WO2014136573A1 - Composite substrate, semiconductor-wafer production method using said composite substrate, and support substrate for said composite substrate - Google Patents

Composite substrate, semiconductor-wafer production method using said composite substrate, and support substrate for said composite substrate Download PDF

Info

Publication number
WO2014136573A1
WO2014136573A1 PCT/JP2014/053864 JP2014053864W WO2014136573A1 WO 2014136573 A1 WO2014136573 A1 WO 2014136573A1 JP 2014053864 W JP2014053864 W JP 2014053864W WO 2014136573 A1 WO2014136573 A1 WO 2014136573A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
composite
film
support substrate
chemical composition
Prior art date
Application number
PCT/JP2014/053864
Other languages
French (fr)
Japanese (ja)
Inventor
一成 佐藤
裕紀 関
喜之 山本
松原 秀樹
浩一 曽我部
長谷川 幹人
裕 辻
明人 藤井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014136573A1 publication Critical patent/WO2014136573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Abstract

A composite substrate (1) includes: a support substrate (11) including a crystalline phase formed using anorthite which includes a metal (M), and which has the chemical composition MAl2Si2O8; and a main film (13) disposed on a main surface (11m) side of the support substrate (11). This production method for a semiconductor wafer (3) includes: a step in which the composite substrate (1) is prepared; a step in which at least one semiconductor layer (20) is grown on the main film (13) of the composite substrate (1) to obtain a semiconductor-layer-equipped composite substrate (2); and a step in which the support substrate (11) is removed from the semiconductor-layer-equipped composite substrate (2) to obtain a semiconductor wafer (3) including the semiconductor layer (20). Accordingly, provided are a composite substrate, a semiconductor-wafer production method using said composite substrate, and a support substrate for said composite substrate, which are suitable for producing a semiconductor wafer at low cost and with high efficiency.

Description

複合基板、複合基板を用いた半導体ウエハの製造方法、および複合基板用の支持基板Composite substrate, semiconductor wafer manufacturing method using composite substrate, and support substrate for composite substrate
 本発明は、半導体ウエハを低コストで効率よく製造するために好適な複合基板、複合基板を用いた半導体ウエハの製造方法、および複合基板用の支持基板に関する。 The present invention relates to a composite substrate suitable for efficiently manufacturing a semiconductor wafer at low cost, a method for manufacturing a semiconductor wafer using the composite substrate, and a support substrate for the composite substrate.
 発光デバイス、電子デバイスなどの半導体デバイスを製造するために、GaN、AlN、GaAs、InPなどのIII-V族化合物、SiCなどのIV族化合物などの半導体で形成されている半導体基板が好適に用いられる。 In order to manufacture semiconductor devices such as light-emitting devices and electronic devices, semiconductor substrates made of semiconductors such as III-V compounds such as GaN, AlN, GaAs, and InP, and IV compounds such as SiC are preferably used. It is done.
 しかしながら、これらの半導体基板は高価なものが多いため、半導体デバイスを低コストで効率よく製造するために、近年、支持基板の主面側に上記の半導体の主膜が配置された複合基板が提案されている。 However, since many of these semiconductor substrates are expensive, in recent years, in order to efficiently manufacture semiconductor devices at a low cost, a composite substrate in which the main film of the above semiconductor is arranged on the main surface side of the support substrate has been proposed. Has been.
 たとえば、特開2012-121788号公報(特許文献1)は、支持基板として、ムライト、Al23、SiO2などを含有するAl23-SiO2系焼結体基板上に、接合膜として接合層であるSiO2層を介在させて、主膜として単結晶膜であるGaN膜が貼り合わされた複合基板を開示する。かかる複合基板は、支持基板としてAl23-SiO2系焼結体基板を用いていることから、Al23-SiO2系焼結体基板中に存在するSiO2相がフッ化水素酸などの酸により除去されるため、複合基板の主膜上に半導体層を成長させて半導体層付複合基板を形成した後、支持基板を除去することにより所望の半導体ウエハを得ることができる。 For example, Japanese Patent Application Laid-Open No. 2012-121788 (Patent Document 1) discloses a bonding film on an Al 2 O 3 —SiO 2 sintered body substrate containing mullite, Al 2 O 3 , SiO 2 or the like as a supporting substrate. A composite substrate in which a GaN film as a single crystal film is bonded as a main film with a SiO 2 layer as a bonding layer interposed therebetween is disclosed. Since such a composite substrate uses an Al 2 O 3 —SiO 2 based sintered substrate as a support substrate, the SiO 2 phase present in the Al 2 O 3 —SiO 2 based sintered substrate is hydrogen fluoride. Since it is removed by an acid such as an acid, a desired semiconductor wafer can be obtained by growing a semiconductor layer on the main film of the composite substrate to form a composite substrate with a semiconductor layer and then removing the support substrate.
特開2012-121788号公報JP 2012-121788 A
 特開2012-121788号公報(特許文献1)に開示された複合基板においては、支持基板であるAl23-SiO2系焼結体基板中のSiO2相の存在形態および分布状態が安定していないため、支持基板を除去する工程を管理するのが困難という問題点があった。 In the composite substrate disclosed in Japanese Patent Application Laid-Open No. 2012-121788 (Patent Document 1), the presence form and distribution state of the SiO 2 phase in the Al 2 O 3 —SiO 2 based sintered body substrate as the support substrate are stable. Therefore, there is a problem that it is difficult to manage the process of removing the support substrate.
 本発明は、上記の問題点を解決して、安定した管理工程で複合基板から支持基板を除去することにより、半導体ウエハを低コストで効率よく製造するために好適な複合基板、複合基板を用いた半導体ウエハの製造方法、および複合基板用の支持基板を提供することを目的とする。 The present invention solves the above problems and uses a composite substrate and a composite substrate suitable for efficiently manufacturing a semiconductor wafer at low cost by removing the support substrate from the composite substrate in a stable management process. An object of the present invention is to provide a method for manufacturing a semiconductor wafer and a support substrate for a composite substrate.
 本発明は、ある局面に従えば、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む支持基板と、前記支持基板の主面側に配置されている主膜と、を含む複合基板である。 According to one aspect of the present invention, a support substrate including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including a metal element M is disposed on the main surface side of the support substrate. And a main film.
 本発明のかかる局面に従う複合基板において、金属元素Mをアルカリ土類金属元素MIIとすることができる。さらに、アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、支持基板の化学組成が、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点、MIIAl1219の化学組成を示す第2点、Al23の化学組成を示す第3点、およびAl6Si213の化学組成を示す第4点、および第1点をこの順に直線で結んで形成される領域内の点で示すことができる。 In the composite board according to according aspects of the present invention, the metal element M may be an alkaline earth metal element M II. Further comprising at least one element the alkaline earth metal element M II is Ca, it is selected from the group consisting of Sr and Ba, the chemical composition of the support substrate, M II O-Al 2 O 3 3 of -SiO 2 system In the component phase diagram, the first point indicating the chemical composition of M II Al 2 Si 2 O 8 , the second point indicating the chemical composition of M II Al 12 O 19 , the third point indicating the chemical composition of Al 2 O 3 , And a fourth point indicating the chemical composition of Al 6 Si 2 O 13 and a point in a region formed by connecting the first point with a straight line in this order.
 また、本発明のかかる局面に従う複合基板において、支持基板の少なくとも一部を酸に溶解させることができる。また、支持基板の主面内の熱膨張係数を、主膜の主面内の熱膨張係数に比べて、0.8倍以上1.2倍以下とすることができる。 Moreover, in the composite substrate according to this aspect of the present invention, at least a part of the support substrate can be dissolved in the acid. In addition, the thermal expansion coefficient in the main surface of the support substrate can be 0.8 times or more and 1.2 times or less compared to the thermal expansion coefficient in the main surface of the main film.
 また、本発明は、別の局面に従えば、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む支持基板と、支持基板の主面側に配置されている主膜と、を含む複合基板を準備する工程と、複合基板の主膜上に、少なくとも1層の半導体層を成長させることにより、半導体層付複合基板を得る工程と、半導体層付複合基板から支持基板を除去することにより、半導体層を含む半導体ウエハを得る工程と、を含む半導体ウエハの製造方法である。 According to another aspect of the present invention, there is provided a support substrate including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including a metal element M, and a main surface side of the support substrate. A step of preparing a composite substrate including a main film, a step of obtaining a composite substrate with a semiconductor layer by growing at least one semiconductor layer on the main film of the composite substrate, and a semiconductor layer And removing the support substrate from the attached composite substrate to obtain a semiconductor wafer including a semiconductor layer.
 また、本発明は、さらに別の局面に従えば、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含み、直径が3インチ以上で、主面の算術平均粗さRaが50nm以下である複合基板用の支持基板である。 According to yet another aspect, the present invention includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing metal element M, has a diameter of 3 inches or more, and has a main surface. Is a support substrate for a composite substrate having an arithmetic average roughness Ra of 50 nm or less.
 本発明のかかる局面に従う複合基板用の支持基板において、金属元素Mをアルカリ土類金属元素MIIとすることができる。さらに、アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、支持基板の化学組成が、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点、MIIAl1219の化学組成を示す第2点、Al23の化学組成を示す第3点、およびAl6Si213の化学組成を示す第4点、および第1点をこの順に直線で結んで形成される領域内の点で示すことができる。また、本発明にかかる複合基板の支持基板は、少なくとも一部を酸に溶解させることができる。 In the support substrate of the composite substrate according consuming aspect the present invention, the metal element M may be an alkaline earth metal element M II. Further comprising at least one element the alkaline earth metal element M II is Ca, it is selected from the group consisting of Sr and Ba, the chemical composition of the support substrate, M II O-Al 2 O 3 3 of -SiO 2 system In the component phase diagram, the first point indicating the chemical composition of M II Al 2 Si 2 O 8 , the second point indicating the chemical composition of M II Al 12 O 19 , the third point indicating the chemical composition of Al 2 O 3 , And a fourth point indicating the chemical composition of Al 6 Si 2 O 13 and a point in a region formed by connecting the first point with a straight line in this order. Further, at least a part of the support substrate of the composite substrate according to the present invention can be dissolved in an acid.
 本発明によれば、安定した管理工程で複合基板から支持基板を除去することにより、半導体ウエハを低コストで効率よく製造するために好適な複合基板、複合基板を用いた半導体ウエハの製造方法、および複合基板用の支持基板を提供できる。 According to the present invention, by removing the support substrate from the composite substrate in a stable management process, a composite substrate suitable for efficiently manufacturing a semiconductor wafer at low cost, a method for manufacturing a semiconductor wafer using the composite substrate, In addition, a supporting substrate for a composite substrate can be provided.
本発明のある局面に従う複合基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the composite substrate according to a certain situation of this invention. 本発明のある局面に従う複合基板における支持基板の化学組成を示す3成分相図の一例である。It is an example of a three-component phase diagram showing the chemical composition of a support substrate in a composite substrate according to an aspect of the present invention. 本発明のある局面に従う複合基板の製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the composite substrate according to an aspect with this invention. 本発明のある局面に従う複合基板の製造方法の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the manufacturing method of the composite substrate according to an aspect with this invention. 本発明のある局面に従う複合基板の製造方法のさらに別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the manufacturing method of the composite substrate according to an aspect with this invention. 本発明のある局面に従う複合基板の製造方法のさらに別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the manufacturing method of the composite substrate according to an aspect with this invention. 本発明の別の局面に従う半導体ウエハの製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the semiconductor wafer according to another situation of this invention. 本発明のさらに別の局面に従う複合基板用の支持基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the support substrate for composite substrates according to another situation of this invention. 実施例の複合基板における支持基板の化学組成を示す3成分相図である。It is a 3 component phase diagram which shows the chemical composition of the support substrate in the composite substrate of an Example.
 [実施形態1]
 図1を参照して、本発明のある実施形態である複合基板1は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相(以下、MAl2Si28結晶相、または単にMAl2Si28相ともいう。)を含む支持基板11と、支持基板11の主面11m側に配置されている主膜13と、を含む。本実施形態の複合基板1は、支持基板11が金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含んでいることから、支持基板11の除去を安定な状態で効率よく進めることができるため、低コストで効率よく半導体ウエハを製造することができる。ここで、アノーサイトとは、一般にCaAl2Si28の化学組成を有する鉱物名であるが、本願においては、Caをその他の金属元素で置き換えたものも含めてMAl2Si28(金属元素Mは、Caおよび/またはその他の金属元素)の化学組成を有するものの総称名とする。
[Embodiment 1]
Referring to FIG. 1, a composite substrate 1 according to an embodiment of the present invention includes a crystal phase (hereinafter referred to as MAl 2 Si) formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing a metal element M. 2 O 8 crystal phase, or simply MAl 2 Si 2 O 8 phase.) And a main film 13 disposed on the main surface 11 m side of the support substrate 11. The composite substrate 1 of the present embodiment includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing the metal element M, so that the support substrate 11 can be removed. Since the semiconductor wafer can be efficiently advanced in a stable state, a semiconductor wafer can be efficiently manufactured at a low cost. Here, anorthite is a mineral name generally having a chemical composition of CaAl 2 Si 2 O 8 , but in this application, MAl 2 Si 2 O 8 (including those in which Ca is replaced with other metal elements). The metal element M is a generic name for those having a chemical composition of Ca and / or other metal elements.
 (支持基板)
 図1を参照して、本実施形態の複合基板1に含まれる支持基板11は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む。かかるアノーサイトで形成される結晶相は、フッ化水素酸などの酸に溶解して除去されるとともに、研削または研磨などにより除去される。また、アノーサイトで形成される結晶相は、結晶相であるためその化学組成が安定しているため、フッ化水素酸などの酸による分解による除去および研磨または研磨などによる除去が安定して進行する。このため、本実施形態の複合基板1の支持基板11の除去を安定な状態で効率よく進めることができる。
(Support substrate)
Referring to FIG. 1, support substrate 11 included in composite substrate 1 of the present embodiment includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including metal element M. The crystal phase formed by such anorthite is removed by dissolving in an acid such as hydrofluoric acid, and is removed by grinding or polishing. In addition, since the crystal phase formed by anorthite is a crystalline phase and its chemical composition is stable, removal by decomposition with an acid such as hydrofluoric acid and removal by polishing or polishing stably proceed. To do. For this reason, the removal of the support substrate 11 of the composite substrate 1 of this embodiment can be efficiently advanced in a stable state.
 また、支持基板11は、MOx(xは任意の正の実数)、Al23、およびSiO2の少なくとも1種類を含む非結晶相をさらに含む場合があり、このようなMOx、Al23、およびSiO2の少なくとも1種類を含む非結晶相もフッ化水素酸などの酸による分解による除去および研磨または研磨などによる除去を高める場合がある。 In addition, the support substrate 11 may further include an amorphous phase including at least one of MO x (x is an arbitrary positive real number), Al 2 O 3 , and SiO 2. Such MO x , Al An amorphous phase containing at least one of 2 O 3 and SiO 2 may also enhance removal by decomposition with an acid such as hydrofluoric acid and removal by polishing or polishing.
 支持基板11に含まれる金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相において、金属元素Mはアノーサイトで結晶相を形成することができる限り特に制限はなく、Mg、Ca、Sr、Baなどの第2族の金属元素、Mn、Fe、Co、Ni、Znなどの遷移金属元素MTなどとすることができる。安定性の高いアノーサイトの結晶相を形成する観点から、金属元素MはCa、Sr、Baなどのアルカリ土類金属元素MIIであることが好ましい。 In the crystal phase formed of anorthite having the chemical composition of MAl 2 Si 2 O 8 including the metal element M contained in the support substrate 11, the metal element M is particularly limited as long as the crystal phase can be formed at the anorthite. but it may be Mg, Ca, Sr, group 2 metal elements such as Ba, Mn, Fe, Co, Ni, and the like transition metal element M T such Zn. From the viewpoint of forming a crystalline phase of high stability anorthite, the metal element M is Ca, Sr, is preferably Ba is an alkaline earth metal element M II such.
 さらに、支持基板11に含まれるアルカリ土類金属元素MIIを含むMIIAl2Si28の化学組成を有するアノーサイトで形成される結晶相において、アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含むことが好ましい。アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含むことから、安定性が高いアノーサイトの結晶相が形成される。 Further, in the crystal phase formed of anorthite having a chemical composition of M II Al 2 Si 2 O 8 containing the alkaline earth metal element M II contained in the support substrate 11, the alkaline earth metal element M II is Ca, It is preferable to contain at least one element selected from the group consisting of Sr and Ba. Alkaline earth metal element M II is Ca, since it contains at least one element selected from the group consisting of Sr and Ba, the crystal phase of the high stability anorthite is formed.
 ここで、図1および図2を参照して、支持基板11の化学組成は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含んでいる限り特に制限はないが、金属元素Mがアルカリ土類金属元素MIIであって、Ca、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点P1、MIIAl1219の化学組成を示す第2点P2、Al23の化学組成を示す第3点P3、およびAl6Si213の化学組成を示す第4点P4、および第1点P1をこの順に直線で結んで形成される領域R内の点で示されることが好ましい。支持基板11の化学組成がかかる領域R内の点で示される場合は、支持基板の熱膨張係数およびフッ化水素酸などの酸に対する溶解性を好適な範囲で調整することができる。 Here, with reference to FIG. 1 and FIG. 2, as long as the chemical composition of the support substrate 11 includes a crystalline phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing the metal element M. Although there is no particular limitation, the metal element M is an alkaline earth metal element M II and includes at least one element selected from the group consisting of Ca, Sr and Ba, and M II O—Al 2 O 3 —SiO In the two -component three-component phase diagram, the first point P1 indicating the chemical composition of M II Al 2 Si 2 O 8 , the second point P2 indicating the chemical composition of M II Al 12 O 19 , and the chemical composition of Al 2 O 3 It is preferable that the third point P3 indicating the chemical composition of Al 6 Si 2 O 13 , the fourth point P4 indicating the chemical composition of Al 6 Si 2 O 13 , and the point in the region R formed by connecting the first point P1 in this order with a straight line. . When the chemical composition of the support substrate 11 is indicated by a point in the region R, the thermal expansion coefficient of the support substrate and the solubility in acids such as hydrofluoric acid can be adjusted within a suitable range.
 ここで、図2に示すMIIO-Al23-SiO2系の3成分相図の3頂点にそれぞれ位置するMIIO、Al23、およびSiO2は、熱膨張係数はSiO2が低くMIIOおよびAl23が高く、フッ化水素酸に対する溶解性はAl23が低くSiO2が高いという特性を有している。 Here, M II O, Al 2 O 3 , and SiO 2 located at the tops of the three component phase diagrams of the M II O—Al 2 O 3 —SiO 2 system shown in FIG. 2 is low, M II O and Al 2 O 3 are high, and the solubility in hydrofluoric acid is such that Al 2 O 3 is low and SiO 2 is high.
 また、図2に示す領域Rには、MIIAl2Si28の化学組成を示す第1点P1とMIIAl1219の化学組成を示す第2点P2とを結ぶ第1直線L1、MIIAl2Si28の化学組成を示す第1点P1とAl23の化学組成を示す第3点P3とを結ぶ第2直線L2、およびMIIAl2Si28の化学組成を示す第1点P1とAl6Si213の化学組成を示す第4点P4とを結ぶ第3直線L3が含まれる。 Further, in the region R shown in FIG. 2, a first straight line connecting a first point P1 indicating the chemical composition of M II Al 2 Si 2 O 8 and a second point P2 indicating the chemical composition of M II Al 12 O 19 is present. L1, the second straight line L2 connecting the first point P1 indicating the chemical composition of M II Al 2 Si 2 O 8 and the third point P3 indicating the chemical composition of Al 2 O 3 , and M II Al 2 Si 2 O 8 A third straight line L3 connecting the first point P1 indicating the chemical composition of the first point P4 and the fourth point P4 indicating the chemical composition of the Al 6 Si 2 O 13 is included.
 図2に示す第1直線L1上の点で示される化学組成を有する支持基板11は、結晶相としてMIIAl2Si28相とMIIAl1219相とを含む。図2に示す第2直線L2上の点で示される化学組成を有する支持基板11は、結晶相としてMIIAl2Si28相とAl23相とを含む。図2に示す第3直線L3上の点で示される化学組成を有する支持基板11は、結晶相としてMIIAl2Si28相とAl6Si213相とを含む。 The support substrate 11 having a chemical composition indicated by a point on the first straight line L1 shown in FIG. 2 includes an M II Al 2 Si 2 O 8 phase and an M II Al 12 O 19 phase as crystal phases. The support substrate 11 having a chemical composition indicated by a point on the second straight line L2 shown in FIG. 2 includes an M II Al 2 Si 2 O 8 phase and an Al 2 O 3 phase as crystal phases. The support substrate 11 having a chemical composition indicated by a point on the third straight line L3 shown in FIG. 2 includes an M II Al 2 Si 2 O 8 phase and an Al 6 Si 2 O 13 phase as crystal phases.
 さらに、図2に示す領域Rは、MIIAl2Si28の化学組成を示す第1点P1、MIIAl1219の化学組成を示す第2点P2、Al23の化学組成を示す第3点P3、および第1点P1をこの順に直線で結んで得られる第1領域R1と、MIIAl2Si28の化学組成を示す第1点P1、Al23の化学組成を示す第3点P3、およびAl6Si213の化学組成を示す第4点P4、および第1点P1をこの順に直線で結んで形成される第2領域R2とを含む。 Further, a region R shown in FIG. 2 includes a first point P1 indicating the chemical composition of M II Al 2 Si 2 O 8, a second point P2 indicating the chemical composition of M II Al 12 O 19 , and the chemistry of Al 2 O 3 . The first point P1 indicating the chemical composition of the first region R1 obtained by connecting the third point P3 indicating the composition and the first point P1 in a straight line in this order, and the chemical composition of M II Al 2 Si 2 O 8 , Al 2 O 3 A third point P3 indicating the chemical composition of the first, a fourth point P4 indicating the chemical composition of Al 6 Si 2 O 13 , and a second region R2 formed by connecting the first point P1 with a straight line in this order.
 図2に示す第1領域R1内の点で示される化学組成を有する支持基板11は、結晶相としてMIIAl2Si28相とMIIAl1219相とAl23相とを含む。図2に示す第2領域R2内の点で示されるMIIAl2Si28相とAl23相とAl6Si213相とを含む。 A support substrate 11 having a chemical composition indicated by a point in the first region R1 shown in FIG. 2 has an M II Al 2 Si 2 O 8 phase, an M II Al 12 O 19 phase, and an Al 2 O 3 phase as crystal phases. including. It includes an M II Al 2 Si 2 O 8 phase, an Al 2 O 3 phase, and an Al 6 Si 2 O 13 phase indicated by points in the second region R2 shown in FIG.
 ここで、支持基板11におけるMIIAl2Si28相、MIIAl1219相、Al23相およびAl6Si213相の存在の有無およびモル%は、X線回折により測定および同定される。 Here, the presence / absence and mole% of the M II Al 2 Si 2 O 8 phase, M II Al 12 O 19 phase, Al 2 O 3 phase and Al 6 Si 2 O 13 phase in the support substrate 11 are determined by X-ray diffraction. Measured and identified by
 本実施形態の複合基板1は、支持基板11が金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含むため、支持基板11の少なくとも一部がフッ化水素酸などの酸に溶解するため、効率よく支持基板11を除去することができる。 Since the composite substrate 1 of the present embodiment includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including the metal element M, the support substrate 11 includes at least a part of the support substrate 11. Since it dissolves in an acid such as hydrofluoric acid, the support substrate 11 can be efficiently removed.
 (主膜)
 図1を参照して、本実施形態の複合基板1に含まれ、支持基板11の主面11m側に配置されている主膜13は、その上に半導体層を成長させることができるなどの物性を有する主膜であれば特に制限はなく、GaN膜、AlN膜、GaAs膜、InP膜などのIII-V族化合物半導体膜、ダイヤモンド膜などのC(カーボン)膜、Si膜、Ge膜などのIV族元素半導体膜、SiC膜、SiGe膜などのIV族化合物半導体膜などが挙げられる。また、主膜13は、上記の物性を有する主膜であれば結晶性の有無および結晶の形態を問わず、単結晶膜であっても、多結晶膜であっても、非晶質(アモルファス)膜であってもよい。
(Main membrane)
Referring to FIG. 1, the main film 13 included in the composite substrate 1 of the present embodiment and disposed on the main surface 11m side of the support substrate 11 has a physical property such that a semiconductor layer can be grown thereon. There is no particular limitation as long as it is a main film having a GaN film, a III-V group compound semiconductor film such as a GaN film, an AlN film, a GaAs film or an InP film, a C (carbon) film such as a diamond film, a Si film or a Ge film. IV group compound semiconductor films such as a group IV element semiconductor film, a SiC film, and a SiGe film may be used. The main film 13 may be a single-crystal film or a polycrystalline film, regardless of the presence or absence of crystallinity and the crystal form, as long as the main film has the above physical properties. ) It may be a film.
 主膜13の厚さは、特に制限はないが、主膜13上に結晶性の高い半導体層を成長させる観点から、0.01μm以上が好ましく、0.05μm以上がより好ましい。また、主膜13の厚さは、主膜13の材料コストを低減する観点から、500μm以下が好ましく、250μm以下がより好ましい。 The thickness of the main film 13 is not particularly limited, but is preferably 0.01 μm or more and more preferably 0.05 μm or more from the viewpoint of growing a highly crystalline semiconductor layer on the main film 13. Further, the thickness of the main film 13 is preferably 500 μm or less, and more preferably 250 μm or less from the viewpoint of reducing the material cost of the main film 13.
 (接合膜)
 本実施形態の複合基板1は、支持基板11と主膜13との接合強度を高める観点から、支持基板11と主膜13との間に接合膜12が形成されていることが好ましい。接合膜12は、特に制限はないが、支持基板11と主膜13mとの接合強度を高める効果が高い観点から、SiO2膜、Si34膜、TiO2膜、Ga23膜などが好ましい。さらに、フッ化水素酸などの酸に溶解する観点から、SiO2膜、Si34膜などがより好ましい。
(Bonding film)
In the composite substrate 1 of the present embodiment, the bonding film 12 is preferably formed between the support substrate 11 and the main film 13 from the viewpoint of increasing the bonding strength between the support substrate 11 and the main film 13. Bonding film 12 is not particularly limited, from the effects is high in view of enhancing the bonding strength between the supporting substrate 11 and the main membrane 13m, SiO 2 film, Si 3 N 4 film, TiO 2 film, Ga 2 O 3 film, etc. Is preferred. Further, from the viewpoint of dissolving in an acid such as hydrofluoric acid, a SiO 2 film, a Si 3 N 4 film, or the like is more preferable.
 (支持基板の主面内の熱膨張係数と主膜の主面内の熱膨張係数との関係)
 本実施形態の複合基板1は、複合基板1の主膜13上に反りが小さく転位密度が小さく結晶性の高い半導体層を成長させる観点から、支持基板11の主面11m内の熱膨張係数αSが、主膜13の主面13m内の熱膨張係数αFに比べて、0.8倍以上1.2倍以下が好ましく、0.9倍以上1.1倍以下がより好ましい。
(Relationship between the thermal expansion coefficient in the main surface of the support substrate and the thermal expansion coefficient in the main surface of the main film)
The composite substrate 1 of the present embodiment has a thermal expansion coefficient α in the main surface 11m of the support substrate 11 from the viewpoint of growing a semiconductor layer with low warpage, low dislocation density and high crystallinity on the main film 13 of the composite substrate 1. S is preferably 0.8 times or more and 1.2 times or less, and more preferably 0.9 times or more and 1.1 times or less as compared with the thermal expansion coefficient α F in the main surface 13 m of the main film 13.
 (複合基板の製造方法)
 本実施形態の複合基板1の製造方法は、支持基板11の主面11m側に主膜13を配置する方法であれば特に制限はなく、以下の方法が挙げられる。第1の方法は、支持基板11の主面11m上に主膜13を成長させる方法である(図示せず)。第2の方法は、図3を参照して、支持基板11の主面11mに、下地基板30の主面30n上に成膜させた主膜13を貼り合わせた後、下地基板30を除去する方法である。第3の方法は、図4および図5を参照して、支持基板11の主面11mに主膜ドナー基板13Dを貼り合わせた後、その主膜ドナー基板13Dを貼り合わせ面から所定の深さの面で分離することにより支持基板11の主面11m上に主膜13を形成する方法である。第4の方法は、図6を参照して、支持基板11の主面11mに主膜ドナー基板13Dを貼り合わせた後、その主膜ドナー基板13Dを貼り合わせ面の反対側の主面から研削、研磨およびエッチングの少なくともいずれかにより厚さを減少させて調整することにより支持基板11の主面11m上に主膜13を形成する方法である。単結晶または多結晶で結晶性の高い主膜13を形成する場合は、上記の第1の方法が困難であるため、上記の第2~第4のいずれかの方法が好ましく用いられる。
(Production method of composite substrate)
The method for manufacturing the composite substrate 1 of the present embodiment is not particularly limited as long as the main film 13 is disposed on the main surface 11 m side of the support substrate 11, and examples thereof include the following methods. The first method is a method of growing the main film 13 on the main surface 11m of the support substrate 11 (not shown). In the second method, referring to FIG. 3, after the main film 13 formed on the main surface 30n of the base substrate 30 is bonded to the main surface 11m of the support substrate 11, the base substrate 30 is removed. Is the method. In the third method, referring to FIG. 4 and FIG. 5, after the main film donor substrate 13D is bonded to the main surface 11m of the support substrate 11, the main film donor substrate 13D is formed to a predetermined depth from the bonded surface. In this method, the main film 13 is formed on the main surface 11 m of the support substrate 11. In the fourth method, referring to FIG. 6, after main film donor substrate 13D is bonded to main surface 11m of support substrate 11, main film donor substrate 13D is ground from the main surface opposite to the bonded surface. In this method, the main film 13 is formed on the main surface 11m of the support substrate 11 by adjusting the thickness by reducing the thickness by at least one of polishing and etching. When the main film 13 having a single crystal or polycrystal and high crystallinity is formed, the first method is difficult, and therefore any one of the second to fourth methods is preferably used.
 上記の第2の方法において、支持基板11に主膜13を貼り合わせる方法には、特に制限はなく、支持基板11の主面11mに直接主膜13を貼り合わせる方法(図示せず)、支持基板11の主面11mに接合膜12を介在させて主膜13を貼り合わせる方法(図3を参照)などが挙げられる。また、上記の第3および第4の方法において、支持基板11に主膜ドナー基板13Dを貼り合わせる方法には、特に制限はなく、支持基板11の主面11mに主膜ドナー基板13Dを貼り合わせる方法(図示せず)、支持基板11の主面11mに接合膜12を介在させて主膜ドナー基板13Dを貼り合わせる方法(図4~図6を参照)などが挙げられる。 In the second method, the method for bonding the main film 13 to the support substrate 11 is not particularly limited, and a method (not shown) for directly bonding the main film 13 to the main surface 11m of the support substrate 11 is supported. For example, a method of attaching the main film 13 to the main surface 11m of the substrate 11 with the bonding film 12 interposed (see FIG. 3) may be used. In the third and fourth methods described above, the method for bonding the main film donor substrate 13D to the support substrate 11 is not particularly limited, and the main film donor substrate 13D is bonded to the main surface 11m of the support substrate 11. Examples thereof include a method (not shown), a method in which the main film donor substrate 13D is bonded to the main surface 11m of the support substrate 11 with the bonding film 12 interposed (see FIGS. 4 to 6), and the like.
 図3を参照して、第2の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11を準備する工程(図3(A))と、下地基板30の主面30n上に主膜13を形成する工程(図3(B))と、支持基板11と主膜13とを貼り合わせて接合基板1Lを形成する工程(図3(C))と、接合基板1Lから下地基板30を除去する工程(図3(D))と、を含むことが好ましい。 Referring to FIG. 3, the method of manufacturing the composite substrate by the second method is not particularly limited, but the step of preparing the support substrate 11 from the viewpoint of efficiently manufacturing the composite substrate (FIG. 3A). ), A step of forming the main film 13 on the main surface 30n of the base substrate 30 (FIG. 3B), and a step of bonding the support substrate 11 and the main film 13 to form the bonded substrate 1L (FIG. 3). (C)) and a step of removing the base substrate 30 from the bonding substrate 1L (FIG. 3D) are preferably included.
 図3(A)を参照して、支持基板11を準備する工程は、特に制限はなく、たとえば、金属元素Mを含む酸化物であるMOx(xは任意の正の実数)、Alを含む酸化物であるAl23、およびSiを含む酸化物であるSiO2を所定のモル比値で混合し焼結して得られる焼結体を所定の大きさに切り出して得られる基板の主面を研磨することにより行なうことができる。 Referring to FIG. 3A, the step of preparing support substrate 11 is not particularly limited, and includes, for example, MO x (x is an arbitrary positive real number) that is an oxide containing metal element M and Al. Main substrate of a substrate obtained by cutting a sintered body obtained by mixing and sintering Al 2 O 3 which is an oxide and SiO 2 which is an oxide containing Si at a predetermined molar ratio to a predetermined size This can be done by polishing the surface.
 図3(B)を参照して、下地基板30の主面30n上に主膜13を形成する工程は、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などにより好適に行なうことができる。 Referring to FIG. 3B, the process of forming the main film 13 on the main surface 30n of the base substrate 30 includes MOCVD (metal organic chemical vapor deposition) method, sputtering method, MBE (molecular beam epitaxy) method, PLD (pulse laser deposition) method, HVPE (hydride vapor phase epitaxy) method, sublimation method, flux method, high nitrogen pressure solution method and the like can be preferably used.
 図3(C)を参照して、支持基板11と主膜13とを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図3(C1))と、下地基板30の主面30n上に形成された主膜13の主面13n上に接合膜12bを形成するサブ工程(図3(C2))と、支持基板11の主面11m上に形成された接合膜12aと下地基板30の主面30n上に形成された主膜13の主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図3(C3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、下地基板30上に形成された主膜13とが、接合膜12を介在させて接合されて、接合基板1Lが形成される。 Referring to FIG. 3C, the step of bonding the support substrate 11 and the main film 13 to form the bonding substrate 1L is a sub-step of forming the bonding film 12a on the main surface 11m of the support substrate 11 (FIG. 3). 3 (C1)), a sub-process (FIG. 3 (C2)) for forming the bonding film 12b on the main surface 13n of the main film 13 formed on the main surface 30n of the base substrate 30, and the main of the support substrate 11 A sub-process of bonding the bonding film 12a formed on the surface 11m and the bonding film 12b formed on the main surface 13n of the main film 13 formed on the main surface 30n of the base substrate 30 (FIG. 3C3) ) And. By these sub-processes, the bonding film 12a and the bonding film 12b bonded to each other are integrated by bonding to form the bonding film 12, and the support substrate 11 and the main film 13 formed on the base substrate 30 are formed. Bonding substrate 1L is formed by bonding with bonding film 12 interposed.
 ここで、接合膜12a,12bの形成方法は、特に制限はないが、膜形成コストを抑制する観点から、スパッタ法、蒸着法、CVD(化学気相堆積)法などが好適に行なわれる。また、接合膜12aと接合膜12bとを貼り合わせる方法は、特に制限はないが、支持基板11と主膜13とを貼り合わせる方法は、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃~1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化処理した後に室温(たとえば25℃)~400℃程度の低温雰囲気下で接合する表面活性化接合法、貼り合わせ面を薬液と純水で洗浄処理した後、0.1MPa~10MPa程度の高圧力を掛けて接合する高圧接合法、貼り合わせ面を薬液と純水で洗浄処理した後、10-6Pa~10-3Pa程度の高真空雰囲気下で接合する高真空接合法、などが好適である。上記のいずれの接合法においてもそれらの接合後に600℃~1200℃程度に昇温することによりさらに接合強度を高めることができる。特に、表面活性化接合法、高圧接合法、および高真空接合法においては、それらの接合後に600℃~1200℃程度に昇温することによる接合強度を高める効果が大きい。 Here, the method of forming the bonding films 12a and 12b is not particularly limited, but from the viewpoint of suppressing the film formation cost, a sputtering method, a vapor deposition method, a CVD (chemical vapor deposition) method, or the like is preferably performed. The method for bonding the bonding film 12a and the bonding film 12b is not particularly limited, but the method for bonding the support substrate 11 and the main film 13 is not particularly limited, and the bonding surface is washed and bonded as it is. After that, a direct bonding method in which the temperature is raised to about 600 ° C. to 1200 ° C. for bonding, the bonded surface is cleaned and activated with plasma or ions, and then in a low temperature atmosphere of room temperature (for example, 25 ° C.) to about 400 ° C. Surface activated bonding method for bonding, high pressure bonding method for bonding by applying high pressure of about 0.1 MPa to 10 MPa after cleaning the bonded surface with chemical solution and pure water, cleaning the bonded surface with chemical solution and pure water A high vacuum bonding method in which bonding is performed in a high vacuum atmosphere of about 10 −6 Pa to 10 −3 Pa after the treatment is preferable. In any of the above bonding methods, the bonding strength can be further increased by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding. In particular, in the surface activated bonding method, the high pressure bonding method, and the high vacuum bonding method, the effect of increasing the bonding strength by raising the temperature to about 600 ° C. to 1200 ° C. after the bonding is large.
 図3(D)を参照して、接合基板1Lから下地基板30を除去する工程は、特に制限はないが、下地基板30を効率的に除去する観点から、下地基板30をフッ化水素酸などのエッチャントにより溶解させて除去する方法、下地基板30の露出している主面側から研削または研磨により除去する方法などが好適に行なわれる。 Referring to FIG. 3D, the step of removing base substrate 30 from bonding substrate 1L is not particularly limited, but from the viewpoint of efficiently removing base substrate 30, base substrate 30 is made of hydrofluoric acid or the like. A method of removing by dissolving with an etchant and a method of removing by grinding or polishing from the exposed main surface side of the base substrate 30 are preferably performed.
 このようにして、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された主膜13と、を含む複合基板1が得られる。 Thus, the composite substrate 1 including the support substrate 11, the bonding film 12 disposed on the main surface 11m of the support substrate 11, and the main film 13 disposed on the main surface 12m of the bonding film 12 is provided. can get.
 図4および図5を参照して、第3の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11と主膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程と(図4(A)および図5(A))と、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程(図4(B)および図5(B))と、を含むことが好ましい。接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する方法には、特に制限はないが、効率的な分離を行なう観点から、図4に示すようなイオン注入法、図5に示す切断法などが好ましい。 Referring to FIGS. 4 and 5, the method of manufacturing the composite substrate by the third method is not particularly limited, but from the viewpoint of efficiently manufacturing the composite substrate, the supporting substrate 11 and the main film donor substrate 13D Are bonded to each other to form a bonding substrate 1L (FIGS. 4A and 5A) and a main surface 13n which is a bonding surface of the main film donor substrate 13D of the bonding substrate 1L. It is preferable to include a step (FIG. 4B and FIG. 5B) of separating at a surface located at a depth. There is no particular limitation on the method of separating the main surface 13n, which is the bonding surface of the main film donor substrate 13D of the bonding substrate 1L, on the surface located at a predetermined depth inside, but from the viewpoint of efficient separation. An ion implantation method as shown in FIG. 4 and a cutting method as shown in FIG. 5 are preferable.
 図4に示すイオン注入法について以下に説明する。図4(A)を参照して、支持基板11と主膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図4(A1))と、主膜ドナー基板13Dの主面13n側からイオンIを注入することにより主面13nから内部に所定の深さの位置の面にイオン注入領域13iを形成するとともに主面13n上に接合膜12bを形成するサブ工程(図4(A2))と、支持基板11の主面11m上に形成された接合膜12aと主膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図4(A3))と、を含む。これらのサブ工程により、これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、主膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。接合基板1Lの複合基板1の主膜ドナー基板13Dの内部に注入されたイオンIは、後工程においてガス化して急激な体積膨張を起こすことにより、主膜ドナー基板13Dをイオン注入領域13iで分離させる。 The ion implantation method shown in FIG. 4 will be described below. Referring to FIG. 4A, the step of bonding the support substrate 11 and the main film donor substrate 13D to form the bonding substrate 1L is a sub-step of forming the bonding film 12a on the main surface 11m of the support substrate 11. (FIG. 4 (A1)) and by implanting ions I from the main surface 13n side of the main film donor substrate 13D, an ion implantation region 13i is formed on the surface at a predetermined depth from the main surface 13n. A sub-process for forming the bonding film 12b on the main surface 13n (FIG. 4A2), and the bonding film 12a formed on the main surface 11m of the support substrate 11 and the main surface 13n of the main film donor substrate 13D. And a sub-process (FIG. 4 (A3)) for bonding the bonding film 12b thus formed. By these sub-processes, the bonding film 12a and the bonding film 12b bonded together by these sub-processes are integrated by bonding to form the bonding film 12, and the support substrate 11 and the main film donor substrate 13D are Bonding substrate 1L is formed by bonding with bonding film 12 interposed. The ions I implanted into the main film donor substrate 13D of the composite substrate 1 of the bonding substrate 1L are gasified in a later process to cause rapid volume expansion, thereby separating the main film donor substrate 13D at the ion implantation region 13i. Let
 主膜ドナー基板13Dとは、後サブ工程において分離により主膜13を提供するドナー基板である。かかる主膜ドナー基板13Dを形成する方法は、上記の第2の方法により複合基板を製造する方法における主膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第2の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11と主膜ドナー基板13Dとを貼り合わせる方法は、上記の第2の方法により複合基板を製造する方法における支持基板11と主膜13とを貼り合わせる方法と同様である。 The main film donor substrate 13D is a donor substrate that provides the main film 13 by separation in a subsequent sub-process. The method of forming the main film donor substrate 13D is the same as the method of forming the main film 13 in the method of manufacturing the composite substrate by the second method. The method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the second method. The method of bonding the support substrate 11 and the main film donor substrate 13D is the same as the method of bonding the support substrate 11 and the main film 13 in the method of manufacturing the composite substrate by the second method.
 主膜ドナー基板13Dに注入されるイオンIは、特に制限はないが、主膜の品質の低下を抑制する観点およびイオン注入領域13iに注入されたイオンIのガス化温度を主膜13の分解温度より低くする観点から、質量の小さい原子のイオン、たとえば、水素イオン、ヘリウムイオンなどが好ましい。 The ions I implanted into the main film donor substrate 13D are not particularly limited, but the gasification temperature of the ions I implanted into the ion implantation region 13i can be determined by decomposing the main film 13 although the deterioration of the quality of the main film is suppressed. From the viewpoint of lowering the temperature, ions of atoms with a small mass such as hydrogen ions and helium ions are preferable.
 図4(B)を参照して、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程は、主膜ドナー基板13Dに注入されたイオンIをガス化させる方法であれば特に制限はない。たとえば、熱を加えたり、超音波を加えたりする方法などで、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面から所定の深さの位置に形成されているイオン注入領域13iに注入されているイオンIをガス化させて急激な体積膨張をさせることにより行なう。 Referring to FIG. 4B, the step of separating the main film donor substrate 13D of the bonding substrate 1L from the main surface 13n, which is the bonding surface, on the surface located at a predetermined depth inside is performed by the main film donor substrate 13D. There is no particular limitation as long as it is a method for gasifying the ions I implanted into the gas. For example, an ion implantation region 13i formed at a predetermined depth from the main surface, which is a bonding surface of the main film donor substrate 13D of the bonding substrate 1L, by a method of applying heat or applying ultrasonic waves. This is carried out by gasifying the ions I implanted into the substrate and causing rapid volume expansion.
 このようにして、接合基板1Lが主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された主膜13と、を含む複合基板1が得られる。 In this way, the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the main film donor substrate 13D, at a surface located at a predetermined depth inside, and the support substrate 11 and the main surface of the support substrate 11 are separated. The composite substrate 1 including the bonding film 12 disposed on 11 m and the main film 13 disposed on the main surface 12 m of the bonding film 12 is obtained.
 図5に示す切断法について以下に説明する。図5(A)を参照して、支持基板11と主膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図5(A1))と、主膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図5(A2))と、支持基板11の主面11m上に形成された接合膜12aと主膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図5(A3))と、を含む。これらのサブ工程により、これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、主膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。 The cutting method shown in FIG. 5 will be described below. Referring to FIG. 5A, the step of bonding the support substrate 11 and the main film donor substrate 13D to form the bonding substrate 1L is a sub-step of forming the bonding film 12a on the main surface 11m of the support substrate 11. (FIG. 5 (A1)), a sub-process (FIG. 5 (A2)) for forming the bonding film 12b on the main surface 13n of the main film donor substrate 13D, and a bonding formed on the main surface 11m of the support substrate 11 A sub-process (FIG. 5 (A3)) for bonding the film 12a and the bonding film 12b formed on the main surface 13n of the main film donor substrate 13D. By these sub-processes, the bonding film 12a and the bonding film 12b bonded together by these sub-processes are integrated by bonding to form the bonding film 12, and the support substrate 11 and the main film donor substrate 13D are Bonding substrate 1L is formed by bonding with bonding film 12 interposed.
 図5(B)を参照して、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離する工程は、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で主膜ドナー基板13Dを切断することにより行なう。主膜ドナー基板を切断する方法は、特に制限なく、ワイヤソー、内周刃、外周刃などが好適に用いられる。 Referring to FIG. 5B, the step of separating the main surface 13n of the bonding substrate 1L from the main surface 13n, which is the bonding surface of the main film donor substrate 13D, with a surface located at a predetermined depth inside the main surface 13n of the bonding substrate 1L. This is performed by cutting the main film donor substrate 13D from a main surface 13n, which is a bonding surface of the film donor substrate 13D, at a surface located at a predetermined depth inside. The method for cutting the main film donor substrate is not particularly limited, and a wire saw, an inner peripheral blade, an outer peripheral blade and the like are preferably used.
 このようにして、接合基板1Lが主膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で分離して、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された主膜13と、を含む複合基板1が得られる。 In this way, the bonding substrate 1L is separated from the main surface 13n, which is a bonding surface of the main film donor substrate 13D, at a surface located at a predetermined depth inside, and the support substrate 11 and the main surface of the support substrate 11 are separated. The composite substrate 1 including the bonding film 12 disposed on 11 m and the main film 13 disposed on the main surface 12 m of the bonding film 12 is obtained.
 図6を参照して、第4の方法により複合基板を製造する方法は、特に制限はないが、効率的に複合基板を製造する観点から、支持基板11と主膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程と(図6(A))と、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なう工程(図6(B))と、を含むことが好ましい。 Referring to FIG. 6, the method of manufacturing the composite substrate by the fourth method is not particularly limited, but the support substrate 11 and the main film donor substrate 13D are bonded together from the viewpoint of efficiently manufacturing the composite substrate. The bonding substrate 1L is formed (FIG. 6A), and the main surface 13m opposite to the main surface 13n, which is the bonding surface of the main film donor substrate 13D of the bonding substrate 1L, is ground, polished, and etched. And a step of performing at least one of them (FIG. 6B).
 図6(A)を参照して、支持基板11と主膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図6(A1))と、主膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図6(A2))と、支持基板11の主面11m上に形成された接合膜12aと主膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図6(A3))と、を含む。これらのサブ工程により、これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、主膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。 Referring to FIG. 6A, the step of bonding the support substrate 11 and the main film donor substrate 13D to form the bonding substrate 1L is a sub-step of forming the bonding film 12a on the main surface 11m of the support substrate 11. (FIG. 6 (A1)), a sub-process (FIG. 6 (A2)) for forming the bonding film 12b on the main surface 13n of the main film donor substrate 13D, and a bonding formed on the main surface 11m of the support substrate 11 A sub-process (FIG. 6 (A3)) for bonding the film 12a and the bonding film 12b formed over the main surface 13n of the main film donor substrate 13D. By these sub-processes, the bonding film 12a and the bonding film 12b bonded together by these sub-processes are integrated by bonding to form the bonding film 12, and the support substrate 11 and the main film donor substrate 13D are Bonding substrate 1L is formed by bonding with bonding film 12 interposed.
 主膜ドナー基板13Dとは、上記第3の方法と同様に、後サブ工程において分離により主膜13を提供するドナー基板である。かかる主膜ドナー基板13Dを形成する方法は、上記の第2および第3の方法により複合基板を製造する方法における主膜13を形成する方法と同様である。また、接合膜12a,12bの形成方法は、第2および第3の方法により複合基板を製造する方法における接合膜12a,12bの形成方法と同様である。また、支持基板11と主膜ドナー基板13Dとを貼り合わせる方法は、上記の第2および第3の方法により複合基板を製造する方法における支持基板11と主膜13とを貼り合わせる方法と同様である。 The main film donor substrate 13D is a donor substrate that provides the main film 13 by separation in a subsequent sub-process, as in the third method. The method of forming the main film donor substrate 13D is the same as the method of forming the main film 13 in the method of manufacturing the composite substrate by the second and third methods. The method for forming the bonding films 12a and 12b is the same as the method for forming the bonding films 12a and 12b in the method of manufacturing the composite substrate by the second and third methods. The method of bonding the support substrate 11 and the main film donor substrate 13D is the same as the method of bonding the support substrate 11 and the main film 13 in the method of manufacturing the composite substrate by the second and third methods. is there.
 図6(B)を参照して、接合基板1Lの主膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかを行なう工程により、主膜ドナー基板13Dの膜厚を減少させて所望の厚さの主膜13が形成されるため、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された主膜13と、を含む複合基板1が得られる。 With reference to FIG. 6B, by a step of performing at least one of grinding, polishing and etching from the main surface 13m opposite to the main surface 13n which is the bonding surface of the main film donor substrate 13D of the bonding substrate 1L. Since the main film 13 having a desired thickness is formed by reducing the film thickness of the main film donor substrate 13D, the support substrate 11, the bonding film 12 disposed on the main surface 11m of the support substrate 11, and the bonding film The composite substrate 1 including the main film 13 disposed on the 12 main surfaces 12m is obtained.
 ここで、主膜ドナー基板13Dを研削する方法は、特に制限はなく、砥石による研削(平面研削)、ショット・ブラストなどが挙げられる。主膜ドナー基板13Dを研磨する方法は、特に制限はなく、機械的研磨、化学機械的研磨などが挙げられる。主膜ドナー基板13Dをエッチングする方法は、特に制限はなく、薬液によるウェットエッチング、RIE(反応性イオンエッチング)などのドライエッチングなどが挙げられる。 Here, the method of grinding the main film donor substrate 13D is not particularly limited, and examples thereof include grinding with a grindstone (surface grinding) and shot blasting. The method for polishing the main film donor substrate 13D is not particularly limited, and examples thereof include mechanical polishing and chemical mechanical polishing. The method for etching the main film donor substrate 13D is not particularly limited, and examples include wet etching with a chemical solution and dry etching such as RIE (reactive ion etching).
 [実施形態2]
 図7を参照して、本発明の別の実施形態である半導体ウエハの製造方法は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む支持基板11と、支持基板11の主面11m側に配置されている主膜13と、を含む複合基板1を準備する工程(図7(A))と、複合基板1の主膜13上に、少なくとも1層の半導体層20を成長させることにより、半導体層付複合基板2を得る工程(図7(B))と、半導体層付複合基板2から支持基板11を除去することにより、半導体層20を含む半導体ウエハ3を得る工程(図7(C))と、を含む。本実施形態の半導体ウエハの製造方法は、支持基板11が金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む支持基板11と支持基板11の主面11m側に配置されている主膜13とを含む複合基板1を用いることにより、主膜13上に少なくとも1層の半導体層20を成長させた後、支持基板11の除去を安定な状態で効率よく進めることができるため、低コストで効率よく半導体ウエハを製造することができる。
[Embodiment 2]
Referring to FIG. 7, a method for manufacturing a semiconductor wafer according to another embodiment of the present invention includes a support including a crystalline phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing metal element M. On the main film 13 of the composite substrate 1, a step of preparing the composite substrate 1 including the substrate 11 and the main film 13 disposed on the main surface 11m side of the support substrate 11 (FIG. 7A), At least one semiconductor layer 20 is grown to obtain the composite substrate 2 with a semiconductor layer (FIG. 7B), and the support substrate 11 is removed from the composite substrate 2 with a semiconductor layer, thereby obtaining the semiconductor layer 20. And a step of obtaining a semiconductor wafer 3 including (FIG. 7C). In the method for manufacturing a semiconductor wafer according to the present embodiment, the support substrate 11 includes a support substrate 11 including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including a metal element M, and the support substrate 11. By using the composite substrate 1 including the main film 13 disposed on the surface 11m side, after the growth of at least one semiconductor layer 20 on the main film 13, the support substrate 11 can be removed in a stable state. Since it can proceed efficiently, a semiconductor wafer can be manufactured efficiently at low cost.
 (複合基板を準備する工程)
 図7(A)を参照して、複合基板1を準備する工程は、上記の実施形態1の複合基板1の製造方法と同様である。
(Process to prepare composite substrate)
Referring to FIG. 7A, the step of preparing composite substrate 1 is the same as the method for manufacturing composite substrate 1 of the first embodiment.
 (半導体層付複合基板を得る工程)
 図7(B)を参照して、半導体層付複合基板2を得る工程は、複合基板1の主膜13上に、少なくとも1層の半導体層20を成長させることにより行なわれる。少なくとも1層の半導体層20を成長させる方法は、特に制限はなく、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などが好適に挙げられる。
(Step of obtaining a composite substrate with a semiconductor layer)
With reference to FIG. 7B, the step of obtaining the composite substrate 2 with a semiconductor layer is performed by growing at least one semiconductor layer 20 on the main film 13 of the composite substrate 1. The method for growing at least one semiconductor layer 20 is not particularly limited, and MOCVD (metal organic chemical vapor deposition) method, sputtering method, MBE (molecular beam epitaxy) method, PLD (pulse laser deposition) method, HVPE. Preferable examples include (hydride vapor phase epitaxy) method, sublimation method, flux method, high nitrogen pressure solution method and the like.
 複合基板1の主膜13上に成長させる少なくとも1層の半導体層20は、品質のよい半導体層20を成長させる観点から、半導体層20は、主膜13に比べて、化学組成が近似することが好ましく、同一であることがより好ましい。ここで、化学組成が近似するとは、構成元素が、同一ではないが、いずれもIII-V族化合物、IV族元素、またはIV族化合物であることをいう。化学組成が同一とは、構成元素が同一であることをいう。 At least one semiconductor layer 20 grown on the main film 13 of the composite substrate 1 is similar in chemical composition to the semiconductor layer 20 compared to the main film 13 from the viewpoint of growing a high-quality semiconductor layer 20. Are preferable, and the same is more preferable. Here, the approximate chemical composition means that the constituent elements are not the same, but all are III-V group compounds, IV group elements, or IV group compounds. The same chemical composition means that the constituent elements are the same.
 また、成長させる半導体層20の結晶性を向上させる観点から、複合基板1の主膜13の主面13m上に少なくとも半導体層20を成長させる工程は、主膜13の主面13m上に半導体バッファ層21を成長させるサブ工程と、半導体バッファ層21の主面21m上に半導体結晶層23を成長させるサブ工程と、を含むことが好ましい。ここで、半導体バッファ層21とは、半導体結晶層23に比べて低い温度で成長される結晶性が低いまたは非晶質(アモルファス)の層をいう。 In addition, from the viewpoint of improving the crystallinity of the semiconductor layer 20 to be grown, the step of growing at least the semiconductor layer 20 on the main surface 13m of the main film 13 of the composite substrate 1 includes a semiconductor buffer on the main surface 13m of the main film 13. It is preferable to include a sub-process for growing the layer 21 and a sub-process for growing the semiconductor crystal layer 23 on the main surface 21 m of the semiconductor buffer layer 21. Here, the semiconductor buffer layer 21 refers to a layer having low crystallinity or an amorphous state grown at a lower temperature than the semiconductor crystal layer 23.
 このようにして、複合基板1の主膜13上に少なくとも1層の半導体層20が配置された半導体層付複合基板2が得られる。 Thus, the composite substrate 2 with a semiconductor layer in which at least one semiconductor layer 20 is disposed on the main film 13 of the composite substrate 1 is obtained.
 (半導体ウエハを得る工程)
 図7(C)を参照して、半導体層20を含む半導体ウエハ3を得る工程は、半導体層付複合基板2から支持基板11を除去することにより行なわれる。支持基板11を除去する方法は、特に制限はないが、支持基板11を効率的に除去する観点から、支持基板11をエッチングにより溶解させて除去する方法、支持基板11を研削または研磨により除去する方法が好ましい。
(Process for obtaining a semiconductor wafer)
Referring to FIG. 7C, the step of obtaining semiconductor wafer 3 including semiconductor layer 20 is performed by removing support substrate 11 from composite substrate 2 with a semiconductor layer. The method for removing the support substrate 11 is not particularly limited, but from the viewpoint of efficiently removing the support substrate 11, a method for removing the support substrate 11 by etching, or removing the support substrate 11 by grinding or polishing. The method is preferred.
 複合基板1に含まれる支持基板11は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む。かかるアノーサイトで形成される結晶相は、フッ化水素酸などの酸に溶解して除去されるとともに、研削または研磨などにより除去される。また、アノーサイトで形成される結晶相は、結晶相であるためその化学組成が安定しているため、フッ化水素酸などの酸による分解による除去および研磨または研磨などによる除去が安定して進行する。 The support substrate 11 included in the composite substrate 1 includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including the metal element M. The crystal phase formed by such anorthite is removed by dissolving in an acid such as hydrofluoric acid, and is removed by grinding or polishing. In addition, since the crystal phase formed by anorthite is a crystalline phase and its chemical composition is stable, removal by decomposition with an acid such as hydrofluoric acid and removal by polishing or polishing stably proceed. To do.
 このようにして、半導体層付複合基板2から支持基板11が除去され、半導体層20を含む半導体ウエハ3が得られる。 In this way, the support substrate 11 is removed from the composite substrate 2 with a semiconductor layer, and the semiconductor wafer 3 including the semiconductor layer 20 is obtained.
 [実施形態3]
 図1および図8を参照して、本発明のさらに別の実施形態である複合基板1用の支持基板11は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含み、直径が3インチ以上で、主面11mの算術平均粗さRaが50nm以下である。
[Embodiment 3]
Referring to FIGS. 1 and 8, a support substrate 11 for a composite substrate 1 which is still another embodiment of the present invention is formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing a metal element M. The crystal phase is 3 inches or more, and the arithmetic average roughness Ra of the main surface 11 m is 50 nm or less.
 本実施形態の複合基板1用の支持基板11は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含み、直径が3インチ以上で、主面11mの算術平均粗さRaが50nm以下であることから、大口径で厚さが均一な主膜13と、安定な状態で効率よく除去することができる支持基板11と、を含む複合基板1を製造することができる。 The support substrate 11 for the composite substrate 1 of the present embodiment includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing a metal element M, has a diameter of 3 inches or more, and has a main surface. Since the arithmetic average roughness Ra of 11 m is 50 nm or less, the composite substrate 1 including the main film 13 having a large diameter and a uniform thickness and the support substrate 11 that can be efficiently removed in a stable state is provided. Can be manufactured.
 本実施形態の複合基板1用の支持基板11は、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む。ここで、金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相は、実施形態1の支持基板11において説明した金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相と同様である。 The support substrate 11 for the composite substrate 1 of the present embodiment includes a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing a metal element M. Here, MAl 2 Si 2 O 8 crystal phase formed by anorthite, containing a metal element M described in the supporting substrate 11 of Embodiment 1 having the chemical composition of MAl 2 Si 2 O 8 containing a metal element M It is the same as the crystal phase formed with anorthite having the chemical composition of
 また、本実施形態の複合基板1用の支持基板11は、直径が3インチ(7.62cm)以上である。複合基板1用の支持基板11は、大口径の複合基板1を形成する観点から、直径は、3インチ(7.62cm)以上であり、4インチ(10.16cm)以上が好ましく、6インチ(15.24cm)以上がより好ましい。また、複合基板1用の支持基板11は、割れおよび反りを低減するとともに主面の均一性を保持するなどの観点から、18インチ(45.72cm)以下が好ましく、12インチ(30.48cm)以下がより好ましい。 Further, the support substrate 11 for the composite substrate 1 of the present embodiment has a diameter of 3 inches (7.62 cm) or more. From the viewpoint of forming the large-diameter composite substrate 1, the support substrate 11 for the composite substrate 1 has a diameter of 3 inches (7.62 cm) or more, preferably 4 inches (10.16 cm) or more, and 6 inches ( 15.24 cm) or more is more preferable. The support substrate 11 for the composite substrate 1 is preferably 18 inches (45.72 cm) or less, and preferably 12 inches (30.48 cm) from the viewpoint of reducing cracks and warpage and maintaining the uniformity of the main surface. The following is more preferable.
 また、本実施形態の複合基板1用の支持基板11は、主面11mの算術平均粗さRaが50nm以下である。本実施形態の複合基板1用の支持基板11の主面11mの算術平均粗さRaは、複合基板1の主面1mの面積(この面積は、図1を参照して、支持基板11の主面11mの面積に等しく、主膜13の主面13mの面積に等しい。)に対する接合面積の百分率である接合面積率を高くする観点から、50nm以下であり、10nm以下が好ましく、5nm以下がより好ましく、1nm以下がさらに好ましい。また、複合基板1用の支持基板11の主面11mの算術平均粗さRaは、主面の加工コストを抑制する観点から、0.5nm以上が好ましく、1nm以上がより好ましい。 Further, the support substrate 11 for the composite substrate 1 of the present embodiment has an arithmetic average roughness Ra of the main surface 11m of 50 nm or less. The arithmetic mean roughness Ra of the main surface 11m of the support substrate 11 for the composite substrate 1 of the present embodiment is the area of the main surface 1m of the composite substrate 1 (this area is the main surface of the support substrate 11 with reference to FIG. Is equal to the area of the surface 11 m and is equal to the area of the main surface 13 m of the main film 13), from the viewpoint of increasing the bonding area ratio, which is a percentage of the bonding area with respect to the main film 13. 1 nm or less is more preferable. In addition, the arithmetic average roughness Ra of the main surface 11m of the support substrate 11 for the composite substrate 1 is preferably 0.5 nm or more and more preferably 1 nm or more from the viewpoint of suppressing the processing cost of the main surface.
 ここで、主面の算術平均粗さRaとは、JIS B0601に規定する算術平均粗さRaであり、粗さ曲面から、その平均平面の方向に基準面積(本願においては10μm×10μmの測定領域)を抜き取り、この抜き取り部分の平均平面から測定曲面までの距離(偏差)の絶対値を合計してそれを基準面積で平均した値をいい、AFM(原子間力顕微鏡)、光干渉式粗さ計、レーザ顕微鏡、触針式粗さ計などにより測定される。 Here, the arithmetic average roughness Ra of the main surface is the arithmetic average roughness Ra defined in JIS B0601, and the reference area (in this application, a measurement area of 10 μm × 10 μm in the direction of the average plane from the roughness curved surface) ), And the absolute value of the distance (deviation) from the average plane to the measurement curved surface of the extracted part is summed and averaged over the reference area. AFM (Atomic Force Microscope), optical interference roughness It is measured by a meter, a laser microscope, a stylus type roughness meter, or the like.
 また、本実施形態の複合基板1用の支持基板11は、実施形態1の複合基板1における支持基板11と同様に、支持基板11に含まれる金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相において、金属元素Mはアルカリ土類金属元素MIIであることが好ましい。 Further, the support substrate 11 for the composite substrate 1 of this embodiment is similar to the support substrate 11 in the composite substrate 1 of Embodiment 1 in the chemistry of MAl 2 Si 2 O 8 containing the metal element M contained in the support substrate 11. in the crystal phases formed in the anorthite has a composition, it is preferred that the metal element M is an alkaline earth metal element M II.
 また、本実施形態の複合基板1用の支持基板11は、実施形態1の複合基板1における支持基板11と同様に、アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、支持基板11の化学組成が、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点、MIIAl1219の化学組成を示す第2点、Al23の化学組成を示す第3点、およびAl6Si213の化学組成を示す第4点、および第1点をこの順に直線で結んで形成される領域内の点で示されることが好ましい。 Further, the support substrate 11 of composite substrate 1 of this embodiment, as the supporting substrate 11 in composite substrate 1 of the embodiment 1, selected from the group alkaline earth metal element M II consists of Ca, Sr and Ba comprises at least one element, the chemical composition of the support substrate 11, M II in O-Al 2 O 3 3 component phase diagram -SiO 2 system, the first indicating the chemical composition of the M II Al 2 Si 2 O 8 Point, second point indicating the chemical composition of M II Al 12 O 19 , third point indicating the chemical composition of Al 2 O 3 , fourth point indicating the chemical composition of Al 6 Si 2 O 13 , and first point Are preferably indicated by points in a region formed by connecting them in a straight line in this order.
 また、本実施形態の複合基板1用の支持基板11は、実施形態1の複合基板1における支持基板11と同様に、少なくとも一部が酸に溶解することが好ましい。 Moreover, it is preferable that at least a part of the support substrate 11 for the composite substrate 1 of the present embodiment is dissolved in an acid, like the support substrate 11 in the composite substrate 1 of the first embodiment.
 なお、複合基板1用の支持基板11は、上記以外の特性においても、実施形態1の複合基板1における支持基板11と同様であるため、ここでは繰り返さない。 Note that the support substrate 11 for the composite substrate 1 is the same as the support substrate 11 in the composite substrate 1 of Embodiment 1 in the characteristics other than those described above, and therefore, is not repeated here.
 (実施例1)
 1.支持基板の準備
 表1に示す支持基板の化学組成の形成に必要な化学量論比のアルカリ土類金属元素炭酸塩(MIICO3)粉末(MIIはアルカリ土類金属元素、以下同じ。)、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料として、圧力50MPaにてプレス成型後、大気雰囲気中1500℃で20時間焼結した後、1650℃、2000気圧で3時間HIP(熱間等方圧プレス)焼結することにより、26種類の焼結体SR1、S1~S25を得た。
(Example 1)
1. Preparation of Support Substrate Alkaline earth metal element carbonate (M II CO 3 ) powder (M II is an alkaline earth metal element) having the stoichiometric ratio necessary for forming the chemical composition of the support substrate shown in Table 1. ), Alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder as starting materials, press-molded at a pressure of 50 MPa, sintered in an air atmosphere at 1500 ° C. for 20 hours, and then at 1650 ° C. and 2000 atm. 26 types of sintered bodies SR1, S1 to S25 were obtained by sintering for 3 hours HIP (hot isostatic pressing).
 得られた26種類の焼結体SR1、S1~S25を、それぞれ、スライスした後主面をJIS B0601に規定する算術平均粗さRaが1nm以下に研磨することにより、図4に示す支持基板11として直径6インチ(15.24cm)で厚さ400μmの26種類の支持基板SR1、S1~S25を得た。得られた26種類の支持基板SR1、S1~S25の化学組成、平均粒子径および図9に示す3成分相図上の位置を表1に示した。26種類の支持基板SR1、S1~S25の化学組成は、X線回折により測定および同定した。表1に示すように、支持基板SR1にはMIIAl2Si28(MIIはアルカリ土類金属元素)の結晶相が含まれておらず、支持基板S1~S25にはMIIAl2Si28の結晶相が含まれていた。 The obtained 26 types of sintered bodies SR1, S1 to S25 are each sliced, and the principal surface is polished to an arithmetic average roughness Ra defined in JIS B0601 to 1 nm or less, whereby the support substrate 11 shown in FIG. As a result, 26 types of support substrates SR1, S1 to S25 having a diameter of 6 inches (15.24 cm) and a thickness of 400 μm were obtained. Table 1 shows the chemical compositions, average particle diameters, and positions on the three-component phase diagram shown in FIG. 9 of the 26 types of support substrates SR1 and S1 to S25 obtained. The chemical compositions of the 26 types of support substrates SR1, S1 to S25 were measured and identified by X-ray diffraction. As shown in Table 1, the support substrate SR1 does not contain a crystal phase of M II Al 2 Si 2 O 8 (M II is an alkaline earth metal element), and the support substrates S1 to S25 have M II Al A crystal phase of 2 Si 2 O 8 was included.
 2.複合基板の作製
 図4(A)中の(A1)を参照して、支持基板11である支持基板SR1、S1~S25のそれぞれの主面11m上に厚さ1μmのSiO2膜をCVD(化学気相堆積)法により成膜した。次いで、かかる支持基板SR1、S1~S25のそれぞれの主面11m上の厚さ1μmのSiO2膜を研磨することにより、厚さ0.5μmのSiO2膜だけ残存させて、主面12amが鏡面化(本願においては、JIS B0601に規定する算術平均粗さRaが1nm以下の状態にすることをいう、以下同じ。)された接合膜12aを形成した。
2. Production of Composite Substrate With reference to (A1) in FIG. 4A, a SiO 2 film having a thickness of 1 μm is formed on the main surface 11m of each of the support substrates SR1 and S1 to S25 as the support substrate 11 by CVD (chemical The film was formed by the vapor deposition method. Next, by polishing the 1 μm thick SiO 2 film on the main surface 11 m of each of the support substrates SR 1, S 1 to S 25, only the 0.5 μm thick SiO 2 film remains, and the main surface 12 am becomes a mirror surface. In this application, the bonding film 12a was formed (which means that the arithmetic average roughness Ra specified in JIS B0601 is 1 nm or less, the same applies hereinafter).
 また、図4(A)中の(A2)を参照して、主膜ドナー基板13Dとして、HVPE法により成長させた直径6インチ(15.24cm)で厚さが5cmのGaN基板を準備した。かかる主膜ドナー基板13DのN原子面である(000-1)面側の主面13n上に、厚さ1μmのSiO2膜をCVD法により成膜した。次いで、主膜ドナー基板13DのSiO2膜が成膜された側から水素のイオンIを注入して、主膜ドナー基板13Dの主面13nから内部に0.3μmの深さの位置の面にイオン注入領域13iを形成した。次いで、上記の厚さ1μmのSiO2膜を研磨することにより、厚さ0.5μmのSiO2膜だけ残存させて、主面12bnが鏡面化された接合膜12bを形成した。 Referring to (A2) in FIG. 4A, a GaN substrate having a diameter of 6 inches (15.24 cm) and a thickness of 5 cm grown by the HVPE method was prepared as main film donor substrate 13D. A SiO 2 film having a thickness of 1 μm was formed on the main surface 13n on the (000-1) plane side which is the N atomic plane of the main film donor substrate 13D by the CVD method. Next, hydrogen ions I are implanted from the side of the main film donor substrate 13D on which the SiO 2 film is formed, so that the surface of the main film donor substrate 13D has a depth of 0.3 μm inside from the main surface 13n. An ion implantation region 13i was formed. Subsequently, the SiO 2 film having a thickness of 1 μm was polished to leave only the SiO 2 film having a thickness of 0.5 μm, thereby forming a bonding film 12b in which the main surface 12bn was mirror-finished.
 次に、図4(A)中の(A3)を参照して、支持基板11である支持基板SR1、S1~S25のそれぞれに形成された接合膜12aの主面12amおよび主膜ドナー基板13DであるGaN基板上に形成された接合膜12bの主面12bnをアルゴンプラズマにより清浄化および活性化させた後、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせて、窒素雰囲気下300℃で2時間熱処理した。このようにして、支持基板11とイオン注入領域13iが形成された主膜ドナー基板13Dとが接合膜12を介在させて貼り合わされた接合基板1Lが得られた。 Next, referring to (A3) in FIG. 4A, the main surface 12am of the bonding film 12a and the main film donor substrate 13D formed on each of the support substrates SR1, S1 to S25, which are the support substrates 11, are used. After cleaning and activating the main surface 12bn of the bonding film 12b formed on a certain GaN substrate with argon plasma, the main surface 12am of the bonding film 12a and the main surface 12bn of the bonding film 12b are bonded together to form nitrogen. Heat treatment was performed at 300 ° C. for 2 hours in an atmosphere. In this manner, a bonded substrate 1L was obtained in which the support substrate 11 and the main film donor substrate 13D on which the ion implantation region 13i was formed were bonded together with the bonding film 12 interposed therebetween.
 次に、図4(B)を参照して、接合基板1Lをさらに800℃に加熱することにより、主膜ドナー基板13Dのイオン注入領域13iの水素のイオンIをガス化させて急激な体積膨張をさせ、主膜ドナー基板13Dをイオン注入領域13iで分離した。次いで、分離面を研磨により鏡面化した。 Next, referring to FIG. 4B, the bonding substrate 1L is further heated to 800 ° C., whereby hydrogen ions I in the ion implantation region 13i of the main film donor substrate 13D are gasified to cause rapid volume expansion. The main film donor substrate 13D was separated by the ion implantation region 13i. Next, the separation surface was mirror-finished by polishing.
 こうして、図7(A)に示すような支持基板11である支持基板SR1、S1~S25のそれぞれの主面11m側に主膜13である主面13mが鏡面化された厚さ0.2μmのGaN膜が配置された複合基板1である複合基板SR1、S1~S25が得られた。 In this way, the main surface 13m as the main film 13 is mirror-finished on the main surface 11m side of each of the support substrates SR1 and S1 to S25 as the support substrate 11 as shown in FIG. Composite substrates SR1 and S1 to S25, which are composite substrates 1 on which GaN films are arranged, were obtained.
 3.半導体層の形成工程
 図7(B)を参照して、複合基板1である複合基板SR1、S1~S25の主膜13であるGaN膜の主面13m(かかる主面はGa原子面である(0001)面である。)上に、それぞれMOCVD法により半導体層20としてGaN層を成長させた。かかる半導体層20の成長においては、まず、500℃で、半導体バッファ層21として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層23として厚さ5μmのGaN結晶層を成長させた。こうして、26種類の半導体層付複合基板SR1、S1~S25が得られた。
3. Step of Forming Semiconductor Layer Referring to FIG. 7B, the main surface 13m of the GaN film that is the main film 13 of the composite substrate SR1 and S1 to S25 that are the composite substrate 1 (the main surface is a Ga atomic surface ( A GaN layer was grown as the semiconductor layer 20 by MOCVD. In the growth of the semiconductor layer 20, first, a GaN buffer layer having a thickness of 0.1 μm is grown as the semiconductor buffer layer 21 at 500 ° C., and then a GaN crystal having a thickness of 5 μm as the semiconductor crystal layer 23 at 1050 ° C. Growing layers. In this way, 26 types of composite substrates SR1, S1 to S25 with semiconductor layers were obtained.
 4.支持基板の除去
 図7(C)を参照して、得られた半導体層付複合基板SR1、S1~S25を室温(25℃)で50質量%のフッ化水素酸水溶液中に浸漬することにより、支持基板11をエッチングにより除去して26種類の半導体ウエハSR1、S1~S25が得られた。半導体層付複合基板SR1、S1~S25について、それぞれの支持基板11の除去時間を表1にまとめた。
4). Removal of Support Substrate Referring to FIG. 7C, the obtained composite substrate with semiconductor layer SR1, S1 to S25 is immersed in a 50% by mass hydrofluoric acid aqueous solution at room temperature (25 ° C.). The support substrate 11 was removed by etching to obtain 26 types of semiconductor wafers SR1, S1 to S25. Table 1 summarizes the removal time of each support substrate 11 for the composite substrates SR1 and S1 to S25 with semiconductor layers.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、MAl2Si28(Mは金属元素)結晶相が含まれていなかった半導体層付複合基板SR1の支持基板11の除去時間は120分と長かったのに対し、MAl2Si28結晶相が含まれていた半導体層付複合基板S1~S25の支持基板11の除去時間は5分~15分と極めて短くなり、より効率的に支持基板11を除去することができた。 Referring to Table 1, the removal time of the support substrate 11 of the composite substrate SR1 with a semiconductor layer in which the MAl 2 Si 2 O 8 (M is a metal element) crystal phase was not included was as long as 120 minutes, The removal time of the support substrate 11 of the composite substrates with semiconductor layers S1 to S25 containing the MAl 2 Si 2 O 8 crystal phase is extremely short, 5 minutes to 15 minutes, and the support substrate 11 can be removed more efficiently. I was able to.
 (実施例2A)
 表2および表3に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてCaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例1と同様にして、支持基板A1~A18、複合基板A1~A18、半導体層付複合基板A1~A18、および半導体ウエハA1~A18を順次形成した。
(Example 2A)
Calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder having the stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Tables 2 and 3 are used as starting materials. A support substrate A1 to A18, a composite substrate A1 to A18, a composite substrate with a semiconductor layer A1 to A18, and a semiconductor substrate, except that a sintered body containing a CaAl 2 Si 2 O 8 crystal phase was formed, and Semiconductor wafers A1 to A18 were sequentially formed.
 支持基板A1~A18の化学組成および図9に示す3成分相図上の位置、複合基板A1~A18における支持基板A1~A18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板A1~A18の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表2および表3にまとめた。 The chemical composition of the supporting substrates A1 to A18 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates A1 to A18 in the composite substrates A1 to A18, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount of semiconductor layer side of composite substrate A1 to A18 with semiconductor layer, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Tables 2 and 3.
 ここで、支持基板A1~A18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFは、室温(25℃)から800℃まで昇温したときの平均熱膨張係数をTMA(熱機械分析)により測定した。また、半導体層付複合基板A1~A18の半導体層側の反り形状および反り量は、半導体層側の主面をCorning Tropel社のFM200EWaferを用いて観察される光干渉縞により測定した。半導体層付複合基板A1~A18の半導体層のクラック本数密度は、ノマルスキー顕微鏡を用いて単位長さ当りのクラック本数を測定し、1本/mm未満を「極少」、1本/mm以上5本/mm未満を「少」、5本/mm以上10本/mm未満を「多」、10本/mm以上を「極多」と評価した。半導体層付複合基板A1~A18の半導体層の転位密度は、CL(カソードルミネッセンス)による暗点の単位面積当たりの個数を測定した。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板A1~A18から支持基板A1~A18をそれぞれ除去した半導体ウエハA1~A18における反りの大小関係には、半導体層付複合基板A1~A18における大小関係が維持されていた。 Here, the thermal expansion coefficient α S in the main surface of the support substrates A1 to A18 and the thermal expansion coefficient α F in the main surface of the main film are the average thermal expansion when the temperature is raised from room temperature (25 ° C.) to 800 ° C. The coefficient was measured by TMA (thermomechanical analysis). Further, the warp shape and the warp amount on the semiconductor layer side of each of the composite substrates with semiconductor layers A1 to A18 were measured by optical interference fringes observed on the main surface on the semiconductor layer side using FM200EWafer manufactured by Corning Tropel. The number of cracks in the semiconductor layers of the composite substrates with semiconductor layers A1 to A18 is determined by measuring the number of cracks per unit length using a Nomarski microscope. / Mm or less was evaluated as “small”, 5 / mm or more and less than 10 / mm as “many”, and 10 / mm or more as “very many”. The dislocation density of the semiconductor layers of the composite substrates with semiconductor layers A1 to A18 was measured by the number of dark spots per unit area by CL (cathode luminescence). In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers A1 to A18 obtained by removing the support substrates A1 to A18 from the composite substrates with semiconductor layers A1 to A18, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers A1 to A18.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例2B)
 表4および表5に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Aと同様にして、支持基板B1~B20、複合基板B1~B20、半導体層付複合基板B1~B20、および半導体ウエハB1~B20を順次形成した。
(Example 2B)
Starting from the stoichiometric ratio of strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required for forming the chemical composition of the support substrate shown in Tables 4 and 5 Except for forming a sintered body containing a SrAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2A, support substrates B1 to B20, composite substrates B1 to B20, composite substrates with semiconductor layers B1 to B20, and Semiconductor wafers B1 to B20 were sequentially formed.
 支持基板B1~B20の化学組成および図9に示す3成分相図上の位置、複合基板B1~B20における支持基板B1~B20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板B1~B20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表4および表5にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板B1~B20から支持基板B1~B20をそれぞれ除去した半導体ウエハB1~B20における反りの大小関係には、半導体層付複合基板B1~B20における大小関係が維持されていた。 The chemical composition of the supporting substrates B1 to B20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates B1 to B20 in the composite substrates B1 to B20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warp shape and warp amount of semiconductor layer side of composite substrate with semiconductor layer B1 to B20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Tables 4 and 5. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers B1 to B20 obtained by removing the supporting substrates B1 to B20 from the composite substrates with semiconductor layers B1 to B20, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers B1 to B20.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例2C)
 表6および表7に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Aと同様にして、支持基板C1~C20、複合基板C1~C20、半導体層付複合基板C1~C20、および半導体ウエハC1~C20を順次形成した。
(Example 2C)
Starting from the stoichiometric ratios of barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required to form the chemical composition of the support substrate shown in Tables 6 and 7 Except for forming a sintered body containing a BaAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2A, support substrates C1 to C20, composite substrates C1 to C20, composite substrates with semiconductor layers C1 to C20, and Semiconductor wafers C1 to C20 were sequentially formed.
 支持基板C1~C20の化学組成および図9に示す3成分相図上の位置、複合基板C1~C20における支持基板C1~C20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板C1~C20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表6および表7にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板C1~C20から支持基板C1~C20をそれぞれ除去した半導体ウエハC1~C20における反りの大小関係には、半導体層付複合基板C1~C20における大小関係が維持されていた。 The chemical composition of the supporting substrates C1 to C20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates C1 to C20 in the composite substrates C1 to C20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount on the semiconductor layer side of composite substrate with semiconductor layer C1 to C20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Tables 6 and 7. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers C1 to C20 obtained by removing the supporting substrates C1 to C20 from the composite substrates C1 to C20 with the semiconductor layer, respectively, maintained the magnitude relationship in the composite substrates C1 to C20 with the semiconductor layer.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (実施例2D)
 表8に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてCaAl2Si28結晶相を含む焼結体を形成したこと、主膜としてAlN膜を形成し、半導体層としてAlN層を形成した以外は、実施例2Aと同様にして、支持基板D1~D8、複合基板D1~D8、半導体層付複合基板D1~D8、および半導体ウエハD1~D8を順次形成した。
(Example 2D)
CaAl 2 Si using as starting materials calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Table 8 Supporting substrates D1 to D8, composites were formed in the same manner as in Example 2A, except that a sintered body containing a 2 O 8 crystal phase was formed, an AlN film was formed as a main film, and an AlN layer was formed as a semiconductor layer. Substrates D1 to D8, composite substrates with semiconductor layers D1 to D8, and semiconductor wafers D1 to D8 were sequentially formed.
 支持基板D1~D8の化学組成および図9に示す3成分相図上の位置、複合基板D1~D8における支持基板D1~D8の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板D1~D8の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表8にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板D1~D8から支持基板D1~D8をそれぞれ除去した半導体ウエハD1~D8における反りの大小関係には、半導体層付複合基板D1~D8における大小関係が維持されていた。 The chemical composition of the support substrates D1 to D8 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates D1 to D8 in the composite substrates D1 to D8, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount on the semiconductor layer side of the composite substrate D1-D8 with semiconductor layer, crack number density of the semiconductor layer, and semiconductor The dislocation density of the layers is summarized in Table 8. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers D1 to D8 obtained by removing the supporting substrates D1 to D8 from the composite substrates with semiconductor layers D1 to D8, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers D1 to D8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (実施例2E)
 表9および表10に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Dと同様にして、支持基板E1~E16、複合基板E1~E16、半導体層付複合基板E1~E16、および半導体ウエハE1~E16を順次形成した。
(Example 2E)
The starting materials are strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder of the stoichiometric ratio necessary for forming the chemical composition of the support substrate shown in Table 9 and Table 10. Except that a sintered body containing a SrAl 2 Si 2 O 8 crystal phase was formed, in the same manner as in Example 2D, the supporting substrates E1 to E16, the composite substrates E1 to E16, the composite substrates with semiconductor layers E1 to E16, and Semiconductor wafers E1 to E16 were sequentially formed.
 支持基板E1~E16の化学組成および図9に示す3成分相図上の位置、複合基板E1~E16における支持基板E1~E16の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板E1~E16の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表9および表10にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板E1~E16から支持基板E1~E16をそれぞれ除去した半導体ウエハE1~E16における反りの大小関係には、半導体層付複合基板E1~E16における大小関係が維持されていた。 The chemical composition of the supporting substrates E1 to E16 and the position on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates E1 to E16 in the composite substrates E1 to E16, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warp shape and warp amount of semiconductor layer side of composite substrate E1-E16 with semiconductor layer, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 9 and Table 10. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers E1 to E16 obtained by removing the supporting substrates E1 to E16 from the composite substrates E1 to E16 with the semiconductor layer, respectively, maintained the magnitude relationship in the composite substrates E1 to E16 with the semiconductor layer.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (実施例2F)
 表11および表12に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Dと同様にして、支持基板F1~F20、複合基板F1~F20、半導体層付複合基板F1~F20、および半導体ウエハF1~F20を順次形成した。
(Example 2F)
The starting materials are barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in the stoichiometric ratio necessary for forming the chemical composition of the support substrate shown in Table 11 and Table 12. Except for forming a sintered body containing a BaAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2D, the supporting substrates F1 to F20, the composite substrates F1 to F20, the composite substrates with semiconductor layers F1 to F20, and Semiconductor wafers F1 to F20 were sequentially formed.
 支持基板F1~F20の化学組成および図9に示す3成分相図上の位置、複合基板F1~F20における支持基板F1~F20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板F1~F20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表11および表12にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板F1~F20から支持基板F1~F20をそれぞれ除去した半導体ウエハF1~F20における反りの大小関係には、半導体層付複合基板F1~F20における大小関係が維持されていた。 The chemical composition of the supporting substrates F1 to F20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates F1 to F20 in the composite substrates F1 to F20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount of semiconductor layer side of composite substrate with semiconductor layer F1 to F20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Tables 11 and 12. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relation of the warpage in the semiconductor wafers F1 to F20 obtained by removing the supporting substrates F1 to F20 from the composite substrates with semiconductor layers F1 to F20, respectively, was maintained in the magnitude relation in the composite substrates with semiconductor layers F1 to F20.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (実施例2G)
 表13および表14に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてCaAl2Si28結晶相を含む焼結体を形成したこと、主膜としてGaAs膜を形成し、半導体層としてGaAs層を形成した以外は、実施例2Aと同様にして、支持基板G1~G18、複合基板G1~G18、半導体層付複合基板G1~G18、および半導体ウエハG1~G18を順次形成した。
(Example 2G)
Calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder having stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Table 13 and Table 14 are used as starting materials. The support substrates G1 to G2 were formed in the same manner as in Example 2A, except that a sintered body containing a CaAl 2 Si 2 O 8 crystal phase was formed, a GaAs film was formed as a main film, and a GaAs layer was formed as a semiconductor layer. G18, composite substrates G1 to G18, composite substrates with semiconductor layers G1 to G18, and semiconductor wafers G1 to G18 were sequentially formed.
 支持基板G1~G18の化学組成および図9に示す3成分相図上の位置、複合基板G1~G18における支持基板G1~G18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板G1~G18の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表13および表14にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板G1~G18から支持基板G1~G18をそれぞれ除去した半導体ウエハG1~G18における反りの大小関係には、半導体層付複合基板G1~G18における大小関係が維持されていた。 The chemical composition of the support substrates G1 to G18 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates G1 to G18 in the composite substrates G1 to G18, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount on the semiconductor layer side of the composite substrate G1 to G18 with semiconductor layer, crack number density of the semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 13 and Table 14. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers G1 to G18 obtained by removing the support substrates G1 to G18 from the composite substrates with semiconductor layers G1 to G18, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers G1 to G18.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (実施例2H)
 表15および表16に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Gと同様にして、支持基板H1~H20、複合基板H1~H20、半導体層付複合基板H1~H20、および半導体ウエハH1~H20を順次形成した。
(Example 2H)
The starting materials are strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in the stoichiometric ratio necessary for forming the chemical composition of the support substrate shown in Table 15 and Table 16. Except for forming a sintered body containing a SrAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2G, the supporting substrates H1 to H20, the composite substrates H1 to H20, the composite substrates with semiconductor layers H1 to H20, and Semiconductor wafers H1 to H20 were sequentially formed.
 支持基板H1~H20の化学組成および図9に示す3成分相図上の位置、複合基板H1~H20における支持基板H1~H20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板H1~H20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表15および表16にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板H1~H20から支持基板H1~H20をそれぞれ除去した半導体ウエハH1~H20における反りの大小関係には、半導体層付複合基板H1~H20における大小関係が維持されていた。 The chemical composition of the supporting substrates H1 to H20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates H1 to H20 in the composite substrates H1 to H20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount of semiconductor layer-side composite substrates H1 to H20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 15 and Table 16. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers H1 to H20 obtained by removing the supporting substrates H1 to H20 from the composite substrates with semiconductor layers H1 to H20, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers H1 to H20.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (実施例2I)
 表17および表18に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Gと同様にして、支持基板I1~I20、複合基板I1~I20、半導体層付複合基板I1~I20、および半導体ウエハI1~I20を順次形成した。
Example 2I
Starting from the stoichiometric ratios of barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required to form the chemical composition of the support substrate shown in Table 17 and Table 18. Except that a sintered body containing a BaAl 2 Si 2 O 8 crystal phase was formed, in the same manner as in Example 2G, the supporting substrates I1 to I20, the composite substrates I1 to I20, the composite substrates with semiconductor layers I1 to I20, and Semiconductor wafers I1 to I20 were sequentially formed.
 支持基板I1~I20の化学組成および図9に示す3成分相図上の位置、複合基板I1~I20における支持基板I1~I20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板I1~I20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表17および表18にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板I1~I20から支持基板I1~I20をそれぞれ除去した半導体ウエハI1~I20における反りの大小関係には、半導体層付複合基板I1~I20における大小関係が維持されていた。 The chemical composition of the supporting substrates I1 to I20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates I1 to I20 in the composite substrates I1 to I20, and the main surface of the main film The ratio of the thermal expansion coefficient α S to the thermal expansion coefficient α FS / α F ratio), the warp shape and warpage amount of the semiconductor layer-side composite substrates I1 to I20, the number of cracks in the semiconductor layer, and the semiconductor The dislocation densities of the layers are summarized in Table 17 and Table 18. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers I1 to I20 obtained by removing the supporting substrates I1 to I20 from the composite substrates with semiconductor layers I1 to I20, respectively, was maintained in the composite substrates with semiconductor layers I1 to I20.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (実施例2J)
 表19および表20に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてCaAl2Si28結晶相を含む焼結体を形成したこと、主膜としてInP膜を形成し、半導体層としてInP層を形成した以外は、実施例2Aと同様にして、支持基板J1~J12、複合基板J1~J12、半導体層付複合基板J1~J12、および半導体ウエハJ1~J12を順次形成した。
(Example 2J)
Calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder having stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Table 19 and Table 20 are used as starting materials. The support substrates J1 to J2 were formed in the same manner as in Example 2A, except that the sintered body containing the CaAl 2 Si 2 O 8 crystal phase was formed, the InP film was formed as the main film, and the InP layer was formed as the semiconductor layer. J12, composite substrates J1 to J12, composite substrates with semiconductor layers J1 to J12, and semiconductor wafers J1 to J12 were sequentially formed.
 支持基板J1~J12の化学組成および図9に示す3成分相図上の位置、複合基板J1~J12における支持基板J1~J12の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板J1~J12の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表19および表20にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板J1~J12から支持基板J1~J12をそれぞれ除去した半導体ウエハJ1~J12における反りの大小関係には、半導体層付複合基板J1~J12における大小関係が維持されていた。 The chemical composition of the supporting substrates J1 to J12 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates J1 to J12 in the composite substrates J1 to J12, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount of semiconductor layer of composite substrates J1 to J12 with semiconductor layer, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 19 and Table 20. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers J1 to J12 obtained by removing the supporting substrates J1 to J12 from the composite substrates J1 to J12 with semiconductor layers, respectively, maintained the magnitude relationship in the composite substrates J1 to J12 with semiconductor layers.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (実施例2K)
 表21および表22に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Jと同様にして、支持基板K1~K18、複合基板K1~K18、半導体層付複合基板K1~K18、および半導体ウエハK1~K18を順次形成した。
(Example 2K)
The starting materials are strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in the stoichiometric ratio necessary for forming the chemical composition of the support substrate shown in Table 21 and Table 22. Except for forming a sintered body containing a SrAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2J, support substrates K1 to K18, composite substrates K1 to K18, composite substrates with semiconductor layers K1 to K18, and Semiconductor wafers K1 to K18 were sequentially formed.
 支持基板K1~K18の化学組成および図9に示す3成分相図上の位置、複合基板K1~K18における支持基板K1~K18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板K1~K18の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表21および表22にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板K1~K18から支持基板K1~K18をそれぞれ除去した半導体ウエハK1~K18における反りの大小関係には、半導体層付複合基板K1~K18における大小関係が維持されていた。 The chemical composition of the support substrates K1 to K18 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates K1 to K18 in the composite substrates K1 to K18, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warp shape and warp amount of semiconductor layer side of composite substrate with semiconductor layer K1 to K18, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 21 and Table 22. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers K1 to K18 obtained by removing the supporting substrates K1 to K18 from the composite substrates with semiconductor layers K1 to K18, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers K1 to K18.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 (実施例2L)
 表23および表24に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Jと同様にして、支持基板L1~L20、複合基板L1~L20、半導体層付複合基板L1~L20、および半導体ウエハL1~L20を順次形成した。
(Example 2L)
Starting from a stoichiometric ratio of barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required to form the chemical composition of the support substrate shown in Table 23 and Table 24 Except for forming a sintered body containing a BaAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2J, support substrates L1 to L20, composite substrates L1 to L20, composite substrates with semiconductor layers L1 to L20, and Semiconductor wafers L1 to L20 were sequentially formed.
 支持基板L1~L20の化学組成および図9に示す3成分相図上の位置、複合基板L1~L20における支持基板L1~L20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板L1~L20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表23および表24にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板L1~L20から支持基板L1~L20をそれぞれ除去した半導体ウエハL1~L20における反りの大小関係には、半導体層付複合基板L1~L20における大小関係が維持されていた。 The chemical composition of the support substrates L1 to L20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates L1 to L20 in the composite substrates L1 to L20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount of semiconductor layer of composite substrates with semiconductor layers L1 to L20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 23 and Table 24. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers L1 to L20 obtained by removing the supporting substrates L1 to L20 from the composite substrates L1 to L20 with the semiconductor layer, respectively, maintained the magnitude relationship in the composite substrates with the semiconductor layer L1 to L20.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 (実施例2M)
 表25に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてCaAl2Si28結晶相を含む焼結体を形成したこと、主膜としてSiC膜を形成し、半導体層としてSiC層を形成した以外は、実施例2Aと同様にして、支持基板M1~M10、複合基板M1~M10、半導体層付複合基板M1~M10、および半導体ウエハM1~M10を順次形成した。
(Example 2M)
CaAl 2 Si using as starting materials calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Table 25 Supporting substrates M1 to M10, composites were formed in the same manner as in Example 2A, except that a sintered body containing a 2 O 8 crystal phase was formed, an SiC film was formed as a main film, and an SiC layer was formed as a semiconductor layer. Substrates M1 to M10, composite substrates with semiconductor layers M1 to M10, and semiconductor wafers M1 to M10 were sequentially formed.
 支持基板M1~M10の化学組成および図9に示す3成分相図上の位置、複合基板M1~M10における支持基板M1~M10の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板M1~M10の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表25にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板M1~M10から支持基板M1~M10をそれぞれ除去した半導体ウエハM1~M10における反りの大小関係には、半導体層付複合基板M1~M10における大小関係が維持されていた。 The chemical composition of the support substrates M1 to M10 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates M1 to M10 in the composite substrates M1 to M10, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and amount of warpage of semiconductor layer-side composite substrates M1 to M10, crack number density of semiconductor layer, and semiconductor The dislocation density of the layers is summarized in Table 25. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers M1 to M10 obtained by removing the supporting substrates M1 to M10 from the composite substrates with semiconductor layers M1 to M10, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers M1 to M10.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 (実施例2N)
 表26および表27に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Mと同様にして、支持基板N1~N18、複合基板N1~N18、半導体層付複合基板N1~N18、および半導体ウエハN1~N18を順次形成した。
(Example 2N)
Starting from the stoichiometric ratio of strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder necessary for forming the chemical composition of the support substrate shown in Table 26 and Table 27 Except for forming a sintered body containing a SrAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2M, support substrates N1 to N18, composite substrates N1 to N18, composite substrates with semiconductor layers N1 to N18, and Semiconductor wafers N1 to N18 were sequentially formed.
 支持基板N1~N18の化学組成および図9に示す3成分相図上の位置、複合基板N1~N18における支持基板N1~N18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板N1~N18の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表26および表27にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板N1~N18から支持基板N1~N18をそれぞれ除去した半導体ウエハN1~N18における反りの大小関係には、半導体層付複合基板N1~N18における大小関係が維持されていた。 The chemical composition of the supporting substrates N1 to N18 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates N1 to N18 in the composite substrates N1 to N18, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and amount of warpage of semiconductor layer-side composite substrates N1 to N18, number of cracks in semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 26 and Table 27. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers N1 to N18 obtained by removing the supporting substrates N1 to N18 from the composite substrates N1 to N18 with the semiconductor layer, respectively, maintained the magnitude relationship in the composite substrates N1 to N18 with the semiconductor layer.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 (実施例2O)
 表28および表29に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Mと同様にして、支持基板O1~O20、複合基板O1~O20、半導体層付複合基板O1~O20、および半導体ウエハO1~O20を順次形成した。
Example 2O
Starting from a stoichiometric ratio of barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required for forming the chemical composition of the support substrate shown in Table 28 and Table 29 Except that a sintered body containing a BaAl 2 Si 2 O 8 crystal phase was formed, in the same manner as in Example 2M, the supporting substrate O1 to O20, the composite substrate O1 to O20, the composite substrate with semiconductor layer O1 to O20, and Semiconductor wafers O1 to O20 were sequentially formed.
 支持基板O1~O20の化学組成および図9に示す3成分相図上の位置、複合基板O1~O20における支持基板O1~O20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板O1~O20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表28および表29にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板O1~O20から支持基板O1~O20をそれぞれ除去した半導体ウエハO1~O20における反りの大小関係には、半導体層付複合基板O1~O20における大小関係が維持されていた。 The chemical composition of the supporting substrates O1 to O20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates O1 to O20 in the composite substrates O1 to O20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and amount of warpage of semiconductor layer-side composite substrate O1 to O20, crack number density of semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 28 and Table 29. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relation of the warpage in the semiconductor wafers O1 to O20 obtained by removing the supporting substrates O1 to O20 from the composite substrates O1 to O20 with semiconductor layers was maintained in the magnitude relation of the composite substrates with semiconductor layers O1 to O20.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 (実施例2P)
 1.支持基板の準備
 表30および表31に示す支持基板の化学組成の形成に必要な化学量論比の炭酸カルシウム(CaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料として、圧力50MPaにてプレス成型後、大気雰囲気中1500℃で20時間焼結した後、1650℃、2000気圧で3時間HIP(熱間等方圧プレス)焼結することにより、18種類の焼結体P1~P18を得た。
(Example 2P)
1. Preparation of Support Substrate Calcium carbonate (CaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder in stoichiometric ratios necessary for forming the chemical composition of the support substrate shown in Table 30 and Table 31 As a starting material, after press molding at a pressure of 50 MPa, sintering in an air atmosphere at 1500 ° C. for 20 hours, and then sintering at 1650 ° C. and 2000 atmospheres for 3 hours by HIP (hot isostatic pressing), 18 Various types of sintered bodies P1 to P18 were obtained.
 得られた18種類の焼結体P1~P18を、それぞれ、スライスした後主面をJIS B0601に規定する算術平均粗さRaが1nm以下に研磨することにより、図5に示す支持基板11として直径6インチ(15.24cm)で厚さ400μmの18種類の支持基板P1~P18を得た。得られた18種類の支持基板P1~P18の化学組成、平均粒子径および図9に示す3成分相図上の位置を表30および表31に示した。18種類の支持基板P1~P18の化学組成は、X線回折により測定および同定した。表30および表31に示すように、支持基板P1~P18にはCaAl2Si28の結晶相が含まれていた。 The obtained 18 types of sintered bodies P1 to P18 were sliced, and the main surfaces were polished to an arithmetic average roughness Ra defined in JIS B0601 to 1 nm or less to obtain a diameter of the support substrate 11 shown in FIG. 18 kinds of support substrates P1 to P18 having a thickness of 6 inches (15.24 cm) and a thickness of 400 μm were obtained. Tables 30 and 31 show the chemical compositions, average particle diameters, and positions on the three-component phase diagram shown in FIG. 9 of the obtained 18 kinds of support substrates P1 to P18. The chemical compositions of the 18 types of support substrates P1 to P18 were measured and identified by X-ray diffraction. As shown in Tables 30 and 31, the support substrates P1 to P18 contained a crystal phase of CaAl 2 Si 2 O 8 .
 2.複合基板の作製
 図5(A)中の(A1)を参照して、支持基板11である支持基板P1~P18のそれぞれの主面11m上に厚さ1μmのSiO2膜をCVD(化学気相堆積)法により成膜した。次いで、かかる支持基板P1~P18のそれぞれの主面11m上の厚さ1μmのSiO2膜を研磨することにより、厚さ0.5μmのSiO2膜だけ残存させて、主面12amが鏡面化された接合膜12bを形成した。
2. Fabrication of Composite Substrate With reference to (A1) in FIG. 5A, a SiO 2 film having a thickness of 1 μm is formed on each main surface 11m of the support substrates P1 to P18 as the support substrate 11 by CVD (chemical vapor phase). The film was formed by the deposition method. Next, by polishing the 1 μm thick SiO 2 film on the main surface 11 m of each of the supporting substrates P 1 to P 18, only the 0.5 μm thick SiO 2 film remains, and the main surface 12 am is mirrored. A bonding film 12b was formed.
 また、図5(A)中の(A2)を参照して、主膜ドナー基板13Dとして、HVPE法により成長させた直径6インチ(15.24cm)で厚さが5cmのGaN基板を準備した。かかる主膜ドナー基板13DのN原子面である(000-1)面側の主面13n上に、厚さ1μmのSiO2膜をCVD法により成膜した。次いで、上記の厚さ1μmのSiO2膜を研磨することにより、厚さ0.5μmのSiO2膜だけ残存させて、主面12bnが鏡面化された接合膜12bを形成した。 Referring to (A2) in FIG. 5A, a GaN substrate having a diameter of 6 inches (15.24 cm) and a thickness of 5 cm grown by the HVPE method was prepared as main film donor substrate 13D. A SiO 2 film having a thickness of 1 μm was formed on the main surface 13n on the (000-1) plane side which is the N atomic plane of the main film donor substrate 13D by the CVD method. Subsequently, the SiO 2 film having a thickness of 1 μm was polished to leave only the SiO 2 film having a thickness of 0.5 μm, thereby forming a bonding film 12b in which the main surface 12bn was mirror-finished.
 次に、図5(A)中の(A3)を参照して、支持基板11である支持基板P1~P18のそれぞれに形成された接合膜12aの主面12amおよび主膜ドナー基板13DであるGaN基板上に形成された接合膜12bの主面12bnをアルゴンプラズマにより清浄化および活性化させた後、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせて、窒素雰囲気下300℃で2時間熱処理した。このようにして、支持基板11と主膜ドナー基板13Dとが接合膜12を介在させて貼り合わされた接合基板1Lが得られた。 Next, referring to (A3) in FIG. 5A, the main surface 12am of the bonding film 12a and the GaN that is the main film donor substrate 13D that are formed on each of the support substrates P1 to P18 that are the support substrates 11. The main surface 12bn of the bonding film 12b formed on the substrate is cleaned and activated by argon plasma, and then the main surface 12am of the bonding film 12a and the main surface 12bn of the bonding film 12b are bonded together in a nitrogen atmosphere. Heat treatment was performed at 300 ° C. for 2 hours. In this way, a bonded substrate 1L was obtained in which the support substrate 11 and the main film donor substrate 13D were bonded together with the bonding film 12 interposed therebetween.
 次に、図5(B)を参照して、ワイヤソーにより、主膜ドナー基板13Dを、その主面13nから内部に300μmの深さの位置の面で切断した。次いで、切断面を研削および研磨により鏡面化した。 Next, with reference to FIG. 5B, the main film donor substrate 13D was cut by a wire saw at a depth of 300 μm inside from the main surface 13n. Subsequently, the cut surface was mirror-finished by grinding and polishing.
 こうして、図7(A)に示すような支持基板11である支持基板P1~P18のそれぞれの主面11m側に主膜13である主面13mが鏡面化された厚さ150μmのGaN膜が配置された複合基板1である複合基板P1~P18が得られた。 Thus, a 150 μm-thick GaN film in which the main surface 13m as the main film 13 is mirror-finished is arranged on each main surface 11m side of the support substrates P1 to P18 as the support substrate 11 as shown in FIG. 7A. As a result, composite substrates P1 to P18, which were composite substrates 1, were obtained.
 得られた複合基板P1~P18における支持基板P1~P18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)
を表30および表31にまとめた。ここで、支持基板P1~P18の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFは、実施例2Aと同様にして測定した。
The resulting ratio of the thermal expansion coefficient alpha S for thermal expansion coefficient alpha F in the main surface of the thermal expansion coefficient alpha S and the main film in the main surface of the supporting substrate P1 ~ P18 in the composite substrate P1 ~ P18 (α S / α F ratio)
Are summarized in Table 30 and Table 31. Here, the thermal expansion coefficient α S in the main surface of the support substrates P1 to P18 and the thermal expansion coefficient α F in the main surface of the main film were measured in the same manner as in Example 2A.
 3.半導体層の形成工程
 図7(B)を参照して、複合基板1である複合基板P1~P18の主膜13であるGaN膜の主面13m(かかる主面はGa原子面である(0001)面である。)上に、それぞれMOCVD法により半導体層20としてGaN層を成長させた。かかる半導体層20の成長においては、まず、500℃で、半導体バッファ層21として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層23として厚さ5μmのGaN結晶層を成長させた。こうして、18種類の半導体層付複合基板P1~P18が得られた。
3. Step of Forming Semiconductor Layer Referring to FIG. 7B, the main surface 13m of the GaN film that is the main film 13 of the composite substrates P1 to P18 that are the composite substrate 1 (the main surface is a Ga atomic surface (0001)). A GaN layer was grown as the semiconductor layer 20 on each of them by MOCVD. In the growth of the semiconductor layer 20, first, a GaN buffer layer having a thickness of 0.1 μm is grown as the semiconductor buffer layer 21 at 500 ° C., and then a GaN crystal having a thickness of 5 μm as the semiconductor crystal layer 23 at 1050 ° C. Growing layers. In this way, 18 types of composite substrates with semiconductor layers P1 to P18 were obtained.
 得られた半導体層付複合基板P1~P18の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表30および表31にまとめた。ここで、半導体層付複合基板P1~P18の半導体層側の反り形状および反り量は、実施例2Aと同様にして測定した。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。 Tables 30 and 31 summarize the warp shape and warp amount of the obtained semiconductor substrate with semiconductor layers P1 to P18, the number of cracks in the semiconductor layer, and the dislocation density of the semiconductor layer. Here, the warp shape and the warp amount on the semiconductor layer side of the composite substrates with semiconductor layers P1 to P18 were measured in the same manner as in Example 2A. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these.
 4.支持基板の除去
 図7(C)を参照して、得られた半導体層付複合基板P1~P18を室温(25℃)で50質量%のフッ化水素酸水溶液中に浸漬することにより、支持基板11をエッチングにより除去して18種類の半導体ウエハP1~P18が得られた。
4). Removal of Support Substrate Referring to FIG. 7C, the obtained composite substrates P1 to P18 with a semiconductor layer are immersed in a 50% by mass hydrofluoric acid aqueous solution at room temperature (25 ° C.) to thereby provide a support substrate. 11 was removed by etching, and 18 types of semiconductor wafers P1 to P18 were obtained.
 半導体層付複合基板P1~P18から支持基板P1~P18をそれぞれ除去した半導体ウエハP1~P18における反りの大小関係には、半導体層付複合基板P1~P18における大小関係が維持されていた。 The magnitude relationship of the warpage in the semiconductor wafers P1 to P18 obtained by removing the support substrates P1 to P18 from the composite substrates with semiconductor layers P1 to P18, respectively, was maintained in the composite substrates with semiconductor layers P1 to P18.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 (実施例2Q)
 表32および表33に示す支持基板の化学組成の形成に必要な化学量論比の炭酸ストロンチウム(SrCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてSrAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Pと同様にして、支持基板Q1~Q20、複合基板Q1~Q20、半導体層付複合基板Q1~Q20、および半導体ウエハBQ1~Q20を順次形成した。
(Example 2Q)
Starting from the stoichiometric ratio of strontium carbonate (SrCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required for forming the chemical composition of the support substrate shown in Table 32 and Table 33 Except for forming a sintered body containing a SrAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2P, support substrates Q1 to Q20, composite substrates Q1 to Q20, composite substrates with semiconductor layers Q1 to Q20, and Semiconductor wafers BQ1 to Q20 were sequentially formed.
 支持基板Q1~Q20の化学組成および図9に示す3成分相図上の位置、複合基板Q1~Q20における支持基板Q1~Q20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板Q1~Q20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表32および表33にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板Q1~Q20から支持基板Q1~Q20をそれぞれ除去した半導体ウエハQ1~Q20における反りの大小関係には、半導体層付複合基板Q1~Q20における大小関係が維持されていた。 The chemical composition of the support substrates Q1 to Q20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the support substrates Q1 to Q20 in the composite substrates Q1 to Q20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount on the semiconductor layer side of the composite substrate with semiconductor layer Q1 to Q20, crack number density of the semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 32 and Table 33. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relation of the warpage in the semiconductor wafers Q1 to Q20 obtained by removing the supporting substrates Q1 to Q20 from the composite substrates Q1 to Q20 with semiconductor layers, respectively, maintained the magnitude relation in the composite substrates with semiconductor layers Q1 to Q20.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 (実施例2R)
 表34および表35に示す支持基板の化学組成の形成に必要な化学量論比の炭酸バリウム(BaCO3)粉末、アルミナ(Al23)粉末、およびシリカ(SiO2)粉末を出発原料としてBaAl2Si28結晶相を含む焼結体を形成したこと以外は、実施例2Pと同様にして、支持基板R1~R20、複合基板R1~R20、半導体層付複合基板R1~R20、および半導体ウエハR1~R20を順次形成した。
(Example 2R)
Starting from the stoichiometric ratio of barium carbonate (BaCO 3 ) powder, alumina (Al 2 O 3 ) powder, and silica (SiO 2 ) powder required to form the chemical composition of the support substrate shown in Table 34 and Table 35 Except for forming a sintered body containing a BaAl 2 Si 2 O 8 crystal phase, in the same manner as in Example 2P, support substrates R1 to R20, composite substrates R1 to R20, composite substrates with semiconductor layers R1 to R20, and Semiconductor wafers R1 to R20 were sequentially formed.
 支持基板R1~R20の化学組成および図9に示す3成分相図上の位置、複合基板R1~R20における支持基板R1~R20の主面内における熱膨張係数αSおよび主膜の主面内の熱膨張係数αFに対する熱膨張係数αSの比(αS/αF比)、半導体層付複合基板R1~R20の半導体層側の反り形状および反り量、半導体層のクラック本数密度、および半導体層の転位密度を表34および表35にまとめた。なお、本実施例において主膜および半導体層に発生したクラックは、これらを貫通しない微小なものであった。また、半導体層付複合基板R1~R20から支持基板R1~R20をそれぞれ除去した半導体ウエハR1~R20における反りの大小関係には、半導体層付複合基板R1~R20における大小関係が維持されていた。 The chemical composition of the supporting substrates R1 to R20 and the positions on the three-component phase diagram shown in FIG. 9, the thermal expansion coefficient α S in the main surface of the supporting substrates R1 to R20 in the composite substrates R1 to R20, and the main surface of the main film Ratio of thermal expansion coefficient α S to thermal expansion coefficient α FS / α F ratio), warpage shape and warpage amount on the semiconductor layer side of the composite substrate R1 to R20 with semiconductor layer, crack number density of the semiconductor layer, and semiconductor The dislocation densities of the layers are summarized in Table 34 and Table 35. In this example, the cracks generated in the main film and the semiconductor layer were minute ones that did not penetrate these. Further, the magnitude relationship of the warpage in the semiconductor wafers R1 to R20 obtained by removing the supporting substrates R1 to R20 from the composite substrates with semiconductor layers R1 to R20, respectively, maintained the magnitude relationship in the composite substrates with semiconductor layers R1 to R20.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表2~表35を参照して、実施例2A~2Rから明らかなように、複合基板における支持基板のMAl2Si28(Mは金属元素)の化学組成を有するアノーサイトで形成される結晶相(MAl2Si28結晶相)のモル%を調整することにより、好ましくは支持基板のMIIAl2Si28結晶相、MIIAl1219結晶相、Al23結晶相、およびAl6Si213結晶相のモル%を調整することにより、支持基板のエッチャントに対する溶解性および熱膨張係数を好適に調整できた。 As is apparent from Examples 2A to 2R with reference to Tables 2 to 35, the support substrate in the composite substrate is formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 (M is a metal element). By adjusting the mol% of the crystal phase (MAI 2 Si 2 O 8 crystal phase), preferably the M II Al 2 Si 2 O 8 crystal phase, M II Al 12 O 19 crystal phase, Al 2 O 3 of the support substrate. By adjusting the mol% of the crystal phase and the Al 6 Si 2 O 13 crystal phase, the solubility of the support substrate in the etchant and the thermal expansion coefficient could be suitably adjusted.
 (実施例3)
 1.支持基板の準備
 実施例1と同様の出発原料および方法により、SrAl2Si28が15モル%およびAl23が85モル%の化学組成を有する焼結体Tを形成した。焼結体Tの化学組成はX線回折により測定および同定した。
(Example 3)
1. Preparation of Support Substrate A sintered body T having a chemical composition of 15 mol% SrAl 2 Si 2 O 8 and 85 mol% Al 2 O 3 was formed by the same starting materials and method as in Example 1. The chemical composition of the sintered body T was measured and identified by X-ray diffraction.
 得られた焼結体Tをスライスおよび研磨することにより、直径4インチ(10.16cm)で厚さ400μmで表36に示すような主面の算術平均粗さRaを有する8種類の支持基板T1~T8を形成した。ここで、表36に示すように、支持基板T1~T8の主面の算術平均粗さRaは、研磨条件を変化させることにより、0.5nmから100nmまでの間で変化させた。支持基板のT1~T8の主面の算術平均粗さRaは、AFM(原子間力顕微鏡)により測定した。 By slicing and polishing the obtained sintered body T, eight kinds of support substrates T1 having a diameter of 4 inches (10.16 cm) and a thickness of 400 μm and an arithmetic average roughness Ra of the main surface as shown in Table 36 are shown. ~ T8 was formed. Here, as shown in Table 36, the arithmetic average roughness Ra of the main surfaces of the support substrates T1 to T8 was changed between 0.5 nm and 100 nm by changing the polishing conditions. The arithmetic average roughness Ra of the main surfaces T1 to T8 of the support substrate was measured with an AFM (atomic force microscope).
 2.複合基板の作製
 支持基板として上記の支持基板T1~T8を用いたこと、および主膜ドナー基板として直径4インチ(10.16cm)で厚さ2cmのGaN基板を用いたこと以外は、実施例1と同様にして、複合基板T1~T8を形成した。
2. Production of Composite Substrate Example 1 except that the above-mentioned support substrates T1 to T8 were used as the support substrate and a GaN substrate having a diameter of 4 inches (10.16 cm) and a thickness of 2 cm was used as the main film donor substrate. In the same manner, composite substrates T1 to T8 were formed.
 得られた複合基板T1~T8について、支持基板と主膜とが接合膜を介在させて接合している面積(以下、接合面積という)を、光学顕微鏡により測定した。複合基板の主面の面積に対する接合面積の百分率(%)を複合基板の接合面積率として算出した。結果を表36にまとめた。 For the obtained composite substrates T1 to T8, the area where the support substrate and the main film were bonded with the bonding film interposed (hereinafter referred to as the bonding area) was measured with an optical microscope. The percentage (%) of the bonding area with respect to the area of the main surface of the composite substrate was calculated as the bonding area ratio of the composite substrate. The results are summarized in Table 36.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表36を参照して、支持基板の主面の算術平均粗さRaを小さくすることにより、複合基板の接合面積率を高くすることができた。具体的には、支持基板の主面の算術平均粗さRaを50nm以下とすることにより複合基板の接合面積率を60%以上とすることができ、支持基板の主面の算術平均粗さRaを10nm以下とすることにより複合基板の接合面積率を85%以上とすることができ、支持基板の主面の算術平均粗さRaを1nm以下とすることにより複合基板の接合面積率を95%以上とすることができた。 Referring to Table 36, it was possible to increase the bonding area ratio of the composite substrate by reducing the arithmetic average roughness Ra of the main surface of the support substrate. Specifically, by setting the arithmetic average roughness Ra of the main surface of the support substrate to 50 nm or less, the bonding area ratio of the composite substrate can be set to 60% or more, and the arithmetic average roughness Ra of the main surface of the support substrate. By setting the thickness to 10 nm or less, the bonding area ratio of the composite substrate can be 85% or more, and by setting the arithmetic average roughness Ra of the main surface of the support substrate to 1 nm or less, the bonding area ratio of the composite substrate is 95%. That's it.
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 複合基板、1L 接合基板、2 半導体層付複合基板、3 半導体ウエハ、11 支持基板、11m,12am,12bn,13m,13n,20m,21m,23m,30n 主面、12,12a,12b 接合膜、13 主膜、13D,13Dr 主膜ドナー基板、13i イオン注入領域、20 半導体層、21 半導体バッファ層、23 半導体結晶層、30 下地基板、L1 第1直線、L2 第2直線、L3 第3直線、P1 第1点、P2 第2点、P3 第3点、P4 第4点、R 領域、R1 第1領域、R2 第2領域。 1 composite substrate, 1L bonding substrate, 2 composite substrate with semiconductor layer, 3 semiconductor wafer, 11 support substrate, 11m, 12am, 12bn, 13m, 13n, 20m, 21m, 23m, 30n main surface, 12, 12a, 12b bonding film , 13 main film, 13D, 13Dr main film donor substrate, 13i ion implantation region, 20 semiconductor layer, 21 semiconductor buffer layer, 23 semiconductor crystal layer, 30 base substrate, L1 first straight line, L2 second straight line, L3 third straight line , P1 first point, P2 second point, P3 third point, P4 fourth point, R region, R1 first region, R2 second region.

Claims (10)

  1.  金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶
    相を含む支持基板と、前記支持基板の主面側に配置されている主膜と、を含む複合基板。
    A composite substrate including a support substrate including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including a metal element M, and a main film disposed on the main surface side of the support substrate .
  2.  前記金属元素Mがアルカリ土類金属元素MIIである請求項1に記載の複合基板。 The composite substrate according to claim 1, wherein the metal element M is an alkaline earth metal element M II.
  3.  前記アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、前記支持基板の化学組成が、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点、MIIAl1219の化学組成を示す第2点、Al23の化学組成を示す第3点、およびAl6Si213の化学組成を示す第4点、および前記第1点をこの順に直線で結んで形成される領域内の点で示される請求項2に記載の複合基板。 The alkaline earth metal element M II contains at least one element selected from the group consisting of Ca, Sr and Ba, and the chemical composition of the supporting substrate is M II O—Al 2 O 3 —SiO 2 -based 3 In the component phase diagram, the first point indicating the chemical composition of M II Al 2 Si 2 O 8 , the second point indicating the chemical composition of M II Al 12 O 19 , the third point indicating the chemical composition of Al 2 O 3 , 4. The composite substrate according to claim 2, which is indicated by a fourth point indicating the chemical composition of Al 6 Si 2 O 13 and a point in a region formed by connecting the first point in this order with a straight line.
  4.  前記支持基板の少なくとも一部が酸に溶解する請求項1から請求項3のいずれかに記載の複合基板。 4. The composite substrate according to claim 1, wherein at least a part of the support substrate is dissolved in an acid.
  5.  前記支持基板の主面内の熱膨張係数が、主膜の主面内の熱膨張係数に比べて、0.8倍以上1.2倍以下である請求項1から請求項4のいずれかに記載の複合基板。 5. The thermal expansion coefficient in the main surface of the support substrate is 0.8 to 1.2 times the thermal expansion coefficient in the main surface of the main film. The composite substrate described.
  6.  金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含む支持基板と、前記支持基板の主面側に配置されている主膜と、を含む複合基板を準備する工程と、
     前記複合基板の前記主膜上に、少なくとも1層の半導体層を成長させることにより、半導体層付複合基板を得る工程と、
     前記半導体層付複合基板から前記支持基板を除去することにより、前記半導体層を含む半導体ウエハを得る工程と、を含む半導体ウエハの製造方法。
    A composite substrate including a support substrate including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 including a metal element M, and a main film disposed on the main surface side of the support substrate The process of preparing
    Obtaining a composite substrate with a semiconductor layer by growing at least one semiconductor layer on the main film of the composite substrate;
    Removing the support substrate from the composite substrate with a semiconductor layer to obtain a semiconductor wafer including the semiconductor layer.
  7.  金属元素Mを含むMAl2Si28の化学組成を有するアノーサイトで形成される結晶相を含み、直径が3インチ以上で、主面の算術平均粗さRaが50nm以下である複合基板用の支持基板。 For a composite substrate including a crystal phase formed of anorthite having a chemical composition of MAl 2 Si 2 O 8 containing a metal element M, having a diameter of 3 inches or more and an arithmetic average roughness Ra of a main surface of 50 nm or less Support substrate.
  8.  前記金属元素Mがアルカリ土類金属元素MIIである請求項7に記載の複合基板用の支持基板。 Supporting substrate for a composite substrate according to claim 7 wherein the metal element M is an alkaline earth metal element M II.
  9.  前記アルカリ土類金属元素MIIがCa、SrおよびBaからなる群から選ばれる少なくとも1種類の元素を含み、前記支持基板の化学組成が、MIIO-Al23-SiO2系の3成分相図において、MIIAl2Si28の化学組成を示す第1点、MIIAl1219の化学組成を示す第2点、Al23の化学組成を示す第3点、およびAl6Si213の化学組成を示す第4点、および前記第1点をこの順に直線で結んで形成される領域内の点で示される請求項8に記載の複合基板用の支持基板。 The alkaline earth metal element M II contains at least one element selected from the group consisting of Ca, Sr and Ba, and the chemical composition of the supporting substrate is M II O—Al 2 O 3 —SiO 2 -based 3 In the component phase diagram, the first point indicating the chemical composition of M II Al 2 Si 2 O 8 , the second point indicating the chemical composition of M II Al 12 O 19 , the third point indicating the chemical composition of Al 2 O 3 , The support substrate for a composite substrate according to claim 8, which is indicated by a fourth point indicating the chemical composition of Al 6 Si 2 O 13 and a point in a region formed by connecting the first point in this order with a straight line. .
  10.  少なくとも一部が酸に溶解する請求項7から請求項9のいずれかに記載の複合基板用の支持基板。 The support substrate for a composite substrate according to any one of claims 7 to 9, wherein at least a part thereof is dissolved in an acid.
PCT/JP2014/053864 2013-03-04 2014-02-19 Composite substrate, semiconductor-wafer production method using said composite substrate, and support substrate for said composite substrate WO2014136573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041828 2013-03-04
JP2013041828A JP6149428B2 (en) 2012-12-28 2013-03-04 Composite substrate, semiconductor wafer manufacturing method using composite substrate, and support substrate for composite substrate

Publications (1)

Publication Number Publication Date
WO2014136573A1 true WO2014136573A1 (en) 2014-09-12

Family

ID=51492124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053864 WO2014136573A1 (en) 2013-03-04 2014-02-19 Composite substrate, semiconductor-wafer production method using said composite substrate, and support substrate for said composite substrate

Country Status (3)

Country Link
JP (1) JP6149428B2 (en)
TW (1) TW201445765A (en)
WO (1) WO2014136573A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796311B2 (en) * 2016-12-26 2020-12-09 国立大学法人 東京大学 Manufacturing method of semiconductor devices
US10658474B2 (en) * 2018-08-14 2020-05-19 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming thin semiconductor-on-insulator (SOI) substrates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518116A (en) * 2003-02-18 2006-08-03 コーニング インコーポレイテッド Glass-based SOI structure
JP2007184581A (en) * 2005-12-19 2007-07-19 Corning Inc Semiconductor on glass insulator prepared by using improved ion implatation process
JP2008510315A (en) * 2004-08-18 2008-04-03 コーニング インコーポレイテッド Strained semiconductor structure on insulator and method for making strained semiconductor structure on insulator
JP2009537076A (en) * 2006-05-12 2009-10-22 コーニング インコーポレイテッド Method for forming a semiconductor-on-insulator structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518116A (en) * 2003-02-18 2006-08-03 コーニング インコーポレイテッド Glass-based SOI structure
JP2008510315A (en) * 2004-08-18 2008-04-03 コーニング インコーポレイテッド Strained semiconductor structure on insulator and method for making strained semiconductor structure on insulator
JP2007184581A (en) * 2005-12-19 2007-07-19 Corning Inc Semiconductor on glass insulator prepared by using improved ion implatation process
JP2009537076A (en) * 2006-05-12 2009-10-22 コーニング インコーポレイテッド Method for forming a semiconductor-on-insulator structure

Also Published As

Publication number Publication date
TW201445765A (en) 2014-12-01
JP6149428B2 (en) 2017-06-21
JP2014143381A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US11124892B2 (en) Defect reduction in seeded aluminum nitride crystal growth
TWI310795B (en) A method of fabricating an epitaxially grown layer
JP2008303137A (en) Process for fabricating composite structure for epitaxy and multilayer structure including the composite structure
EP3109894A1 (en) Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
JP2018049868A (en) Semiconductor stacked structure and semiconductor device
TW201434173A (en) Group III-nitride composite substrate and method of producing same, layered group III-nitride composite substrate, as well as group III-nitride semiconductor device and method of producing same
JP2012197213A (en) Method of manufacturing semiconductor wafer, composite base and composite substrate
JP2019216180A (en) MANUFACTURING METHOD OF GaN LAMINATED SUBSTRATE
JP6232853B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, group III nitride semiconductor device and method for manufacturing the same
JP2024509835A (en) Compound semiconductor stacked structure and its preparation process
CN102465342A (en) Method of manufacturing gan-based film
JP6149428B2 (en) Composite substrate, semiconductor wafer manufacturing method using composite substrate, and support substrate for composite substrate
JP2013258373A (en) Composite substrate and manufacturing method of the same
JP5929520B2 (en) Method for producing diamond film and composite substrate used therefor
JP5929434B2 (en) Method for manufacturing AlN-based film and composite substrate used therefor
JP2015182928A (en) Composite substrate, and manufacturing method of semiconductor wafer using the same
WO2023119916A1 (en) Nitride semiconductor substrate and method for manufacturing nitride semiconductor substrate
JP2016036016A (en) Support substrate, composite substrate, and manufacturing method of semiconductor wafer
JP2014237565A (en) Composite substrate and production method of semiconductor wafer
CN117888189A (en) Method for manufacturing self-supporting monocrystalline substrate
JP5942483B2 (en) Support substrate manufacturing method, support substrate, and semiconductor wafer manufacturing method
JP2023092416A (en) Nitride semiconductor substrate and method for manufacturing the same
JP6146041B2 (en) Group III nitride composite substrate, laminated group III nitride composite substrate, group III nitride semiconductor device, and manufacturing method thereof
JP2016098136A (en) Support substrate, composite substrate, and manufacturing method of semiconductor wafer
TW202343780A (en) Composite structure comprising a thin single-crystal layer on a support substrate made of polycrystalline silicon carbide, and associated manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759909

Country of ref document: EP

Kind code of ref document: A1