JP2000126613A - Production of photocatalyst - Google Patents
Production of photocatalystInfo
- Publication number
- JP2000126613A JP2000126613A JP10301475A JP30147598A JP2000126613A JP 2000126613 A JP2000126613 A JP 2000126613A JP 10301475 A JP10301475 A JP 10301475A JP 30147598 A JP30147598 A JP 30147598A JP 2000126613 A JP2000126613 A JP 2000126613A
- Authority
- JP
- Japan
- Prior art keywords
- film
- titanium oxide
- gas
- photocatalyst
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000007789 gas Substances 0.000 claims abstract description 73
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 64
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 58
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000001301 oxygen Substances 0.000 claims abstract description 39
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 39
- 230000001699 photocatalysis Effects 0.000 claims abstract description 36
- 238000004544 sputter deposition Methods 0.000 claims abstract description 23
- 239000010936 titanium Substances 0.000 claims abstract description 21
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000005546 reactive sputtering Methods 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 36
- 230000015572 biosynthetic process Effects 0.000 claims description 24
- 239000013077 target material Substances 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 28
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 229910052786 argon Inorganic materials 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 238000003980 solgel method Methods 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基板上に酸化チタ
ン等の光触媒を膜状に形成した光触媒体の作製方法に関
する。The present invention relates to a method for producing a photocatalyst in which a photocatalyst such as titanium oxide is formed in a film on a substrate.
【0002】[0002]
【従来の技術】日常の生活環境で生じる悪臭物質、有害
物質、油分などを分解・浄化したり、殺菌するための触
媒として光触媒の利用が検討されており、抗菌・浄化の
分野では一部で実用化が進められている。光触媒は、光
照射によって生じる活性種によって非常に強い分解作用
を得ることができる。代表的な光触媒材料である酸化チ
タンは、塩素やオゾンよりも強力な酸化作用を得ること
ができるため、トリハロメタンのような難分解性の有機
物を分解することができる。2. Description of the Related Art The use of photocatalysts as catalysts for decomposing, purifying, or disinfecting odorous substances, harmful substances, oils, and the like generated in daily living environments has been studied. Practical application is underway. The photocatalyst can obtain a very strong decomposition action by active species generated by light irradiation. Since titanium oxide, which is a typical photocatalyst material, can obtain a stronger oxidizing action than chlorine and ozone, it can decompose hardly decomposable organic substances such as trihalomethane.
【0003】すなわち、光触媒にそのバンドギャップ以
上のエネルギーを持つ波長の光を照射すると、光励起に
より伝導帯に電子を、価電子帯に正孔を生じる。この光
励起により生じた電子の持つ強い還元力や正孔の持つ強
い酸化力によって、有機物の分解・浄化、水の分解、窒
素酸化物の除去などを行ったり、水をはじかない親水機
能を発現する。That is, when a photocatalyst is irradiated with light having a wavelength having energy equal to or greater than the band gap, electrons are generated in a conduction band and holes are generated in a valence band by photoexcitation. Due to the strong reducing power of electrons and the strong oxidizing power of holes generated by this photoexcitation, it decomposes and purifies organic substances, decomposes water, removes nitrogen oxides, etc., and exhibits a hydrophilic function that does not repel water. .
【0004】このような光触媒は、強力な分解力を有す
る反面、その分解速度は遅い。分解速度を大きくするた
めに形成する光触媒の表面積を大きくしたり、ゼオライ
ト、活性炭などの吸着剤との複合化が検討されている。
また、触媒活性を大きくするため、金属微粒子の担持な
どが検討されている。Although such a photocatalyst has a strong decomposing power, its decomposition rate is low. In order to increase the decomposition rate, studies have been made to increase the surface area of a photocatalyst formed and to combine the photocatalyst with an adsorbent such as zeolite and activated carbon.
Further, in order to increase the catalytic activity, support of metal fine particles and the like have been studied.
【0005】そのため、当初光触媒は、被分解物との十
分な接触面積の確保および製造上の問題から、粉体の形
態での応用が考えられた。しかし、光触媒が粉体の場
合、浄化を行う空気または水などの系に混合し浄化を行
った後、再び光触媒粉を除去する必要がある。したがっ
て、実用化の検討は、主として膜状の酸化チタンで進め
られている。[0005] Therefore, at first, the photocatalyst was considered to be applied in the form of powder from the viewpoint of securing a sufficient contact area with the decomposed material and problems in production. However, when the photocatalyst is a powder, it is necessary to remove the photocatalyst powder again after mixing with a system such as air or water for purification to purify. Therefore, studies for practical use have been mainly conducted on film-like titanium oxide.
【0006】酸化チタン光触媒を膜状にする主な方法と
して、粉状酸化チタンを接着性を有する物質、例えばバ
インダーと混合し、基板上に塗布後、加熱または常温で
接着性物質を硬化して、光触媒膜を形成している。接着
性能を有するバインダー材料としては、シリカ系の材
料、フッ素樹脂の材料が用いられている。As a main method of forming a titanium oxide photocatalyst into a film, powdery titanium oxide is mixed with a substance having an adhesive property, for example, a binder, applied to a substrate, and then cured by heating or at room temperature. And a photocatalytic film. Silica-based materials and fluororesin materials are used as binder materials having adhesive performance.
【0007】また、バインダーを使用せず、光触媒材料
を直接膜状に形成する一般的な方法としては、ゾルゲル
法を利用して酸化チタン膜を形成する方法があり、チタ
ンアルコキシドやチタンキレートなどの原料液を基板に
塗布、乾燥後、500℃以上の高温で焼成を行って、光
触媒膜を形成する。As a general method of forming a photocatalytic material directly into a film without using a binder, there is a method of forming a titanium oxide film using a sol-gel method. After the raw material liquid is applied to the substrate and dried, baking is performed at a high temperature of 500 ° C. or more to form a photocatalytic film.
【0008】しかしながら、バインダー法の場合、接着
性物質の中に多くの光触媒が埋もれてしまうため、光触
媒の本来の触媒作用が損なわれるという欠点を有する。
また、接着性物質として多孔質材料を使用することによ
り、触媒作用の減少を抑えることができるが、基板への
密着性が低下するという問題がある。また、ゾルゲル法
では、一般的に原料液を塗布後、500℃以上の高温に
加熱するため、耐熱性の低い基板に形成できないという
欠点を有し、用途が限られてしまう。However, in the case of the binder method, a large amount of the photocatalyst is buried in the adhesive substance, which has a disadvantage that the original catalytic action of the photocatalyst is impaired.
Further, by using a porous material as the adhesive substance, a decrease in catalytic action can be suppressed, but there is a problem that adhesion to a substrate is reduced. In addition, the sol-gel method generally has a drawback that it cannot be formed on a substrate having low heat resistance since the raw material liquid is heated to a high temperature of 500 ° C. or higher after application, and thus its use is limited.
【0009】さらに、光触媒の活性を向上させる手法と
しては、例えば金属の微粒子を酸化チタン上に担持させ
る方法、水素またはアルコールガス中で還元処理する方
法などがある。しかし、光触媒を還元する場合、可燃性
ガス中で加熱する必要があり、安全面での問題がある。
しかも、300℃以上の高温で処理するので、耐熱性の
低い基板に対しては不適である。しかも、これらの方法
は、いずれも光触媒膜を形成した後に行われ、製造工程
が増えるという弊害を有する。Further, as a method for improving the activity of the photocatalyst, there are a method of supporting fine metal particles on titanium oxide, a method of performing a reduction treatment in hydrogen or alcohol gas, and the like. However, when reducing the photocatalyst, it is necessary to heat in a combustible gas, which poses a safety problem.
In addition, since the treatment is performed at a high temperature of 300 ° C. or more, it is not suitable for a substrate having low heat resistance. Moreover, each of these methods is performed after the formation of the photocatalytic film, and has a disadvantage that the number of manufacturing steps increases.
【0010】[0010]
【発明が解決しようとする課題】そこで、バインダー法
でもゾルゲル法でもない、光触媒膜の他の形成方法とし
て、スパッタ法がある。例えば、特開平8−30920
4号公報に開示されているように、スパッタリングによ
って金属酸化物の光触媒膜を形成している。この場合、
光触媒膜を形成する基板の種類は問わない。そして、こ
の方法によって得られる光触媒では、ゾルゲル法による
光触媒に比べて光触媒活性が良好となっている。Therefore, there is a sputtering method as another method of forming a photocatalytic film which is neither the binder method nor the sol-gel method. For example, JP-A-8-30920
As disclosed in Japanese Patent Application Publication No. 4 (1993) -4, a photocatalytic film of a metal oxide is formed by sputtering. in this case,
The type of substrate on which the photocatalytic film is formed is not limited. The photocatalyst obtained by this method has better photocatalytic activity than the photocatalyst obtained by the sol-gel method.
【0011】しかしながら、上記のスパッタ法で得られ
る光触媒は、成膜直後は比較的大きな光触媒活性が得ら
れるが、時間とともに活性が低下するという問題があっ
た。すなわち、単にスパッタ法により光触媒膜を形成し
ても、適正な成膜条件によらなければ、光触媒活性の経
時劣化が生じることは避けられない。However, the photocatalyst obtained by the above sputtering method has a relatively large photocatalytic activity immediately after film formation, but has a problem that the activity decreases with time. That is, even if a photocatalytic film is simply formed by a sputtering method, it is inevitable that the photocatalytic activity deteriorates with time unless proper film forming conditions are used.
【0012】そこで、本発明は、上記に鑑み、スパッタ
法における適性な成膜条件を見いだすことによって、光
触媒活性の経時劣化が生じない光触媒体を作製すること
を目的とする。In view of the above, an object of the present invention is to produce a photocatalyst in which the photocatalytic activity does not deteriorate with time by finding appropriate film forming conditions in the sputtering method.
【0013】[0013]
【課題を解決するための手段】本発明による課題解決手
段は、スパッタ法により基板上に金属酸化物からなる光
触媒膜を形成するとき、導入ガスのガス圧を10mTo
rrより高くするものである。なお、光触媒作用を有す
る金属酸化物としては、酸化チタン、酸化亜鉛、酸化タ
ングステン、酸化バナジウム、酸化ジルコニウムなどが
あるが、光触媒活性が高い、自身が分解されない安定
性、低価格の点から酸化チタンが最もよく用いられる。The object of the present invention is to provide a method of forming a photocatalytic film made of a metal oxide on a substrate by sputtering.
rr. Examples of the metal oxide having a photocatalytic action include titanium oxide, zinc oxide, tungsten oxide, vanadium oxide, and zirconium oxide. Titanium oxide has high photocatalytic activity, is stable without being decomposed itself, and is inexpensive. Is most often used.
【0014】このように、スパッタ法で光触媒を成膜す
る際に、10mTorrより高い高ガス圧で成膜を行う
ことにより、光触媒活性の経時劣化がほとんど起こら
ず、また低ガス圧で成膜を行う場合に比べて大きな光触
媒活性を得ることができる。しかも、微粒子光触媒を接
着性物質で固定して膜状化した場合のように、接着性物
質の中に光触媒が埋もれて、光触媒活性が損なわれると
いうことがない。さらに、ゾルゲル法で成膜した場合の
ように、高温焼成が必要なく、耐熱性の低い基板への形
成が可能となる。そして、一般的なゾルゲル法で形成し
た光触媒膜に比べて大きな光触媒活性を得ることができ
る。As described above, when the photocatalyst is formed by the sputtering method, by performing the film formation at a high gas pressure higher than 10 mTorr, the photocatalytic activity hardly deteriorates with time, and the film can be formed at a low gas pressure. A larger photocatalytic activity can be obtained as compared with the case where it is performed. In addition, unlike the case where the fine particle photocatalyst is fixed with an adhesive substance to form a film, the photocatalyst is not buried in the adhesive substance and the photocatalytic activity is not impaired. Further, unlike the case where a film is formed by a sol-gel method, high-temperature sintering is not required, and formation on a substrate having low heat resistance becomes possible. Further, a larger photocatalytic activity can be obtained as compared with a photocatalytic film formed by a general sol-gel method.
【0015】このように、スパッタリングにより酸化チ
タンを成膜する際に、高ガス圧で成膜を行うと、活性の
劣化が起こらず、高活性となるが、この理由は明らかと
はなっていないが、次のことが考えられる。As described above, when forming a titanium oxide film by sputtering, if the film is formed at a high gas pressure, the activity does not deteriorate and the activity becomes high, but the reason is not clear. However, the following can be considered.
【0016】すなわち、低ガス圧中で成膜した酸化チタ
ンと高ガス圧中で成膜した酸化チタンをそれぞれX線回
折によるピーク強度から結晶状態を調べると、低ガス圧
中で成膜した酸化チタンは高ガス圧で成膜した酸化チタ
ンよりピーク強度が大きいという結果が得られた。した
がって、低ガス圧での酸化チタンでは、結晶がより大き
く、結晶の欠陥が少ないと考えられる。一方、高ガス圧
で成膜した酸化チタンでは、結晶がより小さく、結晶の
欠陥が多いと考えられる。That is, when the crystal states of the titanium oxide film formed at a low gas pressure and the titanium oxide film formed at a high gas pressure are examined from the peak intensities by X-ray diffraction, respectively, It was found that titanium had a higher peak intensity than titanium oxide formed at a high gas pressure. Therefore, it is considered that titanium oxide at a low gas pressure has larger crystals and fewer crystal defects. On the other hand, it is considered that titanium oxide formed at a high gas pressure has smaller crystals and more crystal defects.
【0017】例えば、白金触媒において、結晶表面の欠
陥部分であるキンクやステップが活性点になることが知
られているが、酸化チタン光触媒においても同様の現象
があると考えられる。低ガス圧で成膜した場合、キンク
やステップがほとんどなく、活性点がきわめて少ないた
め、光触媒活性の劣化が起きやすいと推定される。一
方、高ガス圧で成膜した場合、キンクやステップが多い
ため、活性劣化が起きにくいものと考えられる。また、
高ガス圧で成膜したものでは、結晶粒径が小さく表面積
が多くなることが、さらに活性を大きくする要因になっ
ていると推定される。For example, in a platinum catalyst, it is known that a kink or a step, which is a defective portion on a crystal surface, becomes an active site. It is considered that a similar phenomenon occurs in a titanium oxide photocatalyst. When the film is formed at a low gas pressure, there is almost no kinks or steps, and the number of active sites is extremely small. On the other hand, when the film is formed at a high gas pressure, it is considered that the active deterioration hardly occurs because of many kinks and steps. Also,
In a film formed at a high gas pressure, a small crystal grain size and a large surface area are presumed to be factors that further increase the activity.
【0018】具体的な作製方法として、酸化チタンをタ
ーゲット材料として用い、アルゴンと酸素の混合ガスを
スパッタリング装置への混入ガスとして用い、混合ガス
プラズマにより酸化チタンの成膜を行うものである。あ
るいは、金属チタンをターゲット材料として用い、アル
ゴンと酸素の混合ガスをスパッタリング装置への混入ガ
スとして用い、混合ガスプラズマによる反応性スパッタ
リングにより酸化チタンの成膜を行うものである。As a specific manufacturing method, titanium oxide is formed by a mixed gas plasma using titanium oxide as a target material, a mixed gas of argon and oxygen as a mixed gas into a sputtering apparatus. Alternatively, titanium oxide is formed by reactive sputtering using mixed gas plasma using metal titanium as a target material, a mixed gas of argon and oxygen as a mixed gas into a sputtering apparatus.
【0019】酸化チタンをターゲット材料として用いる
と、金属チタンをターゲット材料として用いた場合に比
べ、より広い成膜条件で光触媒活性のある光触媒膜の形
成が可能となり、成膜時の温度やガス圧がばらついても
特性が大きく変化しないという利点がある。そのため、
公知のスパッタリング装置、成膜条件を採用することが
できる。When titanium oxide is used as a target material, a photocatalytic film having photocatalytic activity can be formed under a wider range of film forming conditions than when titanium metal is used as a target material. There is an advantage that the characteristics do not change significantly even if the values vary. for that reason,
Known sputtering apparatuses and film forming conditions can be adopted.
【0020】しかし、酸化チタンをターゲット材料とし
て用いた場合、成膜時の酸素分圧の不足によって、ター
ゲット材料が還元され、ターゲット材料のチタンと酸素
との組成比が変化しやすい。一方、金属チタンをターゲ
ットとして用いると、ターゲット材料の変化が生じない
という利点がある。しかも、金属チタンターゲットは、
酸化チタンターゲットに比べて割れにくく、熱伝導性が
高い。このため、スパッタリング時にターゲット表面が
プラズマに晒され、温度が高くなっても、熱膨張による
クラックが発生しにくい。したがって、酸化チタンター
ゲットを用いる場合に比べてメンテナンスが容易で、成
膜時のパワーを大きくしてもターゲットにクラックが発
生しないという利点がある。However, when titanium oxide is used as the target material, the target material is reduced due to insufficient oxygen partial pressure during film formation, and the composition ratio of titanium and oxygen in the target material is likely to change. On the other hand, using metal titanium as a target has the advantage that the target material does not change. Moreover, the titanium metal target
Harder to crack and higher thermal conductivity than titanium oxide target. For this reason, even if the target surface is exposed to plasma during sputtering and the temperature increases, cracks due to thermal expansion hardly occur. Therefore, there is an advantage that maintenance is easier than when a titanium oxide target is used, and no crack is generated in the target even when the power during film formation is increased.
【0021】ここで、金属チタンターゲットを用いて酸
化チタン膜を形成するに際し、高活性な光触媒膜を作る
ためには、アナターゼ型結晶の酸化チタンを作る必要が
ある。発明者らが、検討した結果、金属チタンターゲッ
トを用いて酸化チタンを成膜する場合、限られた成膜条
件でしかアナターゼ型結晶の酸化チタンができないこと
が分かった。Here, in forming a titanium oxide film using a titanium metal target, it is necessary to form an anatase type crystal titanium oxide in order to form a highly active photocatalytic film. As a result of investigations by the inventors, it has been found that when titanium oxide is formed using a metal titanium target, titanium oxide of anatase type crystal can be formed only under limited film forming conditions.
【0022】すなわち、成膜温度と混合ガスにおける酸
素の割合がかかわっている。成膜条件として基板温度を
350〜360℃より低い温度にして成膜する場合、混
合ガスにおける酸素の割合を多くする。また、基板温度
を350〜360℃より高い温度にして成膜する場合、
混合ガスにおける酸素の割合を少なくする。これによっ
て、高活性なアナターゼ型結晶の酸化チタンが得られ
る。このとき、総ガス圧を10mTorr以上にしてお
かないと、光触媒活性が経時劣化することは上述の通り
である。That is, the film forming temperature and the ratio of oxygen in the mixed gas are related. When a film is formed at a substrate temperature lower than 350 to 360 ° C. as a film forming condition, the proportion of oxygen in the mixed gas is increased. When the film is formed at a substrate temperature higher than 350 to 360 ° C.,
Reduce the proportion of oxygen in the gas mixture. As a result, highly active anatase-type crystal titanium oxide is obtained. At this time, unless the total gas pressure is set to 10 mTorr or more, the photocatalytic activity deteriorates with time as described above.
【0023】[0023]
【発明の実施の形態】本発明の実施形態に係る光触媒体
の作製に用いる成膜装置を図1に示す。これはマグネト
ロンスパッタリング装置であり、1は真空室、2はター
ゲット、3はRF電源あるいは直流電源、4は排気口、
5はガス導入口、6は基板7を保持する導電性の保持体
である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a film forming apparatus used for manufacturing a photocatalyst according to an embodiment of the present invention. This is a magnetron sputtering device, 1 is a vacuum chamber, 2 is a target, 3 is an RF power supply or DC power supply, 4 is an exhaust port,
Reference numeral 5 denotes a gas inlet, and reference numeral 6 denotes a conductive holder for holding the substrate 7.
【0024】そして、ガラス、表面を酸化したアルミニ
ウム、あるいはポリエステル、ポリエチレン等のフィル
ムといった基板7を保持体6に固定し、真空室1内を真
空排気する。所定温度に基板7を加熱後、アルゴン、ヘ
リウムといった不活性ガスと酸素との混合ガスを導入す
る。このとき、導入ガスにおける不活性ガスと酸素との
分圧比が所定の値になるように、排気バルブおよび導入
ガス流量を調整する。次に、酸化チタンあるいは金属チ
タンからなるターゲット2に高周波電圧あるいは直流電
圧を印加し、基板7上に酸化チタンの成膜を行う。これ
により、基板7上に酸化チタンからなる光触媒膜が形成
される。なお、ターゲット2に酸化亜鉛、酸化タングス
テン、酸化バナジウム、酸化ジルコニウムなどの金属酸
化物に対応した金属を用いると、このスパッタリングさ
れた金属の酸化物からなる光触媒膜が形成される。Then, a substrate 7 such as glass, aluminum whose surface is oxidized, or a film of polyester, polyethylene or the like is fixed to the holder 6, and the inside of the vacuum chamber 1 is evacuated. After heating the substrate 7 to a predetermined temperature, a mixed gas of an inert gas such as argon and helium and oxygen is introduced. At this time, the exhaust valve and the flow rate of the introduced gas are adjusted so that the partial pressure ratio between the inert gas and oxygen in the introduced gas becomes a predetermined value. Next, a high-frequency voltage or a DC voltage is applied to the target 2 made of titanium oxide or metal titanium, and a film of titanium oxide is formed on the substrate 7. Thus, a photocatalytic film made of titanium oxide is formed on the substrate 7. When a metal corresponding to a metal oxide such as zinc oxide, tungsten oxide, vanadium oxide, or zirconium oxide is used for the target 2, a photocatalytic film made of the sputtered metal oxide is formed.
【0025】このスパッタ法により成膜するとき、混合
ガスのガス圧を10mTorr以下で成膜した光触媒膜
であると、光触媒活性の経時劣化が起こるが、10mT
orrより高くしておくことにより、光触媒活性の経時
劣化がほとんど起こらず、光触媒活性も向上する。ま
た、少なくとも20mTorr以上にしておけば、確実
に劣化を防止でき、大きな光触媒活性が得られる。When the film is formed by the sputtering method, if the gas pressure of the mixed gas is 10 mTorr or less, the photocatalytic activity deteriorates with time.
By setting it higher than orr, the photocatalytic activity hardly deteriorates with time, and the photocatalytic activity is also improved. If the pressure is at least 20 mTorr or more, the deterioration can be surely prevented, and a large photocatalytic activity can be obtained.
【0026】ところで、ターゲットに酸化チタンを用い
る場合、成膜条件として高ガス圧にする以外、温度や混
合ガスに制約を受けず、アナターゼ型結晶の酸化チタン
が得られる。一方、ターゲットに金属チタンを用いる場
合、アナターゼ型結晶の酸化チタンを得るためには、成
膜時の温度や混合ガスの酸素分圧を規定しなければなら
ない。その成膜条件としては、成膜時の基板温度を35
0℃以下、混合ガスにおける酸素の割合を30%以上と
する、あるいは基板温度を360℃以上、混合ガスにお
ける酸素の割合を35%以下とする。このいずれかの成
膜条件にすることによって、高活性なアナターゼ型結晶
の酸化チタンが得られることが確認された。When titanium oxide is used as the target, anatase-type crystal titanium oxide can be obtained irrespective of the temperature and the mixed gas, except for high gas pressure as a film forming condition. On the other hand, when metal titanium is used as the target, in order to obtain anatase-type crystal titanium oxide, the temperature during film formation and the oxygen partial pressure of the mixed gas must be regulated. As the film forming conditions, the substrate temperature during film formation was set to 35
0 ° C. or less, the proportion of oxygen in the mixed gas is 30% or more, or the substrate temperature is 360 ° C. or more, and the proportion of oxygen in the mixed gas is 35% or less. It was confirmed that a highly active anatase-type crystal titanium oxide can be obtained by using any of these film forming conditions.
【0027】[0027]
【実施例】以下に、本発明を実施例および比較例により
具体的に説明する。各実施例および比較例において、基
板寸法は6cm×6cmとし、膜厚が0.6μmとなる
ように成膜時間を調整した。The present invention will be described below in more detail with reference to examples and comparative examples. In each of the examples and comparative examples, the substrate size was set to 6 cm × 6 cm, and the film formation time was adjusted so that the film thickness became 0.6 μm.
【0028】[0028]
【表1】 [Table 1]
【0029】(実施例1)基板として表面が平滑なバリ
ウム硼珪酸系の無アルカリガラス、成膜装置としてRF
マグネトロンスパッタリング装置、ターゲット材料とし
て純度99.9%以上の酸化チタン、導入ガスとしてア
ルゴンと酸素の混合ガスを用いて、酸化チタン膜を形成
した。成膜条件を表1に示す。(Example 1) Barium borosilicate alkali-free glass having a smooth surface as a substrate and RF as a film forming apparatus
A titanium oxide film was formed using a magnetron sputtering apparatus, titanium oxide having a purity of 99.9% or more as a target material, and a mixed gas of argon and oxygen as an introduction gas. Table 1 shows the film forming conditions.
【0030】まず、基板を取り付けた真空室内を真空排
気し、300℃に基板を加熱後、アルゴンと酸素の混合
ガスを導入した。混合ガスにおけるアルゴンと酸素の分
圧比が89/11になるよう排気バルブおよび導入ガス
流量を調整した。ターゲットに高周波電圧を印加し、総
ガス圧20mTorr、RF電力200Wで成膜を行っ
た。First, the inside of the vacuum chamber to which the substrate was attached was evacuated, the substrate was heated to 300 ° C., and a mixed gas of argon and oxygen was introduced. The exhaust valve and the flow rate of the introduced gas were adjusted so that the partial pressure ratio of argon and oxygen in the mixed gas was 89/11. A high-frequency voltage was applied to the target, and a film was formed at a total gas pressure of 20 mTorr and an RF power of 200 W.
【0031】(実施例2)表1に示す成膜条件で実施例
1と同様に酸化チタンの成膜を行った。ただし、実施例
1よりも酸素分圧を50%と高くした。(Example 2) Titanium oxide was formed in the same manner as in Example 1 under the film forming conditions shown in Table 1. However, the oxygen partial pressure was set to 50% higher than in Example 1.
【0032】(実施例3)表1に示す成膜条件で実施例
1と同様に酸化チタンの成膜を行った。ただし、実施例
1よりも基板温度を400℃と高くし、酸素分圧も50
%と高くした。Example 3 A film of titanium oxide was formed in the same manner as in Example 1 under the film forming conditions shown in Table 1. However, the substrate temperature was set to 400 ° C. higher than that in Example 1, and the oxygen partial pressure was set to 50
%.
【0033】(比較例1)表1に示す成膜条件で実施例
1と同様に酸化チタンの成膜を行った。ただし、実施例
1よりも総ガス圧を8mTorrと低くしたが、酸素分
圧は同じである。Comparative Example 1 A film of titanium oxide was formed in the same manner as in Example 1 under the film forming conditions shown in Table 1. However, the total gas pressure was set to 8 mTorr lower than that in Example 1, but the oxygen partial pressure was the same.
【0034】[0034]
【表2】 [Table 2]
【0035】(実施例4)基板として表面が平滑なバリ
ウム硼珪酸系の無アルカリガラス、成膜装置としてDC
マグネトロンスパッタ装置、ターゲット材料として純度
99.9%以上の金属チタン、導入ガスとしてアルゴン
と酸素の混合ガスを用いて、反応性スパッタリングによ
り酸化チタン膜を形成した。成膜条件を表2に示す。Example 4 A barium borosilicate alkali-free glass having a smooth surface was used as a substrate, and DC was used as a film forming apparatus.
A titanium oxide film was formed by reactive sputtering using a magnetron sputtering apparatus, titanium metal having a purity of 99.9% or more as a target material, and a mixed gas of argon and oxygen as an introduction gas. Table 2 shows the film forming conditions.
【0036】まず、基板を取り付けた真空室内を真空排
気し、300℃に基板を加熱後、アルゴンと酸素の混合
ガスを導入した。混合ガスにおけるアルゴンと酸素の分
圧比が60/40になるよう排気バルブおよび導入ガス
流量を調整した。ターゲットに直流電圧を印加し、総ガ
ス圧20mTorr、DC電力100Wで成膜を行っ
た。First, the inside of the vacuum chamber to which the substrate was attached was evacuated, the substrate was heated to 300 ° C., and a mixed gas of argon and oxygen was introduced. The exhaust valve and the flow rate of the introduced gas were adjusted so that the partial pressure ratio of argon and oxygen in the mixed gas became 60/40. A DC voltage was applied to the target, and a film was formed at a total gas pressure of 20 mTorr and a DC power of 100 W.
【0037】(比較例2)表2に示す成膜条件で実施例
4の場合と同様に酸化チタンの成膜を行った。ただし、
実施例4よりも酸素分圧を低くしたが、総ガス圧は同じ
である。(Comparative Example 2) Under the film forming conditions shown in Table 2, a titanium oxide film was formed in the same manner as in Example 4. However,
Although the oxygen partial pressure was lower than in Example 4, the total gas pressure was the same.
【0038】(比較例3)表2に示す成膜条件で実施例
4の場合と同様に酸化チタンの成膜を行った。ただし、
実施例4よりも総ガス圧を低くしたが、酸素分圧は同じ
である。(Comparative Example 3) Under the film forming conditions shown in Table 2, a titanium oxide film was formed in the same manner as in Example 4. However,
The total gas pressure was lower than in Example 4, but the oxygen partial pressure was the same.
【0039】[0039]
【表3】 [Table 3]
【0040】(実施例5)表3に示す成膜条件で実施例
4と同様にチタンターゲットを用い、酸化チタンの成膜
を行った。ただし、基板温度を400℃と高く設定し、
酸素分圧の割合を8%と低くした。Example 5 A titanium oxide film was formed under the film forming conditions shown in Table 3 using a titanium target in the same manner as in Example 4. However, set the substrate temperature as high as 400 ° C,
The ratio of the oxygen partial pressure was reduced to 8%.
【0041】(比較例4)表3に示す成膜条件で実施例
5と同様にチタンターゲットを用い、基板温度を400
℃と高温にし、酸化チタンの成膜を行った。ただし、酸
素分圧の割合を40%と高く設定した。(Comparative Example 4) Under the film forming conditions shown in Table 3, a titanium target was used and the substrate temperature was 400
The temperature was raised to a temperature of ° C., and a film of titanium oxide was formed. However, the ratio of the oxygen partial pressure was set as high as 40%.
【0042】(比較例5)チタンアルコキシドを表面が
平滑なバリウム硼珪酸系の無アルカリガラス上に塗布
し、焼成(500℃、1hr)することにより酸化チタ
ン膜を形成した。膜厚が0.6μmになるよう塗布、焼
成を繰り返した。なお、用いた基板は、スパッタ法で酸
化チタンを形成したサンプルと同様、6cm×6cm
(36cm2)である。Comparative Example 5 Titanium alkoxide was applied on a barium borosilicate alkali-free glass having a smooth surface and fired (500 ° C., 1 hr) to form a titanium oxide film. Coating and firing were repeated until the film thickness became 0.6 μm. The substrate used was 6 cm × 6 cm, similarly to the sample on which titanium oxide was formed by the sputtering method.
(36 cm 2 ).
【0043】実施例1〜5および比較例1〜5で得た光
触媒体サンプルを27リットルの容器に別個に入れ、悪
臭物質の1つであるアセトアルデヒドを120ppmの
濃度となるよう注入した。次に、6Wのブラックライト
を用い、サンプル表面の光触媒を紫外線で照射し、アセ
トアルデヒド濃度が10ppmまで減少する時間を測定
した。なお、各サンプルは成膜2時間以内に評価を開始
し、成膜14日後に再度評価を行った。また、X線回折
装置により各サンプルの結晶状態を調べた。以上の結果
を表4に示す。The photocatalyst samples obtained in Examples 1 to 5 and Comparative Examples 1 to 5 were separately placed in a 27-liter container, and acetaldehyde, one of the malodorous substances, was injected to a concentration of 120 ppm. Next, using a 6 W black light, the photocatalyst on the sample surface was irradiated with ultraviolet rays, and the time required for the acetaldehyde concentration to decrease to 10 ppm was measured. The evaluation of each sample was started within 2 hours of film formation, and was evaluated again 14 days after film formation. Further, the crystal state of each sample was examined with an X-ray diffractometer. Table 4 shows the above results.
【0044】[0044]
【表4】 [Table 4]
【0045】成膜時のガス圧が低い比較例1,3のサン
プルは、成膜直後はアセトアルデヒドを分解できるが、
成膜14日後の測定ではほとんど活性がなくなってお
り、アセトアルデヒドを分解することができなかった。
一方、成膜時のガス圧が高い実施例1〜5のサンプル
は、いずれも成膜14日後もアセトアルデヒドを分解す
る能力は低下していなかった。すなわち、光触媒活性の
劣化が認められなかった。また、チタンアルコキシドか
らゾルゲル法で酸化チタン膜を形成した比較例5のサン
プルに比べて1/2の時間でアセトアルデヒドを分解す
ることができた。In the samples of Comparative Examples 1 and 3 in which the gas pressure during film formation was low, acetaldehyde could be decomposed immediately after film formation.
Almost no activity was found in the measurement 14 days after the film formation, and acetaldehyde could not be decomposed.
On the other hand, in all of the samples of Examples 1 to 5 in which the gas pressure during film formation was high, the ability to decompose acetaldehyde did not decrease even after 14 days of film formation. That is, deterioration of the photocatalytic activity was not observed. Further, acetaldehyde was decomposed in half the time as compared with the sample of Comparative Example 5 in which a titanium oxide film was formed from a titanium alkoxide by a sol-gel method.
【0046】酸化チタンターゲットを用い、10mTo
rrを越える高ガス圧で成膜を行った実施例1〜3のサ
ンプルは、アルゴンと酸素の混合ガスに占める酸素分圧
を11%、50%、基板温度を300℃、400℃と変
えても、いずれの条件でもアナターゼ型に結晶化し、高
い活性が得られている。Using a titanium oxide target, 10 mTo
In the samples of Examples 1 to 3 in which film formation was performed at a high gas pressure exceeding rr, the oxygen partial pressure in the mixed gas of argon and oxygen was changed to 11% and 50%, and the substrate temperature was changed to 300 ° C and 400 ° C. Also crystallized into anatase type under any conditions, and high activity was obtained.
【0047】また、スパッタリング時のターゲット材料
として金属チタンターゲットを使用し、基板温度を30
0℃、アルゴンと酸素の混合ガスに占める酸素分圧を3
0%未満に設定した比較例2のサンプルは、時間経過に
よる活性の低下はないものの、結晶状態はアモルファス
であり、アセトアルデヒドを分解する速度が9.2時間
と遅い。一方、同じ成膜条件で成膜時の酸素分圧だけを
30%以上に大きくした実施例4のサンプルは、アナタ
ーゼ型結晶になっており、アセトアルデヒドの分解時間
が1.5時間と約1/6の時間でアセトアルデヒドを分
解することができた。Further, a metal titanium target was used as a target material at the time of sputtering, and the substrate temperature was set at 30 ° C.
0 ° C, the partial pressure of oxygen in the mixed gas of argon and oxygen is 3
The sample of Comparative Example 2 set to less than 0% does not decrease in activity over time, but has a crystalline state of amorphous and has a slow rate of decomposing acetaldehyde as 9.2 hours. On the other hand, the sample of Example 4 in which only the oxygen partial pressure during film formation was increased to 30% or more under the same film formation conditions was an anatase type crystal, and the decomposition time of acetaldehyde was 1.5 hours, about 1 / Acetaldehyde could be decomposed in 6 hours.
【0048】また、実施例4と同じく、スパッタリング
時のターゲット材料として金属チタンターゲットを使用
し、基板温度を400℃と高くし、アルゴンと酸素の混
合ガスに占める酸素分圧を40%以上に設定した比較例
4のサンプルは、時間経過による活性の低下はないもの
の、結晶状態はアモルファスであり、アセトアルデヒド
を分解する速度が8.7時間と遅い。一方、同じ成膜条
件で成膜時の酸素分圧だけを35%以下に下げた実施例
5のサンプルは、アナターゼ型結晶になっており、アセ
トアルデヒドの分解時間が1.5時間と約1/6の時間
でアセトアルデヒドを分解することができた。As in the case of Example 4, a metal titanium target was used as a target material during sputtering, the substrate temperature was increased to 400 ° C., and the oxygen partial pressure in the mixed gas of argon and oxygen was set to 40% or more. Although the activity of the sample of Comparative Example 4 does not decrease with time, the crystalline state is amorphous, and the rate of decomposing acetaldehyde is as low as 8.7 hours. On the other hand, the sample of Example 5 in which only the oxygen partial pressure during film formation was reduced to 35% or less under the same film formation conditions was an anatase type crystal, and the decomposition time of acetaldehyde was 1.5 hours, about 1 / Acetaldehyde could be decomposed in 6 hours.
【0049】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の範囲内で上記実施形態に多く
の修正および変更を加え得ることは勿論である。It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment within the scope of the present invention.
【0050】[0050]
【発明の効果】以上の説明から明らかな通り、本発明に
よると、スパッタリングを行うときのガス圧を10mT
orrより高くしているため、光触媒活性の経時劣化の
ない、高信頼性の光触媒体を得ることができる。As is apparent from the above description, according to the present invention, the gas pressure at the time of performing sputtering is 10 mT.
Since it is higher than orr, a highly reliable photocatalyst without deterioration of photocatalytic activity with time can be obtained.
【0051】また、スパッタ法を採用することにより、
以下の利点がある。すなわち、バインダー法における、
光触媒がバインダー中に埋もれてしまって、活性が小さ
くなるという問題が生じない。また、バインダーを使用
する場合、光触媒が埋もれないように膜をポーラスにす
る必要があるが、密着性を大きくするのが困難となって
しまう。しかし、スパッタ法では比較的緻密な膜を形成
しても大きな活性を得ることができる。さらに、ゾルゲ
ル法に比べて、大きな光触媒活性を有する膜を形成する
ことができる。Further, by employing the sputtering method,
There are the following advantages. That is, in the binder method,
There is no problem that the photocatalyst is buried in the binder and the activity is reduced. When a binder is used, the film needs to be made porous so that the photocatalyst is not buried, but it becomes difficult to increase the adhesion. However, a large activity can be obtained even if a relatively dense film is formed by the sputtering method. Further, a film having a large photocatalytic activity can be formed as compared with the sol-gel method.
【0052】そして、スパッタリングのターゲット材料
としては、酸化チタンまたは金属チタンを用いることが
できるが、酸化チタンをターゲット材料として用いた場
合、幅広い成膜条件で高活性な光触媒体を得ることがで
きるため、成膜条件がばらついても品質が安定してい
る。As a sputtering target material, titanium oxide or titanium metal can be used. However, when titanium oxide is used as a target material, a highly active photocatalyst can be obtained under a wide range of film forming conditions. In addition, the quality is stable even when the film forming conditions vary.
【0053】一方、金属チタンをターゲット材料として
用いた場合、特定の範囲に成膜条件を設定することによ
り作製可能となり、高活性なアナターゼ型結晶の酸化チ
タンが得られる。また、温度差および温度変化によるク
ラックが発生しにくいため、高い電力をかけることが可
能となり、成膜時間を短縮でき、製造効率を高めること
ができる。しかも、ターゲット材料の組成変化が起きに
くいため、メンテナンスが容易となり、高活性な光触媒
体を安定して作製することができる。On the other hand, when metallic titanium is used as the target material, it can be produced by setting the film forming conditions in a specific range, and highly active anatase-type titanium oxide can be obtained. In addition, since cracks due to a temperature difference and a change in temperature are unlikely to occur, high power can be applied, a film formation time can be reduced, and manufacturing efficiency can be increased. In addition, since the composition of the target material does not easily change, maintenance is easy and a highly active photocatalyst can be stably manufactured.
【図1】本発明の実施形態の光触媒体の作製に用いる成
膜装置の概略構成図FIG. 1 is a schematic configuration diagram of a film forming apparatus used for manufacturing a photocatalyst according to an embodiment of the present invention.
1 真空室 2 ターゲット 3 RF電源あるいは直流電源 4 排気口 5 ガス導入口 6 保持体 7 基板 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Target 3 RF power supply or DC power supply 4 Exhaust port 5 Gas inlet 6 Holder 7 Substrate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 倉一 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 四谷 任 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 (72)発明者 野坂 俊紀 大阪府和泉市あゆみ野2丁目7番1号 大 阪府立産業技術総合研究所内 Fターム(参考) 4G069 AA03 BA04A BA04B BA48A BC13B BD03B BD05B CA01 CA10 CA17 DA06 EA08 FB02 FC02 FC07 4K029 AA09 AA24 BA48 BB01 BD00 CA01 DC03 DC05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kuraichi Ogawa 2-7-1, Ayumino, Izumi City, Osaka Prefecture Inside the Osaka Prefectural Institute of Advanced Industrial Science and Technology (72) Tsutomu Yotsuya 2-7-1, Ayumino, Izumi City, Osaka Prefecture No. 1 Inside the Osaka Prefectural Institute of Industrial Science and Technology (72) Inventor Toshinori Nosaka 2-7-1, Ayumino, Izumi-shi, Osaka Prefecture F-term inside the Osaka Prefectural Institute of Industrial Science and Technology CA10 CA17 DA06 EA08 FB02 FC02 FC07 4K029 AA09 AA24 BA48 BB01 BD00 CA01 DC03 DC05
Claims (5)
らなる光触媒膜を形成するとき、導入ガスを10mTo
rrより高い高ガス圧にすることを特徴とする光触媒体
の作製方法。When a photocatalytic film made of a metal oxide is formed on a substrate by a sputtering method, an introduced gas is 10 mTo
A method for producing a photocatalyst, wherein the gas pressure is higher than rr.
い、導入ガスとして不活性ガスと酸素の混合ガスを用
い、酸化チタンからなる光触媒膜を成膜することを特徴
とする請求項1記載の光触媒体の作製方法。2. The photocatalyst according to claim 1, wherein a titanium oxide is used as a target material, and a mixed gas of an inert gas and oxygen is used as an introduction gas to form a photocatalyst film made of titanium oxide. Production method.
入ガスとして不活性ガスと酸素の混合ガスを用い、反応
性スパッタリングによりアナターゼ型結晶構造の酸化チ
タンを生成して、光触媒膜を成膜することを特徴とする
請求項1記載の光触媒体の作製方法。3. A method of forming a photocatalytic film by using titanium as a target material, using a mixed gas of an inert gas and oxygen as an introduction gas, and generating titanium oxide having an anatase crystal structure by reactive sputtering. A method for producing a photocatalyst according to claim 1.
混合ガスにおける酸素の割合を30%以上とすることを
特徴とする請求項3記載の光触媒体の作製方法。4. The method according to claim 1, wherein the substrate temperature during film formation is 350 ° C. or less.
The method for producing a photocatalyst according to claim 3, wherein the proportion of oxygen in the mixed gas is 30% or more.
混合ガスにおける酸素の割合を35%以下とすることを
特徴とする請求項3記載の光触媒体の作製方法。5. The method according to claim 1, wherein the substrate temperature during the film formation is 360 ° C. or higher.
The method for producing a photocatalyst according to claim 3, wherein the proportion of oxygen in the mixed gas is 35% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30147598A JP3911355B2 (en) | 1998-10-22 | 1998-10-22 | Method for producing photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30147598A JP3911355B2 (en) | 1998-10-22 | 1998-10-22 | Method for producing photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000126613A true JP2000126613A (en) | 2000-05-09 |
JP3911355B2 JP3911355B2 (en) | 2007-05-09 |
Family
ID=17897357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30147598A Expired - Fee Related JP3911355B2 (en) | 1998-10-22 | 1998-10-22 | Method for producing photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3911355B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219769A (en) * | 2001-01-24 | 2002-08-06 | Nippon Steel Corp | Metal plate having photocatalytic activity and method for manufacturing the same |
JP2003226512A (en) * | 2001-11-28 | 2003-08-12 | Ueda Shikimono Kojo:Kk | Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method |
JP2004510051A (en) * | 2000-09-20 | 2004-04-02 | サン−ゴバン グラス フランス | Substrate with photocatalytic coating |
US6761984B2 (en) * | 1999-12-21 | 2004-07-13 | Nippon Sheet Glass Co., Ltd. | Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film |
JP2007253148A (en) * | 2006-02-24 | 2007-10-04 | Osaka Prefecture Univ | Photocatalyst, method for manufacturing photocatalyst, method for electrolyzing water, method for producing hydrogen, electrolyzer, and hydrogen produing device |
JP2010111885A (en) * | 2008-11-04 | 2010-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Method of forming titanium oxide film |
JP2010201339A (en) * | 2009-03-03 | 2010-09-16 | Shincron:Kk | Method for depositing thin film |
-
1998
- 1998-10-22 JP JP30147598A patent/JP3911355B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761984B2 (en) * | 1999-12-21 | 2004-07-13 | Nippon Sheet Glass Co., Ltd. | Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film |
JP2004510051A (en) * | 2000-09-20 | 2004-04-02 | サン−ゴバン グラス フランス | Substrate with photocatalytic coating |
JP2002219769A (en) * | 2001-01-24 | 2002-08-06 | Nippon Steel Corp | Metal plate having photocatalytic activity and method for manufacturing the same |
JP4567892B2 (en) * | 2001-01-24 | 2010-10-20 | 新日本製鐵株式会社 | Metal plate having photocatalytic activity and method for producing the same |
JP2003226512A (en) * | 2001-11-28 | 2003-08-12 | Ueda Shikimono Kojo:Kk | Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method |
JP2007253148A (en) * | 2006-02-24 | 2007-10-04 | Osaka Prefecture Univ | Photocatalyst, method for manufacturing photocatalyst, method for electrolyzing water, method for producing hydrogen, electrolyzer, and hydrogen produing device |
JP2010111885A (en) * | 2008-11-04 | 2010-05-20 | Nippon Telegr & Teleph Corp <Ntt> | Method of forming titanium oxide film |
JP2010201339A (en) * | 2009-03-03 | 2010-09-16 | Shincron:Kk | Method for depositing thin film |
Also Published As
Publication number | Publication date |
---|---|
JP3911355B2 (en) | 2007-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3887499B2 (en) | Method for forming photocatalyst | |
Kontos et al. | Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes | |
EP0997191A1 (en) | Photocatalyst having visible light activity and uses thereof | |
JP2002095976A (en) | Photocatalyst | |
KR101095229B1 (en) | Method of preparing vanadium/tungsten/titania-based catalyst | |
KR20050067150A (en) | Photocatalyst material and process for producing the same | |
KR100772493B1 (en) | Manufacturing method for tio2 film on fine particles by using plasma enhanced chemical vapor deposition(pecvd) in a circulating fluidized bed(cfb) reactor | |
JP2000126613A (en) | Production of photocatalyst | |
JP4163374B2 (en) | Photocatalytic membrane | |
JP2000096212A (en) | Photocatalyst film coated member and its production | |
US20040213900A1 (en) | Photocatalyst producing method, photocatalyst, and gas purifier | |
JP3949143B2 (en) | Titanium dioxide nanophotocatalyst powder, production method and apparatus thereof | |
Kojin et al. | New visible light active photocatalyst, carbon-coated W18O49 | |
JP2005329360A (en) | Cleaning material and its manufacturing method | |
JP3856535B2 (en) | Method for producing photocatalyst body | |
JPH09262473A (en) | Iron oxide photocatalyst and production of hydrogen using the same | |
KR101059885B1 (en) | Catalyst composit for oxidation of vocs | |
JP2001347162A (en) | Photocatalytic material with thin titanium dioxide film | |
JPH10130887A (en) | Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox | |
JP2003144937A (en) | Silica gel molded body carried with titanium oxide photocatalyst and manufacturing method therefor | |
KR20120128029A (en) | A tungsten/titania-based catalyst, a method of preparing the same and a method of removing ammonia by using the same | |
JP3887510B2 (en) | Photocatalyst film and method for producing the same | |
JP3933640B2 (en) | photocatalyst | |
JP4214327B2 (en) | Method for producing titanium oxide film and photocatalytic film | |
JP2001046883A (en) | Silica gel molded object having photocatalytic function and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040910 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050623 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050707 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |