JP2002219769A - Metal plate having photocatalytic activity and method for manufacturing the same - Google Patents
Metal plate having photocatalytic activity and method for manufacturing the sameInfo
- Publication number
- JP2002219769A JP2002219769A JP2001015971A JP2001015971A JP2002219769A JP 2002219769 A JP2002219769 A JP 2002219769A JP 2001015971 A JP2001015971 A JP 2001015971A JP 2001015971 A JP2001015971 A JP 2001015971A JP 2002219769 A JP2002219769 A JP 2002219769A
- Authority
- JP
- Japan
- Prior art keywords
- metal plate
- film
- photocatalytic activity
- coating
- photocatalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 70
- 239000002184 metal Substances 0.000 title claims abstract description 70
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000463 material Substances 0.000 claims abstract description 37
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 31
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 238000007733 ion plating Methods 0.000 claims description 12
- 238000005240 physical vapour deposition Methods 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 8
- 239000011941 photocatalyst Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 4
- 239000010962 carbon steel Substances 0.000 claims description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 230000001877 deodorizing effect Effects 0.000 abstract description 3
- 239000003344 environmental pollutant Substances 0.000 abstract description 3
- 230000001954 sterilising effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 83
- 239000000758 substrate Substances 0.000 description 32
- 238000005755 formation reaction Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000003980 solgel method Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000013032 photocatalytic reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 230000003373 anti-fouling effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 3
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Laminated Bodies (AREA)
- Catalysts (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属板の表面に光
触媒活性を付与した金属板及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal plate having a photocatalytic activity imparted to the surface of the metal plate and a method for producing the same.
【0002】[0002]
【従来の技術】酸化チタンをはじめとする光触媒材料
は、紫外光励起の結果、強力な酸化反応によって、環境
汚染物質の分解除去、防臭、防汚、殺菌作用を発揮する
ことが知られ、様々な適用および実用化が検討されてい
る。光触媒材料が光励起する場合、照射された光子数に
比例して生じた電子と正孔が光触媒材料表面で酸化還元
反応を引き起こす。生じた電子と正孔が再結合すると、
表面での酸化還元反応に寄与しないことになり、効率を
下げることになる。2. Description of the Related Art Photocatalytic materials such as titanium oxide are known to exhibit the effects of decomposition and removal of environmental pollutants, deodorization, antifouling, and sterilization by a strong oxidation reaction as a result of ultraviolet light excitation. Application and practical application are under consideration. When the photocatalytic material is photoexcited, electrons and holes generated in proportion to the number of irradiated photons cause an oxidation-reduction reaction on the photocatalytic material surface. When the generated electrons and holes recombine,
It does not contribute to the oxidation-reduction reaction on the surface, which lowers the efficiency.
【0003】一般に、酸化チタンの光酸化還元反応の効
率(量子収率)は、照射光の強度と相関関係を持つが、せ
いぜい10%程度と見込まれている(「酸化チタン光触媒の
開発と環境・エネルギー分野への応用展開」技術情報協
会発行、1997年)。つまり、照射された光の10%以下し
か、光触媒反応に利用できていないのが現状である。ま
た、太陽光は、全体の3%が紫外線で1cm2あたりのエネル
ギーで表すと、屋外で1mW程度だが、屋外建材のように
長期間の放置によれば、現状でも防汚効果等の光触媒効
果がみられるとされている(「光触媒のしくみ」(株)日
本実業出版社発行、2000年)。しかし、室内で使用する
場合、蛍光灯等の室内照明では、1μW以下と3桁低い紫
外線強度となり、光触媒による抗菌効果や防汚効果を室
内で発揮させるには、従来の光触媒材料の活性では不充
分であった。In general, the efficiency (quantum yield) of the photooxidation-reduction reaction of titanium oxide has a correlation with the intensity of irradiation light, but is expected to be at most about 10% (see "Development of titanium oxide photocatalyst and environmental・ Application development to energy field ”published by Technical Information Association, 1997). That is, at present, only 10% or less of the irradiated light is available for the photocatalytic reaction. Moreover, sunlight, expressed in total 3% energy per 1 cm 2 in UV, but about 1mW outdoors, according to long-term standing as an outdoor construction material, the photocatalytic effect such as antifouling effect at present ("Photocatalytic mechanism", published by Nihon Jitsugyo Publishing Co., Ltd., 2000). However, when used indoors, under indoor lighting such as fluorescent lamps, the UV intensity is three orders of magnitude lower than 1 μW or less, and the activity of conventional photocatalyst materials is not enough to exhibit the antibacterial and antifouling effects of photocatalyst indoors. It was enough.
【0004】このため、より活性の高い光触媒材料が求
められていた。反応の効率を高めるために、表面積を大
きくする試みがなされている。たとえば、特開平5-3415
63号公報では、チタニアゾルにポリエチレングリコール
やエチレンオキサイドを添加し、ゾルゲル法で基板にコ
ーテイングし、600℃から700℃で大気中焼成することに
よって、細孔を有するアナタ‐ゼ多孔質膜を作成する記
載がある。また、特開平6-293519号公報では、15〜25nm
程度の酸化チタン微粒子を溶液中に懸濁させ、塗布後、
450℃程度の温度で焼成し、基板に固着させる記載があ
る。いずれも、酸化チタン膜表面の比表面積を上げ、総
反応量を高めようというものである。[0004] Therefore, a photocatalytic material having higher activity has been demanded. Attempts have been made to increase the surface area to increase the efficiency of the reaction. For example, JP-A-5-3415
No. 63 discloses that an anatase porous membrane having pores is prepared by adding polyethylene glycol or ethylene oxide to titania sol, coating the substrate with a sol-gel method, and sintering at 600 to 700 ° C. in the air. There is a description. Further, in JP-A-6-293519, 15 to 25 nm
About titanium oxide fine particles are suspended in the solution, and after application,
There is a description that it is baked at a temperature of about 450 ° C. and fixed to a substrate. In either case, the specific surface area of the titanium oxide film surface is increased to increase the total reaction amount.
【0005】しかし、これらの結晶表面は、大気中ある
いは、水溶液中で結晶化、成長させているため、十分に
安定化しており、反応の場所となる欠陥は比較的少な
い。また、焼成に500℃程度の高温度が必要なため、ス
テンレスなどの金属板には適用の限界があった。上記の
ゾルゲル法では、塗料の粘度や塗布条件によって形成さ
れる皮膜の厚さが変化し易く、皮膜の性能を高めるため
に厚膜化すると、乾燥の際の皮膜の収縮が大きいため皮
膜と基材表面との間の密着性が低くなり、剥離しやすく
なるなどの問題点がある。さらに、酸化チタン皮膜の結
晶性を高めるためには、被覆後に乾燥させ、さらに焼成
という3つの工程が必須であり、酸化チタンのうち光触
媒活性が高いとされるアナタ‐ゼ相を安定に形成させる
には、一般的には大気中で焼成温度を500℃以上という
高温で行う必要があった。さらに、一回の塗布で得られ
る膜厚は、0.1μm程度の場合が多く、厚い膜にするため
には、上記の塗布、乾燥、焼成を数回繰り返す等の複雑
な工程を経る必要があった。高温で大気中で何回も焼成
した場合、基材からの元素の拡散が避けられず、特に1
μm程度の厚さの皮膜の場合には、皮膜全体に基材中の
元素が拡散し、酸化チタンの光触媒活性を低下させる等
の問題があった。たとえば、ステンレス鋼の場合、Crが
酸化チタン膜中に拡散することが、知られている。[0005] However, since these crystal surfaces are crystallized and grown in the air or in an aqueous solution, they are sufficiently stabilized and have relatively few defects serving as reaction sites. Further, since a high temperature of about 500 ° C. is required for firing, there is a limit of application to a metal plate such as stainless steel. In the above-mentioned sol-gel method, the thickness of the formed film tends to change depending on the viscosity of the paint and the application conditions. There is a problem that adhesion between the material and the surface of the material is reduced and the material is easily peeled off. Further, in order to enhance the crystallinity of the titanium oxide film, three steps of drying after the coating and firing are essential, and the anatase phase, which is considered to have high photocatalytic activity, is stably formed in the titanium oxide film. In general, it was necessary to perform the calcination at a high temperature of 500 ° C. or higher in the atmosphere. Furthermore, the film thickness obtained by one application is often about 0.1 μm, and in order to obtain a thick film, it is necessary to go through complicated steps such as repeating the above-mentioned application, drying and baking several times. Was. If fired many times in air at high temperature, diffusion of elements from the substrate is inevitable, especially
In the case of a film having a thickness of about μm, there is a problem that elements in the base material diffuse into the entire film and the photocatalytic activity of titanium oxide is reduced. For example, in the case of stainless steel, it is known that Cr diffuses into a titanium oxide film.
【0006】以上のように、従来の皮膜では、反応の効
率に限界があり、広範囲な実用化を妨げている。また、
皮膜形成法についても、皮膜の均質性、密着性の向上に
は限界があり、処理工程も複雑で、効率のよい製造方法
が望まれていた。As described above, the conventional film has a limit in the efficiency of the reaction, which hinders its practical use in a wide range. Also,
As for the film forming method, there is a limit in improving the homogeneity and adhesion of the film, the processing steps are complicated, and an efficient manufacturing method has been desired.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記のよう
な事情に着目してなされたものであって、光触媒作用に
由来する環境汚染物質の分解除去、防臭、防汚、殺菌作
用を、より効率的に発揮した金属板およびその製造方法
を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed to decompose and remove environmental pollutants derived from photocatalysis, to prevent odors, prevent stains, and sterilize. An object of the present invention is to provide a metal plate that has been more efficiently exhibited and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明者は、上記の目的
を達成するため、鋭意研究を重ねた結果、皮膜表面に反
応の活性点となるステップを多数設けることで、光触媒
反応の効率を著しく上げることを見出し、本発明をなす
にいたった。すなわち、表面に0.5μm〜5.0μmの厚さの
皮膜を有する金属板であって、該皮膜が光触媒活性を有
する材料からなるか、あるいはこれを含み、ステップ構
造を有する表面状態であることを特徴とする光触媒活性
を有する金属板である。また、表面に0.5μm〜5.0μmの
厚さの皮膜を有する金属板であって、該皮膜が金属板か
ら表面に向かって、光触媒活性を有する材料からなる内
層と、ステップ構造を有する表面状態である透光性材料
からなる外層からなる2層構造であることを特徴とする
光触媒活性を有する金属板である。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, by providing a number of active steps on the film surface to increase the efficiency of the photocatalytic reaction. The inventors have found that it is significantly increased, and have accomplished the present invention. That is, a metal plate having a film having a thickness of 0.5 μm to 5.0 μm on the surface, wherein the film is made of a material having photocatalytic activity or includes the material, and is a surface state having a step structure. Is a metal plate having photocatalytic activity. Further, a metal plate having a coating having a thickness of 0.5 μm to 5.0 μm on the surface, wherein the coating is directed from the metal plate toward the surface, an inner layer made of a material having photocatalytic activity, and a surface state having a step structure. A metal plate having photocatalytic activity, which has a two-layer structure including an outer layer made of a certain translucent material.
【0009】さらに、前記光触媒活性を有する材料がア
ナターゼ型酸化チタン、ルチル型酸化チタン、あるい
は、Fe2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeT
iO3、SrTiO3、Nb2O3、ZnO、SnO2又はZrO2から選ばれる
少なくとも一種であり、前記金属板が、炭素鋼、ステン
レス鋼、チタン又はチタン基合金である光触媒活性を有
する金属板である。Further, the material having photocatalytic activity is anatase type titanium oxide, rutile type titanium oxide, or Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , FeT
iO 3 , SrTiO 3 , Nb 2 O 3 , ZnO, at least one selected from SnO 2 or ZrO 2 , wherein the metal plate is carbon steel, stainless steel, a metal plate having photocatalytic activity that is titanium or a titanium-based alloy. It is.
【0010】また、これらの光触媒活性を有する金属板
の皮膜形成方法であって、減圧下で、金属蒸気またはイ
オン化した金属蒸気と、酸素の分圧をそれぞれ別々に制
御するPVD法を用い、500℃以下の金属板の温度で皮膜を
形成させることを特徴とする光触媒活性を有する金属板
の製造方法である。さらに、前記PVD法が、スパッタリ
ングまたはイオンプレーテイングであることを特徴とす
る光触媒活性を有する金属板の製造方法である。[0010] The present invention also relates to a method for forming a film on a metal plate having photocatalytic activity, wherein a PVD method for separately controlling the partial pressures of metal vapor or ionized metal vapor and oxygen under reduced pressure is used. A method for producing a metal plate having photocatalytic activity, characterized in that a film is formed at a temperature of the metal plate of not more than ° C. Further, the present invention is a method for producing a metal plate having photocatalytic activity, wherein the PVD method is sputtering or ion plating.
【0011】[0011]
【発明の実施の形態】ステップは、原子レベルでは格子
面が異なる段差であり、二次元周期性が途切れた場所で
あり、多くのダングリングボンド(共有結合の相手がな
い結合手)が存在する場所である。ダングリングボンド
は、化学的に活性で、光励起反応で生じた正孔が優先的
に酸化反応する活性点である。また、表面の原子の吸着
も優先的に起こる。図1の試料A及び試料Bに模式的に示
すように、平面で観察すると曲線で示され、断面ではテ
ラス間の段差として認められる。大規模集積回路技術に
おいては、シリコンウエーハ表面の平坦性を保つ意味
で、排除すべきものであるため、SEM、STM等の各種表面
観察手段によってステップの配列や挙動に関する理解が
進んでいる(たとえば、荻野ほか、応用物理、第66巻、
第12号、p.1289、1997)。ステップの形成は、エピタキ
シャルあるいは、ヘテロエピタキシャル成長して結晶が
形成されるときに特徴的にみられ、大気中焼成などの熱
平衡状態では形成されにくい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A step is a step having different lattice planes at an atomic level, a place where two-dimensional periodicity is interrupted, and a large number of dangling bonds (bonds having no covalent bond partner) exist. Location. A dangling bond is an active site where it is chemically active and holes generated by the photoexcitation reaction preferentially undergo an oxidation reaction. Also, adsorption of atoms on the surface occurs preferentially. As schematically shown in Sample A and Sample B in FIG. 1, when observed in a plane, it is shown as a curve, and in the cross section, it is recognized as a step between terraces. In large-scale integrated circuit technology, it must be excluded in the sense of maintaining the flatness of the silicon wafer surface.Therefore, understanding of the arrangement and behavior of steps has been advanced by various surface observation means such as SEM and STM (for example, Ogino et al., Applied Physics, Vol. 66,
No. 12, p. 1289, 1997). The formation of a step is characteristically observed when a crystal is formed by epitaxial or heteroepitaxial growth, and is difficult to be formed in a thermal equilibrium state such as firing in the air.
【0012】光触媒材料が照射された光子によって励起
された場合、その光子量に対応して正孔と電子が生じ
る。特に正孔は、表面で強力な酸化作用によって接触す
る物質を分解するが、表面の活性点に到達する前に、電
子や不純物と再結合して消失してしまうと、反応に関与
できない。表面に活性点が多数ある場合には、正孔の再
結合が少なくなり、光触媒による酸化作用の効率が高く
なる。表面に形成されたステップは、この反応の活性点
を多数作っているという意味で重要である。ステップが
形成されている表面を図1及び図2のような平面で観察し
たとき、曲線状に連なるステップの長さの総長が、観察
面の縦横の長さの和の以上であるとき、この表面には多
数のステップが形成されているということができ、活性
の高い光触媒反応が期待できるので好ましい。例えば、
図1で示すように、縦の長さa(μm)、横の長さもa(μm)
である平面を観察し、ステップが同心円状に形成されて
いる場合では、平面的に観察されるステップの総長さ
は、5πa/4(μm)となり、縦横の長さの和である2a(μm)
より大きい。このように多数のステップで表面が形成さ
れていることが重要である。多数のステップで構成され
た表面の材料は、光触媒材料であってもよいし、光触媒
材料でなくても透光性材料であればよい。光触媒材料と
しては、アナターゼ型酸化チタン、ルチル型酸化チタ
ン、Fe2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeT
iO3、SrTiO3、Nb2O3、ZnO、SnO2、ZrO2などが、比較的
生成が容易で光触媒効果に優れ好ましい。When the photocatalytic material is excited by the irradiated photons, holes and electrons are generated corresponding to the photon amount. In particular, holes decompose substances that come into contact with the surface due to strong oxidizing action, but cannot participate in the reaction if they recombine and disappear with electrons or impurities before reaching the active site on the surface. When there are many active sites on the surface, the recombination of holes is reduced, and the efficiency of the photocatalytic oxidation action is increased. The steps formed on the surface are important in that they create many active sites for this reaction. When the surface on which the steps are formed is observed on a plane as shown in FIGS. 1 and 2, when the total length of the steps connected in a curve is equal to or greater than the sum of the length and width of the observation surface, this It can be said that a large number of steps are formed on the surface, and a photocatalytic reaction having high activity can be expected, which is preferable. For example,
As shown in FIG. 1, the vertical length a (μm), the horizontal length is also a (μm)
Is observed, and when the steps are formed concentrically, the total length of the steps observed planarly is 5πa / 4 (μm), which is the sum of the vertical and horizontal lengths, 2a (μm )
Greater than. It is important that the surface is formed in such a large number of steps. The material of the surface composed of a number of steps may be a photocatalyst material, or may be a translucent material without being a photocatalyst material. Photocatalytic materials include anatase type titanium oxide, rutile type titanium oxide, Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , FeT
iO 3 , SrTiO 3 , Nb 2 O 3 , ZnO, SnO 2 , ZrO 2, etc. are preferred because they are relatively easy to produce and have excellent photocatalytic effects.
【0013】最表面の材料としては、透光性でステップ
構造が安定に形成できていれば基本的にどのようなもの
でも良く、たとえばSiO2、Al2O3、TiO2、YAG、KNbO3の
ような無機酸化物材料は、化学的に安定で耐食性や機械
的な強度も優れるので好ましい。金属板表面の皮膜の厚
さは、0.5μm〜5.0μmとする。0.5μm未満では、光触媒
効果が少なく、5.0μmより厚くてもその効果は変わらな
いため、不経済となる。0.5μm以上の膜厚で、光を効率
的に吸収し、光触媒として機能できる。最も効率的な光
吸収には、1.0μm以上がさらに望ましい。また、膜厚
が、5.0μmを越えると、変形や曲げ加工性が極端に劣る
ので、5.0μm以下が好ましい。最も望ましくは、3.0μm
以下である。2層構造とする場合には、外層の透光性材
料は、1.0μm以下であることが好ましく、厚くなると光
の透過効率が下がり、内層で生成した正孔や電子が外層
の表面で効率的に反応できない。水の分解等では、光触
媒材料に白金等の貴金属を担持すると反応効率があがる
ことが知られているが、貴金属の担持で反応の効率が上
がる場合には、本発明の皮膜に適用しても差し支えな
い。As the material of the outermost surface, basically any material can be used as long as it is translucent and a step structure can be formed stably. For example, SiO 2 , Al 2 O 3 , TiO 2 , YAG, KNbO 3 Such inorganic oxide materials are preferable because they are chemically stable and have excellent corrosion resistance and mechanical strength. The thickness of the film on the surface of the metal plate is 0.5 μm to 5.0 μm. If the thickness is less than 0.5 μm, the photocatalytic effect is small, and if the thickness is more than 5.0 μm, the effect does not change, which is uneconomic. With a thickness of 0.5 μm or more, it can efficiently absorb light and function as a photocatalyst. 1.0 μm or more is more desirable for the most efficient light absorption. If the film thickness exceeds 5.0 μm, deformation and bending workability are extremely poor, so that the thickness is preferably 5.0 μm or less. Most preferably, 3.0 μm
It is as follows. In the case of a two-layer structure, the light-transmitting material of the outer layer is preferably 1.0 μm or less, and when it is thicker, the light transmission efficiency is reduced, and holes and electrons generated in the inner layer are efficiently formed on the surface of the outer layer. Can not respond to In the decomposition of water, etc., it is known that the reaction efficiency increases when a noble metal such as platinum is supported on the photocatalytic material.However, when the reaction efficiency is increased by supporting the noble metal, even when applied to the film of the present invention, No problem.
【0014】光触媒反応では、光励起で正孔とともに生
じた電子も、表面に留まることなく、反応の場から移動
することが重要である。電子が、逃げ場所がなく、いわ
ゆる材料内でチャージアップした状態になると、反応の
効率を下げる。このために、基材は導電性であることが
好ましい。実際の部材への適用を考えると、金属板が最
適であり、中でも汎用性、加工性、機能性に優れた炭素
鋼、ステンレス鋼、チタン又はチタン基合金が好まし
い。これらは、建築材、空調機器、排ガス機器、浄水機
器等に用いられる各種部材としてすでに使用され、実績
もあるため、適用がしやすい。In the photocatalytic reaction, it is important that electrons generated together with holes by photoexcitation move from the reaction site without remaining on the surface. When electrons have no escape place and are charged up in a so-called material, the efficiency of the reaction is reduced. For this purpose, the substrate is preferably conductive. Considering application to actual members, a metal plate is optimal, and among them, carbon steel, stainless steel, titanium, or a titanium-based alloy excellent in versatility, workability, and functionality is preferable. These are already used as various members used for building materials, air conditioning equipment, exhaust gas equipment, water purification equipment and the like, and have a proven track record, so that they are easy to apply.
【0015】上記のような光触媒活性を有する金属板
は、PVD(Physical Vapor Deposition)法等により、皮膜
を金属板表面に形成することで製造できる。PVD法は、
基材への温度による負荷が少なく、緻密で微細粒からな
る結晶質皮膜が形成できる特徴がある。上記皮膜形成に
適しているPVD法として、具体的には、真空蒸着、スパ
ッタリング、イオンプレーティングの各種手法が適して
いる。金属板基材の熱による変形や、金属板基材から皮
膜への元素拡散等による光触媒活性の劣化等の問題を生
じないために、皮膜形成時の基材温度は500℃以下とす
る。上記3手法は、いずれも基材の温度が500℃以下で皮
膜形成可能で、十分な皮膜密着性と皮膜の結晶性が得ら
れ、金属板基材の熱による変形や、金属板基材から皮膜
への元素拡散等による光触媒活性の劣化等の問題は発生
しにくい。上記3手法は,成膜速度が毎分0.02μm〜0.2
μm程度で、例えば1μmの皮膜を得るのに5分〜50分と実
用的である。The metal plate having photocatalytic activity as described above can be manufactured by forming a film on the surface of the metal plate by a PVD (Physical Vapor Deposition) method or the like. PVD method is
It is characterized in that the load on the substrate due to temperature is small, and a crystalline film composed of dense and fine grains can be formed. As the PVD method suitable for the film formation, specifically, various methods such as vacuum deposition, sputtering, and ion plating are suitable. In order to avoid problems such as deformation of the metal plate substrate due to heat and deterioration of photocatalytic activity due to diffusion of elements from the metal plate substrate into the film, the substrate temperature at the time of film formation is 500 ° C. or less. Each of the above three methods can form a film at a substrate temperature of 500 ° C or less, provides sufficient film adhesion and crystallinity of the film, deforms the metal plate substrate due to heat, Problems such as deterioration of photocatalytic activity due to diffusion of elements into the film are unlikely to occur. The above three methods use a deposition rate of 0.02 μm / min.
It is practically 5 to 50 minutes to obtain a film of about 1 μm, for example, 1 μm.
【0016】PVD法を上記皮膜の形成に適用する場合、
減圧下で電子ビーム等で金属を溶解蒸発させ、反応ガス
としては酸素を導入するといった金属蒸気と酸素を別々
に供給する方法が、光触媒材料の組成の制御性に優れ、
適している。光触媒活性を示す皮膜としては、前述のよ
うな酸化物が好ましいが、これらの内、酸素と金属との
比が異なることで、別の酸化物が安定に形成される場合
があるので、成膜プロセスの組成制御性は重要である。
たとえば、Fe2O3を生成する場合、鉄と酸素の比によっ
てFeO やFe3O4も生成する可能性がある。この場合、鉄
の蒸気または、イオン化した蒸気に、Fe2O3を生成する
過不足ない酸素分圧に制御して反応させることが重要で
ある。When the PVD method is applied to the formation of the above-mentioned film,
Dissolving and evaporating the metal with an electron beam or the like under reduced pressure, and separately supplying metal vapor and oxygen, such as introducing oxygen as a reaction gas, have excellent controllability of the composition of the photocatalytic material,
Are suitable. As the film exhibiting photocatalytic activity, the above-mentioned oxides are preferable, but among these, another oxide may be formed stably due to the difference in the ratio between oxygen and metal. The composition controllability of the process is important.
For example, when producing Fe 2 O 3 , FeO or Fe 3 O 4 may also be produced depending on the ratio of iron to oxygen. In this case, it is important to react with iron vapor or ionized vapor by controlling the partial pressure of oxygen to generate Fe 2 O 3 without excess or deficiency.
【0017】また、このプロセスは、形成される結晶相
の制御がしやすく、後熱処理等は必要ない。たとえば、
成膜時の基材温度が490℃で、金属チタンを蒸発させる
電子ビームの電流を200mA(加速電圧20KV)、酸素圧力を
0.05Pa として、アーク放電活性化イオンプレーテイン
グ装置で、イオン化を40V、10Aで行った場合、チタン蒸
発源から45cm上部に設置させたステンレス鋼SUS304試料
を基板とし、10分間の成膜をおこなった場合、0.8μmの
ルチル主体の皮膜を生成することができる。これに対し
て、同じ装置、試料で、基材温度300℃で20分間の成膜
をした場合、約1.5μmのアナターゼを主体にした皮膜が
形成できる。このように、PVD法では、イオン化、雰囲
気圧力を適性に保ち、基材の温度、成膜時間等を制御す
ることで、結晶相や膜厚を目的のものにすることができ
る。成膜速度も早いので、同様のプロセスを繰り返す必
要もなく、従来のゾルゲル法と比べると、簡便かつ短時
間で、管理しやすく、製造コストも低くできる。In this process, the crystal phase to be formed is easily controlled, and no post heat treatment or the like is required. For example,
When the substrate temperature during film formation is 490 ° C, the electron beam current for evaporating metallic titanium is 200 mA (acceleration voltage 20 KV), and the oxygen pressure is
When ionization was performed at 40 V and 10 A with an arc discharge activated ion plating device at 0.05 Pa, a stainless steel SUS304 sample placed 45 cm above the titanium evaporation source was used as a substrate, and a film was formed for 10 minutes. In this case, a rutile-based film having a thickness of 0.8 μm can be formed. On the other hand, when a film is formed with the same apparatus and sample at a substrate temperature of 300 ° C. for 20 minutes, a film mainly composed of anatase of about 1.5 μm can be formed. As described above, in the PVD method, the crystal phase and the film thickness can be adjusted to the desired values by keeping the ionization and the atmospheric pressure at an appropriate level, and controlling the temperature of the substrate, the film formation time, and the like. Since the film forming speed is high, there is no need to repeat the same process, and compared to the conventional sol-gel method, it is simple, short, and easy to manage, and the manufacturing cost can be reduced.
【0018】減圧下での成膜は、光触媒材料の形成反応
を進める上で重要である。また、成膜中に、500℃以下
で金属板基材を加熱すると、基材の温度による劣化を抑
えつつ、皮膜の密着性、結晶性が向上するので好まし
い。基材の加熱は、減圧下で行うので、大気中で焼成す
る場合より、基材表面の酸化は少ない。減圧にすること
で、金属の蒸発が効率良くできる。Film formation under reduced pressure is important for promoting the formation reaction of the photocatalytic material. In addition, it is preferable to heat the metal plate substrate at 500 ° C. or lower during film formation because the adhesion and crystallinity of the film are improved while suppressing deterioration of the substrate due to the temperature. Since the heating of the substrate is performed under reduced pressure, the surface of the substrate is less oxidized than in the case of firing in the air. By reducing the pressure, the metal can be efficiently evaporated.
【0019】真空蒸着は、真空下で、金属を電子ビーム
等の熱源を用いて溶解し、金属の蒸気を発生させ、これ
を基材に蒸着する方法である。装置構成が比較的簡単
で、皮膜形成コストは上記3手法のうち最も安い。スパ
ッタリングは、イオン化したアルゴン等のガス成分をタ
ーゲットである金属に照射し、このターゲットからたた
き出された金属成分を基材に成膜する方法である。イオ
ンプレーティングは、電子ビーム等の熱源を用いて溶解
し、金属の蒸気を発生させ、プラズマでイオン化された
金属成分を基材上で反応させ成膜する方法で、基材に電
荷をかけることでイオンを呼び寄せ、緻密な皮膜形成に
有利で、基材温度が低くても高い密着性が得られる。イ
オンプレーティング法では、微細粒の結晶よりなる皮膜
形成が容易で、たとえば、イオンプレーティング法の一
種であるアーク放電活性化イオンプレーティング法を使
い、基材の温度400℃で、酸素圧力0.05Paで成膜した厚
さ1μmのアナターゼ皮膜では、結晶粒が約0.01μm程度
の微細粒となる。このように目的とする皮膜の特性に応
じて、成膜法を選ぶことができる。上記3方法のうち、
スパッタリングおよびイオンプレーティング法は、プラ
ズマによって金属蒸気をイオン化あるいは励起活性化さ
せるので、反応性に富み、基材の温度が低くても、高い
皮膜の結晶性、密着性が得られ、皮膜も緻密で微細粒か
ら構成される。成膜速度の点からは、電子銃蒸発源を使
った、真空蒸着やイオンプレーティング法が有利であ
る。たとえば、アナターゼ相主体の皮膜を実用的な成膜
速度で形成するには、基材の温度を200℃〜450℃とし、
チタンの蒸発速度が毎分0.06μm〜0.15μmに対して、酸
素雰囲気で圧力が0.02〜0.08Pa で成膜することが好ま
しい。Vacuum deposition is a method in which a metal is melted in a vacuum using a heat source such as an electron beam to generate a vapor of the metal, and the vapor is deposited on a substrate. The equipment configuration is relatively simple, and the film formation cost is the lowest among the above three methods. Sputtering is a method in which a target metal is irradiated with a gas component such as ionized argon or the like, and a metal component hit from the target is deposited on a substrate. Ion plating is a method in which a metal source is melted using a heat source such as an electron beam, a metal vapor is generated, and a metal component ionized by plasma is reacted on the substrate to form a film. This attracts ions, which is advantageous for forming a dense film, and provides high adhesion even at a low substrate temperature. In the ion plating method, it is easy to form a film made of fine-grained crystals. For example, an arc discharge activated ion plating method, which is a type of ion plating method, is used. In a 1 μm-thick anatase film formed at Pa, the crystal grains become fine particles of about 0.01 μm. As described above, a film forming method can be selected according to the characteristics of a target film. Of the above three methods,
In the sputtering and ion plating methods, metal vapor is ionized or excited and activated by plasma, so it is highly reactive, and even if the substrate temperature is low, high film crystallinity and adhesion can be obtained, and the film is dense. And composed of fine grains. From the viewpoint of the film formation rate, vacuum evaporation or ion plating using an electron gun evaporation source is advantageous. For example, in order to form a film mainly composed of an anatase phase at a practical film forming rate, the temperature of the substrate is set to 200 ° C. to 450 ° C.,
It is preferable to form a film at a pressure of 0.02 to 0.08 Pa in an oxygen atmosphere while the evaporation rate of titanium is 0.06 μm to 0.15 μm per minute.
【0020】[0020]
【実施例】以下に、本発明の実施例及び比較例を示す。
工業用純チタン板、炭素鋼SS41及びステンレス鋼SUS304
を金属板基材とし、PVD法等で皮膜形成を行って、得ら
れた試料について、皮膜の性状(構成、膜厚、結晶層、
密着性)を調べ、さらにそれぞれの試料について、光触
媒活性(ヨウ化カリウム分解度、脱臭効果、抗菌活性)を
評価した。皮膜形成の諸条件や評価結果について、表1
に示す。チタン基合金は、Al、Zr、Hf、V、Nb、Ta、M
n、Fe、Co、Ni、Cr等を0.5質量%〜5質量%含むものが一
般的であるが、ここでは、Alを0.5質量%含むチタン基合
金を使用した。EXAMPLES Examples of the present invention and comparative examples are shown below.
Industrial pure titanium plate, carbon steel SS41 and stainless steel SUS304
Is used as a metal plate substrate, a film is formed by a PVD method or the like, and the properties of the film (configuration, film thickness, crystal layer,
The adhesion was examined, and the photocatalytic activity (degree of potassium iodide decomposition, deodorizing effect, antibacterial activity) was evaluated for each sample. Table 1 shows the conditions and evaluation results for film formation.
Shown in Titanium-based alloys are Al, Zr, Hf, V, Nb, Ta, M
Generally, the alloy contains 0.5% to 5% by mass of n, Fe, Co, Ni, Cr, etc. Here, a titanium-based alloy containing 0.5% by mass of Al was used.
【0021】皮膜の構成、膜厚、結晶層は、オージェ電
子分光法、X線光電子分光法、グロー放電発光分析法、
ラマン散乱分析法およびX線回折法によって求めた。密
着性は、45度曲げ試験によって評価した。密着性評価用
の基材は、SUS304のφ30mm、厚さ0.3mmの円盤状基材を
使い、この表面に皮膜を形成した。この試料を曲げ角45
度に加工変形し、最も変形の大きい部分(折れ曲がった
部分)を反射顕微鏡で倍率100倍で観察した。皮膜が完全
に剥離した場合を、密着性×、一部皮膜の剥離が起こ
り、部分的に皮膜が付着している場合を、密着性△、顕
微鏡観察では剥離が認められない場合を、密着性○とし
た。The composition, thickness and crystal layer of the film are determined by Auger electron spectroscopy, X-ray photoelectron spectroscopy, glow discharge emission spectroscopy,
It was determined by Raman scattering analysis and X-ray diffraction. The adhesion was evaluated by a 45-degree bending test. As a substrate for evaluation of adhesion, a disc-shaped substrate of SUS304 having a diameter of 30 mm and a thickness of 0.3 mm was used, and a film was formed on this surface. Bending angle 45
Each part was deformed and processed, and the most deformed part (bent part) was observed with a reflection microscope at a magnification of 100 times. When the film was completely peeled, the adhesion was evaluated as X. When the film was partially peeled and the film was partially adhered, the adhesion was evaluated. ○
【0022】光触媒活性の評価は、以下に示すゾルゲル
法で酸化チタン膜をSUS304ステンレス鋼鈑(40mm角、厚
さ1mm)に生成し、この光触媒活性との相対評価を行っ
た。ゾルゲル法による作成は、作花(「ゾル-ゲル法の科
学」、アグネ承風社、1988)の方法によった。具体的に
は、チタンテトライソプロポキシドを100mLの無水エタ
ノールで濃度284g/Lに希釈し、攪拌しながら、2N塩酸2m
Lを100mLの無水エタノールで希釈した溶液に滴下、透明
なゾルを調整した。次に、ディップコーイング-乾燥(10
0℃)の処理を繰り返し、基板上にゲル状化合物を生成さ
せ、電気炉内650℃で5時間焼成を行った。5回繰り返し
生成した皮膜の厚さは、0.6μmであった。For the evaluation of photocatalytic activity, a titanium oxide film was formed on a SUS304 stainless steel plate (40 mm square, 1 mm thick) by the sol-gel method described below, and the relative evaluation with this photocatalytic activity was performed. The sol-gel method was used to make flowers ("Sol-gel method science", Agne Shofusha, 1988). Specifically, dilute titanium tetraisopropoxide to a concentration of 284 g / L with 100 mL of absolute ethanol, and with stirring, 2N hydrochloric acid 2m
L was dropped into a solution diluted with 100 mL of absolute ethanol to prepare a transparent sol. Next, dip coating-drying (10
(0 ° C.), a gel-like compound was formed on the substrate, and baked at 650 ° C. for 5 hours in an electric furnace. The thickness of the film formed repeatedly five times was 0.6 μm.
【0023】ヨウ化カリウム分解度は、100mMヨウ化カ
リウム水溶液に各試料を浸漬し、紫外線強度の高いブラ
ックライト(4mW/cm2)を照射することによって生成する
ヨウ素錯イオン(I3 -)の生成量を評価した。上記ゾルゲ
ル法で生成した皮膜を上記方法で試験したヨウ素錯イオ
ンの生成量を基準に、各試料で試験したヨウ素生成量
が、基準量の0.5倍以下の場合を評価×、0.5倍〜1.5倍
までを△、1.5倍以上を○とした。The degree of decomposition of potassium iodide was determined by immersing each sample in a 100 mM potassium iodide aqueous solution and irradiating the sample with black light (4 mW / cm 2 ) having a high ultraviolet intensity so that the iodine complex ion (I 3 − ) was generated. The production was evaluated. Based on the amount of iodine complex ions produced by the above method, the film produced by the sol-gel method was evaluated as a reference, and the amount of iodine tested in each sample was evaluated to be 0.5 times or less of the reference amount. ×, 0.5 to 1.5 times Up to △ and 1.5 times or more as ○.
【0024】脱臭効果については、各試料を置いた石英
管の外部から一定速度の紫外線(ブラックライト:5W/c
m2)を照射しつつ、一定流量のアルデヒドを流し、出口
部でのアルデヒド残存濃度を測定することによって評価
した。上記ゾルゲル法で生成した皮膜を上記方法で試験
したアルデヒド残存濃度を基準に、各試料で試験した残
存濃度が、基準濃度の2倍以上の場合を評価×、0.5倍〜
2倍までを△、0.5倍以下を○とした。Regarding the deodorizing effect, ultraviolet rays at a constant speed (black light: 5 W / c) were applied from outside the quartz tube where each sample was placed.
While irradiating m 2 ), a constant flow rate of aldehyde was allowed to flow, and the residual aldehyde concentration at the outlet was measured to evaluate. Based on the residual aldehyde concentration tested by the above method for the film formed by the sol-gel method, the residual concentration tested in each sample was evaluated as x or more than twice the reference concentration.
Up to 2 times was rated as △, and up to 0.5 times as ○.
【0025】抗菌活性については、大腸菌を一定濃度で
懸濁した生理食塩水を各試料の表面に滴下し、紫外線を
1時間照射した後の大腸菌の生存率によって評価した。
上記ゾルゲル法で生成した皮膜を上記方法で試験した大
腸菌の生存率を基準に、各試料で試験した大腸菌の生存
率が、基準濃度の1.5倍以上の場合を評価×、0.5倍〜1.
5倍までを△、0.5倍以下を○とした。With respect to the antibacterial activity, physiological saline in which Escherichia coli is suspended at a constant concentration is dropped on the surface of each sample, and ultraviolet light is irradiated.
Evaluation was made by the survival rate of Escherichia coli after irradiation for 1 hour.
Based on the survival rate of Escherichia coli tested by the above method for the film formed by the sol-gel method, the survival rate of Escherichia coli tested in each sample was evaluated as 1.5 times or more of the reference concentration ×, 0.5 times to 1.
ま で up to 5 times and ○ up to 0.5 times or less.
【0026】ステップが形成されている表面(試料A,
B)を図2のような平面で観察したとき、曲線状に連なる
ステップの長さの総長が、観察面の縦横の長さの和以上
であるとき、この表面には多数のステップが形成されて
いると表1には記載した。観察は、高分解能SEMで5万倍
の倍率で、5視野無作為に行ない評価した。表1の、No.1
〜8が比較例で、No.9〜18までが実施例である。ゾルゲ
ル法に比べ、密着性と光触媒活性がともに、同等以上の
特性がみられたのが実施例である。No.1は、皮膜形成を
していないブランクの基材そのものの評価結果である。The surface on which the steps are formed (sample A,
When B) is observed on a plane as shown in FIG. 2, when the total length of steps connected in a curve is equal to or greater than the sum of the length and width of the observation surface, a large number of steps are formed on this surface. Table 1 shows that the Observation was performed at random with five fields of view at a magnification of 50,000 times using a high-resolution SEM. No.1 in Table 1
Nos. 8 to 8 are comparative examples, and Nos. 9 to 18 are examples. In the examples, both the adhesion and the photocatalytic activity were equal to or better than those of the sol-gel method. No. 1 is the evaluation result of the blank substrate itself on which no film was formed.
【0027】皮膜生成法で、スパッタリング法では、タ
ーゲットに金属を使い、酸素ガスを反応ガスとして導入
した。アルゴンガスでプラズマの活性化を行い、ガス圧
は1Paとした。内層と外層と組成が異なる場合には、外
層生成時にターゲットを目的の金属に替え、生成した。
装置内に、複数のターゲットを入れることができ、真空
を破らずに行うことができる。In the film formation method, in the sputtering method, a metal was used as a target, and oxygen gas was introduced as a reaction gas. The plasma was activated with argon gas, and the gas pressure was 1 Pa. When the composition was different between the inner layer and the outer layer, the target was replaced with the target metal when the outer layer was formed.
A plurality of targets can be placed in the apparatus, and can be performed without breaking a vacuum.
【0028】真空蒸着およびイオンプレーテイングによ
る皮膜の形成は、いずれも、酸素雰囲気で圧力0.05 Pa
下で、電子銃による金属の蒸発を行った。膜厚の制御
は、蒸着時間を変化させることで行った。膜厚は、蒸着
時間が長くなると直線的に増加する。蒸着速度は、たと
えば、No.17のイオンプレーテイングでは、0.05μm/分
で、金属チタンの蒸発速度とほぼ同じであった。The formation of the film by vacuum deposition and ion plating is performed in an oxygen atmosphere at a pressure of 0.05 Pa.
Below, metal evaporation with an electron gun was performed. The film thickness was controlled by changing the deposition time. The film thickness increases linearly with increasing deposition time. The deposition rate was, for example, 0.05 μm / min in the ion plating of No. 17, which was almost the same as the evaporation rate of titanium metal.
【0029】No.2のゾルゲル法による被覆は、化学修飾
アルコキシド法(セラミックス、Vol.30、1995年、No.1
1、p.1021)を用い、チタンテトライソプロポキシド、エ
タノール、ジエタノールアミン、水からなる溶液に、分
子量4000のポリエチレングリコールを5質量%添加した前
駆体溶液を用いて調整した。No.3の溶射は、酸化チタン
粒子をプラズマ照射した。基板の温度の上昇を避けるた
めに、圧縮空気によって基板の後部から冷却しながら手
早く溶射した。溶射法では、緻密で薄膜を制御性よく作
成するのは限界があるので、十分な密着性が得られなか
った。The coating of No. 2 by the sol-gel method is performed by a chemical modification alkoxide method (Ceramics, Vol. 30, 1995, No. 1).
1, p. 1021), and prepared using a precursor solution obtained by adding 5% by mass of polyethylene glycol having a molecular weight of 4000 to a solution composed of titanium tetraisopropoxide, ethanol, diethanolamine, and water. In No. 3 thermal spraying, titanium oxide particles were irradiated with plasma. In order to avoid an increase in the temperature of the substrate, thermal spraying was performed quickly while cooling the substrate from behind with compressed air. In the thermal spraying method, since there is a limit in forming a dense and thin film with good controllability, sufficient adhesion cannot be obtained.
【0030】No.17の皮膜表面を高分解能SEMで観察した
結果を図3に示す。0.1μm以下の結晶粒内に、細かいス
テップ構造が重なって形成されていることが観察でき
る。同様に、No.2の皮膜表面を高分解能SEMで観察した
結果を図4に示す。結晶は形成されていることをX線回折
で確認しているが、表面は多孔質ではあり、ステップ構
造が見られず、ミクロな凹凸が少ない点で大きく表面構
造が異なっている。FIG. 3 shows the result of observing the surface of No. 17 film with a high-resolution SEM. It can be observed that a fine step structure is formed overlapping within a crystal grain of 0.1 μm or less. Similarly, FIG. 4 shows the result of observing the surface of No. 2 film with a high-resolution SEM. X-ray diffraction confirmed that crystals had been formed, but the surface structure was very different in that the surface was porous, no step structure was observed, and there were few microscopic irregularities.
【0031】表1の実施例(No.9〜18)で明らかなよう
に、表面の皮膜を0.5μm〜5.0μmの厚さとし、導電性金
属板上に、少なくとも内層が光触媒活性を有し、多数の
ステップで表面が構成されている皮膜を形成すること
で、光触媒活性に優れた金属板が得られる。これらは、
金属蒸気またはイオン化した金属蒸気と、酸素の分圧を
別々に制御するPVD法によって効率的かつ有効に製造で
きることがわかる。As is apparent from the examples (Nos. 9 to 18) in Table 1, the thickness of the surface film is 0.5 μm to 5.0 μm, and at least the inner layer has photocatalytic activity on the conductive metal plate, By forming a film whose surface is formed in a number of steps, a metal plate having excellent photocatalytic activity can be obtained. They are,
It can be seen that the PVD method in which the partial pressures of metal vapor or ionized metal vapor and oxygen are separately controlled can be efficiently and effectively produced.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【発明の効果】本発明によれば、光触媒活性を有する金
属板の広範囲な実用化が可能になる。皮膜表面に多数の
ステップをつくることで、反応の効率が向上し、室内の
使用においても十分な触媒活性を有する金属板が提供で
きる。また、皮膜形成において工程管理がしやすく製造
コスト削減、作業効率向上に有利であり、皮膜形成時の
金属板基材の温度も低いため、熱による金属板の変形や
意匠性の変化、皮膜の光触媒活性の低下等は避けられ
る。According to the present invention, a metal plate having photocatalytic activity can be put to practical use in a wide range. By forming a large number of steps on the film surface, the efficiency of the reaction is improved, and a metal plate having a sufficient catalytic activity even when used indoors can be provided. In addition, the process of forming a film is easy to control, which is advantageous for reducing manufacturing costs and improving work efficiency.Because the temperature of the metal plate substrate at the time of forming the film is low, deformation of the metal plate and changes in design due to heat, A decrease in photocatalytic activity and the like can be avoided.
【図1】平面でのステップ観察。FIG. 1 is a step observation on a plane.
【図2】ステップ模式図。FIG. 2 is a schematic view of a step.
【図3】実施例の皮膜表面観察結果。FIG. 3 shows the results of observation of the film surface in Examples.
【図4】比較例の皮膜表面観察結果。FIG. 4 is a result of observation of a coating surface of a comparative example.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/02 C23C 28/00 Z 37/02 301 B01D 53/36 J C23C 28/00 ZABH Fターム(参考) 4D048 AA19 AA22 BA07X BA41X BB03 BB04 BC07 EA01 4F100 AA21B AA23B AA25B AA27B AA28B AA30B AA34B AB01A AB03A AB04A AB12A AB31A AR00B BA02 BA07 DD18B EH66 EJ58 GB07 GB71 JC00 JL06 JL08B JL11 JN01B YY00B 4G069 AA03 AA08 BA04A BA04B BA05A BA48A BB04A BB06A BC12A BC18A BC21A BC22A BC25A BC31A BC35A BC50A BC54A BC55A BC60A BC66A CA10 CA11 CA17 CD10 DA05 EA08 EB03 EB15X EB15Y EC22X EC22Y ED04 EE01 FA01 FA03 FB02 FC07 4K044 AA02 AA03 AA06 AB10 BA12 BA21 BB03 BC06 CA13 CA53──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 35/02 C23C 28/00 Z 37/02 301 B01D 53/36 J C23C 28/00 ZABH F term (Reference) ) 4D048 AA19 AA22 BA07X BA41X BB03 BB04 BC07 EA01 4F100 AA21B AA23B AA25B AA27B AA28B AA30B AA34B AB01A AB03A AB04A AB12A AB31A AR00B BA02 BA07 DD18B EH66 EJ58 GB07 GB71 JC00 JL06 JL08B JL11 JN01B YY00B 4G069 AA03 AA08 BA04A BA04B BA05A BA48A BB04A BB06A BC12A BC18A BC21A BC22A BC25A BC31A BC35A BC50A BC54A BC55A BC60A BC66A CA10 CA11 CA17 CD10 DA05 EA08 EB03 EB15X EB15Y EC22X EC22Y ED04 EE01 FA01 FA03 FB02 FC07 4K044 AA02 AA03 AA06 AB10 BA12 BA21 BB03 BC06 CA53
Claims (8)
する金属板であって、該皮膜が光触媒活性を有する材料
を含み、ステップ構造を有する表面状態であることを特
徴とする光触媒活性を有する金属板。1. A photocatalyst comprising a metal plate having on its surface a coating having a thickness of 0.5 μm to 5.0 μm, said coating comprising a material having photocatalytic activity and being in a surface state having a step structure. An active metal plate.
する金属板であって、該皮膜が光触媒活性を有する材料
からなり、ステップ構造を有する表面状態であることを
特徴とする光触媒活性を有する金属板。2. A metal plate having a coating having a thickness of 0.5 μm to 5.0 μm on its surface, wherein the coating is made of a material having photocatalytic activity and has a surface state having a step structure. An active metal plate.
する金属板であって、該皮膜が金属板から表面に向かっ
て、光触媒活性を有する材料からなる内層と、ステップ
構造を有する表面状態である透光性材料からなる外層か
らなる2層構造であることを特徴とする光触媒活性を有
する金属板。3. A metal plate having a coating having a thickness of 0.5 μm to 5.0 μm on the surface, the coating having an inner layer made of a material having photocatalytic activity from the metal plate toward the surface, and a step structure. A metal plate having photocatalytic activity, which has a two-layer structure including an outer layer made of a light-transmitting material in a surface state.
ーゼ型酸化チタン又はルチル型酸化チタンである請求項
1〜3の何れかに記載の光触媒活性を有する金属板。4. The material having photocatalytic activity is anatase type titanium oxide or rutile type titanium oxide.
4. The metal plate having photocatalytic activity according to any one of 1 to 3.
2O3、Cu2O、In2O3、WO3、PbO、V2O5、Bi2O3、FeTiO3、S
rTiO3、Nb2O3、ZnO、SnO2又はZrO2から選ばれる少なく
とも一種である請求項1〜3の何れかに記載の光触媒活性
を有する金属板。5. The material having photocatalytic activity is Fe
2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , FeTiO 3 , S
rTiO 3, Nb 2 O 3, ZnO, metal plate having a photocatalytic activity according to any one of claims 1 to 3 is at least one selected from SnO 2 or ZrO 2.
チタン又はチタン基合金である請求項1〜3の何れかに記
載の光触媒活性を有する金属板。6. The method according to claim 1, wherein the metal plate is made of carbon steel, stainless steel,
4. The metal plate having photocatalytic activity according to claim 1, which is titanium or a titanium-based alloy.
金属板の皮膜形成方法であって、減圧下で、金属蒸気又
はイオン化した金属蒸気と、酸素の分圧をそれぞれ別々
に制御するPVD法を用い、500℃以下の金属板の温度で皮
膜を形成させることを特徴とする光触媒活性を有する金
属板の製造方法。7. The method for forming a film on a metal plate having photocatalytic activity according to claim 1, wherein the partial pressures of metal vapor or ionized metal vapor and oxygen are separately controlled under reduced pressure. A method for producing a metal plate having photocatalytic activity, wherein a film is formed at a temperature of 500 ° C. or less by using a PVD method.
ンプレーテイングであることを特徴とする請求項7記載
の光触媒活性を有する金属板の製造方法。8. The method for producing a metal plate having photocatalytic activity according to claim 7, wherein the PVD method is sputtering or ion plating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001015971A JP4567892B2 (en) | 2001-01-24 | 2001-01-24 | Metal plate having photocatalytic activity and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001015971A JP4567892B2 (en) | 2001-01-24 | 2001-01-24 | Metal plate having photocatalytic activity and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002219769A true JP2002219769A (en) | 2002-08-06 |
JP4567892B2 JP4567892B2 (en) | 2010-10-20 |
Family
ID=18882427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001015971A Expired - Fee Related JP4567892B2 (en) | 2001-01-24 | 2001-01-24 | Metal plate having photocatalytic activity and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4567892B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010103067A (en) * | 2008-10-27 | 2010-05-06 | Nissan Motor Co Ltd | Epitaxial thin film |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125660A (en) * | 1986-11-14 | 1988-05-28 | Seiko Epson Corp | External parts for timepiece |
JPH06196762A (en) * | 1992-10-30 | 1994-07-15 | Nec Corp | Oxide superconductor junction and formation thereof |
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JPH10268118A (en) * | 1997-03-21 | 1998-10-09 | Rikagaku Kenkyusho | Multi-step structure, diffraction grating for very short wave light and its manufacture |
JP2000126613A (en) * | 1998-10-22 | 2000-05-09 | Sharp Corp | Production of photocatalyst |
JP2000159600A (en) * | 1998-11-24 | 2000-06-13 | Agency Of Ind Science & Technol | Substrate with step of unit crystal lattice length and its preparation |
JP2000279905A (en) * | 1998-02-06 | 2000-10-10 | Toto Ltd | Method of cleaning composite material and self-cleaning composite mechanism |
JP2001170494A (en) * | 1999-12-14 | 2001-06-26 | Mitsubishi Plastics Ind Ltd | Method of activating photocatalyst layer |
JP2002080300A (en) * | 2000-09-08 | 2002-03-19 | Protein Wave Kk | Method and apparatus of growing crystal of biopolymer |
-
2001
- 2001-01-24 JP JP2001015971A patent/JP4567892B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125660A (en) * | 1986-11-14 | 1988-05-28 | Seiko Epson Corp | External parts for timepiece |
JPH06196762A (en) * | 1992-10-30 | 1994-07-15 | Nec Corp | Oxide superconductor junction and formation thereof |
JPH10152396A (en) * | 1996-09-24 | 1998-06-09 | Kosei Kk | Material having crystalline oriented membrane of titanium dioxide and its production |
JPH10268118A (en) * | 1997-03-21 | 1998-10-09 | Rikagaku Kenkyusho | Multi-step structure, diffraction grating for very short wave light and its manufacture |
JP2000279905A (en) * | 1998-02-06 | 2000-10-10 | Toto Ltd | Method of cleaning composite material and self-cleaning composite mechanism |
JP2000126613A (en) * | 1998-10-22 | 2000-05-09 | Sharp Corp | Production of photocatalyst |
JP2000159600A (en) * | 1998-11-24 | 2000-06-13 | Agency Of Ind Science & Technol | Substrate with step of unit crystal lattice length and its preparation |
JP2001170494A (en) * | 1999-12-14 | 2001-06-26 | Mitsubishi Plastics Ind Ltd | Method of activating photocatalyst layer |
JP2002080300A (en) * | 2000-09-08 | 2002-03-19 | Protein Wave Kk | Method and apparatus of growing crystal of biopolymer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010103067A (en) * | 2008-10-27 | 2010-05-06 | Nissan Motor Co Ltd | Epitaxial thin film |
Also Published As
Publication number | Publication date |
---|---|
JP4567892B2 (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0590477B1 (en) | Architectural material using metal oxide exhibiting photocatalytic activity | |
US8445401B2 (en) | Rutile-type titanium dioxide photocatalyst | |
JP5515030B2 (en) | Visible light responsive rutile titanium dioxide photocatalyst | |
Grao et al. | Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications | |
JP2002320862A (en) | Photocatalyst thin film in which metal is supported on titanium oxide thin film | |
JP2000096212A (en) | Photocatalyst film coated member and its production | |
JP4567892B2 (en) | Metal plate having photocatalytic activity and method for producing the same | |
JP2001347162A (en) | Photocatalytic material with thin titanium dioxide film | |
JP4620846B2 (en) | Metal plate with photocatalytic activity | |
JP4620844B2 (en) | Metal plate with photocatalytic activity | |
JP5683594B2 (en) | Superporous photocatalytic material, method for producing the same, and use thereof | |
JP5141310B2 (en) | Titanium dioxide produced by anodization | |
JP4822245B2 (en) | Power supply equipment | |
JP6461635B2 (en) | Visible light responsive photocatalyst and method for producing the same | |
JP4716309B2 (en) | Heat exchanger | |
JP2010240573A (en) | Method for manufacturing photocatalyst element | |
JP5532504B2 (en) | Photocatalytic element | |
JP4450320B2 (en) | Communication equipment or equipment | |
JP2001038217A (en) | Photocatalyst film | |
JP4915635B2 (en) | panel | |
Mansur et al. | Sputtering technique | |
JP2006230927A (en) | Deodorizing apparatus and deodorizing system | |
JP4756574B2 (en) | air conditioner | |
JP4578274B2 (en) | Animal husbandry equipment | |
JP5666802B2 (en) | Discharge type photocatalyst and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100806 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4567892 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |