JP2000096212A - Photocatalyst film coated member and its production - Google Patents

Photocatalyst film coated member and its production

Info

Publication number
JP2000096212A
JP2000096212A JP10272664A JP27266498A JP2000096212A JP 2000096212 A JP2000096212 A JP 2000096212A JP 10272664 A JP10272664 A JP 10272664A JP 27266498 A JP27266498 A JP 27266498A JP 2000096212 A JP2000096212 A JP 2000096212A
Authority
JP
Japan
Prior art keywords
film
substrate
titanium dioxide
coated
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10272664A
Other languages
Japanese (ja)
Inventor
Yoshiharu Uchiumi
慶春 内海
Makoto Setoyama
誠 瀬戸山
Masanori Tsujioka
正憲 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10272664A priority Critical patent/JP2000096212A/en
Publication of JP2000096212A publication Critical patent/JP2000096212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance hardness and adhesive strength at a low cost by forming a photocatalyst film comprising titanium dioxide having an anatase type crystal structure on a substrate having a specified heat resistance temperature or below by vacuum arc deposition. SOLUTION: A titanium dioxide film having an anatase type crystal structure is formed on a substrate having <=400 deg.C heat resistance temperature preferably in atmospheric gas containing at least Ar and O2 under 5-100 mTorr total pressure. The proportion of the partial pressure of O2 to the total pressure is 5-95%. A Ti target is evaporated using 55-150 A arc current and film formation is carried out. Since film formation can be carried out even at 0-400 deg.C substrate temperature, even a substrate having low heat resistance can be used and even an organic high molecular weight compound such as cellulose or resin or an inorganic high molecular weight compound such as silicone can be coated with a photocatalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は抗菌部材、防汚部
材、大気や水の浄化部材などに用いられる、光触媒膜被
覆部材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalytic film-coated member used for an antibacterial member, an antifouling member, a member for purifying air or water, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、空気浄化や汚水浄化などの環境浄
化に二酸化チタン(TiO2)光触媒を利用する試みが
活発となっている。これは二酸化チタンにエネルギーギ
ャップ以上のエネルギーを持つ光を照射することにより
生じた電子と正孔の酸化、還元作用により、空気中や水
中の悪臭物質、有害物質などを分解、除去するものであ
る。また、二酸化チタンの超親水性を防汚、防滴防曇に
利用する試みも行われている。
2. Description of the Related Art In recent years, attempts to use a titanium dioxide (TiO 2 ) photocatalyst for environmental purification such as air purification and sewage purification have become active. It decomposes and removes odorous substances and harmful substances in the air and water by oxidizing and reducing electrons and holes generated by irradiating titanium dioxide with light having energy greater than the energy gap. . Attempts have also been made to use the superhydrophilicity of titanium dioxide for antifouling and drip-proof and anti-fog.

【0003】これらの目的で二酸化チタンを利用する場
合、なんらかの基材の上に二酸化チタン膜を被覆した形
で用いられることが多い。基材上に二酸化チタン膜を被
覆する方法としては、二酸化チタン粉末をSiO2など
の無機バインダを用いて固定する方法、有機チタン化合
物の熱分解法、ゾルゲル法、あるいはスパッタリング
法、真空アーク蒸着法などのPVD法がある。
[0003] When titanium dioxide is used for these purposes, it is often used in the form of a titanium dioxide film coated on some substrate. As a method of coating a titanium dioxide film on a substrate, a method of fixing titanium dioxide powder using an inorganic binder such as SiO 2 , a thermal decomposition method of an organic titanium compound, a sol-gel method, a sputtering method, a vacuum arc evaporation method And the like.

【0004】真空アーク蒸着法は、O2を含む雰囲気中
でTiターゲットをアーク蒸発させることにより、基材
上に二酸化チタンを形成する方法であり、電学論A、1
17巻、8号(平成9年)第866頁〜第872頁に
は、真空アーク蒸着法により基材温度を室温で形成した
アモルファスの二酸化チタン膜を大気中あるいは真空中
において250℃以上で熱処理するか、あるいはアーク
電流の一部を基材固定台に流し、二酸化チタン成膜時の
基材固定台表面の温度を450℃とすることにより、光
触媒活性が高いことが知られているアナターゼ型結晶構
造の二酸化チタン膜を形成することが記載されている。
[0004] The vacuum arc evaporation method is a method of forming titanium dioxide on a substrate by arc-evaporating a Ti target in an atmosphere containing O 2.
Vol. 17, No. 8 (1997), pages 866 to 872, heat treatment of an amorphous titanium dioxide film formed at a substrate temperature of room temperature by a vacuum arc vapor deposition method at 250 ° C. or higher in air or vacuum. Or, by flowing a part of the arc current to the substrate fixing table, and setting the temperature of the substrate fixing table surface at the time of titanium dioxide film formation to 450 ° C., the anatase type known to have high photocatalytic activity It is described that a titanium dioxide film having a crystalline structure is formed.

【0005】[0005]

【発明が解決しようとする課題】無機バインダを用いて
二酸化チタン粉末を固定する方法は、安価であり、バイ
ンダの量を増やすことにより、室温から150℃の低温
で光触媒膜を形成することが可能なため、耐熱性の低い
基材上を用いることができるという利点があるが、光触
媒膜の硬度、基材との密着強度が低いという課題があ
る。
The method of fixing titanium dioxide powder using an inorganic binder is inexpensive, and a photocatalytic film can be formed at a low temperature from room temperature to 150 ° C. by increasing the amount of the binder. Therefore, there is an advantage that a substrate having low heat resistance can be used, but there is a problem that the hardness of the photocatalytic film and the adhesion strength to the substrate are low.

【0006】有機チタン化合物の熱分解法は、光触媒膜
の形成に基材を450℃以上に加熱する必要があり、耐
熱性の低い基材を用いることができないという課題があ
る。
The thermal decomposition method of an organic titanium compound has a problem that a substrate must be heated to 450 ° C. or more to form a photocatalytic film, and a substrate having low heat resistance cannot be used.

【0007】ゾルゲル法も基材の温度を450℃以上に
する必要があり、耐熱性の低い基材が使えないという課
題があり、また1回のコーティングで形成可能な光触媒
膜の厚さが薄く、光触媒活性や膜強度が優れた厚さ0.
5μm以上の二酸化チタン膜を形成するには、何回もコ
ーティングを繰り返す必要があり、短時間、低コストで
光触媒膜を形成できないという課題がある。
[0007] The sol-gel method also requires the temperature of the substrate to be 450 ° C. or higher, so that a substrate having low heat resistance cannot be used, and the thickness of the photocatalytic film that can be formed by one coating is small. Thickness excellent in photocatalytic activity and film strength.
In order to form a titanium dioxide film having a thickness of 5 μm or more, coating must be repeated many times, and there is a problem that a photocatalytic film cannot be formed in a short time at low cost.

【0008】スパッタ法は、高硬度、高密着強度の光触
媒膜を形成可能であるが、光触媒膜の成膜速度が遅く、
短時間、低コストで光触媒膜を形成できないという課題
がある。
[0008] The sputtering method can form a photocatalytic film having high hardness and high adhesion strength. However, the film forming speed of the photocatalytic film is low.
There is a problem that a photocatalytic film cannot be formed in a short time at low cost.

【0009】真空アーク蒸着法も二酸化チタン膜を形成
可能であるが、光触媒活性の優れたアナターゼ型結晶構
造の二酸化チタン膜を得るためには、基材固定台の温度
を450℃以上にする必要があるため、450℃以上の
温度で耐熱性のある基材でないと使用できないという課
題がある。また、成膜速度が十分でなく、成膜に要する
時間が長くなり、高コストになるという課題がある。さ
らに、真空アーク蒸着法により基材温度を室温で形成し
たアモルファスの二酸化チタン膜を250℃以上で熱処
理することによっても、アナターゼ型二酸化チタン膜を
得ているが、この方法では工程が長時間かつ高コストに
なるという課題がある。
Although a titanium dioxide film can be formed by the vacuum arc evaporation method, the temperature of the substrate fixing base must be set to 450 ° C. or higher in order to obtain a titanium dioxide film having an anatase type crystal structure having excellent photocatalytic activity. Therefore, there is a problem that the substrate cannot be used unless the substrate has a heat resistance at a temperature of 450 ° C. or higher. Further, there is a problem that the film formation speed is not sufficient, the time required for film formation is long, and the cost is high. Furthermore, an anatase-type titanium dioxide film is obtained by heat-treating an amorphous titanium dioxide film formed at a substrate temperature of room temperature by a vacuum arc vapor deposition method at 250 ° C. or higher. There is a problem of high cost.

【0010】このように、従来は、耐熱温度400℃以
下の基材上に高硬度、高密着強度の二酸化チタンの光触
媒膜を形成した光触媒膜被覆部材を低コストで実現する
ことができなかった。
As described above, conventionally, a photocatalyst film-coated member in which a titanium dioxide photocatalyst film having high hardness and high adhesion strength was formed on a substrate having a heat resistance temperature of 400 ° C. or lower could not be realized at low cost. .

【0011】[0011]

【課題を解決するための手段】本発明の目的は、高硬
度、高密着強度の光触媒膜を被覆した部材を低コストで
提供することにある。
An object of the present invention is to provide a member coated with a photocatalytic film having high hardness and high adhesion strength at low cost.

【0012】本発明の請求項1における光触媒膜被覆部
材は、基材の耐熱温度が400℃以下である基材上に、
直接あるいは中間層を介して、真空アーク蒸着法により
形成された光触媒膜が、アナターゼ型結晶構造を有する
二酸化チタンであることを特徴とする。
The photocatalyst film-coated member according to claim 1 of the present invention is provided on a substrate having a heat resistant temperature of 400 ° C. or less.
The photocatalytic film formed by vacuum arc evaporation directly or through an intermediate layer is titanium dioxide having an anatase crystal structure.

【0013】請求項2における光触媒膜被覆部材は、上
記した請求項1の構成において、耐熱温度が400℃以
下である基材が高分子化合物であることを特徴とする。
A photocatalyst film-coated member according to a second aspect of the present invention is characterized in that, in the constitution of the first aspect, the base material having a heat-resistant temperature of 400 ° C. or less is a polymer compound.

【0014】請求項3における光触媒膜被覆部材は、基
材であるソーダライムガラス上に直接、真空アーク蒸着
法により形成された光触媒膜が、アナターゼ型結晶構造
を有する二酸化チタンであることを特徴とする。
According to a third aspect of the present invention, the photocatalyst film-coated member is characterized in that the photocatalyst film formed directly on soda lime glass as a base material by a vacuum arc vapor deposition method is titanium dioxide having an anatase type crystal structure. I do.

【0015】請求項4における光触媒膜被覆部材の製造
方法は、少なくともArとO2を含む雰囲気ガス中で、
雰囲気ガスの全圧力が5〜100mTorr、全圧力に
対するO2分圧の割合が5〜95%、アーク電流が55
〜150A、基材温度が0〜400℃にて、Tiターゲ
ットをアーク蒸発させることにより、基材上にアナター
ゼ型二酸化チタン膜を形成させることを特徴とする。
The method for manufacturing a photocatalyst film coating member in the fourth aspect, in an atmospheric gas containing at least Ar and O 2,
The total pressure of the atmosphere gas is 5 to 100 mTorr, the ratio of the partial pressure of O 2 to the total pressure is 5 to 95%, and the arc current is 55%.
An anatase type titanium dioxide film is formed on a substrate by arc-evaporating a Ti target at a temperature of up to 150 A and a substrate temperature of 0 to 400 ° C.

【0016】[0016]

【作用】本発明の光触媒膜被覆部材は、耐熱温度400
℃以下の基材上に直接あるいは、中間層を介して光触媒
膜が被覆された構造を有し、光触媒膜が真空アーク蒸着
法により形成されたアナターゼ型結晶構造を有する二酸
化チタンであることを特徴とする。我々は、真空アーク
蒸着法を用いて、耐熱温度400℃以下の基材上におい
ても、アナターゼ型の結晶構造を有する二酸化チタン膜
を形成可能にすべく、実験と検討を重ねた結果、以下の
方法によれば実現可能なこと、及び高速成膜が可能なこ
とを見出した。
The photocatalyst film-coated member of the present invention has a heat resistant temperature of 400.
It has a structure in which a photocatalyst film is coated directly on a substrate at a temperature of not more than ℃ or through an intermediate layer, and the photocatalyst film is titanium dioxide having an anatase type crystal structure formed by a vacuum arc vapor deposition method. And We conducted experiments and studies using a vacuum arc evaporation method to form a titanium dioxide film having an anatase-type crystal structure even on a substrate with a heat-resistant temperature of 400 ° C or lower. It has been found that the method is feasible and that high-speed film formation is possible.

【0017】まず、成膜時の雰囲気ガスとしては、少な
くともArとO2を含むガスを用いる。雰囲気ガスの全
圧力は5〜100mTorrとする。全圧力がこれ以上
小さいと、アーク放電が不安定となり、これ以上大きい
と成膜速度が遅くなるため、望ましくない。全圧力が1
0〜50mTorrの範囲であれば、さらに望ましい。
全圧力に対するO2分圧の割合は5〜95%とする。こ
れ以上O2分圧の割合が小さいと、形成された膜の酸素
の組成が化学量論比組成よりも小さくなりすぎ、これ以
上大きいと、成膜速度が低くなるため望ましくない。O
2分圧の割合が20〜75%の範囲であれば、さらに望
ましい。
First, a gas containing at least Ar and O 2 is used as an atmosphere gas during film formation. The total pressure of the atmosphere gas is 5 to 100 mTorr. If the total pressure is lower than this, the arc discharge becomes unstable, and if the total pressure is higher than this, the film-forming speed becomes slow, which is not desirable. Total pressure is 1
It is more preferable that the pressure is in the range of 0 to 50 mTorr.
The proportion of O 2 partial pressure to the total pressure is 5 to 95%. If the ratio of the partial pressure of O 2 is smaller than this, the composition of oxygen in the formed film becomes too small than the stoichiometric composition. O
More preferably, the ratio of the two partial pressures is in the range of 20 to 75%.

【0018】ターゲットにはTiを使用し、アーク電流
が55〜150Aでアーク蒸発させて成膜を行う。アー
ク電流がこれ以上小さいと放電が不安定となり、また成
膜速度も低くなるため望ましくない。これ以上大きいと
形成された膜中にドロップレットと呼ばれるTi粒子が
多く含まれるようになり、また基材の温度も上昇するた
め望ましくない。
Using Ti as a target, a film is formed by arc evaporation at an arc current of 55 to 150 A. If the arc current is smaller than this, the discharge becomes unstable, and the film forming rate becomes low, which is not desirable. If it is larger than this, a large amount of Ti particles called droplets will be contained in the formed film, and the temperature of the base material will increase, which is not desirable.

【0019】これらの条件範囲で成膜を行うことによ
り、基材の温度が0〜400℃でもアナターゼ型の結晶
構造の二酸化チタン膜を形成することができるが、成膜
条件がこれらの範囲からはずれると、アナターゼ型の二
酸化チタン膜を合成することができなくなる。
By forming a film under these conditions, a titanium dioxide film having an anatase type crystal structure can be formed even at a substrate temperature of 0 to 400 ° C. If it deviates, an anatase type titanium dioxide film cannot be synthesized.

【0020】本発明では成膜中にヒーター等を用いて基
材を加熱する必要はないが、より結晶性の優れた膜を得
るために、基材の種類に応じて耐熱温度以下の範囲で基
材の加熱を行っても良い。基材を加熱せずに成膜を行っ
た場合においても、成膜中の基材へのイオンや中性粒子
の衝突により、基材の温度は室温から上昇するが、前記
の条件範囲で成膜を行えば、400℃よりも基材温度が
上昇することはない。前記の条件範囲内で条件を最適化
すれば、基材の温度を150℃以下にすることも可能で
あり、このような温度範囲では使用可能な基材の種類が
大きく増えるため、さらに望ましい。また、基材固定台
を冷却水などを用いて冷却してもよい。
In the present invention, it is not necessary to heat the substrate using a heater or the like during the film formation. The substrate may be heated. Even when a film is formed without heating the substrate, the temperature of the substrate increases from room temperature due to collision of ions and neutral particles with the substrate during film formation. If a film is formed, the substrate temperature will not rise above 400 ° C. By optimizing the conditions within the above-mentioned condition range, the temperature of the base material can be set to 150 ° C. or lower. In such a temperature range, the types of usable base materials greatly increase, which is more preferable. Further, the substrate fixing base may be cooled using cooling water or the like.

【0021】本発明によると、アーク放電により生じた
イオンが加速されて基材上に入射することにより二酸化
チタン膜を形成するため、非常に密着強度の優れた膜が
得られる。基材との密着強度をさらに向上させる目的
で、基材に負電位のバイアスを印加して成膜を行っても
よい。また、緻密な多結晶膜となるため、非常に高い硬
度が得られる。さらに、2〜10μm/hの非常に速い
速度で成膜が可能なため、低コストで光触媒膜胆持部材
を形成することができる。
According to the present invention, the ions generated by the arc discharge are accelerated and incident on the substrate to form a titanium dioxide film, so that a film having extremely excellent adhesion strength can be obtained. For the purpose of further improving the adhesion strength to the substrate, the film may be formed by applying a negative potential bias to the substrate. Further, a very high hardness can be obtained because of the dense polycrystalline film. Further, since the film can be formed at a very high speed of 2 to 10 μm / h, the photocatalytic film supporting member can be formed at low cost.

【0022】本発明においては、基材の温度400℃以
下でも充分に結晶性の優れたアナターゼ型二酸化チタン
膜を得ることができるため、耐熱性の低い基材も使用す
ることが可能となる。ここで述べる耐熱温度とは、熱に
よる基材の変形、変質が生じない最高温度を示してい
る。本発明では、例えば、セルロース、ナイロン、ポリ
カーボネート、ポリエステル、ポリプロピレン、ポリエ
チレン、ポリウレタン、ポリイミド、フッ素樹脂などの
耐熱性の低い有機高分子化合物上、あるいはシリコーン
などの無機高分子化合物上にも光触媒膜を被覆すること
が可能である。これらの高分子化合物は、構造部材とし
てさまざまな用途に利用されており、これらを基材とし
て使用することにより、光触媒の用途を大幅に広げるこ
とができるため、特に望ましい。
In the present invention, an anatase type titanium dioxide film having sufficiently excellent crystallinity can be obtained even at a substrate temperature of 400 ° C. or lower, so that a substrate having low heat resistance can be used. The heat-resistant temperature described here indicates the maximum temperature at which deformation and deterioration of the base material due to heat do not occur. In the present invention, for example, cellulose, nylon, polycarbonate, polyester, polypropylene, polyethylene, polyurethane, polyimide, a low heat-resistant organic high molecular compound such as fluororesin, or a photocatalytic film on an inorganic high molecular compound such as silicone. It is possible to coat. These polymer compounds are used in various applications as structural members, and the use of these as a base material is particularly desirable because the use of photocatalysts can be greatly expanded.

【0023】これらの高分子化合物を基材に用いる場合
は、これらの基材上に直接二酸化チタンを成膜すると、
フッ素樹脂など一部を除き、光触媒により基材が分解さ
れるため、基材上にSiO2や金属等の光触媒に分解さ
れない無機物質の中間層を形成し、中間層を介してその
上に二酸化チタンを成膜する。中間層はアモルファスで
も良いため、真空アーク蒸着法以外にも、スパッタ法、
真空蒸着法、イオンプレーティング法等の方法を用いる
ことができる。
When these polymer compounds are used for a substrate, a titanium dioxide film is formed directly on the substrate,
Since the base material is decomposed by the photocatalyst except for a part such as a fluororesin, an intermediate layer of an inorganic substance that is not decomposed by the photocatalyst such as SiO 2 or a metal is formed on the base material, and a carbon dioxide Titanium is deposited. Since the intermediate layer may be amorphous, in addition to the vacuum arc evaporation method, the sputtering method,
Methods such as a vacuum evaporation method and an ion plating method can be used.

【0024】窓ガラスなどに一般に用いられているソー
ダライムガラス上に高温で二酸化チタンを形成すると、
基材中のNaイオンが二酸化チタン膜に拡散して、触媒
活性が失われることが知られている。そのため、従来は
ソーダライムガラス上にSiO2などの中間層を形成
し、中間層上に二酸化チタン膜を形成していた。本発明
では低温で二酸化チタン膜が形成可能なため、ソーダラ
イムガラス上に直接、高硬度、高密着強度の二酸化チタ
ン膜を形成することができるため、短時間、低コストで
光触媒膜被覆部材を実現できる。
When titanium dioxide is formed at high temperature on soda lime glass generally used for window glass, etc.,
It is known that Na ions in the base material diffuse into the titanium dioxide film and the catalytic activity is lost. Therefore, conventionally, an intermediate layer such as SiO 2 was formed on soda lime glass, and a titanium dioxide film was formed on the intermediate layer. In the present invention, since a titanium dioxide film can be formed at a low temperature, a titanium dioxide film having high hardness and high adhesion strength can be formed directly on soda lime glass. realizable.

【0025】光触媒性能を向上させる目的で、二酸化チ
タンの表面にPt、Pd、Au、Ag、Ru、Rh、F
e、Co、Ni、Cu、Znなどの金属あるいはこれら
の金属の酸化物を単独あるいは複数を組み合わせて担持
させても良い。特に二酸化チタンの表面にPt、Pd、
Auなどの貴金属の粒径1〜100nmの微粒子を担持
させたものは、光触媒性能が高いため特に望ましいこと
が知られている。二酸化チタンの表面にこれらの金属あ
るいは金属酸化物を担持させる方法としては、アークイ
オンプレーティング法以外に、含浸法、光析出法、化学
析出法、同時沈殿法、混練法、振り混ぜ法、金属粉添加
法、真空蒸着法、スパッタ法などの技術を用いることが
できる。
For the purpose of improving the photocatalytic performance, Pt, Pd, Au, Ag, Ru, Rh, F
Metals such as e, Co, Ni, Cu, and Zn or oxides of these metals may be supported alone or in combination. In particular, Pt, Pd,
It is known that a carrier supporting fine particles of a noble metal such as Au having a particle diameter of 1 to 100 nm is particularly desirable because of its high photocatalytic performance. Methods for supporting these metals or metal oxides on the surface of titanium dioxide include, besides arc ion plating, impregnation, light precipitation, chemical deposition, simultaneous precipitation, kneading, shaking, metal Techniques such as a powder addition method, a vacuum evaporation method, and a sputtering method can be used.

【0026】[0026]

【発明の実施の形態】(実施例1) 真空アーク蒸着法
を用い、以下のようにしてソーダライムガラス上に直接
二酸化チタン膜を形成した。雰囲気ガスにAr+O2
ターゲットにTiを用い、全圧力を50mTorr、全
圧力に対するO2分圧の割合を50%、アーク電流を1
20Aで、30分間成膜を行った。基材の加熱および基
材へのバイアスの印加は行わなかった。成膜開始30分
後の基材の温度は50℃であった。
(Example 1) A titanium dioxide film was directly formed on soda lime glass using a vacuum arc evaporation method as follows. Ar + O 2 ,
Using Ti as the target, the total pressure was 50 mTorr, the ratio of the O 2 partial pressure to the total pressure was 50%, and the arc current was 1
Film formation was performed at 20 A for 30 minutes. The substrate was not heated and no bias was applied to the substrate. The temperature of the substrate 30 minutes after the start of film formation was 50 ° C.

【0027】成膜後のサンプルはX線回折により、アナ
ターゼ型結晶構造をもつことが確認された。膜厚は2μ
mであり、4μm/hの高速成膜ができていることが確
認された。ビッカーズ硬度計により膜の硬度を評価した
ところ、ビッカーズ硬度1100の高硬度膜が得られて
いることが確認された。スクラッチ試験機を用い膜の密
着強度を評価したところ、荷重70Nまで膜の剥離はみ
られず、優れた密着強度を示した。
The sample after film formation was confirmed by X-ray diffraction to have an anatase crystal structure. The film thickness is 2μ
m, and a high-speed film formation of 4 μm / h was confirmed. When the hardness of the film was evaluated using a Vickers hardness meter, it was confirmed that a high hardness film having a Vickers hardness of 1100 was obtained. When the adhesive strength of the film was evaluated using a scratch tester, no peeling of the film was observed up to a load of 70 N, indicating excellent adhesive strength.

【0028】(実施例2) ポリエステルフィルム上
に、SiO2中間層を介して二酸化チタン膜を形成し
た。まず、ポリエステルフィルム上にRFマグネトロン
スパッタ法を用いて、SiO2中間層を形成した。雰囲
気ガスにAr+O2、ターゲットにSiを用い、全圧力
を5mTorr、全圧力に対するO2分圧の割合を50
%、RF電力を200Wで、基板加熱を行わずに30分
間成膜を行った。成膜したSiO2膜はX線回折により
アモルファスであることが確認された。膜厚は0.1μ
mであった。
(Example 2) A titanium dioxide film was formed on a polyester film via an intermediate layer of SiO 2 . First, an SiO 2 intermediate layer was formed on a polyester film by using an RF magnetron sputtering method. Ar + O 2 was used as the atmosphere gas and Si was used as the target. The total pressure was 5 mTorr, and the ratio of the O 2 partial pressure to the total pressure was 50.
%, An RF power of 200 W, and a film was formed for 30 minutes without heating the substrate. X-ray diffraction confirmed that the formed SiO 2 film was amorphous. The film thickness is 0.1μ
m.

【0029】次にこの中間層上に真空アーク蒸着法によ
り、実施例1と同じようにして、30分間TiO2膜を
成膜した。成膜開始30分後の基材の温度は50℃であ
った。
Next, a TiO 2 film was formed on this intermediate layer for 30 minutes by the vacuum arc evaporation method in the same manner as in Example 1. The temperature of the substrate 30 minutes after the start of film formation was 50 ° C.

【0030】成膜後の二酸化チタン膜はX線回折によ
り、アナターゼ型結晶構造をもつことが確認された。二
酸化チタン膜の膜厚は2μmであり、4μm/hの高速
成膜ができていることが確認された。同じようにしてシ
リコン基板上に作製した膜の硬度を、ビッカーズ硬度計
により評価したところ、ビッカーズ硬度1020の高硬
度膜が得られていることが確認された。碁盤目テープ法
により膜の密着強度を評価したところ、膜の剥離は全く
みられず、優れた密着強度を示した。
The titanium dioxide film after film formation was confirmed by X-ray diffraction to have an anatase type crystal structure. The thickness of the titanium dioxide film was 2 μm, and it was confirmed that high-speed film formation of 4 μm / h was achieved. When the hardness of the film formed on the silicon substrate in the same manner was evaluated by a Vickers hardness meter, it was confirmed that a high hardness film having a Vickers hardness of 1020 was obtained. When the adhesive strength of the film was evaluated by the cross-cut tape method, no peeling of the film was observed at all, and excellent adhesive strength was exhibited.

【0031】[0031]

【発明の効果】以上説明したように、本発明によると耐
熱温度が400℃以下の基材上、あるいはソーダライム
ガラス上に高硬度、高密着強度のアナターゼ型二酸化チ
タン膜を形成した光触媒膜被覆部材を低コストで実現す
ることができる。
As described above, according to the present invention, a photocatalytic film coating with a high hardness and high adhesion strength anatase type titanium dioxide film formed on a substrate having a heat resistant temperature of 400 ° C. or lower or on soda lime glass. The member can be realized at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻岡 正憲 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4G059 AA11 AC30 EA04 EB03 4G069 AA03 AA08 BA04A BA04B BA14A BA14B BA48A BA48C CA01 CD10 DA06 EA08 EC22X EC22Y FA03 FB02 4K029 AA09 BA48 BD00 CA04 EA03 EA05 EA08 EA09  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masanori Tsujioka 1-1-1, Koyokita-Kita, Itami-shi, Hyogo F-term in Itami Works, Sumitomo Electric Industries, Ltd. 4G059 AA11 AC30 EA04 EB03 4G069 AA03 AA08 BA04A BA04B BA14A BA14B BA48A BA48C CA01 CD10 DA06 EA08 EC22X EC22Y FA03 FB02 4K029 AA09 BA48 BD00 CA04 EA03 EA05 EA08 EA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材上に直接あるいは中間層を介して光
触媒膜が被覆された部材であって、該基材の耐熱温度が
400℃以下であり、該光触媒膜が真空アーク蒸着法に
より形成されたアナターゼ型結晶構造を有する二酸化チ
タンであることを特徴とする、光触媒膜被覆部材。
1. A member in which a photocatalytic film is coated on a substrate directly or via an intermediate layer, wherein the heat resistant temperature of the substrate is 400 ° C. or less, and the photocatalytic film is formed by a vacuum arc vapor deposition method. A photocatalyst film-coated member, characterized in that it is titanium dioxide having an anatase-type crystal structure.
【請求項2】 前記基材が高分子化合物であることを特
徴とする、請求項1に記載の光触媒膜被覆部材。
2. The photocatalyst film-coated member according to claim 1, wherein the substrate is a polymer compound.
【請求項3】 ソーダライムガラス上に直接光触媒膜が
被覆された部材であって、該光触媒膜が真空アーク蒸着
法により形成されたアナターゼ型結晶構造を有する二酸
化チタンであることを特徴とする、光触媒膜被覆部材。
3. A member in which a photocatalytic film is directly coated on soda lime glass, wherein the photocatalytic film is titanium dioxide having an anatase type crystal structure formed by a vacuum arc evaporation method. Photocatalyst film covering member.
【請求項4】 基材上に直接あるいは中間層を介して光
触媒膜が被覆された部材の製造方法であって、真空アー
ク蒸着法を用い、少なくともArとO2を含む雰囲気ガ
ス中で、該雰囲気ガスの全圧力が5〜100mTor
r、該全圧力に対するO2分圧の割合が5〜95%、ア
ーク電流が55〜150A、基材温度が0〜400℃に
て、Tiターゲットをアーク蒸発させることにより、基
材上に二酸化チタン膜を形成させることを特徴とする、
光触媒膜被覆部材の製造方法。
4. A method for producing a member in which a photocatalyst film is coated on a substrate directly or via an intermediate layer, wherein the member is formed by a vacuum arc vapor deposition method in an atmosphere gas containing at least Ar and O 2. Atmospheric gas total pressure is 5-100 mTorr
r, the ratio of the O 2 partial pressure to the total pressure is 5 to 95%, the arc current is 55 to 150 A, the substrate temperature is 0 to 400 ° C., and the Ti target is arc-evaporated to form a carbon dioxide on the substrate. Characterized by forming a titanium film,
A method for producing a photocatalyst film-coated member.
JP10272664A 1998-09-28 1998-09-28 Photocatalyst film coated member and its production Pending JP2000096212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272664A JP2000096212A (en) 1998-09-28 1998-09-28 Photocatalyst film coated member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272664A JP2000096212A (en) 1998-09-28 1998-09-28 Photocatalyst film coated member and its production

Publications (1)

Publication Number Publication Date
JP2000096212A true JP2000096212A (en) 2000-04-04

Family

ID=17517076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272664A Pending JP2000096212A (en) 1998-09-28 1998-09-28 Photocatalyst film coated member and its production

Country Status (1)

Country Link
JP (1) JP2000096212A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082386A (en) * 2001-03-09 2001-08-30 김종학 Method for forming metallic coating onto abs copolymer
JP2002047558A (en) * 2000-07-31 2002-02-15 Nippon Steel Corp Metal sheet having photocatalytic activity, and its manufacturing method
JP2002186860A (en) * 2000-12-20 2002-07-02 Nihon Tetra Pak Kk Photocatalyst material
JP2002248355A (en) * 2001-02-27 2002-09-03 Ulvac Japan Ltd Photocatalytic apparatus
KR20020077852A (en) * 2002-08-30 2002-10-14 주식회사 새롬원 Glass board members for anti-contamination
JP2002348664A (en) * 2001-03-19 2002-12-04 Fuji Xerox Co Ltd Method for forming crystalline semiconductor thin film on substrate, laminated body with crystalline semiconductor thin film, and color filter
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material
JP2003268542A (en) * 2002-03-18 2003-09-25 Ulvac Japan Ltd Film deposition system and film deposition method
JP2005206890A (en) * 2004-01-23 2005-08-04 Tohoku Univ Method of producing cobalt-doped titanium dioxide film, cobalt-doped titanium dioxide film, and multilayer structure
WO2007139086A1 (en) * 2006-05-29 2007-12-06 Ulvac, Inc. Substrate for growth of carbon nanotube, method for growth of carbon nanotube, method for control of paticle diameter of catalyst for growth of carbon nanotube, and method for control carbon nanotube diameter
JP2013532234A (en) * 2010-07-12 2013-08-15 ドライステゲン ゲーエムベーハー Method for coating substrate by arc discharge
JP2013534968A (en) * 2010-06-11 2013-09-09 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating one or more surfaces of a substrate
JP2015112524A (en) * 2013-12-10 2015-06-22 大日本印刷株式会社 Method for producing photocatalyst functional material and method for producing sputtering target for forming photocatalytic film
CN108479707A (en) * 2018-05-25 2018-09-04 黄智慧 A kind of preparation method of material for air purification
CN110767448A (en) * 2018-07-25 2020-02-07 浙江清华柔性电子技术研究院 Preparation method of flexible energy storage film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047558A (en) * 2000-07-31 2002-02-15 Nippon Steel Corp Metal sheet having photocatalytic activity, and its manufacturing method
JP4620844B2 (en) * 2000-07-31 2011-01-26 新日本製鐵株式会社 Metal plate with photocatalytic activity
JP2002186860A (en) * 2000-12-20 2002-07-02 Nihon Tetra Pak Kk Photocatalyst material
JP4590118B2 (en) * 2001-02-27 2010-12-01 株式会社アルバック Photocatalytic device
JP2002248355A (en) * 2001-02-27 2002-09-03 Ulvac Japan Ltd Photocatalytic apparatus
KR20010082386A (en) * 2001-03-09 2001-08-30 김종학 Method for forming metallic coating onto abs copolymer
JP2002348664A (en) * 2001-03-19 2002-12-04 Fuji Xerox Co Ltd Method for forming crystalline semiconductor thin film on substrate, laminated body with crystalline semiconductor thin film, and color filter
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material
JP2003268542A (en) * 2002-03-18 2003-09-25 Ulvac Japan Ltd Film deposition system and film deposition method
KR20020077852A (en) * 2002-08-30 2002-10-14 주식회사 새롬원 Glass board members for anti-contamination
JP2005206890A (en) * 2004-01-23 2005-08-04 Tohoku Univ Method of producing cobalt-doped titanium dioxide film, cobalt-doped titanium dioxide film, and multilayer structure
WO2007139086A1 (en) * 2006-05-29 2007-12-06 Ulvac, Inc. Substrate for growth of carbon nanotube, method for growth of carbon nanotube, method for control of paticle diameter of catalyst for growth of carbon nanotube, and method for control carbon nanotube diameter
JP2013534968A (en) * 2010-06-11 2013-09-09 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating one or more surfaces of a substrate
JP2013532234A (en) * 2010-07-12 2013-08-15 ドライステゲン ゲーエムベーハー Method for coating substrate by arc discharge
JP2015112524A (en) * 2013-12-10 2015-06-22 大日本印刷株式会社 Method for producing photocatalyst functional material and method for producing sputtering target for forming photocatalytic film
CN108479707A (en) * 2018-05-25 2018-09-04 黄智慧 A kind of preparation method of material for air purification
CN110767448A (en) * 2018-07-25 2020-02-07 浙江清华柔性电子技术研究院 Preparation method of flexible energy storage film
CN110767448B (en) * 2018-07-25 2022-04-26 浙江清华柔性电子技术研究院 Preparation method of flexible energy storage film

Similar Documents

Publication Publication Date Title
JP5766778B2 (en) refrigerator
JP2000096212A (en) Photocatalyst film coated member and its production
US10968508B2 (en) Method of fabricating hydrophilic-hydrophobic transformable composite film
JP5708805B2 (en) Hydrophilic member and method for producing the same
Park et al. Superhydrophilic transparent titania films by supersonic aerosol deposition
US20060105911A1 (en) Photocatalyst material and process for producing the same
Yang et al. The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering
Lin et al. Fabricating TiO 2 photocatalysts by rf reactive magnetron sputtering at varied oxygen partial pressures
Carneiro et al. Surface properties of doped and undoped TiO2 thin films deposited by magnetron sputtering
Tomaszewski et al. Effect of substrate sodium content on crystallization and photocatalytic activity of TiO 2 films prepared by DC magnetron sputtering
JP2001205105A (en) Photocatalytic thin film
JP4037685B2 (en) Sputtering method
Tang et al. Photocatalytic activity and mechanical performance of o and n co-doped tio2 thin films
JP4620844B2 (en) Metal plate with photocatalytic activity
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
Kim et al. Enhanced hydrophilic property of TiO 2 thin film deposited on glass etched with O 2 plasma
EP1624087B1 (en) A method for depositing thin layers of titanium dioxide on support surfaces
JP2003135972A (en) Porous thin film containing photocatalyst and coating agent
Chiou et al. Influence of oxygen flow rate on photocatalytic TiO 2 films deposited by rf magnetron sputtering
JP2000237598A (en) Production of visible ray response type photocatalyst
JP2007075696A (en) Porous photocatalyst film
JP2007224370A (en) MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
Takeuchi et al. Preparation of the visible light responsive TiO 2 thin film photocatalysts by the RF magnetron sputtering deposition method
JPH11130434A (en) Titanium dioxide film, photocatalyst film and its production
Missner et al. Rutile TiO2 thin films growth on glass substrates with generation of high entropy interface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021