JP2002047558A - Metal sheet having photocatalytic activity, and its manufacturing method - Google Patents

Metal sheet having photocatalytic activity, and its manufacturing method

Info

Publication number
JP2002047558A
JP2002047558A JP2000231533A JP2000231533A JP2002047558A JP 2002047558 A JP2002047558 A JP 2002047558A JP 2000231533 A JP2000231533 A JP 2000231533A JP 2000231533 A JP2000231533 A JP 2000231533A JP 2002047558 A JP2002047558 A JP 2002047558A
Authority
JP
Japan
Prior art keywords
titanium
film
metal plate
layer
photocatalytic activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000231533A
Other languages
Japanese (ja)
Other versions
JP4620844B2 (en
Inventor
Motonori Tamura
元紀 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000231533A priority Critical patent/JP4620844B2/en
Publication of JP2002047558A publication Critical patent/JP2002047558A/en
Application granted granted Critical
Publication of JP4620844B2 publication Critical patent/JP4620844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal sheet combining deformability with workability while exhibiting, more effectively and continuously, a decomposing and removing action on the environmental pollutant and also deodorizing, soil-resisting and germicidal actions owing to the photocatalytic action of titanium oxide and also to provide its manufacturing method. SOLUTION: The metal sheet having photocatalytic activity has a film of 0.5-5.0 μm thick on the surface. Moreover, the film consists of the following layers formed from the metal-sheet side toward the surface in the order named: an inner layer consisting of titanium metal layer; an intermediate layer consisting of titanium metal and titanium oxide and having a chemical composition composed of a gradient composition from titanium metal layer to titanium oxide layer; and an outer layer consisting of titanium oxide layer. The method for manufacturing the metal sheet is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属板の表面に光
触媒活性を付与した金属板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal plate having a photocatalytic activity imparted to the surface of the metal plate and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタンは、紫外線領域の特定波長の
光を照射することによって、優れた光触媒活性を示し、
光触媒作用に由来する強力な酸化反応によって、環境汚
染物質の分解除去、防臭、防汚、殺菌作用を発揮するこ
とが知られ、様々な素材への適用および実用化が検討さ
れている。例えば、特開平3-69695 号公報では、酸化チ
タン光触媒等を紙類に被覆して脱臭性、抗菌性等を有す
るものの記載がある。また、特開平2-280818号及び特開
平3-94814 号公報では、この担体の崩壊防止の一方法と
して、セラミック繊維等を使用している。しかし、この
方法は、セラミック繊維シートの後加工であるため、製
造装置が特殊であること、素材に柔軟性が無いこと等、
実用上の課題が多い。
2. Description of the Related Art Titanium oxide exhibits excellent photocatalytic activity when irradiated with light of a specific wavelength in the ultraviolet region.
It is known that a strong oxidation reaction derived from photocatalysis exerts decomposition and removal of environmental pollutants, deodorization, antifouling, and bactericidal action, and application to various materials and practical application thereof are being studied. For example, Japanese Patent Application Laid-Open No. 3-69695 describes that a titanium oxide photocatalyst or the like is coated on paper to have a deodorizing property, an antibacterial property and the like. Further, in JP-A-2-280818 and JP-A-3-94814, as one method of preventing the carrier from collapsing, ceramic fibers or the like are used. However, since this method is a post-processing of the ceramic fiber sheet, the manufacturing equipment is special, the material is not flexible, etc.
There are many practical issues.

【0003】素材に柔軟性、加工性がある場合、ユーザ
ー側でも、用途に合わせて曲げ、切断、穿孔などの加工
ができ、適用範囲が飛躍的に拡大する。金属板は、ガラ
スやセラミック素材に比べ、二次加工が容易だが、表面
に酸化チタン等の硬質で厚い皮膜が形成されていると、
酸化チタンは金属板の変形に追従できず、金属板と酸化
チタンとの界面で剥離したり、酸化チタン自体が崩壊す
る場合が普通である。このため、加工の終わった最終製
品に、酸化チタンの皮膜を形成させる方法が一般的であ
る。このとき、加工後の基材形状によっては、皮膜の形
成が不均質になること、大きな皮膜形成装置が必要にな
ること等、種々の問題があった。さらに、本来、酸化チ
タンと金属板は、熱膨張率やヤング率が著しく異なるた
め、温度や応力等の環境要因が変動すると、界面の剥離
が生じやすい問題がある。このような課題を解決するた
めに、酸化チタンの粒子を樹脂等の有機物に分散させる
ことも検討されたが、光触媒活性が極端に低下したり、
酸化チタンの強い酸化力で、酸化チタンに接する有機物
が分解されたり等、の問題は避けられない。光触媒活性
のある金属板で、柔軟性や加工性と、高い光触媒活性を
両立することは、一般的にはできなかった。
[0003] If the material has flexibility and workability, the user can perform processing such as bending, cutting, and drilling according to the intended use, and the range of application is dramatically expanded. Metal plates are easier to perform secondary processing than glass or ceramic materials, but if a hard and thick film such as titanium oxide is formed on the surface,
The titanium oxide cannot follow the deformation of the metal plate, and usually peels off at the interface between the metal plate and the titanium oxide or the titanium oxide itself collapses. For this reason, a method of forming a titanium oxide film on a finished product after processing is generally used. At this time, depending on the shape of the base material after processing, there were various problems, such as uneven formation of the film and the necessity of a large film forming apparatus. In addition, since the thermal expansion coefficient and the Young's modulus of titanium oxide and the metal plate are significantly different from each other, there is a problem that the interface is apt to be separated when environmental factors such as temperature and stress change. In order to solve such problems, it has been considered to disperse titanium oxide particles in an organic substance such as a resin, but the photocatalytic activity is extremely reduced,
Due to the strong oxidizing power of titanium oxide, problems such as decomposition of organic substances in contact with titanium oxide cannot be avoided. In general, it has not been possible to make a metal plate having photocatalytic activity compatible with flexibility and processability and high photocatalytic activity.

【0004】酸化チタン被覆方法については、チタンの
アルコキシドの加水分解生成物を塗布する方法、すなわ
ちゾル- ゲル法が最も一般的であり、これに類する他の
技術としては、例えば、特開平4-83537 号公報に示され
る、チタンアルコキシドにアミド及び/ 又はグリコール
を添加し、その反応生成物を利用する方法、及び特開平
7-100378号公報に示されているように、チタンアルコキ
シドにアルコールアミン類を添加し、その反応生成物を
塗料成分として用いる方法がある。しかし、上記のゾル
- ゲル法では、塗料の粘度や塗布条件によって、形成さ
れる皮膜の厚さが変化し易く、皮膜の性能を高めるため
に厚膜化すると、乾燥の際の皮膜の収縮が大きいため、
皮膜と基材表面との間の密着性が低くなり、剥離しやす
くなる等の問題点がある。さらに、酸化チタン皮膜の結
晶性を高めるためには、被覆後に乾燥させ、さらに焼成
という3 つの工程が必須であり、酸化チタンの内、光触
媒活性が高いとされるアナターゼ相を安定に形成させる
には、一般的に、大気中で、焼成温度を500 ℃以上とい
う高温で行う必要があった。さらに、1 回の塗布で得ら
れる膜厚は、0.1 μm 程度の場合が多く、厚い膜にする
ためには、上記の塗布、乾燥、焼成を数回繰り返す等の
複雑な工程を経る必要があった。高温で大気中で何回も
焼成した場合、基材からの元素の拡散が避けられず、特
に1μm 程度の厚さの皮膜の場合には、皮膜全体に基材
中の元素が拡散し、酸化チタンの光触媒活性を低下させ
る等の問題があった。例えば、ステンレス鋼の場合、Cr
が酸化チタン膜中に拡散することが、知られている。
[0004] The most common method of coating titanium oxide is a method of applying a hydrolysis product of an alkoxide of titanium, that is, a sol-gel method. No. 83537, a method in which an amide and / or glycol is added to a titanium alkoxide and the reaction product is used,
As disclosed in JP-A-7-100378, there is a method of adding an alcoholamine to a titanium alkoxide and using a reaction product thereof as a coating component. But the above sol
-In the gel method, the thickness of the formed film tends to change depending on the viscosity of the paint and the application conditions, and if the film is thickened to improve the performance of the film, the film shrinks greatly during drying,
There are problems that the adhesion between the film and the substrate surface is lowered, and the film is easily peeled off. Furthermore, in order to enhance the crystallinity of the titanium oxide film, three steps of drying after coating and firing are essential, and in order to stably form an anatase phase, which is considered to have high photocatalytic activity, in titanium oxide. In general, it was necessary to perform the firing at a high temperature of 500 ° C. or more in the atmosphere. Furthermore, the film thickness obtained by one coating is often about 0.1 μm, and in order to obtain a thick film, it is necessary to go through complicated steps such as repeating the above-mentioned coating, drying and baking several times. Was. When fired many times in air at high temperature, the diffusion of elements from the substrate is unavoidable. Particularly in the case of a film with a thickness of about 1 μm, the elements in the substrate diffuse into the entire film and oxidation occurs. There were problems such as a reduction in the photocatalytic activity of titanium. For example, for stainless steel, Cr
Is known to diffuse into the titanium oxide film.

【0005】以上のように、従来の酸化チタン皮膜が形
成された金属板は、皮膜と金属板との密着性が悪いた
め、変形性、加工性に乏しく、触媒活性の発現性、持続
性に問題があり、広範囲な実用化を妨げている。また、
皮膜形成法についても、皮膜の均質性、密着性の向上に
は限界があり、処理工程も複雑で、効率のよい製造方法
が望まれていた。
[0005] As described above, the conventional metal plate on which a titanium oxide film is formed is poor in deformability and workability due to poor adhesion between the film and the metal plate. There is a problem that hinders widespread practical application. Also,
As for the film forming method, there is a limit in improving the homogeneity and adhesion of the film, the processing steps are complicated, and an efficient manufacturing method has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な事情に着目してなされたものであって、酸化チタンの
有する光触媒作用に由来する環境汚染物質の分解除去、
防臭、防汚、殺菌作用を、より効果的に持続的に発揮し
つつ、変形や加工性を兼ね備えた金属板及びその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed to decompose and remove environmental pollutants derived from the photocatalytic action of titanium oxide.
It is an object of the present invention to provide a metal plate having both deformation and workability while exhibiting deodorizing, antifouling, and sterilizing effects more effectively and continuously, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の目的
を達成するため、鋭意研究を重ねた結果、酸化チタン皮
膜と金属板との界面に、化学性が傾斜組成となっている
中間層を形成させることで、物理的特性に連続性を持た
せ、密着性を向上させることを見出し、本発明をなすに
至った。
Means for Solving the Problems The inventor of the present invention has conducted intensive studies in order to achieve the above object, and as a result, the intermediate between the titanium oxide film and the metal plate has a graded chemical composition at the interface. The present inventors have found that by forming a layer, physical properties are given continuity and adhesion is improved, and the present invention has been accomplished.

【0008】即ち、表面に0.5 〜5.0 μm の厚さの皮膜
を有する金属板であって、該皮膜が金属板から表面に向
かって、金属チタン層からなる内層と、金属チタンとチ
タン酸化物からなり、化学組成が金属チタン層からチタ
ン酸化物層に傾斜組成となっている中間層と、チタン酸
化物層からなる外層と順に形成した皮膜を有することを
特徴とする光触媒活性を有する金属板である。さらに、
内層の厚さが0.05〜1.0 μm 、中間層の厚さが0.05〜1.
0 μm 、及び、外層の厚さが0.4 〜3.0 μm であり、さ
らに外層が、アナターゼ型酸化チタンを80体積% 以上含
有することが好ましい。また、金属板が、ステンレス
鋼、又は、チタン又はチタン基合金であることも望まし
い。
That is, a metal plate having a coating having a thickness of 0.5 to 5.0 μm on its surface, wherein the coating is formed from a metal titanium layer to an inner layer, a metal titanium layer and a titanium oxide layer. A metal plate having photocatalytic activity, characterized in that the intermediate layer has a chemical composition having a gradient composition from a metal titanium layer to a titanium oxide layer, and a coating formed in the order of an outer layer made of a titanium oxide layer. is there. further,
The thickness of the inner layer is 0.05-1.0 μm, and the thickness of the middle layer is 0.05-1.
Preferably, the outer layer has a thickness of 0.4 to 3.0 μm, and the outer layer further contains at least 80% by volume of anatase type titanium oxide. It is also desirable that the metal plate be stainless steel, or titanium or a titanium-based alloy.

【0009】また、上記光触媒活性を有する金属板を形
成させる方法であって、内層から外層までの皮膜形成中
は、一度も大気開放せず減圧下で、チタン蒸気又はイオ
ン化したチタン蒸気と、酸素の分圧を別々に制御するPV
D 法を用い、500 ℃以下の温度で金属板上に皮膜を形成
させる方法であることを特徴とする光触媒活性を有する
金属板の製造方法である。さらに、前記PVD 法が、スパ
ッタリングまたはイオンプレーテイングであることが、
好ましい。
In the above-mentioned method for forming a metal plate having photocatalytic activity, during the formation of a film from an inner layer to an outer layer, titanium vapor or ionized titanium vapor and oxygen are released under reduced pressure without ever opening to the atmosphere. That separately control the partial pressure of
A method for producing a metal plate having photocatalytic activity, wherein the method is a method of forming a film on a metal plate at a temperature of 500 ° C. or less by using Method D. Furthermore, that the PVD method is sputtering or ion plating,
preferable.

【0010】[0010]

【発明の実施の形態】皮膜の構成、及び中間層の化学組
成についての概念図を図1に示す。金属板表面には、金
属チタン(Ti)からなる内層が形成される。不純物を含ま
ない場合には、化学式でTiと表記され、 Ti 含有量は、
100 質量% となる。外層は、チタン酸化物層であり、最
も活性が高いのはアナターゼ型酸化チタンであり、不純
物を含まない場合には、化学式でTiO2と表記することが
できる。この場合、Ti含有量は、約59.9質量% となる。
中間層は、チタン含有量が、内層の含有量から、外層の
含有量に、ほぼ連続的に変化するもので、大きな不連続
点がないことが特徴であり、その変化は、ほぼ直線的で
あることが好ましい。これを傾斜組成と便宜上呼ぶこと
にする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing the structure of a film and the chemical composition of an intermediate layer. An inner layer made of titanium metal (Ti) is formed on the surface of the metal plate. If it does not contain any impurities, it is represented by Ti in the chemical formula, and the Ti content is
It becomes 100% by mass. The outer layer is a titanium oxide layer, the most active being anatase-type titanium oxide, and when it contains no impurities, it can be described as TiO 2 in the chemical formula. In this case, the Ti content is about 59.9% by mass.
In the intermediate layer, the content of titanium changes almost continuously from the content of the inner layer to the content of the outer layer, and is characterized by having no large discontinuous points, and the change is almost linear. Preferably, there is. This will be referred to as a gradient composition for convenience.

【0011】中間層は、金属チタンと酸化チタンから構
成され、それぞれの結晶粒が分散混合していても、ある
いは固溶体を形成していてもよい。結晶質であっても、
非晶質であってもよい。酸化チタンの結晶相には、Ti
2O、TiO 、Ti2O3 、Ti2O5 、Ti 3O5 、Tin O2n-1(n=4 〜
10) 、TiO2等と表記できる組成の結晶相が知られ、それ
ぞれの結晶相の混合層で形成されていてもよい。
The intermediate layer is composed of titanium metal and titanium oxide.
Even if the individual grains are dispersed and mixed
Alternatively, a solid solution may be formed. Even if it ’s crystalline,
It may be amorphous. The crystal phase of titanium oxide is Ti
TwoO, TiO, TiTwoOThree, TiTwoOFive, Ti ThreeOFive, TinO2n-1(n = 4 〜
10), TiOTwoA crystal phase with a composition that can be described as
It may be formed of a mixed layer of each crystal phase.

【0012】化学組成の不連続点を無くすことで、熱膨
張率やヤング率等の物理特性の不連続を最小限に抑える
ことができる。光触媒活性を有する金属板は、様々な環
境で、長期にわたって使用される可能性がある。温度変
化が大きかったり、外力がかかったりする場合もあり、
これらの環境要因に対して、皮膜の密着性や光触媒活性
等の長期耐久性が求められる。このためには、皮膜と金
属板基材との物理特性の連続性が必要であり、中間層は
重要である。例えば、熱膨張率の不連続があると、ここ
に応力が集中し、皮膜の剥離の起点になる。具体的に
は、18Cr-8Niステンレス基板の表面に直接アナタ‐ゼ層
が形成されている場合、基板の線膨張係数は、14.7×10
-6/deg(20 ℃) なのに対して、アナターゼは、10.2×10
-6/deg(20℃) である。500 ℃で製造されたアナターゼ
被覆ステンレス板が20℃に冷却された時、例えば1m×1m
の建材を想定すると、線方向に2.5 μm 程度のずれ( ス
テンレスとアナターゼの線膨張の差から概算) を生じる
ような応力が発生する。
By eliminating discontinuities in the chemical composition, discontinuities in physical properties such as thermal expansion coefficient and Young's modulus can be minimized. A metal plate having photocatalytic activity may be used for a long time in various environments. Temperature change may be large or external force may be applied,
For these environmental factors, long-term durability such as adhesion of the film and photocatalytic activity is required. For this purpose, continuity of physical properties between the film and the metal plate substrate is required, and the intermediate layer is important. For example, if there is a discontinuity in the coefficient of thermal expansion, stress concentrates here and becomes a starting point of peeling of the film. Specifically, when an anatase layer is formed directly on the surface of an 18Cr-8Ni stainless steel substrate, the linear expansion coefficient of the substrate is 14.7 × 10
-6 / deg (20 ° C), whereas anatase is 10.2 × 10
-6 / deg (20 ° C). When anatase-coated stainless steel plate manufactured at 500 ° C is cooled to 20 ° C, for example, 1m x 1m
Assuming that a building material is used, a stress is generated that causes a displacement of about 2.5 μm in the linear direction (estimated from the difference in linear expansion between stainless steel and anatase).

【0013】この応力は、アナターゼとステンレス基板
との間に集中し、界面の残留応力と外力との複合された
力が、両者の密着力を越えると剥離する。つまり、アナ
ターゼとステンレスとの密着力以下の外力でも、界面に
残留応力があると、アナターゼが容易に剥離することに
なる。このように、線膨張係数の差が界面の残留応力の
大きさと相関するので、それぞれの界面での線膨張係数
の差を少なくすることが、応力集中を避ける上で重要で
ある。外層のチタン酸化物層は、皮膜形成法によっては
応力が残留することがあり、中間層は応力の緩和層とし
ても意味がある。上記機能を効果的に発揮するには、中
間層の厚さは、0.05〜1.0 μm であることが望ましい。
0.05μm 未満では、効果が少なく、1.0 μm より厚くて
も、その効果は変わらないため、不経済となる。
This stress concentrates between the anatase and the stainless steel substrate, and peels off when the combined force of the residual stress at the interface and the external force exceeds the adhesion between the two. In other words, even if the external force is equal to or less than the adhesion between anatase and stainless steel, if there is residual stress at the interface, the anatase will be easily peeled off. As described above, the difference in the coefficient of linear expansion correlates with the magnitude of the residual stress at the interface. Therefore, it is important to reduce the difference in the coefficient of linear expansion at each interface in order to avoid stress concentration. Stress may remain in the outer titanium oxide layer depending on the film forming method, and the intermediate layer also serves as a stress relieving layer. In order to exert the above function effectively, the thickness of the intermediate layer is desirably 0.05 to 1.0 μm.
If the thickness is less than 0.05 μm, the effect is small, and even if the thickness is more than 1.0 μm, the effect is not changed, which is uneconomical.

【0014】外層の酸化チタン層は、0.4 μm 以上の膜
厚が好ましく、光を効率的に吸収し、光触媒として機能
する。最も効率的な光吸収には、1.0 μm 以上がさらに
望ましい。酸化チタン層の膜厚は、3.0 μm を越える
と、変形や曲げ加工性が劣るので、3.0 μm 以下が好ま
しい。最も望ましくは、2.0 μm 以下である。外層の酸
化チタン層の結晶相は、光触媒活性という観点から、ア
ナターゼ主体であることが望ましい。TiO2組成の酸化チ
タンとして、アナターゼ、ルチル、ブルッカイトが知ら
れているが、アナターゼ型酸化チタンが最も光触媒活性
が高く、この含有量を増やすことが好ましい。最も好ま
しくは、アナターゼ型酸化チタンの外層中の含有率を80
体積% 以上とすると、高い光触媒活性が得られる。目的
に応じて、上記外層の表面に、白金族金属を担持させ、
さらに触媒活性を高めても良い。この際、担持させる金
属層は、上記皮膜の厚さの10% 以下であることが望まし
く、この範囲であれば、変形や曲げ加工性を損なわな
い。
The outer titanium oxide layer preferably has a thickness of 0.4 μm or more, efficiently absorbs light, and functions as a photocatalyst. More than 1.0 μm is more desirable for the most efficient light absorption. When the thickness of the titanium oxide layer exceeds 3.0 μm, deformation and bending workability are inferior. Therefore, the thickness is preferably 3.0 μm or less. Most preferably, it is 2.0 μm or less. The crystal phase of the outer titanium oxide layer is preferably mainly composed of anatase from the viewpoint of photocatalytic activity. Anatase, rutile, and brookite are known as titanium oxides having a TiO 2 composition. Anatase-type titanium oxide has the highest photocatalytic activity, and its content is preferably increased. Most preferably, the content of anatase-type titanium oxide in the outer layer is 80%.
When the content is at least% by volume, high photocatalytic activity can be obtained. Depending on the purpose, a platinum group metal is supported on the surface of the outer layer,
Further, the catalytic activity may be increased. At this time, the metal layer to be supported is desirably 10% or less of the thickness of the film, and within this range, the deformation and bending workability are not impaired.

【0015】内層のチタン層は、金属板とチタン酸化物
の密着性向上に重要である。厚さは、0.05〜1.0 μm で
あることが効果的である。0.05μm 未満では、効果が少
なく、1.0 μm より厚くても、その効果は変わらない。
金属板としては、汎用性、耐食性、意匠性、加工性、機
能性に優れたステンレス鋼、チタンまたはチタン基合金
が好ましい。これらは、建築材、空調機器、排ガス機
器、浄水機器等に用いられる各種部材として、既に使用
されており、実績もあるため、適用しやすい。
The inner titanium layer is important for improving the adhesion between the metal plate and the titanium oxide. Advantageously, the thickness is between 0.05 and 1.0 μm. If the thickness is less than 0.05 μm, the effect is small, and if the thickness is greater than 1.0 μm, the effect does not change.
As the metal plate, stainless steel, titanium, or a titanium-based alloy excellent in versatility, corrosion resistance, designability, workability, and functionality is preferable. These are already used as various members used for building materials, air conditioning equipment, exhaust gas equipment, water purification equipment, and the like, and have a proven track record, so that they are easy to apply.

【0016】上記のような光触媒活性を有する金属板
は,皮膜をPVD(Physical Vapor Deposition)法等によ
り、金属板表面に形成することで製造できる。PVD 法
は、基材への温度による負荷が少なく、緻密で微細粒か
らなる結晶質皮膜が形成できる特徴がある。上記皮膜形
成に適しているPVD 法として、具体的には、真空蒸着、
スパッタリング、イオンプレーティングの各種手法が適
している。金属板基材の熱による変形や、金属板基材か
ら皮膜への元素拡散等による光触媒活性の劣化等の問題
を生じないために、皮膜形成時の基材温度は500 ℃以下
とする。上記3 手法は、いずれも基材の温度が500 ℃以
下で皮膜形成可能で、十分な皮膜密着性と皮膜の結晶性
が得られ、金属板基材の熱による変形や、金属板基材か
ら皮膜への元素拡散等による光触媒活性の劣化等の問題
は発生しにくい。また、上記3 手法は、成膜速度が毎分
0.02〜0.2 μm 程度で、例えば1 μm の皮膜を得るのに
5 〜50分と実用的である。
The metal plate having photocatalytic activity as described above can be manufactured by forming a film on the surface of the metal plate by a PVD (Physical Vapor Deposition) method or the like. The PVD method is characterized in that the load on the substrate due to the temperature is small, and a dense, fine-grained crystalline film can be formed. As the PVD method suitable for the above film formation, specifically, vacuum deposition,
Various techniques such as sputtering and ion plating are suitable. In order to avoid problems such as deformation of the metal plate base material due to heat and deterioration of photocatalytic activity due to diffusion of elements from the metal plate base material to the film, the temperature of the base material at the time of film formation is 500 ° C. or less. All of the above three methods can form a film at a substrate temperature of 500 ° C or lower, provide sufficient film adhesion and film crystallinity, deform the metal plate substrate due to heat, and Problems such as deterioration of photocatalytic activity due to diffusion of elements into the film are unlikely to occur. In the above three methods, the deposition rate is
0.02 to 0.2 μm, for example, to obtain a 1 μm film
It is practical for 5 to 50 minutes.

【0017】PVD 法を上記皮膜の形成に適用する場合、
減圧下で金属チタンを蒸発させ、反応ガスとして酸素を
導入する方法が、酸化チタンの組成の制御性に優れ、適
している。上記皮膜の中間層の傾斜組成も、蒸発させる
チタン量と、反応ガスの酸素分圧または流量の比を、連
続的に変化させることで、形成される。つまり、内層の
形成には、酸素ガスを導入せず、チタン蒸気のみで成膜
するが、中間層の形成には、酸素ガスを反応チャンバー
中に少しづつ導入し、その導入量を時間とともに次第に
増やし、外層の形成時に導入する酸素ガス量まで増やす
といった工程で形成できる。このプロセスは、内層、中
間層、外層までを、一度も大気開放せず、同一チャンバ
ー内で連続的に形成できる。しかも、形成される結晶相
の制御がしやすく、後熱処理等は必要ない。例えば、成
膜時の基材温度が490 ℃で、金属チタンを蒸発させる電
子ビームの電流を200mA(加速電圧20kV) 、酸素圧力を0.
05Paとして、アーク放電活性化イオンプレーテイング装
置で、イオン化を40V 、10A で行った場合、チタン蒸発
源から45cm上部に設置させたステンレス鋼SUS304試料を
基板とし、10分間の成膜を行なった場合、0.8 μm のル
チル主体の皮膜を生成することができる。これに対し
て、同じ装置、試料で、基材温度300 ℃で20分間の成膜
をした場合、約1.5 μm のアナターゼを主体にした皮膜
が形成できる。このように、PVD 法では、イオン化、雰
囲気圧力を適性に保ち、基材の温度、成膜時間等を制御
することで、結晶相や膜厚を目的のものにすることがで
きる。成膜速度も早いので、同様のプロセスを繰り返す
必要もなく、従来のゾル- ゲル法と比べると、簡便かつ
短時間で、管理しやすく、製造コストも低くできる。
When the PVD method is applied to the formation of the above-mentioned film,
A method of evaporating metallic titanium under reduced pressure and introducing oxygen as a reaction gas is suitable because of excellent controllability of the composition of titanium oxide. The gradient composition of the intermediate layer of the film is also formed by continuously changing the ratio between the amount of titanium to be evaporated and the oxygen partial pressure or flow rate of the reaction gas. In other words, to form the inner layer, oxygen gas is not introduced, and the film is formed only by titanium vapor.However, to form the intermediate layer, oxygen gas is gradually introduced into the reaction chamber, and the introduced amount gradually increases with time. It can be formed in a process of increasing the amount of oxygen gas to be introduced when forming the outer layer. In this process, the inner layer, the intermediate layer, and the outer layer can be continuously formed in the same chamber without ever opening to the atmosphere. In addition, the formed crystal phase can be easily controlled, and no post heat treatment or the like is required. For example, when the substrate temperature during film formation is 490 ° C., the electron beam current for evaporating metallic titanium is 200 mA (acceleration voltage 20 kV), and the oxygen pressure is 0.
When the ionization was performed at 40 V and 10 A with an arc discharge activated ion plating device at 05 Pa, when the stainless steel SUS304 sample placed 45 cm above the titanium evaporation source was used as the substrate and the film was formed for 10 minutes. , 0.8 μm rutile-based coatings. On the other hand, when a film is formed at a substrate temperature of 300 ° C. for 20 minutes using the same apparatus and sample, a film mainly composed of anatase of about 1.5 μm can be formed. As described above, in the PVD method, the crystal phase and the film thickness can be adjusted to the desired values by controlling the temperature of the base material, the film formation time, and the like while keeping the ionization and the atmospheric pressure at an appropriate level. Since the film formation rate is high, there is no need to repeat the same process, and compared to the conventional sol-gel method, it is simple, easy, and easy to manage, and the production cost can be reduced.

【0018】減圧下での成膜は、酸化チタンの形成反応
を進める上で重要である。また、成膜中に、500 ℃以下
で金属板基材を加熱すると、基材の温度による劣化を抑
えつつ、皮膜の密着性、結晶性が向上するので好まし
い。基材の加熱は、減圧下で行うので、大気中で焼成す
る場合より、基材表面の酸化は少ない。減圧にすること
で、金属チタンの蒸発が効率良くできる。
Film formation under reduced pressure is important for promoting the formation reaction of titanium oxide. Further, it is preferable to heat the metal plate base material at 500 ° C. or lower during the film formation because the adhesion and the crystallinity of the film are improved while suppressing the deterioration of the base material due to the temperature. Since the heating of the substrate is performed under reduced pressure, the surface of the substrate is less oxidized than in the case of firing in the air. By reducing the pressure, the titanium metal can be efficiently evaporated.

【0019】真空蒸着は,真空下で、金属チタンを電子
ビーム等の熱源を用いて溶解し、チタンの蒸気を発生さ
せ、これを基材に蒸着する方法である。装置構成が比較
的簡単で、皮膜形成コストは上記3 手法の内で最も安
い。スパッタリングは、イオン化したアルゴン等のガス
成分をターゲットであるチタンに照射し、このターゲッ
トからたたき出されたチタン成分を基材に成膜する方法
である。イオンプレーティングは、電子ビーム等の熱源
を用いて溶解し、チタンの蒸気を発生させ、プラズマで
イオン化されたチタン成分を基材上で反応させ成膜する
方法で、基材に電荷をかけることでイオンを呼び寄せ、
緻密な皮膜形成に有利で、基材温度が低くても高い密着
性が得られる。イオンプレーティング法では、微細粒の
結晶よりなる皮膜形成が容易で、例えば、イオンプレー
ティング法の一種であるアーク放電活性化イオンプレー
ティング法を使い、基材の温度400 ℃で、酸素圧力0.05
Paで成膜した厚さ1 μm のアナターゼ皮膜では、結晶粒
が約0.01μm 程度の微細粒となる。
Vacuum deposition is a method in which metallic titanium is melted under vacuum using a heat source such as an electron beam to generate titanium vapor, and the titanium vapor is deposited on a substrate. The equipment configuration is relatively simple, and the film formation cost is the lowest of the above three methods. Sputtering is a method in which a target titanium is irradiated with a gas component such as ionized argon or the like, and a titanium component hit from the target is deposited on a substrate. Ion plating is a method of dissolving using a heat source such as an electron beam, generating titanium vapor, and reacting the titanium component ionized by plasma on the substrate to form a film. Attract ions with
This is advantageous for forming a dense film, and high adhesion can be obtained even when the substrate temperature is low. In the ion plating method, it is easy to form a film composed of fine-grained crystals. For example, an arc discharge activated ion plating method, which is a type of the ion plating method, is used.
In a 1 μm-thick anatase film formed at Pa, the crystal grains become fine grains of about 0.01 μm.

【0020】このように目的とする皮膜の特性に応じ
て、成膜法を選ぶことができる。上記3 方法のうち、ス
パッタリング及びイオンプレーティング法は、プラズマ
によってチタン蒸気をイオン化あるいは励起活性化させ
るので、反応性に富み、基材の温度が低くても、高い皮
膜の結晶性、密着性が得られ、皮膜も緻密で微細粒から
構成される。成膜速度の点からは、電子銃蒸発源を使っ
た、真空蒸着やイオンプレーティング法が有利である。
さらに、アナターゼ相主体の皮膜を実用的な成膜速度で
形成するには、基材の温度を200 〜450 ℃とし、チタン
の蒸発速度が毎分0.06〜0.15μm に対して、酸素の雰囲
気圧力が3 〜5 ×10-4Torrで、成膜することが好まし
い。
As described above, a film forming method can be selected according to the characteristics of a target film. Of the above three methods, the sputtering and ion plating methods use titanium to ionize or excite titanium vapor by plasma, so that they are highly reactive and have high film crystallinity and adhesion even at low substrate temperatures. The film obtained is dense and composed of fine grains. From the viewpoint of the film formation rate, vacuum evaporation or ion plating using an electron gun evaporation source is advantageous.
Furthermore, in order to form a film mainly composed of anatase phase at a practical film forming rate, the substrate temperature is set to 200 to 450 ° C., the titanium evaporation rate is set to 0.06 to 0.15 μm per minute, and the oxygen atmosphere pressure is increased. Is preferably 3 to 5 × 10 −4 Torr.

【0021】[0021]

【実施例】以下に、本発明の実施例及び比較例を示す。
工業用純チタン板及びステンレス鋼板(SUS304)を金属板
基材とし、PVD 法等で皮膜形成を行って、得られた試料
について、皮膜の性状( 構成、膜厚、アナターゼ型酸化
チタン含有量、密着性) を調べ、さらにそれぞれの試料
について、光触媒活性( ヨウ化カリウム分解度、脱臭効
果、抗菌活性) を評価した。皮膜形成の諸条件や評価結
果について、表1 に示す。チタン基合金は、Al、Zr、H
f、V 、Nb、Ta、Mn、Fe、Co、Ni、Cr等を0.5 〜5 質量%
含むものが一般的であるが、ここでは、Alを0.5 質量%
含むチタン基合金を使用した。
EXAMPLES Examples of the present invention and comparative examples are shown below.
Using a pure titanium plate for industrial use and a stainless steel plate (SUS304) as a metal plate substrate, forming a film by PVD method or the like, and for the obtained sample, the properties of the film (configuration, film thickness, anatase type titanium oxide content, Each sample was evaluated for its photocatalytic activity (degree of potassium iodide decomposition, deodorizing effect, antibacterial activity). Table 1 shows the conditions for film formation and the evaluation results. Titanium-based alloys are Al, Zr, H
f, V, Nb, Ta, Mn, Fe, Co, Ni, Cr, etc. 0.5 to 5 mass%
In general, the Al content is 0.5% by mass.
A titanium-based alloy was used.

【0022】皮膜の構成、膜厚、アナターゼ型酸化チタ
ン含有量は、オージェ電子分光法、X 線光電子分光法、
グロー放電発光分析法、ラマン散乱分析法、及びX 線回
折法によって求めた。密着性は、90°曲げ試験によって
評価した。密着性評価用の基材は、SUS304のφ30mm、厚
さ0.3 mmの円盤状基材を使い、この表面に皮膜を形成
した。この試料を曲げ角90°に加工変形し、最も変形の
大きい部分( 折れ曲がった部分) を反射顕微鏡で、倍率
100 倍で観察した。皮膜が完全に剥離した場合を、密着
性×、一部皮膜の剥離が起こり、部分的に皮膜が付着し
ている場合を、密着性△、顕微鏡観察では剥離が認めら
れない場合を、密着性○とした。
The composition, thickness and anatase type titanium oxide content of the film were determined by Auger electron spectroscopy, X-ray photoelectron spectroscopy,
It was determined by glow discharge emission analysis, Raman scattering analysis, and X-ray diffraction. The adhesion was evaluated by a 90 ° bending test. As a substrate for evaluation of adhesion, a disk-shaped substrate of SUS304 having a diameter of 30 mm and a thickness of 0.3 mm was used, and a film was formed on the surface. This sample was deformed to a bending angle of 90 °, and the part with the largest deformation (bent part) was magnified using a reflection microscope.
Observed at 100x. When the film was completely peeled, the adhesion was evaluated as X. When the film was partially peeled and the film was partially adhered, the adhesion was evaluated. ○

【0023】光触媒活性の評価は、以下に示すゾル- ゲ
ル法で、酸化チタン膜をSUS304ステンレス鋼鈑(40mm
角、厚さ1mm)に生成し、この光触媒活性との相対評価を
行った。ゾル- ゲル法による作成は、作花( ゾル- ゲル
法の科学、アグネ承風社、1988) の方法によった。具体
的には、チタンテトライソプロポキシドを100ml の無水
エタノールで濃度284g/lに希釈し、攪拌しながら、2N塩
酸2ml を100ml の無水エタノールで希釈した溶液に滴
下、透明なゾルを調整した。次に、ディップコーイング
- 乾燥(100℃) の処理を繰り返し、基板上にゲル状化合
物を生成させ、電気炉内600 ℃で5 時間の焼成を行っ
た。4 回繰り返し、生成した皮膜の厚さは、0.5 μm で
あった。
The evaluation of the photocatalytic activity was carried out by the following sol-gel method by using a titanium oxide film on a SUS304 stainless steel plate (40 mm).
At a corner and a thickness of 1 mm), and a relative evaluation of the photocatalytic activity was performed. The sol-gel method was used according to the method of flower making (Sol-gel method science, Agne Shofusha, 1988). Specifically, titanium tetraisopropoxide was diluted to a concentration of 284 g / l with 100 ml of absolute ethanol, and while stirring, a transparent sol was prepared by adding dropwise to a solution of 2 ml of 2N hydrochloric acid diluted with 100 ml of absolute ethanol. Next, dip coating
-The process of drying (100 ° C) was repeated to generate a gel compound on the substrate, and baked in an electric furnace at 600 ° C for 5 hours. After repeating four times, the thickness of the formed film was 0.5 μm.

【0024】ヨウ化カリウム分解度は、ヨウ化カリウム
水溶液に各試料を浸漬し、紫外線強度の高いブラックラ
イト(3mw/cm2) を照射することによって、生成するヨウ
素の生成量を評価した。上記ゾル- ゲル法で生成した皮
膜による前記方法で試験したヨウ素の生成量を基準に、
各試料で試験したヨウ素生成量が、基準量の0.5 倍未満
の場合を評価×、0.5 〜1.5 倍未満を△、1.5 倍以上を
○とした。
The degree of decomposition of potassium iodide was evaluated by immersing each sample in an aqueous solution of potassium iodide and irradiating the sample with black light (3 mw / cm 2 ) having a high ultraviolet intensity to evaluate the amount of iodine produced. Based on the amount of iodine produced by the above method using the film formed by the sol-gel method,
When the iodine generation amount tested in each sample was less than 0.5 times the reference amount, the evaluation was x, when 0.5 to less than 1.5 times was Δ, and when 1.5 or more times was ○.

【0025】脱臭効果については、各試料を置いた石英
管の外部から一定強度の紫外線( ブラックライト:3w/cm
2)を照射しつつ、一定流量のアルデヒドを流し、出口部
でのアルデヒド残存濃度を測定することによって、評価
した。上記ゾル- ゲル法で生成した皮膜による前記方法
で試験したアルデヒド残存濃度を基準に、各試料で試験
した残存濃度が、基準濃度の2 倍以上の場合を評価×、
0.5 〜2 倍未満を△、0.5 倍未満を○とした。
Regarding the deodorizing effect, a constant intensity of ultraviolet light (black light: 3 w / cm) was applied from the outside of the quartz tube where each sample was placed.
The evaluation was performed by flowing a constant flow of aldehyde while irradiating 2 ) and measuring the residual aldehyde concentration at the outlet. Based on the residual aldehyde concentration tested by the above method using the film formed by the sol-gel method, the residual concentration tested in each sample was evaluated when the concentration was at least twice the reference concentration.
0.5 to less than 2 times was rated as △, and less than 0.5 times was rated as ○.

【0026】抗菌活性については、大腸菌を一定濃度で
懸濁した生理食塩水を各試料の表面に滴下し、紫外線を
1 時間照射した後の大腸菌の生存率によって評価した。
上記ゾル- ゲル法で生成した皮膜による前記方法で試験
した大腸菌の生存率を基準に、各試料で試験した大腸菌
の生存率が、基準濃度の1.5 倍以上の場合を評価×、0.
5 倍〜1.5 倍未満を△、0.5 倍未満を○とした。
With respect to the antibacterial activity, a physiological saline in which Escherichia coli is suspended at a constant concentration is dropped on the surface of each sample, and ultraviolet rays are irradiated.
Evaluated by viability of E. coli after 1 hour irradiation.
Based on the survival rate of Escherichia coli tested by the above method using the film formed by the sol-gel method, the survival rate of the Escherichia coli tested in each sample was evaluated as 1.5 times or more the reference concentration.
5 times to less than 1.5 times were rated as △, and less than 0.5 times were rated as ○.

【0027】表1 のNo.1〜8 が比較例で、No.9〜18まで
が実施例である。ゾル- ゲル法に比べ、密着性と光触媒
活性ともに同等以上の特性がみられたのが、実施例であ
る。No.1は、皮膜形成をしていないブランクの基材その
ものの評価結果である。皮膜生成法で、スパッタリング
法として以下の2 法を試みた。SPは、ターゲットに金属
チタンを使い、酸素ガスを反応ガスとして導入した。SP
2 では、ターゲットに二酸化チタン( 外層生成用) と金
属チタン( 内層生成用) を使い、アルゴンガスでプラズ
マの活性化を行った。SP2 では、中間層生成時には、二
酸化チタンと金属チタンを、同時にターゲットに用いて
成膜したが、チタン蒸気と酸素ガス分圧を個別に制御で
きていないために、中間層が傾斜組成にできなかった。
SP、SP2 いずれも、ガス圧は2.7Pa とした。
Nos. 1 to 8 in Table 1 are comparative examples, and Nos. 9 to 18 are examples. In the examples, the same or better characteristics were observed in both adhesion and photocatalytic activity as compared with the sol-gel method. No. 1 is the evaluation result of the blank substrate itself on which no film was formed. In the film formation method, the following two methods were tried as a sputtering method. SP used metallic titanium as a target and introduced oxygen gas as a reaction gas. SP
In Section 2, the plasma was activated with argon gas using titanium dioxide (for forming the outer layer) and titanium metal (for forming the inner layer) as targets. In SP2, when the intermediate layer was formed, titanium dioxide and metallic titanium were simultaneously used as targets to form a film.However, since the titanium vapor and oxygen gas partial pressures could not be individually controlled, the intermediate layer could not have a graded composition. Was.
The gas pressure of both SP and SP2 was 2.7 Pa.

【0028】真空蒸着及びイオンプレーテイングによる
外層の形成は、いずれも、酸素雰囲気、圧力0.05Paの下
で、電子銃による金属チタンの蒸発を行った。内層の形
成には、酸素ガスを導入せず、圧力0.05Pa以下で行い、
中間層の形成には、金属チタンの蒸発速度を一定にし
て、酸素ガス流量を次第に増やすことによって制御し
た。内層、中間層、外層の膜厚の制御は、蒸着時間を変
化させることで行った。膜厚は、蒸着時間が長くなると
直線的に増加する。蒸着速度は、たとえば、No.17のイ
オンプレーテイングでは、0.05μm/分で、金属チタンの
蒸発速度とほぼ同じであった。
In forming the outer layer by vacuum deposition and ion plating, metal titanium was evaporated by an electron gun under an oxygen atmosphere under a pressure of 0.05 Pa. For the formation of the inner layer, without introducing oxygen gas, performed at a pressure of 0.05 Pa or less,
The formation of the intermediate layer was controlled by keeping the evaporation rate of metallic titanium constant and gradually increasing the oxygen gas flow rate. The thicknesses of the inner layer, the intermediate layer and the outer layer were controlled by changing the deposition time. The film thickness increases linearly with increasing deposition time. The deposition rate was, for example, 0.05 μm / min in the ion plating of No. 17, which was almost the same as the evaporation rate of titanium metal.

【0029】溶射は、酸化チタン粒子をプラズマ照射し
た。基板の温度の上昇を避けるために、圧縮空気によっ
て、基板の後部から冷却しながら、手早く溶射した。溶
射法で、傾斜組成の制御性よく作成するのは限界がある
(No.3)ので、十分な密着性が得られなかった。表1 の実
施例(No.9 〜18) で明らかなように、表面の皮膜を0.5
〜5.0 μm の厚さとし、金属チタン層からなる内層と、
金属チタンとチタン酸化物からなり、化学組成が金属チ
タン層からチタン酸化物層に傾斜組成となっている中間
層と、チタン酸化物層からなる外層とを、目的に応じた
組成に形成することで、密着性及び光触媒活性に優れた
金属板が得られる。これらは、チタン蒸気又はイオン化
したチタン蒸気と、酸素の分圧を別々に制御するPVD 法
によって、効率的かつ有効に製造できることがわかる。
For the thermal spraying, titanium oxide particles were irradiated with plasma. In order to avoid an increase in the temperature of the substrate, the substrate was sprayed quickly with compressed air while cooling from the rear of the substrate. There is a limit to creating a gradient composition with good controllability by thermal spraying
(No. 3), sufficient adhesion could not be obtained. As is clear from the examples in Table 1 (Nos. 9 to 18),
~ 5.0 μm thick, an inner layer consisting of a metallic titanium layer,
Forming an intermediate layer composed of titanium metal and titanium oxide and having a chemical composition graded from a titanium metal layer to a titanium oxide layer, and an outer layer composed of a titanium oxide layer to a composition according to the purpose. Thus, a metal plate having excellent adhesion and photocatalytic activity can be obtained. It can be seen that these can be efficiently and effectively produced by the PVD method of separately controlling the partial pressures of titanium vapor or ionized titanium vapor and oxygen.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば、光触媒活性を有する金
属板の広範囲な実用化が可能になる。皮膜内に傾斜組成
の中間層を設けることにより、密着性に優れた皮膜とな
り、変形や加工も可能で、長時間の使用においても触媒
活性の持続性を有する金属板が提供できる。また、皮膜
形成を単一プロセスでできるため、工程管理がしやす
く、製造コスト削減、作業効率向上に有利である。さら
に、皮膜形成時の金属板基材の温度も低いため、熱によ
る金属板の変形や意匠性の変化、皮膜の光触媒活性の低
下等は避けられる。
According to the present invention, a metal plate having photocatalytic activity can be put to practical use in a wide range. By providing an intermediate layer having a gradient composition in the film, a film having excellent adhesiveness can be obtained, which can be deformed and processed, and can provide a metal plate having sustained catalytic activity even when used for a long time. Further, since the film can be formed by a single process, the process can be easily controlled, which is advantageous for reducing the manufacturing cost and improving the working efficiency. Furthermore, since the temperature of the metal plate base material at the time of forming the film is low, deformation of the metal plate, a change in design due to heat, a decrease in the photocatalytic activity of the film, and the like can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の皮膜構造及び中間層の化学組成概念
図。
FIG. 1 is a conceptual diagram of the chemical structure of a film structure and an intermediate layer according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/34 C23C 14/34 U 28/00 28/00 B Fターム(参考) 4G069 AA03 BA04A BA04B BA17 BA18 BA48A BC50A DA06 EA11 EC22X EC22Y FA04 FB02 4K029 AA01 BA17 BA48 BB02 BC07 BD00 CA02 CA04 CA05 DC03 DC05 DC16 EA03 4K044 AA03 AA06 AB02 BA02 BA12 BB03 BB04 BC02 BC05 CA13──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 14/34 C23C 14/34 U 28/00 28/00 BF Term (Reference) 4G069 AA03 BA04A BA04B BA17 BA18 BA48A BC50A DA06 EA11 EC22X EC22Y FA04 FB02 4K029 AA01 BA17 BA48 BB02 BC07 BD00 CA02 CA04 CA05 DC03 DC05 DC16 EA03 4K044 AA03 AA06 AB02 BA02 BA12 BB03 BB04 BC02 BC05 CA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に0.5 〜5.0 μm の厚さの皮膜を有
する金属板であって、該皮膜が、金属板から表面に向か
って、金属チタン層からなる内層と、金属チタンとチタ
ン酸化物からなり化学組成が金属チタン層からチタン酸
化物層に傾斜組成となっている中間層と、チタン酸化物
層からなる外層と順に形成した皮膜を有することを特徴
とする光触媒活性を有する金属板。
1. A metal plate having on its surface a coating having a thickness of 0.5 to 5.0 μm, said coating comprising, from the metal plate to the surface, an inner layer comprising a titanium metal layer; A metal plate having photocatalytic activity, comprising: an intermediate layer having a gradient composition from a metal titanium layer to a titanium oxide layer, and an outer layer comprising a titanium oxide layer.
【請求項2】 前記内層の厚さが0.05〜1.0 μm 、中間
層の厚さが0.05〜1.0 μm 、及び、外層の厚さが0.4 〜
3.0 μm である請求項1 記載の光触媒活性を有する金属
板。
2. The thickness of the inner layer is 0.05 to 1.0 μm, the thickness of the intermediate layer is 0.05 to 1.0 μm, and the thickness of the outer layer is 0.4 to 1.0 μm.
2. The metal plate having photocatalytic activity according to claim 1, which has a thickness of 3.0 μm.
【請求項3】 前記外層が、アナターゼ型酸化チタンを
80体積% 以上含有することを特徴とする請求項1 又は2
に記載の光触媒活性を有する金属板。
3. The method according to claim 1, wherein the outer layer comprises anatase-type titanium oxide.
Claim 1 or 2 characterized by containing at least 80% by volume.
4. The metal plate having photocatalytic activity according to claim 1.
【請求項4】 前記金属板が、ステンレス鋼、又は、チ
タン又はチタン基合金である請求項1 〜3 のいずれかの
項に記載の光触媒活性を有する金属板。
4. The metal plate having photocatalytic activity according to claim 1, wherein the metal plate is made of stainless steel, titanium, or a titanium-based alloy.
【請求項5】 請求項1 〜4 のいずれかの項に記載の光
触媒活性を有する金属板を形成させる方法であって、内
層から外層までの皮膜形成中は、一度も大気開放せず、
減圧下で、チタン蒸気又はイオン化したチタン蒸気と、
酸素の分圧を別々に制御するPVD 法を用い、500 ℃以下
の温度で金属板上に皮膜を形成させることを特徴とする
光触媒活性を有する金属板の製造方法。
5. The method for forming a metal plate having photocatalytic activity according to any one of claims 1 to 4, wherein the film is not exposed to the air even once during the formation of a film from an inner layer to an outer layer.
Under reduced pressure, with titanium vapor or ionized titanium vapor,
A method for producing a metal plate having photocatalytic activity, wherein a film is formed on a metal plate at a temperature of 500 ° C or less by using a PVD method in which oxygen partial pressures are separately controlled.
【請求項6】 前記PVD 法が、スパッタリング又はイオ
ンプレーテイングであることを特徴とする請求項5 記載
の光触媒活性を有する金属板の製造方法。
6. The method for producing a metal plate having photocatalytic activity according to claim 5, wherein the PVD method is sputtering or ion plating.
JP2000231533A 2000-07-31 2000-07-31 Metal plate with photocatalytic activity Expired - Fee Related JP4620844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231533A JP4620844B2 (en) 2000-07-31 2000-07-31 Metal plate with photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231533A JP4620844B2 (en) 2000-07-31 2000-07-31 Metal plate with photocatalytic activity

Publications (2)

Publication Number Publication Date
JP2002047558A true JP2002047558A (en) 2002-02-15
JP4620844B2 JP4620844B2 (en) 2011-01-26

Family

ID=18724360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231533A Expired - Fee Related JP4620844B2 (en) 2000-07-31 2000-07-31 Metal plate with photocatalytic activity

Country Status (1)

Country Link
JP (1) JP4620844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241717A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Building material
JP2007222720A (en) * 2006-02-21 2007-09-06 Fujikoo:Kk Coating film having photocatalytic function and its forming method
JP2010058092A (en) * 2008-09-05 2010-03-18 Chiba Univ Manufacturing method of composite photocatalyst, and composite photocatalyst manufactured thereby
JP2014014775A (en) * 2012-07-09 2014-01-30 Eagle Industry Co Ltd Double-layered material and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH1071337A (en) * 1996-08-29 1998-03-17 Bridgestone Corp Photocatalyst and its production
JP2000096212A (en) * 1998-09-28 2000-04-04 Sumitomo Electric Ind Ltd Photocatalyst film coated member and its production
JP2000176281A (en) * 1998-12-11 2000-06-27 Ricoh Elemex Corp Product coated with titanium oxide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH1071337A (en) * 1996-08-29 1998-03-17 Bridgestone Corp Photocatalyst and its production
JP2000096212A (en) * 1998-09-28 2000-04-04 Sumitomo Electric Ind Ltd Photocatalyst film coated member and its production
JP2000176281A (en) * 1998-12-11 2000-06-27 Ricoh Elemex Corp Product coated with titanium oxide film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241717A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Building material
JP2007222720A (en) * 2006-02-21 2007-09-06 Fujikoo:Kk Coating film having photocatalytic function and its forming method
JP4682374B2 (en) * 2006-02-21 2011-05-11 株式会社フジコー Method for forming a photocatalytic functional film
JP2010058092A (en) * 2008-09-05 2010-03-18 Chiba Univ Manufacturing method of composite photocatalyst, and composite photocatalyst manufactured thereby
JP2014014775A (en) * 2012-07-09 2014-01-30 Eagle Industry Co Ltd Double-layered material and production method thereof

Also Published As

Publication number Publication date
JP4620844B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US20050003019A1 (en) Ionic plasma deposition of anti-microbial surfaces and the anti-microbial surfaces resulting therefrom
WO2001046488A1 (en) Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film
Lin et al. Surface characteristics of a dental implant modified by low energy oxygen ion implantation
JP3450979B2 (en) Metallic material having photocatalytic activity and method for producing the same
JP2000096212A (en) Photocatalyst film coated member and its production
US20100272988A1 (en) Hydrophilic-hydrophobic transformable composite film and the method of fabricating the same
KR20060057641A (en) Multifunctional material having carbon-doped titanium oxide layer
JP5515030B2 (en) Visible light responsive rutile titanium dioxide photocatalyst
US20060051597A1 (en) Article coated with titanium compound film, process for producing the article and sputtering target for use in coating the film
JP3342201B2 (en) Titanium oxide-containing film-coated substrate for photocatalyst and method for producing the same
JP2002047558A (en) Metal sheet having photocatalytic activity, and its manufacturing method
JP4620846B2 (en) Metal plate with photocatalytic activity
JPH1071337A (en) Photocatalyst and its production
WO2022019244A1 (en) Antiviral material
JP4037685B2 (en) Sputtering method
JP2001205105A (en) Photocatalytic thin film
EP1624087B1 (en) A method for depositing thin layers of titanium dioxide on support surfaces
JP4063577B2 (en) Method for producing composite material having photocatalytic coating
JP4567892B2 (en) Metal plate having photocatalytic activity and method for producing the same
JP4847957B2 (en) Method for depositing a photocatalytic titanium oxide layer
JP2001073116A (en) Production of thin film
JP2003093896A (en) Method for forming photocatalyst titanium oxide film
JPH11130434A (en) Titanium dioxide film, photocatalyst film and its production
JP4062537B2 (en) Polymer thin film formation method of triazine dithiol derivative
JP4662122B2 (en) Super hydrophilic thin film and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4620844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees