JP4620846B2 - Metal plate with photocatalytic activity - Google Patents

Metal plate with photocatalytic activity Download PDF

Info

Publication number
JP4620846B2
JP4620846B2 JP2000258012A JP2000258012A JP4620846B2 JP 4620846 B2 JP4620846 B2 JP 4620846B2 JP 2000258012 A JP2000258012 A JP 2000258012A JP 2000258012 A JP2000258012 A JP 2000258012A JP 4620846 B2 JP4620846 B2 JP 4620846B2
Authority
JP
Japan
Prior art keywords
metal
film
layer
metal plate
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000258012A
Other languages
Japanese (ja)
Other versions
JP2002069615A (en
Inventor
元紀 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000258012A priority Critical patent/JP4620846B2/en
Publication of JP2002069615A publication Critical patent/JP2002069615A/en
Application granted granted Critical
Publication of JP4620846B2 publication Critical patent/JP4620846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面に光触媒活性を付与した金属板に関する。
【0002】
【従来の技術】
Fe2 3 、Cu2 O、In2 3 、WO3 、PbO、V2 5 、Bi2 3 、Nb2 3 、ZnO、SnO2 、ZrO2 等の金属酸化物半導体は、すでに多方面で検討されているTiO2 と同様に、特定波長の光を照射することによって優れた光触媒活性を示し、光触媒作用に由来する強力な酸化反応によって、環境汚染物質の分解除去、防臭、防汚、殺菌作用を発揮する可能性がある。しかし、TiO2 に比べ、その効果の確認や実用材への適用がほとんどされていない。これは、光触媒機能を効果的に発揮するような結晶形態に制御し、基材への密着性を実用レベルに向上した皮膜形成が困難だったためである。
【0003】
素材に柔軟性、加工性がある場合、ユーザー側でも、用途に合わせて曲げたり、切断したり、穿孔したりできるので、適用範囲が飛躍的に拡大する。金属板は、ガラスやセラミック素材に比べ、2次加工が容易であるが、表面に酸化物等の硬質で厚い皮膜が形成されていると、酸化物層は金属板の変形に追従できず、金属板と酸化物層との界面で剥離したり、酸化物層自体が崩壊するのが普通である。
【0004】
さらに、本来、酸化物と金属板は、熱膨張率やヤング率が著しく異なるため、温度や応力等の環境要因が変動すると、界面の剥離が生じやすい問題がある。
金属酸化物半導体層の被覆方法については、金属のアルコキシドの加水分解生成物を塗布する方法、すなわち、ゾル−ゲル法が一般的である。しかし、このゾル- ゲル法では、塗料の粘度や塗布条件によって、形成される皮膜の厚さが変化し易く、皮膜の性能を高めるために厚膜化すると、乾燥時の皮膜の収縮が大きいため皮膜と基材表面との間の密着性が低くなり、剥離し易くなる等の問題点がある。
【0005】
さらに、酸化物半導体層の結晶性を高めるためには、被覆後に乾燥させ、さらに焼成するという3つの工程が必須であり、一般的には、大気中で、焼成温度を500℃以上という高温で焼成を行う必要があった。さらに、一回の塗布で得られる膜厚は、0.1μm 程度の場合が多く、厚い膜にするためには、上記の塗布、乾燥、焼成を数回繰り返す等の複雑な工程を経る必要があった。
【0006】
高温の大気中で何回も焼成した場合、基材からの元素の拡散が避けられず、特に1μm 程度の厚さの皮膜の場合には、皮膜全体に基材中の元素が拡散し、金属酸化物半導体の光触媒活性を低下させる等の問題がある。
【0007】
【発明が解決しようとする課題】
本発明は,上記のような事情に着目してなされたものであって、金属酸化物半導体の有する光触媒作用に由来する環境汚染物質の分解除去、防臭、防汚、殺菌作用を、より効果的に持続的に発揮しつつ、変形や加工性を兼ね備えた金属板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記の目的を達成するため、鋭意研究を重ねた結果、金属酸化物半導体皮膜と金属板との界面に、化学組成が傾斜組成となっている中間層を形成することで、物理的特性に連続性を持たせ、密着性を向上させることを見い出し、本発明をなすに至った。
【0009】
即ち、本発明は、表面に0.5〜5.0μmの厚さの皮膜を有する金属板であって、該皮膜が、金属板から表面に向かって、金属層からなる内層と、金属と金属酸化物半導体からなり、化学組成が金属層から金属酸化物半導体層に傾斜組成となっている中間層と、晶相を含む金属酸化物半導体層からなる外層とを、順に形成した皮膜であり、該金属酸化物半導体が、C2O、In23 、PbO、V25、Bi23、Nb23 、SnO2、ZrO2から選ばれる少なくとも一つであり、上記内層の金属層が、上記金属酸化物半導体を構成する金属であり、前記内層の厚さが0.05〜1.0μm、前記中間層の厚さが0.05〜1.0μm 、及び、前記外層の厚さが0.4〜3.0μm であり、前記外層が、結晶相を80体積%以上含有することを特徴とする光触媒活性を有する金属板である。
【0010】
た、本発明は、前記金属板が、ステンレス鋼、又は、チタン又はチタン基合金であることを特徴とする光触媒活性を有する金属板である。
【0012】
【発明の実施の形態】
皮膜の構成、及び、中間層の化学組成についての概念図を図1に示す。金属板表面には、金属(M)からなる内層が形成される。Mは、外層の酸化物半導体がFe23 、Cu2 O、In23 、WO3 、PbO、V25 、Bi23 、Nb23 、ZnO、SnO2 、ZrO2 の場合、それぞれに対応して、Fe、Cu、In、W、Pb、V、Bi、Nb、Zn、Sn、Zrである。つまり、外層の酸化物半導体が、例えば、Fe23 の場合、金属(M)はFeであり、中間層は、FeからFe23 までの化学組成が傾斜組成になっていて、FeとFe23 の混合体、又は、固溶体である。ただし、Fe 2 3 、WO 3 、ZnOの場合については、参考例である。
【0013】
この場合、鉄と酸素以外の元素は、図1の関係を崩さない限度で含有されていてもよい。不純物を含まない場合には、内層は、化学式でFeと表記され、Fe含有量は、100質量%となる。内層が、金属Mの場合、外層は、図1に表記したように、金属Mの酸化物MOxである。xは、上記それぞれの金属酸化物半導体に応じて、一定の値を持つ。
【0014】
例えば、Fe2 3 の場合、xは1.5となる。内層と外層に、同種の金属Mを含有させるのは、後述するPVD法での成膜形成のし易さ、金属と金属酸化物間の物理特性の近似性からである。
外層は、光触媒活性を十分発揮するために、結晶性の優れた金属酸化物半導体で構成されるのが望ましい。結晶相を80体積%以上含有すると、効果的である。
【0015】
中間層は、金属とその金属酸化物で構成され、それぞれの結晶粒が分散混合していても、あるいは固溶体を形成していてもよい。結晶質であっても、非晶質であってもよい。また、複合酸化物や、それぞれの結晶相の混合層で形成されていてもよい。
化学組成の不連続性を無くすことで、熱膨張率やヤング率等の物理特性の不連続性を最小限に抑えることができる。光触媒活性を有する金属板は、様々な環境で、長期にわたって使用される可能性がある。温度変化が大きかったり、外力がかかったりする場合もあり、これらの環境要因に対して、皮膜の密着性や光触媒活性等の長期耐久性が求められる。このためには、皮膜と金属板基材との物理特性の連続性が必要であり、この点で中間層は重要である。
【0016】
例えば、熱膨張率の不連続があると、ここに応力が集中し、皮膜の剥離の起点になる。この応力は、金属酸化物半導体皮膜と金属基板との間に集中し、界面の残留応力と外力とが複合した力が、両者の密着力を越えると皮膜が剥離する。つまり、皮膜と基板との密着力以下の外力でも、界面に残留応力があると皮膜が容易に剥離することになる。
【0017】
このように、線膨張係数の差が、界面の残留応力の大きさと相関するので、それぞれの界面での線膨張係数の差を少なくすることが、応力集中を避ける上で重要である。
特に、外層の金属酸化物半導体皮膜層は、皮膜形成法によっては応力が残留することがあり、中間層は応力の緩和層としても意味がある。上記機能を効果的に発揮するには、中間層の厚さは、0.05〜1.0μm であることが望ましい。0.05μm 未満では、効果が少なく、1.0μm より厚くても、その効果は変わらない。
【0018】
外層の金属酸化半導体層は、0.4μm 以上の膜厚が好ましく、光を効率的に吸収し、光触媒として機能する。最も効率的な光吸収には、1.0μm 以上がさらに望ましい。外層の膜厚は、3.0μm を越えると、変形や曲げ加工性が劣るので、3.0μm 以下が好ましい。最も望ましくは、2.0μm 以下である。
外層は、光触媒活性という観点から、結晶相主体であることが望ましい。最も好ましくは、結晶相の外層中の含有率を80体積%以上とすると、高い光触媒活性が得られる。目的に応じて、上記外層の表面に、白金族金属を担持させ、さらに触媒活性を高めてもよい。この際、担持させる金属層は、上記皮膜の厚さの一割以下であることが望ましく、この範囲であれば、変形や曲げ加工性を損なわない。
【0019】
内層の金属層は、金属板と金属酸化物半導体層の密着性向上に重要である。厚さは、0.05〜1.0μm であることが効果的である。0.05μm 未満では、効果が少なく、1.0μm より厚くても、その効果は変わらない。
上記のような光触媒活性を有する金属板は、皮膜をPVD(Physical VaporDeposition) 法等により、金属板表面に形成することで製造できる。PVD法は、基材への温度による負荷が少なく、緻密で微細粒からなる結晶質皮膜が形成できる特徴がある。上記皮膜形成に適しているPVD法として、具体的には、真空蒸着、スパッタリング、イオンプレーティングの各種手法が適している。
【0020】
金属板基材の熱による変形や、金属板基材から皮膜への元素拡散等による光触媒活性の劣化等の問題が生じないように、皮膜形成時の基材温度は500℃以下とする。上記3手法は、何れも、基材の温度が500℃以下で皮膜形成が可能であり、十分な皮膜密着性と皮膜の結晶性が得られるものであり、金属板基材の熱による変形や、金属板基材から皮膜への元素拡散等による光触媒活性の劣化等の問題は発生しにくい。また、上記3手法は、成膜速度が毎分0.02〜0.2μm 程度で、例えば、1μm の皮膜を得るのに5〜50分と実用的である。
【0021】
PVD法を上記皮膜の形成に適用する場合、減圧下で金属を蒸発させ、反応ガスとして酸素を導入する方法が、金属酸化物半導体の組成の制御性に優れ、適している。上記皮膜の中間層の傾斜組成も、蒸発させる金属量と、反応ガスの酸素分圧又は流量の比を、連続的に変化させることで、形成される。
つまり、内層の形成には、酸素ガスを導入せず、金属蒸気のみで成膜するが、中間層の形成には、酸素ガスを反応チャンバー中に少しづつ導入し、その導入量を時間とともに次第に増やし、外層の形成時に導入する酸素ガス量まで増やすといった工程で形成できる。
【0022】
このプロセスは、内層、中間層、外層までを、一度も大気開放せず、同一チャンバー内で連続的に行うことができる。しかも、結晶相を直接成膜できるので、後熱処理等は必要ない。例えば、成膜時の基材温度が490℃で、金属ニオブを蒸発させる電子ビームの電流を300mA(加速電圧20kV) 、酸素圧力を4×10-4Torr(0.05Pa)として、アーク放電活性化イオンプレーテイング装置で、イオン化を40V、2Aで行った場合において、ニオブ蒸発源から45cm上部に設置させたステンレス鋼SUS304試料を基板とし、20分間の成膜をおこなった場合、1.4μm の結晶質Nb2 3 主体の皮膜を生成することができる。
【0023】
これに対して、同じ装置、試料で、基材温度100℃で10分間の成膜をした場合、約0.6μm の非晶質皮膜となる。成膜速度も早いので、同様のプロセスを繰り返す必要もなく、従来のゾル−ゲル法と比べると、簡便かつ短時間で、管理しやすく、製造コストも低くできる。
減圧下での成膜は、金属酸化物半導体の形成反応を進める上で重要である。また、成膜中に、500℃以下で金属板基材を加熱すると、基材の温度による劣化を抑えつつ、皮膜の密着性、結晶性が向上するので好ましい。基材の加熱は、減圧下で行うので、大気中で焼成する場合より、基材表面の酸化は少ない。減圧にすることで、金属の蒸発を効率良く行うことができる。
【0024】
真空蒸着は、真空下で、金属を電子ビーム等の熱源を用いて溶解し、金属の蒸気を発生させ、これを基材に蒸着する方法である。装置構成が比較的簡単で、皮膜形成コストは上記3手法の内で最も安い。
スパッタリングは、イオン化したアルゴン等のガス成分をターゲットである金属に照射し、このターゲットからたたき出された金属成分を基材に成膜する方法である。
【0025】
イオンプレーティングは、電子ビーム等の熱源を用いて溶解し、金属の蒸気を発生させ、プラズマでイオン化された金属成分を基材上で反応させ成膜する方法で、基材に電荷をかけることでイオンを呼び寄せ、緻密な皮膜形成に有利で、基材温度が低くても高い密着性が得られる。
イオンプレーティング法では、微細粒の結晶よりなる皮膜形成が容易で、例えば、イオンプレーティング法の一種であるアーク放電活性化イオンプレーティング法を使い、基材の温度400℃で、酸素圧力0.05Paで成膜した厚さ1μm のZnO皮膜では、結晶粒が約0.02μm 程度の微細粒となる。
【0026】
このように、目的とする皮膜の特性に応じて、成膜法を選ぶことができる。上記3方法の内、スパッタリング及びイオンプレーティング法は、プラズマによって金属蒸気をイオン化あるいは励起活性化させるので、反応性に富み、基材の温度が低くても、高い皮膜の結晶性、密着性が得られ、皮膜も緻密で微細粒から構成される。成膜速度の点からは、電子銃蒸発源を使った、真空蒸着やイオンプレーティング法が有利である。
【0027】
さらに、結晶相主体の皮膜を実用的な成膜速度で形成するには、基材の温度を金属酸化物半導体の融点の1/5以上とするのが好ましく、基材の金属板の熱による劣化や金属板からの元素の拡散等を防ぐ上で、500℃以下の基板温度で生成する必要がある。具体的には、基材の温度を200℃〜450℃とし、金属の蒸発速度が毎分0.03〜0.18μm 、酸素雰囲気で圧力が0.1〜0.8Paで、成膜することが好ましい。
【0028】
【実施例】
以下に、本発明の実施例及び比較例を示す。
工業用純チタン板及びステンレス鋼板(SUS304)を金属板基材とし、PVD法等で皮膜形成を行って、得られた試料について、皮膜の性状(構成、膜厚、結晶相、密着性) を調べ、さらにそれぞれの試料について、光触媒活性(ヨウ化カリウム分解度、脱臭効果)を評価した。評価結果を、皮膜形成の諸条件も含め、表1に示す。
【0029】
皮膜の構成、膜厚、結晶相含有量は、オージェ電子分光法、X線光電子分光法、グロー放電発光分析法、ラマン散乱分析法、及びX線回折法によって求めた。
密着性は、90°曲げ試験によって評価した。密着性評価用の基材は、SUS304のφ30mm、厚さ0.3mmの円盤状基材を使い、この表面に皮膜を形成した。この試料を曲げ角90°に加工変形し、最も変形の大きい部分(折れ曲がった部分) を、肉眼で観察した。皮膜が完全に剥離した場合を、密着性×、部分的に皮膜が付着している場合、あるいは、剥離が認められない場合を、密着性○とした。
【0030】
光触媒活性の評価は、以下に示すゾル−ゲル法で酸化チタン膜をSUS304ステンレス鋼鈑(40mm角、厚さ1mm) に生成し、この光触媒活性との相対評価で行った。ゾル−ゲル法による作成は、作花(ゾル−ゲル法の科学、アグネ承風社、1988) の方法によった。具体的には、チタンテトライソプロポキシドを100mlの無水エタノールで濃度284g/lに希釈し、攪拌しながら、2N塩酸2mlを100mlの無水エタノールで希釈した溶液に滴下、透明なゾルを調整した。次に、ディップコーティング−乾燥(100℃) の処理を繰り返し、基板上にゲル状化合物を生成させ、電気炉内600℃で5時間焼成を行った。4回繰り返し、生成した皮膜の厚さは、0.5μm であった。
【0031】
ヨウ化カリウム分解度は、ヨウ化カリウム水溶液に各試料を浸漬し、紫外線強度の高いブラックライト(3mW/cm2)を照射することによって、生成するヨウ素の生成量を測定することによって、評価した。上記ゾル−ゲル法で生成した皮膜による前記方法で試験したヨウ素の生成量を基準に、各試料で試験したヨウ素生成量が、基準量の0.5倍未満の場合を評価×、0.5倍以上を評価○とした。
【0032】
脱臭効果については、各試料を置いた石英管の外部から一定速度の紫外線(ブラックライト:3W/cm2)を照射しつつ、一定流量のアルデヒドを流し、出口部でのアルデヒド残存濃度を測定することによって、評価した。上記ゾル−ゲル法で生成した皮膜による前記方法で試験したアルデヒド残存濃度を基準に、各試料で試験した残存濃度が、基準濃度の2倍以上の場合を評価×、2倍未満を評価○とした。
【0033】
【表1】

Figure 0004620846
【0034】
表1中、No.1〜8が比較例で、No.9、11〜13、15〜17が実施例であり、10、14、18は参考例である。実施例では、ゾル−ゲル法で生成した試料に比べ、密着性が優れ、十分な光触媒活性がみられた。No.1は、皮膜形成をしていないブランクの基材そのものの評価結果である。皮膜生成法で、スパッタリング法として以下の2法を試みた。SPは、ターゲットに金属を使い、酸素ガスを反応ガスとして導入した。SP2では、ターゲットに金属酸化物(外層生成用) と金属(内層生成用) を使い、アルゴンガスでプラズマの活性化を行った。SP2では、中間層生成時には、金属酸化物と金属を同時にターゲットに用いて成膜したが、金属蒸気と酸素ガス分圧を個別に制御できていないために、中間層が傾斜組成にできなかった。SP、SP2いずれも、ガス圧は2.7Paとした。
【0035】
真空蒸着及びイオンプレーテイングによる外層の形成は、いずれも、酸素雰囲気、圧力0.5Paの下で、電子銃による金属の蒸発によって行った。内層の形成は、酸素ガスを導入せず、圧力0.1Pa以下で行い、中間層の形成は、金属の蒸発速度を一定にして、酸素ガス流量を次第に増やすことによって制御した。内層、中間層、外層の膜厚の制御は、蒸着時間を変化させることで行った。膜厚は、蒸着時間が長くなると増加する。蒸着速度は、例えば、No.17のイオンプレーテイングでは、0.05μm /分であった。
【0036】
溶射は、金属酸化粒子をプラズマ照射した。基板の温度の上昇を避けるために、圧縮空気によって、基板の後部から冷却しながら、手早く溶射した。溶射法では、傾斜組成の制御性よく試料を作成するのには限界がある(No.3)ので、十分な密着性が得られなかった。表1の実施例(No.9、11〜13、15〜17)から明らかなように、表面の皮膜を0.5〜5.0μm の厚さとし、金属層からなる内層と、金属と金属酸化物からなり、化学組成が金属層から金属酸化物層に傾斜組成となっている中間層と、金属酸化物層からなる外層とを、目的に応じた組成に形成することで、密着性及び光触媒活性に優れた金属板を得ることができる。これらは、金属蒸気又はイオン化した金属蒸気と、酸素の分圧を別々に制御するPVD法によって、効率的かつ有効に製造できることがわかる。
【0037】
【発明の効果】
本発明によれば、光触媒活性を有する金属板の広範囲な実用化が可能になる。
皮膜内に傾斜組成の中間層を設けることにより、密着性に優れた皮膜となり、変形や加工も可能で、長時間の使用においても触媒活性の持続性を有する金属板を提供することができる。また、皮膜形成を単一プロセスでできるので、工程管理をし易く、製造コストの削減、及び、作業効率の向上に有利である。さらに、皮膜形成時の金属板基材の温度も低いので、熱による金属板の変形や意匠性の変化、皮膜の光触媒活性の低下等を避けることができる。
【図面の簡単な説明】
【図1】本発明の皮膜構造及び中間層の化学組成を示す概念図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal plate to impart photocatalytic activity to the surface.
[0002]
[Prior art]
Metal oxide semiconductors such as Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , Nb 2 O 3 , ZnO, SnO 2 , ZrO 2 have already been used Similar to TiO 2 that has been studied in various fields, it exhibits excellent photocatalytic activity when irradiated with light of a specific wavelength, and it decomposes and removes environmental pollutants, deodorizes and prevents odors by a powerful oxidation reaction derived from photocatalysis. There is a possibility of exerting dirt and bactericidal action. However, compared with TiO 2 , the effect has not been confirmed or applied to practical materials. This is because it was difficult to form a film in which the crystal form that effectively exerts the photocatalytic function was controlled and the adhesion to the substrate was improved to a practical level.
[0003]
If the material is flexible and workable, the user can bend, cut, or perforate according to the application, which greatly expands the application range. Compared to glass and ceramic materials, the metal plate is easy to perform secondary processing, but if a hard and thick film such as oxide is formed on the surface, the oxide layer cannot follow the deformation of the metal plate, Usually, peeling occurs at the interface between the metal plate and the oxide layer, or the oxide layer itself collapses.
[0004]
Furthermore, since the oxide and the metal plate are inherently different in thermal expansion coefficient and Young's modulus, there is a problem that the interface is likely to be peeled off when environmental factors such as temperature and stress fluctuate.
As a method for coating the metal oxide semiconductor layer, a method of applying a hydrolysis product of a metal alkoxide, that is, a sol-gel method is generally used. However, in this sol-gel method, the thickness of the film to be formed is likely to change depending on the viscosity of the paint and the application conditions, and if the film is thickened to increase the film performance, the film shrinks greatly during drying. There are problems such as low adhesion between the film and the substrate surface, and easy peeling.
[0005]
Furthermore, in order to increase the crystallinity of the oxide semiconductor layer, three steps of drying after coating and further firing are essential, and generally the firing temperature is 500 ° C. or higher in the atmosphere. It was necessary to perform firing. Furthermore, the film thickness obtained by a single coating is often about 0.1 μm, and in order to make a thick film, it is necessary to go through complicated steps such as repeating the above coating, drying and baking several times. there were.
[0006]
When fired many times in a high temperature atmosphere, the diffusion of elements from the substrate is inevitable. Especially in the case of a film with a thickness of about 1 μm, the elements in the substrate diffuse into the entire film and the metal There are problems such as reducing the photocatalytic activity of oxide semiconductors.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and is more effective in decomposing and removing environmental pollutants derived from the photocatalytic action of metal oxide semiconductors, deodorizing, antifouling, and sterilizing action. An object of the present invention is to provide a metal plate that exhibits both deformation and workability while exhibiting sustainability.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor forms an intermediate layer whose chemical composition is a gradient composition at the interface between the metal oxide semiconductor film and the metal plate, It has been found that the physical properties are continuous and the adhesion is improved, and the present invention has been made.
[0009]
That is, the present invention is a metal plate having a film having a thickness of 0.5 to 5.0 μm on the surface, the film being formed from the metal plate toward the surface, an inner layer composed of a metal layer, a metal and a metal an oxide semiconductor, an intermediate layer chemical composition has a graded composition to the metal oxide semiconductor layer from the metal layer and an outer layer made of a metal oxide semiconductor layer containing a binding phase, it is a film formed in this order , the metal oxide semiconductor, C u 2 O, in 2 O 3, P bO, V 2 O 5, Bi 2 O 3, Nb 2 O 3, S nO 2, is at least one selected from ZrO 2 , the inner layer of the metal layer, Ri metal der constituting the metal oxide semiconductor, the thickness of the inner layer is 0.05 to 1.0 [mu] m, the thickness of the intermediate layer 0.05 to 1.0 [mu] m, And the thickness of the said outer layer is 0.4-3.0 micrometers, and the said outer layer contains a crystal phase 80 volume% or more This is a metal plate having photocatalytic activity.
[0010]
Also, the present invention, the metal plate, stainless steel, or a metal plate having a photocatalytic activity, which is a titanium or titanium-based alloy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The conceptual diagram about the structure of a membrane | film | coat and the chemical composition of an intermediate | middle layer is shown in FIG. An inner layer made of metal (M) is formed on the surface of the metal plate. M indicates that the outer oxide semiconductor is Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , PbO, V 2 O 5 , Bi 2 O 3 , Nb 2 O 3 , ZnO, SnO 2 , ZrO 2. In this case, Fe, Cu, In, W, Pb, V, Bi, Nb, Zn, Sn, and Zr correspond to each. That is, for example, when the oxide semiconductor of the outer layer is Fe 2 O 3 , the metal (M) is Fe, and the intermediate layer has a gradient chemical composition from Fe to Fe 2 O 3. And a mixture of Fe 2 O 3 or a solid solution. However, the case of Fe 2 O 3 , WO 3 , and ZnO is a reference example.
[0013]
In this case, elements other than iron and oxygen may be contained as long as the relationship of FIG. 1 is not broken. When impurities are not included, the inner layer is expressed as Fe in the chemical formula, and the Fe content is 100% by mass. When the inner layer is a metal M, the outer layer is an oxide MOx of the metal M as shown in FIG. x has a certain value depending on each of the metal oxide semiconductors.
[0014]
For example, in the case of Fe 2 O 3 , x is 1.5. The reason why the same kind of metal M is contained in the inner layer and the outer layer is that film formation by the PVD method described later is easy and physical properties between the metal and the metal oxide are close.
The outer layer is preferably composed of a metal oxide semiconductor having excellent crystallinity in order to sufficiently exhibit photocatalytic activity. It is effective to contain 80% by volume or more of the crystal phase.
[0015]
The intermediate layer is composed of a metal and its metal oxide, and the respective crystal grains may be dispersed and mixed, or may form a solid solution. It may be crystalline or amorphous. Further, it may be formed of a composite oxide or a mixed layer of respective crystal phases.
By eliminating discontinuities in chemical composition, discontinuities in physical properties such as thermal expansion coefficient and Young's modulus can be minimized. A metal plate having photocatalytic activity may be used over a long period of time in various environments. The temperature change may be large or an external force may be applied, and long-term durability such as film adhesion and photocatalytic activity is required against these environmental factors. For this purpose, continuity of physical properties between the film and the metal plate substrate is necessary, and the intermediate layer is important in this respect.
[0016]
For example, if there is a discontinuity in the coefficient of thermal expansion, stress concentrates here and becomes the starting point for peeling of the film. This stress is concentrated between the metal oxide semiconductor film and the metal substrate, and the film peels when the combined force of the residual stress at the interface and the external force exceeds the adhesive force between the two. That is, even with an external force that is less than the adhesion between the film and the substrate, the film easily peels off if there is residual stress at the interface.
[0017]
Thus, since the difference in linear expansion coefficient correlates with the magnitude of residual stress at the interface, it is important to reduce the difference in linear expansion coefficient at each interface in order to avoid stress concentration.
In particular, stress may remain in the outer metal oxide semiconductor film layer depending on the film forming method, and the intermediate layer is also meaningful as a stress relaxation layer. In order to effectively exhibit the above functions, the thickness of the intermediate layer is desirably 0.05 to 1.0 μm. If it is less than 0.05 μm, the effect is small, and even if it is thicker than 1.0 μm, the effect does not change.
[0018]
The outer metal oxide semiconductor layer preferably has a thickness of 0.4 μm or more, absorbs light efficiently, and functions as a photocatalyst. For the most efficient light absorption, 1.0 μm or more is further desirable. When the thickness of the outer layer exceeds 3.0 μm, deformation and bending workability are inferior, so 3.0 μm or less is preferable. Most desirably, it is 2.0 μm or less.
The outer layer is preferably mainly composed of a crystal phase from the viewpoint of photocatalytic activity. Most preferably, a high photocatalytic activity is obtained when the content of the crystal phase in the outer layer is 80% by volume or more. Depending on the purpose, a platinum group metal may be supported on the surface of the outer layer to further increase the catalytic activity. At this time, it is desirable that the metal layer to be supported is 10% or less of the thickness of the film, and within this range, deformation and bending workability are not impaired.
[0019]
The inner metal layer is important for improving the adhesion between the metal plate and the metal oxide semiconductor layer. It is effective that the thickness is 0.05 to 1.0 μm. If it is less than 0.05 μm, the effect is small, and even if it is thicker than 1.0 μm, the effect does not change.
The metal plate having the photocatalytic activity as described above can be produced by forming a film on the surface of the metal plate by a PVD (Physical Vapor Deposition) method or the like. The PVD method has a feature that a dense crystalline film composed of fine grains can be formed with little load on the substrate due to temperature. Specifically, various methods such as vacuum deposition, sputtering, and ion plating are suitable as the PVD method suitable for the film formation.
[0020]
The substrate temperature at the time of film formation is set to 500 ° C. or less so that problems such as deformation of the metal plate substrate due to heat and deterioration of photocatalytic activity due to element diffusion from the metal plate substrate to the film do not occur. The above three methods are all capable of forming a film when the temperature of the substrate is 500 ° C. or less, and obtaining sufficient film adhesion and film crystallinity. Problems such as degradation of photocatalytic activity due to element diffusion from the metal plate base material to the film are unlikely to occur. The above three methods are practical at a film formation rate of about 0.02 to 0.2 μm per minute, for example, 5 to 50 minutes for obtaining a film of 1 μm.
[0021]
When the PVD method is applied to the formation of the film, a method of evaporating a metal under reduced pressure and introducing oxygen as a reaction gas is excellent in controlling the composition of the metal oxide semiconductor and is suitable. The gradient composition of the intermediate layer of the film is also formed by continuously changing the ratio of the amount of metal to be evaporated and the oxygen partial pressure or flow rate of the reaction gas.
In other words, for forming the inner layer, oxygen gas is not introduced, and the film is formed only with metal vapor, but for forming the intermediate layer, oxygen gas is gradually introduced into the reaction chamber, and the introduced amount gradually increases with time. It can be formed by a process of increasing the amount of oxygen gas introduced when forming the outer layer.
[0022]
This process can be performed continuously in the same chamber without releasing the inner layer, intermediate layer, and outer layer to the atmosphere. In addition, since a crystal phase can be directly formed, post-heat treatment or the like is not necessary. For example, when the substrate temperature during film formation is 490 ° C., the current of an electron beam for evaporating metal niobium is 300 mA (acceleration voltage 20 kV), the oxygen pressure is 4 × 10 −4 Torr (0.05 Pa), and arc discharge activity When ionization was performed at 40 V and 2 A using a chemical ion plating apparatus, a stainless steel SUS304 sample placed 45 cm above the niobium evaporation source was used as the substrate, and when the film was formed for 20 minutes, 1.4 μm A film mainly composed of crystalline Nb 2 O 3 can be produced.
[0023]
On the other hand, when a film is formed for 10 minutes at a substrate temperature of 100 ° C. with the same apparatus and sample, an amorphous film of about 0.6 μm is formed. Since the film formation speed is also high, it is not necessary to repeat the same process, and it is easy and manageable in a short time, and the manufacturing cost can be reduced as compared with the conventional sol-gel method.
Film formation under reduced pressure is important for advancing the formation reaction of a metal oxide semiconductor. In addition, it is preferable to heat the metal plate substrate at 500 ° C. or less during film formation because the adhesion and crystallinity of the film are improved while suppressing deterioration due to the temperature of the substrate. Since the heating of the substrate is performed under reduced pressure, the surface of the substrate is less oxidized than when baking in the air. By reducing the pressure, the metal can be efficiently evaporated.
[0024]
Vacuum deposition is a method in which a metal is melted under a vacuum using a heat source such as an electron beam to generate a vapor of the metal and deposit this on a substrate. The apparatus configuration is relatively simple and the film formation cost is the lowest among the above three methods.
Sputtering is a method of irradiating a target metal with a gas component such as ionized argon and depositing a metal component knocked out of the target on a substrate.
[0025]
Ion plating uses a heat source such as an electron beam to melt, generate metal vapor, and react with metal components ionized by plasma to form a film by applying a charge to the substrate. In this way, ions are attracted, which is advantageous for forming a dense film, and high adhesion can be obtained even when the substrate temperature is low.
In the ion plating method, it is easy to form a film made of fine-grained crystals. For example, an arc discharge activated ion plating method, which is a kind of ion plating method, is used. In a ZnO film having a thickness of 1 μm formed at 0.05 Pa, the crystal grains become fine grains of about 0.02 μm.
[0026]
Thus, a film forming method can be selected according to the characteristics of the target film. Among the above three methods, the sputtering and ion plating methods ionize or activate the metal vapor by plasma, so that the reactivity is high, and even if the temperature of the substrate is low, the crystallinity and adhesion of the high film are high. The resulting film is dense and composed of fine particles. From the viewpoint of film formation speed, vacuum deposition and ion plating using an electron gun evaporation source are advantageous.
[0027]
Furthermore, in order to form a film mainly composed of a crystal phase at a practical film formation rate, it is preferable that the temperature of the base material is 1/5 or more of the melting point of the metal oxide semiconductor, and the heat of the metal plate of the base material In order to prevent deterioration, diffusion of elements from the metal plate, and the like, it is necessary to generate at a substrate temperature of 500 ° C. or less. Specifically, the substrate temperature is set to 200 ° C. to 450 ° C., the metal evaporation rate is 0.03 to 0.18 μm / min, and the pressure is 0.1 to 0.8 Pa in an oxygen atmosphere. Is preferred.
[0028]
【Example】
Examples of the present invention and comparative examples are shown below.
Using a pure titanium plate for industrial use and a stainless steel plate (SUS304) as a metal plate base material, film formation is performed by the PVD method, etc., and the properties of the film (configuration, film thickness, crystal phase, adhesion) are obtained for the obtained samples. Further, the photocatalytic activity (potassium iodide decomposition degree, deodorizing effect) was evaluated for each sample. The evaluation results are shown in Table 1 including various conditions for film formation.
[0029]
The composition, film thickness, and crystal phase content of the film were determined by Auger electron spectroscopy, X-ray photoelectron spectroscopy, glow discharge emission analysis, Raman scattering analysis, and X-ray diffraction.
The adhesion was evaluated by a 90 ° bending test. As a base material for adhesion evaluation, a disc-shaped base material of SUS304 having a diameter of 30 mm and a thickness of 0.3 mm was used, and a film was formed on this surface. This sample was processed and deformed to a bending angle of 90 °, and the portion with the largest deformation (bent portion) was observed with the naked eye. The case where the film was completely peeled was defined as “adhesiveness ×”, the case where the film was partially adhered, or the case where no peeling was observed, and the adhesion ○.
[0030]
Evaluation of the photocatalytic activity was performed by producing a titanium oxide film on a SUS304 stainless steel plate (40 mm square, 1 mm thickness) by the sol-gel method shown below, and performing relative evaluation with this photocatalytic activity. The production by the sol-gel method was based on the method of Sakuhana (Science of Sol-Gel Method, Agne Sefusha, 1988). Specifically, titanium tetraisopropoxide was diluted to a concentration of 284 g / l with 100 ml of absolute ethanol and added dropwise to a solution obtained by diluting 2 ml of 2N hydrochloric acid with 100 ml of absolute ethanol while stirring to prepare a transparent sol. Next, the dip coating-drying (100 ° C.) treatment was repeated to produce a gel compound on the substrate, followed by baking at 600 ° C. for 5 hours in an electric furnace. Repeated 4 times, the thickness of the resulting film was 0.5 μm.
[0031]
The degree of decomposition of potassium iodide was evaluated by measuring the amount of iodine produced by immersing each sample in an aqueous solution of potassium iodide and irradiating with black light (3 mW / cm 2 ) with high ultraviolet intensity. . Based on the amount of iodine produced by the above-described method using the film produced by the sol-gel method, the case where the amount of iodine produced in each sample was less than 0.5 times the reference amount was evaluated x, 0.5 Double or more was evaluated as ○.
[0032]
As for the deodorizing effect, a constant flow rate of aldehyde is allowed to flow while irradiating ultraviolet light (black light: 3 W / cm 2 ) at a constant speed from the outside of the quartz tube where each sample is placed, and the residual aldehyde concentration at the outlet is measured. Was evaluated. Based on the aldehyde residual concentration tested by the above-mentioned method using the film generated by the sol-gel method, the case where the residual concentration tested in each sample is more than twice the reference concentration is evaluated x less than twice the evaluation ○ did.
[0033]
[Table 1]
Figure 0004620846
[0034]
In Table 1, No. 1 to 8 are comparative examples. 9, 11~13,15~17 Ri is Example der, 10, 14, and 18 is a reference example. In Examples, compared with a sample produced by a sol-gel method, adhesion was excellent and sufficient photocatalytic activity was observed. No. 1 is an evaluation result of a blank base material itself on which no film is formed. In the film generation method, the following two methods were tried as sputtering methods. SP used metal as a target and introduced oxygen gas as a reaction gas. In SP2, a metal oxide (for outer layer generation) and a metal (for inner layer generation) were used as targets, and plasma was activated with argon gas. In SP2, when an intermediate layer was generated, a film was formed using a metal oxide and a metal simultaneously as a target, but the intermediate layer could not have a gradient composition because the metal vapor and oxygen partial pressure could not be individually controlled. . In both SP and SP2, the gas pressure was 2.7 Pa.
[0035]
Formation of the outer layer by vacuum deposition and ion plating was performed by evaporation of metal with an electron gun under an oxygen atmosphere and a pressure of 0.5 Pa. The inner layer was formed at a pressure of 0.1 Pa or less without introducing oxygen gas, and the formation of the intermediate layer was controlled by gradually increasing the oxygen gas flow rate while keeping the metal evaporation rate constant. The film thicknesses of the inner layer, intermediate layer, and outer layer were controlled by changing the deposition time. The film thickness increases as the deposition time increases. The deposition rate is, for example, No. In the case of 17 ion plating, it was 0.05 μm / min.
[0036]
For thermal spraying, metal oxide particles were irradiated with plasma. In order to avoid an increase in the temperature of the substrate, spraying was quickly performed while cooling from the rear of the substrate with compressed air. In the thermal spraying method, there is a limit to preparing a sample with good controllability of the gradient composition (No. 3), so sufficient adhesion could not be obtained. As is clear from the examples in Table 1 ( Nos. 9 , 11 to 13, 15 to 17 ), the surface film is 0.5 to 5.0 μm thick, the inner layer made of the metal layer, the metal and the metal oxide By forming an intermediate layer made of a material and having a gradient chemical composition from the metal layer to the metal oxide layer and an outer layer made of the metal oxide layer in a composition suitable for the purpose, adhesion and photocatalyst A metal plate excellent in activity can be obtained. It can be seen that these can be produced efficiently and effectively by the PVD method in which the metal vapor or ionized metal vapor and the partial pressure of oxygen are controlled separately.
[0037]
【The invention's effect】
According to the present invention, a wide range of practical use of a metal plate having photocatalytic activity becomes possible.
By providing an intermediate layer having a gradient composition in the coating, it becomes a coating with excellent adhesion, can be deformed and processed, and can provide a metal plate having sustained catalytic activity even when used for a long time. Further, since the film can be formed by a single process, it is easy to manage the process, which is advantageous for reducing the manufacturing cost and improving the work efficiency. Furthermore, since the temperature of the metal plate base material at the time of film formation is low, it is possible to avoid deformation of the metal plate and changes in design properties due to heat, a decrease in the photocatalytic activity of the film, and the like.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the film structure of the present invention and the chemical composition of an intermediate layer.

Claims (2)

表面に0.5〜5.0μm の厚さの皮膜を有する金属板であって、該皮膜が、金属板から表面に向かって、金属層からなる内層と、金属と金属酸化物半導体からなり、化学組成が金属層から金属酸化物半導体層に傾斜組成となっている中間層と、結晶相を含む金属酸化物半導体層からなる外層とを、順に形成した皮膜であり、該金属酸化物半導体が、C2O、In23 、PbO、V25、Bi23、Nb23 、SnO2、ZrO2から選ばれる少なくとも一つであり、上記内層の金属層が、上記金属酸化物半導体を構成する金属であり、前記内層の厚さが0.05〜1.0μm、前記中間層の厚さが0.05〜1.0μm 、及び、前記外層の厚さが0.4〜3.0μm であり、前記外層が、結晶相を80体積%以上含有することを特徴とする光触媒活性を有する金属板。A metal plate having a coating having a thickness of 0.5 to 5.0 μm on the surface, the coating consisting of an inner layer composed of a metal layer and a metal and a metal oxide semiconductor from the metal plate toward the surface; A film in which an intermediate layer whose chemical composition is a gradient composition from a metal layer to a metal oxide semiconductor layer and an outer layer composed of a metal oxide semiconductor layer containing a crystal phase are formed in order, , Cu 2 O, In 2 O 3 , PbO, V 2 O 5 , Bi 2 O 3 , Nb 2 O 3 , SnO 2 , ZrO 2 , and the inner metal layer is , Ri metal der constituting the metal oxide semiconductor, the thickness of the inner layer is 0.05 to 1.0 [mu] m, the thickness of the intermediate layer is 0.05 to 1.0 [mu] m, and, of the outer layer thickness It characterized There is 0.4~3.0Myuemu, said outer layer contains crystalline phases at least 80 vol% Metal plate having a photocatalytic activity. 前記金属板が、ステンレス鋼、又は、チタン又はチタン基合金であることを特徴とする請求項1に記載の光触媒活性を有する金属板。The metal plate having photocatalytic activity according to claim 1, wherein the metal plate is stainless steel, titanium, or a titanium-based alloy.
JP2000258012A 2000-08-28 2000-08-28 Metal plate with photocatalytic activity Expired - Fee Related JP4620846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258012A JP4620846B2 (en) 2000-08-28 2000-08-28 Metal plate with photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258012A JP4620846B2 (en) 2000-08-28 2000-08-28 Metal plate with photocatalytic activity

Publications (2)

Publication Number Publication Date
JP2002069615A JP2002069615A (en) 2002-03-08
JP4620846B2 true JP4620846B2 (en) 2011-01-26

Family

ID=18746382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258012A Expired - Fee Related JP4620846B2 (en) 2000-08-28 2000-08-28 Metal plate with photocatalytic activity

Country Status (1)

Country Link
JP (1) JP4620846B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332099B2 (en) * 2006-11-20 2013-11-06 日産自動車株式会社 Photocatalytic system for automobile
JP2008242500A (en) * 2008-06-26 2008-10-09 Shin Etsu Chem Co Ltd Manufacturing method of phase shift mask blank and manufacturing method of phase shift photomask
WO2011105183A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor element and deposition apparatus
US8227785B2 (en) * 2010-11-11 2012-07-24 Micron Technology, Inc. Chalcogenide containing semiconductors with chalcogenide gradient
JP6190209B2 (en) * 2013-08-22 2017-08-30 シャープ株式会社 Photocatalyst fiber structure and method for producing photocatalyst fiber structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH1071337A (en) * 1996-08-29 1998-03-17 Bridgestone Corp Photocatalyst and its production
JPH1192176A (en) * 1997-07-22 1999-04-06 Bridgestone Corp Photocatalytic film and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125660A (en) * 1986-11-14 1988-05-28 Seiko Epson Corp External parts for timepiece
JPH1071337A (en) * 1996-08-29 1998-03-17 Bridgestone Corp Photocatalyst and its production
JPH1192176A (en) * 1997-07-22 1999-04-06 Bridgestone Corp Photocatalytic film and its production

Also Published As

Publication number Publication date
JP2002069615A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
US20050003019A1 (en) Ionic plasma deposition of anti-microbial surfaces and the anti-microbial surfaces resulting therefrom
US5670206A (en) Deodorizing lamp and method for production thereof
WO2001042526A1 (en) Plasma processing container internal member and production method therefor
JPH08246192A (en) Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JP4620846B2 (en) Metal plate with photocatalytic activity
SE464415B (en) PROCEDURE FOR THE PREPARATION OF A COMPOSITION MATERIAL COATED WITH CALCIUM PHOSPHATE SOCIETY, AS USEFUL AS AN IMPLANT
JP2000096212A (en) Photocatalyst film coated member and its production
US20060051597A1 (en) Article coated with titanium compound film, process for producing the article and sputtering target for use in coating the film
CN102350364A (en) Preparation method of nitrogen-doped titanium dioxide photochemical catalyst loaded with foam metal carrier
JP3342201B2 (en) Titanium oxide-containing film-coated substrate for photocatalyst and method for producing the same
JP2004003022A (en) Plasma treatment container inside member
JP4620844B2 (en) Metal plate with photocatalytic activity
JP2004143584A (en) Article coated with zirconium compound film, method for producing the article, and sputtering target used for coating with the film
RU2407820C1 (en) Procedure for application of coating on items out of ceramics in vacuum
JPH1071337A (en) Photocatalyst and its production
CN110238387A (en) Functional composite particles and preparation method thereof
JP5286528B2 (en) Method for manufacturing member for semiconductor processing apparatus
JP4567892B2 (en) Metal plate having photocatalytic activity and method for producing the same
JP4847957B2 (en) Method for depositing a photocatalytic titanium oxide layer
EP1624087B1 (en) A method for depositing thin layers of titanium dioxide on support surfaces
JP2003093896A (en) Method for forming photocatalyst titanium oxide film
RU2751704C1 (en) Method for producing anti-corrosive coating on articles from monolithic titanium nickelide
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JP2004033994A (en) TiO2 PHOTOCATALYST MEMBRANE, AND ITS PRODUCTION METHOD AND METHOD FOR CONTROLLING CRYSTAL STRUCTURE OF THE PHOTOCATALYST MEMBRANE
JP2005290426A (en) Method for producing polymer thin film of triazinedithiole derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4620846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees