リミテッド Thick, high-quality synthetic polycrystalline diamond material with low bulk absorptivity and low microfeature density
CN108603286A (en) * 2015-12-21 2018-09-28 六号元素技术有限公司 Thick optical quality with low bulk absorption and humble characteristic density synthesizes polycrystalline diamond material
JP2019503969A (en) * 2015-12-21 2019-02-14 エレメント シックス テクノロジーズ リミテッド Thick high optical quality synthetic polycrystalline diamond material with low bulk absorption and low microfeature density
CN113423863A (en) * 2019-03-29 2021-09-21 六号元素技术有限公司 Polycrystalline synthetic diamond material
JP7071775B2 (en) 2019-05-10 2022-05-19 国立研究開発法人産業技術総合研究所 Complex with diamond crystals
WO2020230520A1 (en) * 2019-05-10 2020-11-19 国立研究開発法人産業技術総合研究所 Composite body comprising diamond crystal body
EP3967792A4 (en) * 2019-05-10 2023-05-17 National Institute Of Advanced Industrial Science And Technology Composite body comprising diamond crystal body
JPWO2020230520A1 (en) * 2019-05-10 2020-11-19
KR20230024484A (en) * 2021-08-11 2023-02-21 중앙대학교 산학협력단 Method for manufacturing hierarchical Diamond structure using regrowth by etching and Chemical Vapor Deposition
KR102532228B1 (en) 2021-08-11 2023-05-15 중앙대학교 산학협력단 Method for manufacturing hierarchical Diamond structure using regrowth by etching and Chemical Vapor Deposition
CN114318287A (en) * 2021-12-23 2022-04-12 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film
CN114318287B (en) * 2021-12-23 2023-11-03 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film

Also Published As

Publication number Publication date
JP5181785B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5181785B2 (en) Method for producing diamond polycrystalline substrate
JP4678039B2 (en) SiC substrate
CN110318030B (en) Self-supporting superfine nanocrystalline diamond thick film
JP4148105B2 (en) Method for manufacturing SiC substrate
JP2007284285A (en) Diamond film and method for manufacturing the same
TW200303580A (en) Production method of sic monitor wafer
JP3554074B2 (en) Synthetic diamond coating with reduced bowing and method of making same
JPH06263595A (en) Diamond-coated material and its production
JP6450920B2 (en) Diamond substrate and method for manufacturing diamond substrate
JP2002057119A (en) Method for manufacturing gallium nitride single-crystal substrate
JP4830973B2 (en) Method for producing silicon carbide single crystal
JP7161158B2 (en) Method for manufacturing diamond substrate layer
JPH0948694A (en) Method for forming diamond single crystal film
JP2005219962A (en) Diamond single crystal substrate and its manufacturing method
JPH09310170A (en) Silicon carbide thin coating structural body and its production
CN111778553A (en) Seed crystal continuous thinning plasma annealing method for improving quality of CVD single crystal diamond
EP1640482A1 (en) Process for producing extremely flat microcrystalline diamond thin film by laser ablation method
KR101930812B1 (en) Synthesis Method of cBN thin film
JP5020147B2 (en) Highly oriented diamond film and method for producing the same
JP6144525B2 (en) Manufacturing method of base substrate and manufacturing method of group III nitride semiconductor substrate
JPH09266212A (en) Silicon wafer
WO2014136573A1 (en) Composite substrate, semiconductor-wafer production method using said composite substrate, and support substrate for said composite substrate
JP2002137967A (en) Silicon carbide member
JP2005289706A (en) Method for producing self-standing diamond film
JP2007204307A (en) Method for synthesizing diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees