JP2001170494A - Method of activating photocatalyst layer - Google Patents

Method of activating photocatalyst layer

Info

Publication number
JP2001170494A
JP2001170494A JP35438299A JP35438299A JP2001170494A JP 2001170494 A JP2001170494 A JP 2001170494A JP 35438299 A JP35438299 A JP 35438299A JP 35438299 A JP35438299 A JP 35438299A JP 2001170494 A JP2001170494 A JP 2001170494A
Authority
JP
Japan
Prior art keywords
photocatalyst layer
photocatalyst
ion bombardment
substrate
activating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35438299A
Other languages
Japanese (ja)
Other versions
JP3998381B2 (en
Inventor
Tomoyuki Shirakawa
伴幸 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP35438299A priority Critical patent/JP3998381B2/en
Publication of JP2001170494A publication Critical patent/JP2001170494A/en
Application granted granted Critical
Publication of JP3998381B2 publication Critical patent/JP3998381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily improving the functions of a photocatalyst layer formed by a dry method. SOLUTION: The photocatalyst layer formed on a base material is subjected to ion bombardment treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、基材に製膜した
光触媒層の活性化方法に関する。
[0001] The present invention relates to a method for activating a photocatalytic layer formed on a substrate.

【0002】[0002]

【従来の技術】従来から、光触媒の活性機能を高める方
法として、光触媒にSi(シリコン)やCrを始とする
他元素種をドーピングする方法等の種々の実験的試みが
行われている。
2. Description of the Related Art Hitherto, various experimental attempts have been made as a method of enhancing the active function of a photocatalyst, such as a method of doping a photocatalyst with another element such as Si (silicon) or Cr.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、他元素
をドーピングする場合、ドーピングの量(TiO2 との
元素比率)のコントロールが困難であったり、再現性の
ある効果が得られない場合がある。また、特開平8−5
28290号公報に開示されているように、Siをドー
ピングすることにより超親水性の機能は上げることが可
能であるが、逆に酸化分解活性を失ってしまうという弊
害があった。
However, when doping with another element, it may be difficult to control the amount of doping (element ratio with TiO 2 ), or it may not be possible to obtain a reproducible effect. Further, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent No. 28290, the super-hydrophilic function can be improved by doping with Si, but there is a disadvantage that the oxidative decomposition activity is lost.

【0004】そこで、この発明は、かかる課題を解決
し、乾式法によって製膜した光触媒層の機能を容易な方
法にて向上させる方法を提供することを目的とする。
Accordingly, an object of the present invention is to solve the above-mentioned problem and to provide a method for improving the function of a photocatalyst layer formed by a dry method by an easy method.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、この発明は、基材上に製膜した光触媒層をイオンボ
ンバード処理したのである。
According to the present invention, in order to solve the above-mentioned problems, a photocatalyst layer formed on a substrate is subjected to an ion bombardment treatment.

【0006】ガラス、樹脂等の基材表面上に乾式法(ス
パッタリング)により製膜した光触媒層は、自然光、ま
たは照明光中に含まれる波長300nm〜400nmの
紫外光をその励起光として有機物酸化分解活性及び超親
水性といった光触媒の持つ活性機能を有する。このと
き、アルゴンイオンや酸素イオンボンバード処理によっ
て光触媒層表面を凹凸に粗す。これにより、有機物等の
光触媒表面ヘの接触表面積を大きくしたり、光触媒層表
面近傍における光触媒を構成する金属と酸素からなる結
晶中に格子欠陥(原子欠損)を生じさせたり、光触媒表
面近傍における結晶構造をアモルフアス及びルチル型構
造からアナターゼ型構造へと転移させることにより、有
機物酸化分解活性及び超親水性といった光触媒の持つ活
性機能をより活性化させることができる。
A photocatalytic layer formed on a substrate surface of glass, resin, or the like by a dry method (sputtering) oxidizes and decomposes organic matter using natural light or ultraviolet light having a wavelength of 300 to 400 nm contained in illumination light as excitation light. It has the active function of the photocatalyst such as activity and superhydrophilicity. At this time, the surface of the photocatalytic layer is roughened by argon ion or oxygen ion bombardment. As a result, the contact surface area of the organic substance or the like with the photocatalyst surface is increased, lattice defects (atomic defects) are generated in the crystal composed of metal and oxygen constituting the photocatalyst near the photocatalyst layer surface, or the crystal near the photocatalyst surface is generated. By transferring the structure from the amorphous and rutile structure to the anatase structure, the active functions of the photocatalyst such as organic oxidative decomposition activity and superhydrophilicity can be more activated.

【0007】[0007]

【発明の実施の形態】以下、この発明の実施形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】この発明にかかる光触媒層の活性化方法
は、基材上に製膜した光触媒層をイオンボンバード処理
することに行われる。
The method for activating a photocatalyst layer according to the present invention is performed by subjecting a photocatalyst layer formed on a substrate to an ion bombardment treatment.

【0009】上記基材とは、光触媒層を製膜するための
ものであり、ガラス、樹脂等が一般的に使用される。
The above substrate is for forming a photocatalyst layer, and glass, resin and the like are generally used.

【0010】上記光触媒とは、自然光、または照明光中
に含まれる波長300nm〜400nmの紫外光をその
励起光として、有機物酸化分解活性及び超親水性といっ
た光触媒の持つ活性機能を有する触媒である。この光触
媒の例としては、酸化チタンがあげられる。
The above-mentioned photocatalyst is a catalyst having an activity function of a photocatalyst such as organic oxidative decomposition activity and superhydrophilicity, using natural light or ultraviolet light having a wavelength of 300 nm to 400 nm contained in illumination light as its excitation light. An example of the photocatalyst is titanium oxide.

【0011】この光触媒は、乾式法によって、上記基材
上に製膜される。この乾式法としては、スパッタリング
が例としてあげられる。
This photocatalyst is formed on the above substrate by a dry method. An example of the dry method is sputtering.

【0012】上記イオンボンバード処理とは、アルゴン
イオンや酸素イオンを用いて光触媒層表面を凹凸に粗す
処理をいう。このイオンボンバード処理は、例えば、図
1に示す装置を用いて行うことができる。これは、開閉
自在の真空チャンバ1の一面に陰極2を設け、その対向
する面に基材11を保持するパレット3が設けられ、こ
のパレット3をアースした装置である。
The ion bombardment treatment is a treatment for roughening the surface of the photocatalyst layer by using argon ions or oxygen ions. This ion bombardment treatment can be performed using, for example, the apparatus shown in FIG. This is an apparatus in which a cathode 2 is provided on one surface of an openable and closable vacuum chamber 1 and a pallet 3 for holding a base material 11 is provided on the opposite surface, and the pallet 3 is grounded.

【0013】イオンボンバード処理の方法は、まず、エ
アシリンダ4によって真空チャンバ1を開き、表面に光
触媒層12を形成した基材11を、上記光触媒層12が
外側に向くように、パレット3に取り付ける。そして、
真空チャンバ1を閉じ、排気管5から真空チャンバ1内
の空気を排気し、真空チャンバ1内の圧力を10〜50
mTorrとする。
In the ion bombarding method, first, the vacuum chamber 1 is opened by the air cylinder 4 and the substrate 11 having the photocatalyst layer 12 formed on the surface is mounted on the pallet 3 so that the photocatalyst layer 12 faces outward. . And
The vacuum chamber 1 is closed, the air in the vacuum chamber 1 is exhausted from the exhaust pipe 5, and the pressure in the vacuum chamber 1 is reduced to 10 to 50.
mTorr.

【0014】次いで、パレット3を所定回転数で回転さ
せ、ガス流入管6から所定流量のアルゴンガス又は酸素
ガスを真空チャンバ1内に流す。次に、パレット3側を
アースして、ステンレススチールからなる陰極2に所定
電圧をかける。このとき、真空チャンバ1と陰極2及び
パレット3とは絶縁層7によって絶縁されている。上記
の所定電圧をかけることにより、真空チャンバ1内でプ
ラズマ放電が生起し、アルゴンプラズマ、すなわちアル
ゴンイオン(Ar+ )又は酸素プラズマ、すなわち酸素
イオン(O+ )が発生する。このプラズマは、電圧によ
って基材11に引き寄せられ、光触媒層12に衝突す
る。これにより、光触媒層12が活性化すると考えられ
る。
Next, the pallet 3 is rotated at a predetermined number of revolutions, and a predetermined flow rate of argon gas or oxygen gas flows from the gas inlet pipe 6 into the vacuum chamber 1. Next, the pallet 3 side is grounded, and a predetermined voltage is applied to the cathode 2 made of stainless steel. At this time, the vacuum chamber 1 is insulated from the cathode 2 and the pallet 3 by the insulating layer 7. By applying the above-mentioned predetermined voltage, plasma discharge occurs in the vacuum chamber 1, and argon plasma, that is, argon ion (Ar + ) or oxygen plasma, that is, oxygen ion (O + ) is generated. This plasma is attracted to the substrate 11 by the voltage and collides with the photocatalyst layer 12. Thereby, it is considered that the photocatalyst layer 12 is activated.

【0015】このとき、陰極2として金属イオンの少な
いステンレススチールを使用するので、金属イオンの発
生が生じにくい。これは、金属イオンが発生すると、光
触媒層12に衝突した際に金属イオンが付着し、却って
光触媒層12の活性を低下させると考えられるからであ
る。これに対し、アルゴンイオンや酸素イオンは、光触
媒層12への付着が生じないため、付着による阻害効果
が少ないと考えられる。
At this time, since stainless steel having a small amount of metal ions is used as the cathode 2, generation of metal ions hardly occurs. This is because, when the metal ions are generated, the metal ions adhere to the photocatalyst layer 12 when the metal ions collide with the photocatalyst layer 12, and the activity of the photocatalyst layer 12 is rather reduced. On the other hand, since argon ions and oxygen ions do not adhere to the photocatalyst layer 12, it is considered that the effect of the adherence is small.

【0016】上記イオンボンバード処理の条件は、パレ
ット回転数10〜30rpm、電圧100〜600V、
圧力10〜50mTorr、ガス流量10〜50scc
m、処理時間10〜60分がよい。なお、ガス流量の単
位の「sccm」は、常温、常圧における流量(standa
rd cc per minuit)を示す。
The conditions of the ion bombardment treatment are as follows: pallet rotation speed 10 to 30 rpm, voltage 100 to 600 V,
Pressure 10-50 mTorr, gas flow 10-50 scc
m, the processing time is preferably 10 to 60 minutes. In addition, the unit of gas flow rate “sccm” is the flow rate (standa
rd cc per minuit).

【0017】ルチル、及びアナターゼ結晶構造はO2-
細密充填し、その時間にTi4+等の光触媒を構成する金
属イオンが入っている構造をしており、正方晶系の結晶
構造を持つ。ユニットセルの体積はルチル型で62.4
(Å3 )、アナターゼ型で136.1(Å3 )とされて
いる。格子定数はルチル型ではa=4.593(Å),
C=2.959(Å)、同じくアナターゼ型ではa=
3.785(Å),C=9.514(Å)となってい
る。
The rutile and anatase crystal structures have a structure in which O 2− is densely packed and metal ions constituting a photocatalyst such as Ti 4+ enter at that time, and have a tetragonal crystal structure. . The unit cell volume is 62.4 in rutile type.
3), it is in anatase 136.1 and (Å 3). The lattice constant is a = 4.593 (Å) for the rutile type,
C = 2.959 (Å), and a =
3.785 (Å) and C = 9.514 (Å).

【0018】このため、上記の条件でイオンボンバード
処理をすることにより、結晶格子約1個分に相当する表
面粗さを生成させ、付着有機物の接触表面積を最大にす
ることができ、従って分解活性を最大にすることができ
る。これにより、上記光触媒層の持つ有機物酸化分解活
性及び超親水性等の活性機能をより活性化させることが
できる。
For this reason, by performing ion bombardment treatment under the above conditions, surface roughness equivalent to about one crystal lattice can be generated, and the contact surface area of the adhered organic substances can be maximized. Can be maximized. This makes it possible to further activate the active functions of the photocatalyst layer, such as the oxidative decomposition activity of organic substances and the superhydrophilicity.

【0019】また、上記の条件にてイオンボンバードを
することにより、表面近傍における結晶構造の中から0
2-を1個若しくは2個放出させて結晶格子中に丁度1〜
3Å(1〜10Å3 )の格子欠陥を生成させ、酸素欠損
を持つ酸化チタン結晶を生成することができる。こうし
てできた格子欠陥には有機物が捕捉されやすくなり、ま
た、格子欠陥の生成により電荷分離効率が大きくなり、
すなわち、バンド構造における伝導帯と価電子帯間のバ
ンドギャップが大きくなり、酸化力・還元力共に高くな
る事により分解活性が高くなる。これにより、上記光触
媒層の持つ有機物酸化分解活性及び超親水性等の活性機
能をより活性化させることができる。これに対し、上記
条件より下の条件では、表面の結晶構造に衝突する原子
のエネルギーが不十分で結晶構造から酸素原子が放出さ
れない。また逆にこの条件より上の条件では、Ti等の
光触媒を構成する金属までもが抜けてしまい、光触媒と
しての機能を失活してしまうので、酸素原子1個〜2個
分に相当する格子欠陥として上記範囲が望ましい。
By performing ion bombardment under the above conditions, the crystal structure in the vicinity of the surface can be reduced to zero.
One or two 2- are released and just 1-
3Å (1Å10 3 ) lattice defects can be generated, and titanium oxide crystals having oxygen vacancies can be generated. Organic matter is easily trapped in the lattice defects formed in this way, and the generation of lattice defects increases the charge separation efficiency,
That is, the band gap between the conduction band and the valence band in the band structure is increased, and the oxidizing power and the reducing power are both increased, so that the decomposition activity is increased. This makes it possible to further activate the active functions of the photocatalyst layer, such as the oxidative decomposition activity of organic substances and the superhydrophilicity. On the other hand, under the conditions below the above conditions, the energy of the atoms colliding with the surface crystal structure is insufficient, and oxygen atoms are not released from the crystal structure. Conversely, under conditions above this condition, even the metal constituting the photocatalyst, such as Ti, will escape and the function as the photocatalyst will be deactivated, so the lattice equivalent to one or two oxygen atoms will be lost. The above range is desirable as a defect.

【0020】さらに、上記の条件にて加速された原子に
よりイオンボンバードをすることにより、表面近傍にお
ける結晶構造の中の一部若しくは全部をルチル型構造か
ら活性の高いアナターゼ型へ相転移させるのに必要な衝
突エネルギーを与えることができる。すなわち、活性の
低いルチル型結晶構造より活性の最も高いアナターゼ型
結晶構造への相転移エネルギーを与えることができる。
これにより、上記光触媒層の持つ有機物酸化分解活性及
び超親水性等の活性機能をより活性化させることができ
る。しかし、アナターゼ型の結晶構造への相転移を起こ
すことができるエネルギー値はある閾値を持ち、即ち特
定の線幅のエネルギーに限られる為、上記の条件より低
い条件では相転移を起こすには原子の加速が不十分で、
結果として衝突エネルギーが不十分なため相転移は起こ
らない。また、上記の条件より高い条件においては表面
構造の一部がアナターゼ型から更にブルックライト型構
造へと転移してしまい、逆に活性を落としてしまう。こ
のため、上記範囲が望ましい。
Further, by performing ion bombardment with atoms accelerated under the above conditions, a part or all of the crystal structure in the vicinity of the surface can be subjected to a phase transition from a rutile type structure to a highly active anatase type. The required collision energy can be provided. That is, a phase transition energy to an anatase crystal structure having the highest activity can be given than a rutile crystal structure having a low activity.
This makes it possible to further activate the active functions of the photocatalyst layer, such as the oxidative decomposition activity of organic substances and the superhydrophilicity. However, the energy value that can cause a phase transition to an anatase type crystal structure has a certain threshold value, that is, is limited to the energy of a specific line width. Acceleration is not enough,
As a result, no phase transition occurs due to insufficient collision energy. Further, under conditions higher than the above conditions, part of the surface structure is further transferred from the anatase type to the Brooklite type structure, and conversely the activity is reduced. Therefore, the above range is desirable.

【0021】上記の各作用を発揮するには、上記の条件
を満たす必要があるが、このような条件の精密制御を可
能とする方法として、イオンボンバード処理が有効な手
段となる。
The above-mentioned conditions must be satisfied in order to exhibit the above-mentioned effects. As a method for enabling precise control of such conditions, ion bombardment is an effective means.

【0022】[0022]

【実施例】〔イオンボンバード処理〕ガラス製の基材を
図1に示す装置のパレット3に装着し、スパッタリング
により、酸化チタン被膜を積層した。続いて下記の条件
下でイオンボンバード処理を行った。処理条件は、パレ
ット回転数30rpm、電圧300V、圧力20mTo
rr、Ar+ ガス流量30sccm、処理時間30分で
行った。
EXAMPLE [Ion Bombarding] A glass substrate was mounted on the pallet 3 of the apparatus shown in FIG. 1, and a titanium oxide film was laminated by sputtering. Subsequently, ion bombardment treatment was performed under the following conditions. The processing conditions were as follows: pallet rotation speed 30 rpm, voltage 300 V, pressure 20 mTo
rr, Ar + gas flow rate 30 sccm, processing time 30 minutes.

【0023】〔実施例1〕上記の処理行った酸化チタン
層の表面(φ100mm)上に、1.3mg/cm2
合成ニコチンを均一に塗布し、10cmの高さより3m
Wの強度のUVを照射した。そのニコチンの経時的残存
率を側定し、分解率に換算して図2に示すグラフに示し
た。
Example 1 1.3 mg / cm 2 of synthetic nicotine was uniformly applied on the surface (φ100 mm) of the titanium oxide layer treated as described above, and 3 m from a height of 10 cm.
UV light of W intensity was irradiated. The nicotine residual rate over time was determined and converted to the degradation rate and shown in the graph of FIG.

【0024】〔比較例1、2〕上記イオンボンバード処
理を行った酸化チタン層の代わりに、イオンボンバード
処理を行わない酸化チタン層(比較例1)、及び基材そ
のもの(比較例2)を用いた以外は、実施例1と同様に
ニコチンの経時的残存率を側定し、分解率に換算して図
2に示すグラフに示した。
[Comparative Examples 1 and 2] Instead of the titanium oxide layer subjected to the ion bombardment treatment, a titanium oxide layer not subjected to the ion bombardment treatment (Comparative Example 1) and the substrate itself (Comparative Example 2) were used. Except for the presence of nicotine, the percentage of nicotine remaining over time was determined in the same manner as in Example 1, converted to the decomposition rate, and shown in the graph of FIG.

【0025】なお、図2のグラフにおいて、各グラフ
は、下記のとおり、所定の実施例又は比較例を示す。 黒丸 :実施例1 黒の菱形 :比較例1 黒の四角形:比較例2
In the graph of FIG. 2, each graph shows a predetermined example or a comparative example as described below. Black circle: Example 1 Black diamond: Comparative example 1 Black square: Comparative example 2

【0026】[0026]

【発明の効果】この発明によれば、乾式法により製膜し
た光触媒層を、イオンボンバード処理という比較的簡単
な処理によって活性を高めることができる。
According to the present invention, the activity of the photocatalyst layer formed by the dry method can be increased by a relatively simple treatment such as ion bombardment.

【0027】また、スパッタ装置内にて処理を行えるの
で、特別な装置を組む必要がなくなる。
Further, since the processing can be performed in the sputtering apparatus, it is not necessary to construct a special apparatus.

【0028】さらに、イオンボンバード処理によって、
酸化分解活性と超親水性の機能を同時に向上させること
ができる。
Further, by ion bombardment treatment,
The oxidative decomposition activity and the superhydrophilic function can be simultaneously improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】イオンボンバード処理を行うための装置の例を
示す模式図
FIG. 1 is a schematic view showing an example of an apparatus for performing ion bombardment processing.

【図2】UV照射時間とニコチン分解量との関係を示す
グラフ
FIG. 2 is a graph showing the relationship between UV irradiation time and nicotine decomposition amount.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 陰極 3 パレット 4 エアシリンダ 5 排気管 6 ガス流入管 7 絶縁層 11 基材 12 光触媒層 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Cathode 3 Pallet 4 Air cylinder 5 Exhaust pipe 6 Gas inflow pipe 7 Insulating layer 11 Base material 12 Photocatalytic layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材上に製膜した光触媒層をイオンボン
バード処理することによる光触媒層の活性化方法。
1. A method for activating a photocatalyst layer by ion bombarding a photocatalyst layer formed on a substrate.
【請求項2】 上記イオンボンバード処理を、電圧10
0〜600V、圧力10〜50mTorr、ガス流量1
0〜50sccm、時間10〜60分の条件下で行う請
求項1に記載の光触媒層の活性化方法。
2. The method according to claim 1, wherein the ion bombarding is performed at a voltage of 10
0-600V, pressure 10-50mTorr, gas flow rate 1
The method for activating a photocatalyst layer according to claim 1, wherein the method is performed under the conditions of 0 to 50 sccm and a time of 10 to 60 minutes.
【請求項3】 上記光触媒層は、乾式法で上記基材上に
製膜した酸化チタン層である請求項1又は2に記載の光
触媒層の活性化方法。
3. The method for activating a photocatalyst layer according to claim 1, wherein the photocatalyst layer is a titanium oxide layer formed on the substrate by a dry method.
JP35438299A 1999-12-14 1999-12-14 Photocatalytic layer activation method Expired - Fee Related JP3998381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35438299A JP3998381B2 (en) 1999-12-14 1999-12-14 Photocatalytic layer activation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35438299A JP3998381B2 (en) 1999-12-14 1999-12-14 Photocatalytic layer activation method

Publications (2)

Publication Number Publication Date
JP2001170494A true JP2001170494A (en) 2001-06-26
JP3998381B2 JP3998381B2 (en) 2007-10-24

Family

ID=18437191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35438299A Expired - Fee Related JP3998381B2 (en) 1999-12-14 1999-12-14 Photocatalytic layer activation method

Country Status (1)

Country Link
JP (1) JP3998381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219769A (en) * 2001-01-24 2002-08-06 Nippon Steel Corp Metal plate having photocatalytic activity and method for manufacturing the same
JP2006130357A (en) * 2004-11-02 2006-05-25 Mitsubishi Plastics Ind Ltd Photocatalyst particle and substrate provided with photocatalyst layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219769A (en) * 2001-01-24 2002-08-06 Nippon Steel Corp Metal plate having photocatalytic activity and method for manufacturing the same
JP4567892B2 (en) * 2001-01-24 2010-10-20 新日本製鐵株式会社 Metal plate having photocatalytic activity and method for producing the same
JP2006130357A (en) * 2004-11-02 2006-05-25 Mitsubishi Plastics Ind Ltd Photocatalyst particle and substrate provided with photocatalyst layer

Also Published As

Publication number Publication date
JP3998381B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP4221859B2 (en) Manufacturing method of semiconductor device
JP3622585B2 (en) Articles having photocatalytic activity
Yamagishi et al. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering
WO2005075371A1 (en) Method for cleaning a substrate
JP2000502236A (en) Electronic components, especially components that operate with surface acoustic waves-SAW components
JP2008264611A (en) Photocatalyst structure
JP4261353B2 (en) Photocatalyst body, photocatalyst body manufacturing method, and photocatalyst body manufacturing apparatus
Song et al. Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering using various magnetic field strengths
JPH08293483A (en) Flattening method for solid surface with gas cluster ion beam
JP3998381B2 (en) Photocatalytic layer activation method
Song et al. Crystal structure and photocatalytic activity of TiO2 films deposited by reactive sputtering using Ne, Ar, Kr, or Xe gases
JP3911355B2 (en) Method for producing photocatalyst
JPS649727B2 (en)
JP3503787B2 (en) Thin film formation method
JPH06172990A (en) Method for forming thin film and device therefor
JP2009066497A (en) Photocatalyst thin film of titanium oxide and its production method
JP2006130357A (en) Photocatalyst particle and substrate provided with photocatalyst layer
JPS62297462A (en) Formation of film in vacuum at high rate
ISHII et al. High-rate deposition of titanium dioxide films with photocatalytic activities by gas flow sputtering
JP4659517B2 (en) Photocatalyst production method
JP2003105534A (en) Deposition method and deposition system for optical thin film
JPH10158814A (en) Vacuum evaporation system and method of its use
JPH0382747A (en) Formation of thin metal-surface film excellent in corrosion resistance and adhesive strength
Xiwen et al. Fabrication of titanium dioxide thin films by DBD-CVD under atmosphere
JP2004027269A (en) FILM DEPOSITION METHOD AND SYSTEM OF TiOx

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070501

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees