JPH10130887A - Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox - Google Patents

Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox

Info

Publication number
JPH10130887A
JPH10130887A JP9010550A JP1055097A JPH10130887A JP H10130887 A JPH10130887 A JP H10130887A JP 9010550 A JP9010550 A JP 9010550A JP 1055097 A JP1055097 A JP 1055097A JP H10130887 A JPH10130887 A JP H10130887A
Authority
JP
Japan
Prior art keywords
oxide film
titanium oxide
titanium
glycerophosphate
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9010550A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Akira Tanaka
彰 田中
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9010550A priority Critical patent/JPH10130887A/en
Publication of JPH10130887A publication Critical patent/JPH10130887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a highly active porous titanium oxide film having innumerable micropores on the surface of titanium and having a large surface area and to furnish a photocatalyst applying the characteristic of the film and capable of efficiently decomposing gaseous NOx . SOLUTION: Titanium is anodized in an aq. soln. of the electrolyte consisting of a glycerophosphate and a metal acetate to form an anodic oxide film contg. a liq.-soluble substance and having at least 0.1μm thickness, and then the anodic oxide film is hydrothermally treated to elute the liq.-soluble substance. The acetate of an alkali metal or an alkaline-earth metal or lanthanum acetate is preferably used as the metal acetate. Further, the anodization is conducted by changing the concn. and composition ratio of the electrolyte. Porous titanium oxide film 1 is formed on a titanium substrate 5 or a titanium net and used as a photocatalyst for decomposing gaseous NOx .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒や光増感効
果を利用した湿式太陽電池などに応用される酸化チタン
皮膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium oxide film applied to a wet solar cell utilizing a photocatalyst and a photosensitizing effect.

【0002】[0002]

【従来の技術】酸化チタンには様々な用途があり、誘電
体材料、白色顔料(チタンホワイト)などとして実用化
されている。さらに、励起された酸化チタン表面の正孔
が非常に高い酸化電位をもつことから、その半導体とし
ての性質が注目されている。例えば、空気中の酸素や水
分を分解して活性酸素を発生させ、カビや細菌を殺す抗
菌材料や、水を分解して水素または酸素を発生させる光
触媒や、窒素酸化物などの有害な物質を分解する光触媒
として検討されている。
2. Description of the Related Art Titanium oxide has various uses and has been put to practical use as a dielectric material, a white pigment (titanium white), and the like. Furthermore, since the excited holes on the surface of titanium oxide have a very high oxidation potential, their properties as semiconductors are attracting attention. For example, harmful substances such as antibacterial materials that break down oxygen and moisture in the air to generate active oxygen and kill mold and bacteria, photocatalysts that break down water to generate hydrogen or oxygen, and nitrogen oxides It is being studied as a decomposing photocatalyst.

【0003】又、最近は、色素がコーティングされた酸
化チタン皮膜を用いた湿式太陽電池にも検討されてい
る。これは、従来のアモルファスシリコンを用いた太陽
電池よりも安価で高効率という特徴がある。これらの応
用に際して重要なことは、化学反応に係わる部分の面積
を大きくすることである。一般に、表面積を大きくすれ
ば、化学反応の量は増大するので、装置やデバイスに組
み込んだ場合に性能が向上する。表面積を大きくするた
めには、酸化チタンを保持する基板に細かい凹凸を付け
たり、酸化チタン皮膜を多孔質化したり、酸化チタン粉
末粒子を微細化すればよい。
Recently, a wet solar cell using a titanium oxide film coated with a dye has been studied. This is characterized by being cheaper and more efficient than a conventional solar cell using amorphous silicon. What is important in these applications is to increase the area of a part involved in a chemical reaction. In general, increasing the surface area increases the amount of chemical reaction, thus improving performance when incorporated into an apparatus or device. In order to increase the surface area, fine irregularities may be formed on the substrate holding titanium oxide, the titanium oxide film may be made porous, or the titanium oxide powder particles may be made fine.

【0004】又、酸化チタンを装置やデバイスに応用す
る際には、粉末の状態よりも膜または板の状態の方がハ
ンドリングが容易であり、メンテナンスの手間もかから
ないので好都合である。従来から、酸化物膜を製造する
方法としては、真空蒸着法、化学的蒸着法(CVD
法)、スパッタリング法などの気相法、スピンコート法
などの液相法及び溶射法や固相反応を用いた方法などの
固相法が知られている。又、酸化物の板材を製造する方
法としては、酸化物粉末粒子を結合材(バインダー)と
混合し、これを機械的に薄く延ばす方法、或いは、酸化
物粉末粒子を型に詰めて高温で焼結する焼結法が知られ
ている。
[0004] When titanium oxide is applied to an apparatus or a device, it is convenient to handle the film or plate in a state of a powder or a plate rather than in a powder state because maintenance is easier. Conventionally, as a method of manufacturing an oxide film, a vacuum evaporation method, a chemical evaporation method (CVD)
), A gas phase method such as a sputtering method, a liquid phase method such as a spin coating method, and a solid phase method such as a thermal spraying method or a method using a solid phase reaction. In addition, as a method for producing an oxide plate material, a method in which oxide powder particles are mixed with a binder and then mechanically spread thinly, or a method in which the oxide powder particles are packed in a mold and fired at a high temperature. Bonding sintering methods are known.

【0005】そして、膜又は板の表面積を大きくする手
段としては、微細な凹凸表面と無数の気孔を有するいわ
ゆる多孔質構造にしたり、微細化した粉末粒子を原料と
して用いる方法がある。従来の多孔質酸化チタン皮膜
は、チタンアルコキシドのゾル溶液を基板に塗布してか
ら加熱処理をする、いわゆるゾルゲル法によって作製さ
れることが多かった。この皮膜は、非常に微細な酸化チ
タン粒子から構成されているため、その表面積は見かけ
の面積より著しく大きい。従って、液体または気体との
接触面積が大きくなるので、性能が向上する。
[0005] As means for increasing the surface area of the film or plate, there is a method of forming a so-called porous structure having a fine uneven surface and an infinite number of pores, or a method of using finely divided powder particles as a raw material. Conventional porous titanium oxide films are often produced by a so-called sol-gel method in which a sol solution of titanium alkoxide is applied to a substrate and then heat-treated. Since this film is composed of very fine titanium oxide particles, its surface area is significantly larger than the apparent area. Accordingly, the contact area with the liquid or gas is increased, and the performance is improved.

【0006】一方、酸化物皮膜を製造する方法として陽
極酸化法がある。陽極酸化法は、金属の表面にその金属
の酸化物を形成させる方法であり、他のセラミック膜の
製造方法に比べて成膜速度が速く、基板が大面積であっ
ても均一な厚さに成膜できるという利点がある。しか
も、複雑な形状の基板上にも成膜できるため、セラミッ
ク膜の成膜方法としては工業的に有用な成膜方法であ
る。
On the other hand, there is an anodic oxidation method as a method for producing an oxide film. The anodic oxidation method is a method of forming an oxide of the metal on the surface of the metal.The film forming rate is faster than other methods of manufacturing a ceramic film, and the thickness is uniform even if the substrate has a large area. There is an advantage that a film can be formed. In addition, since a film can be formed on a substrate having a complicated shape, it is an industrially useful film forming method for forming a ceramic film.

【0007】従来から、リン酸、硫酸あるいはこれらの
混酸からなる電解質水溶液中でチタンを陽極酸化する
と、数 100Vの高電圧まで安定して陽極酸化することが
でき、その結果、数μm と比較的厚い陽極酸化皮膜が形
成されることが知られている。そしてチタン基板を高電
圧で陽極酸化すると、基板表面で発生する火花放電によ
って多数の放電痕が形成され、多孔質になることがわか
っている。
Conventionally, when anodizing titanium in an electrolyte aqueous solution comprising phosphoric acid, sulfuric acid, or a mixed acid thereof, it is possible to stably anodize up to a high voltage of several hundred volts. It is known that a thick anodic oxide film is formed. It is known that when a titanium substrate is anodized at a high voltage, a large number of discharge marks are formed by spark discharge generated on the surface of the substrate and the substrate becomes porous.

【0008】窒素酸化物ガスを分解するための光触媒
は、酸化チタンが有する半導体として性質を利用したも
のである。エネルギー源として大量に使用されている石
油や石炭等の化石燃料を燃焼させたときには、二酸化炭
素、窒素酸化物、硫黄酸化物等が多量に排出される。そ
の結果、二酸化炭素は地球の温暖化もたらし、窒素酸化
物や硫黄酸化物は大気中の水分と反応して酸性雨とな
り、環境破壊をもたらしている。
The photocatalyst for decomposing the nitrogen oxide gas utilizes the properties of titanium oxide as a semiconductor. When fossil fuels such as petroleum and coal, which are used in large amounts as energy sources, are burned, large amounts of carbon dioxide, nitrogen oxides, sulfur oxides, and the like are emitted. As a result, carbon dioxide causes global warming, and nitrogen oxides and sulfur oxides react with atmospheric moisture to produce acid rain, which causes environmental destruction.

【0009】酸化チタンを光触媒として用いると、N
O、NO2 などの窒素酸化物(以下、NOx と総称す
る)やSO2 、SO3 などの硫黄酸化物を無害化または
除去することができる。光触媒は一種の半導体であり、
そのバンドギャップ以上のエネルギーを吸収することに
より正孔及び電子を生成する。正孔及び電子が大気中の
酸素ガスや水と反応して、酸素原子、酸素ラジカル、水
酸ラジカルなどの活性酸素を生成する。この活性酸素は
上記の有害ガスに作用してガスを分解する。以上の一連
のメカニズム(光触媒反応)によって、酸化チタンで
は、バンドギャップ・エネルギー約3eV以上の光エネル
ギーを照射することによって、有害ガスを分解できる。
When titanium oxide is used as a photocatalyst, N
Nitrogen oxides such as O and NO 2 (hereinafter collectively referred to as NO x ) and sulfur oxides such as SO 2 and SO 3 can be rendered harmless or removed. Photocatalyst is a kind of semiconductor,
Holes and electrons are generated by absorbing energy above the band gap. The holes and electrons react with oxygen gas and water in the atmosphere to generate active oxygen such as oxygen atoms, oxygen radicals, and hydroxyl radicals. The active oxygen acts on the harmful gas to decompose the gas. By the above series of mechanisms (photocatalytic reaction), harmful gas can be decomposed in titanium oxide by irradiating light energy having a band gap energy of about 3 eV or more.

【0010】従来のNOx 分解用光触媒は、酸化チタン
を粉末の状態で使用するよりも板の状態の方がハンドリ
ングが容易なことから、酸化チタン粉末を活性炭粒子及
びフッ素樹脂と機械的に混合し、これを圧延して厚さ0.
5 〜1mm のシートに作製していた。さらに、反応効率を
高めるためには、酸化チタン粉末を微細化して表面積き
を大きくしたり、酸化チタン粉末の含有量を増加させれ
ばよい。
Conventionally of the NO x cracking photocatalyst, mixed titanium oxide from the direction of the state of the plate than to use it handling ease in the form of powder, titanium oxide powder activated carbon particles and a fluorine resin and mechanically Then roll this to a thickness of 0.
It was made into a sheet of 5 to 1 mm. Further, in order to enhance the reaction efficiency, the titanium oxide powder may be miniaturized to increase the surface area, or the content of the titanium oxide powder may be increased.

【0011】[0011]

【発明が解決しようとする課題】酸化物膜を製造する従
来の方法には次のような欠点があった。真空蒸着法は、
高真空下で原料を加熱蒸発させ、蒸発粒子を基板上に堆
積させるものであり、酸化物のような融点の高い物質を
溶融させて、10-3Pa程度の高真空下で蒸発させるの
で、装置及びメンテナンスの費用が大きい。
The conventional method for producing an oxide film has the following disadvantages. The vacuum deposition method
The material is heated and evaporated under a high vacuum, and the evaporated particles are deposited on the substrate.A substance having a high melting point such as an oxide is melted and evaporated under a high vacuum of about 10 -3 Pa. Equipment and maintenance costs are high.

【0012】化学的蒸着法は、化合物気体の反応を利用
したものであり、気体原料又は液体若しくは固体原料を
気化し、気相又は基板表面で分解/結合などの化学反応
をさせて膜を形成する方法であり、装置及びメンテナン
スの費用が大きい。スパッタリング法は、例えば、高周
波電界中でイオン化した気体原子をターゲット(原料)
に衝突させて原料を表面から叩き出して、基板上に堆積
させるものである。この方法は、原料を融かす必要がな
いため、高融点の金属、酸化物、窒化物などを原料とし
て用いることができる。しかし、装置自体はかなり大が
かりなものとなり、装置及びメンテナンスの費用が大き
い。
The chemical vapor deposition method utilizes a reaction of a compound gas to vaporize a gaseous raw material or a liquid or solid raw material and form a film by performing a chemical reaction such as decomposition / bonding in a gas phase or on a substrate surface. And the cost of equipment and maintenance is large. The sputtering method uses, for example, gas atoms ionized in a high-frequency electric field as a target (raw material).
And strikes the raw material from the surface to deposit on the substrate. In this method, since it is not necessary to melt the raw material, a high melting point metal, oxide, nitride, or the like can be used as the raw material. However, the equipment itself becomes rather large, and the equipment and maintenance costs are high.

【0013】スピンコート法は、ウエットプロセスによ
って膜を形成する方法であり、ガラス、プラスチック、
金属などの基板上に塗布液(原料)を回転による遠心力
を利用して飛散させ、基板上に皮膜を形成する方法であ
る。しかし、基板を回転させる必要があるために、大面
積又は複雑形状の基板に均一な厚さの皮膜を形成するこ
とが困難である。
[0013] The spin coating method is a method for forming a film by a wet process.
This is a method in which a coating liquid (raw material) is scattered on a substrate such as a metal using centrifugal force due to rotation to form a film on the substrate. However, since it is necessary to rotate the substrate, it is difficult to form a film having a uniform thickness on a substrate having a large area or a complicated shape.

【0014】溶射法は、プラズマなどで原料粉末を溶か
し、溶融状態の原料を基板上に吹き付けて皮膜を形成す
る方法である。この方法は、原料の熱分解によって皮膜
の化学組成に変化が起こる可能性があり、さらに、稼働
するのにかなりのコストがかかる。
The thermal spraying method is a method in which a raw material powder is melted by plasma or the like and a molten raw material is sprayed on a substrate to form a film. This method can result in changes in the chemical composition of the coating due to the thermal decomposition of the raw materials and is also very costly to operate.

【0015】ゾルゲル法は、皮膜を厚くするために、塗
布、加熱処理の工程を何回も繰り返さなければならない
ために、成膜速度が遅く実用性に乏しい。しかも、大面
積の基板に均一な厚さの皮膜を形成させることは非常に
困難である。一方、酸化物板材は、その表面での化学反
応を目的として用いる場合には、酸化物皮膜に比べて材
料の無駄が多い。しかし、表面も内部も同じ材質から作
られているので、表面層の剥離が生じ難くく、仮に表面
層の脱落が生じても性能の劣化が生じないという長所が
ある。
In the sol-gel method, the steps of coating and heating must be repeated many times in order to increase the thickness of the film, so that the film-forming speed is low and is not practical. Moreover, it is very difficult to form a film having a uniform thickness on a large-area substrate. On the other hand, when an oxide plate material is used for the purpose of a chemical reaction on its surface, there is more waste of material than an oxide film. However, since both the surface and the inside are made of the same material, there is an advantage that the surface layer hardly peels off and the performance does not deteriorate even if the surface layer falls off.

【0016】酸化物粉末粒子を結合材(バインダー)と
混合し、これを機械的に加工する方法は、結合材の分だ
け酸化物粉末粒子の存在密度が減少するので、板材の表
面が有効に利用できないという欠点がある。焼結法は、
原料たる酸化物粉末粒子の熱分解によって板材の化学組
成に変化が起こる可能性があり、さらに、型を使用する
必要があるので大面積の又は複雑形状の板材の製造法と
しては不向きである。
In the method of mixing oxide powder particles with a binder and mechanically processing the binder, the density of the oxide powder particles is reduced by the amount of the binder, so that the surface of the plate material can be effectively used. There is a disadvantage that it cannot be used. The sintering method is
The chemical composition of the plate may change due to thermal decomposition of the oxide powder particles as a raw material, and furthermore, a mold must be used, which is not suitable as a method for producing a plate having a large area or a complicated shape.

【0017】陽極酸化法は、前述したように、酸化物皮
膜の製造方法としては工業的に有用な方法であり、皮膜
の剥離、脱落が生じる可能性も非常に低い。しかし、従
来の陽極酸化による陽極酸化皮膜における放電痕の直径
は数μm 程度と大きいため、表面積を大きくするのには
あまり寄与しない。皮膜の表面積を増大させるには、皮
膜に数10nm程度の非常に微細な気孔を無数形成して多孔
質とする必要がある。
As described above, the anodic oxidation method is an industrially useful method for producing an oxide film, and the possibility of peeling and falling off of the film is very low. However, since the diameter of the discharge trace on the anodic oxide film formed by the conventional anodic oxidation is as large as about several μm, it does not contribute much to increasing the surface area. In order to increase the surface area of the coating, it is necessary to make the coating porous by forming countless very small pores of about several tens nm.

【0018】また、従来の多孔質酸化チタン皮膜の結晶
相は主としてルチル相であり、このルチル相は、比較的
バンドギャップが広く、半導体としての活性があまり高
くないという問題もあった。そこで、本発明は、チタン
の表面に、事実上の表面積が数十倍から数百倍に増加し
た 0.1μm 以上の厚さを有する多孔質酸化チタン皮膜を
低コストで形成する方法を提供すること、さらには、こ
の多孔質酸化チタン皮膜が高い活性をもつようにするた
めの製造方法を提供することを目的とする。又、本発明
は、以上の製造方法による多孔質酸化チタン皮膜を応用
した、効率良く短時間でNOx を分解できる光触媒を提
供することを目的とする。
Further, the crystal phase of the conventional porous titanium oxide film is mainly a rutile phase, and this rutile phase has a relatively wide band gap and has a problem that its activity as a semiconductor is not so high. Therefore, the present invention provides a method for forming a porous titanium oxide film having a thickness of 0.1 μm or more on the surface of titanium at a thickness of 0.1 μm or more in which the actual surface area is increased by tens to hundreds of times at low cost. It is still another object of the present invention to provide a production method for making the porous titanium oxide film have high activity. Further, the present invention was applied a porous titanium oxide film according to the manufacturing method described above, and an object thereof is to provide efficiently short time photocatalyst can decompose NO x.

【0019】[0019]

【課題を解決するための手段】本発明者等はチタンを陽
極酸化処理する工程と、この陽極酸化皮膜を高温高圧中
で水熱処理する工程とにより、陽極酸化皮膜の表面積を
大幅に増大できることに着目した。本発明では、これを
踏まえて、先ず液体に可溶な物質を含むチタン陽極酸化
皮膜を作製し、次に水熱処理して液体に可溶な物質を溶
出させることによって多孔質酸化チタン皮膜が製造でき
ることを見出した。
Means for Solving the Problems The present inventors have found that the step of anodizing titanium and the step of hydrothermally treating this anodized film at a high temperature and a high pressure can greatly increase the surface area of the anodized film. I paid attention. In the present invention, based on this, first, a titanium anodic oxide film containing a substance soluble in a liquid is prepared, and then a hydrothermal treatment is performed to elute the substance soluble in the liquid to produce a porous titanium oxide film. I found what I could do.

【0020】また、陽極酸化処理条件、特に電解質の種
類、濃度及び組成比率を選ぶことによって多孔質酸化チ
タン皮膜の結晶相を制御できることを見出した。そこ
で、本発明の請求項1に係る発明は、「グリセロリン酸
塩と金属酢酸塩とから成る電解質の水溶液中でチタン基
板を陽極酸化して、液体に可溶な物質を含有する、少な
くとも 0.1μm の厚さの陽極酸化皮膜を作製する工程
と、前記陽極酸化皮膜が形成された前記チタン基板を液
体中またはその蒸気中で水熱処理して前記陽極酸化皮膜
中の、液体に可溶な物質を溶出させて、微小な気孔を形
成させる工程と、から成る」多孔質酸化チタン皮膜の製
造方法である。
It has also been found that the crystal phase of the porous titanium oxide film can be controlled by selecting the conditions of the anodizing treatment, in particular, the type, concentration and composition ratio of the electrolyte. Therefore, the invention according to claim 1 of the present invention relates to a method comprising: “anodizing a titanium substrate in an aqueous solution of an electrolyte composed of glycerophosphate and metal acetate to contain a substance soluble in a liquid; A step of producing an anodized film having a thickness of, and the titanium substrate having the anodized film formed thereon is subjected to hydrothermal treatment in a liquid or in a vapor thereof to form a liquid-soluble substance in the anodized film. Eluted to form fine pores ".

【0021】また、この陽極酸化に用いられる電解質
は、グリセロリン酸塩と金属酢酸塩との混合物が好まし
いが、特に、金属酢酸塩としては、アルカリ金属若しく
はアルカリ土類金属の酢酸塩又は酢酸ランタンが好まし
い(請求項2)。さらに、前記グリセロリン酸塩として
グリセロリン酸ナトリウムを用い、その水溶液中の濃度
を 0.001〜0.15mol/l とし、前記金属酢酸塩の水溶液中
の濃度をを0.01〜0.5mol/lとする(請求項3)。
The electrolyte used for the anodic oxidation is preferably a mixture of glycerophosphate and metal acetate. In particular, the metal acetate is preferably an alkali metal or alkaline earth metal acetate or lanthanum acetate. Preferred (claim 2). Further, sodium glycerophosphate is used as the glycerophosphate, the concentration in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. ).

【0022】本発明の請求項4〜6に係る発明は、被処
理物としてチタン基板をチタン網に代えたものであり、
既述の請求項1〜3に係る発明にそれぞれ対応する。本
発明の請求項7に係る発明は、「チタンをグリセロリン
酸塩と金属酢酸塩とから成る電解質の水溶液中で陽極酸
化し、さらに、液体中またはその蒸気中で水熱処理する
ことにより形成された」多孔質酸化チタン皮膜である。
この皮膜は、無数の微小な気孔を含有し、少なくとも
0.1μm の厚さを有する。
In the invention according to claims 4 to 6 of the present invention, a titanium substrate is replaced with a titanium net as an object to be processed.
This corresponds to the above-described inventions according to claims 1 to 3, respectively. The invention according to claim 7 of the present invention is formed by anodizing titanium in an aqueous solution of an electrolyte composed of glycerophosphate and metal acetate, and further performing a hydrothermal treatment in a liquid or a vapor thereof. "It is a porous titanium oxide film.
This coating contains countless micropores, at least
It has a thickness of 0.1 μm.

【0023】上記の多孔質酸化チタン皮膜は、特に、金
属酢酸塩としてアルカリ金属若しくはアルカリ土類金属
の酢酸塩又は酢酸ランタンを用いて製造するのが好まし
い(請求項8)。さらに、上記の多孔質酸化チタン皮膜
は、特に、グリセロリン酸ナトリウムを用い、その水溶
液中の濃度を 0.001〜0.15mol/l とし、前記金属酢酸塩
の水溶液中の濃度を0.01〜0.5mol/lとして製造するのが
好ましい(請求項9)。
The above-mentioned porous titanium oxide film is preferably produced by using an alkali metal or alkaline earth metal acetate or lanthanum acetate as a metal acetate. Further, the above-mentioned porous titanium oxide film uses, in particular, sodium glycerophosphate, the concentration in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. It is preferably manufactured (claim 9).

【0024】本発明の請求項10に係る発明は、「チタ
ン基板又はチタン網と、該チタン基板又はチタン網をグ
リセロリン酸塩と金属酢酸塩とから成る電解質の水溶液
中で陽極酸化し、さらに、液体中またはその蒸気中で水
熱処理することにより形成された、無数の微小な気孔を
含有する少なくとも 0.1μm の厚さの酸化チタン皮膜
と、から成る窒素酸化物ガス分解用光触媒である。
According to a tenth aspect of the present invention, there is provided a method for producing a titanium substrate or a titanium net, comprising the steps of: anodizing the titanium substrate or the titanium net in an aqueous solution of an electrolyte comprising glycerophosphate and a metal acetate; A photocatalyst for decomposing nitrogen oxide gas, comprising: a titanium oxide film having a thickness of at least 0.1 μm and containing a myriad of fine pores, formed by hydrothermal treatment in a liquid or its vapor.

【0025】上記の窒素酸化物ガス分解用光触媒を構成
する多孔質酸化チタン皮膜は、特に、金属酢酸塩として
アルカリ金属若しくはアルカリ土類金属の酢酸塩又は酢
酸ランタンを用いて製造するのが好ましい(請求項1
1)。さらに、上記の窒素酸化物ガス分解用光触媒を構
成する多孔質酸化チタン皮膜は、特に、グリセロリン酸
ナトリウムを用い、その水溶液中の濃度を 0.001〜0.15
mol/l とし、前記金属酢酸塩の水溶液中の濃度を0.01〜
0.5mol/lとして製造するのが好ましい(請求項12)。
The porous titanium oxide film constituting the photocatalyst for decomposing nitrogen oxide gas is preferably produced by using an alkali metal or alkaline earth metal acetate or lanthanum acetate as a metal acetate. Claim 1
1). Further, the porous titanium oxide film constituting the nitrogen oxide gas decomposition photocatalyst is, in particular, sodium glycerophosphate, and the concentration in the aqueous solution is 0.001 to 0.15.
mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to
It is preferable to produce it as 0.5 mol / l (claim 12).

【0026】[0026]

【発明の実施の形態】本発明で行う陽極酸化は、電解質
中で被処理金属を陽極、任意の金属を陰極とし、電界を
かけることにより、陽極側の金属の表面上に厚さ数μm
の酸化皮膜を形成する技術である。本発明では、陽極酸
化で形成される皮膜に電解質中に溶解している可溶性物
質を取り込ませた後に、液体中または蒸気中で加熱処理
(水熱処理)を行い、可溶性物質を溶出させることによ
って、多孔質の酸化チタン皮膜を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION The anodic oxidation performed in the present invention is performed by applying an electric field to a metal to be treated as an anode and an arbitrary metal as a cathode in an electrolyte, so that a metal having a thickness of several μm is formed on the surface of the metal on the anode side.
This is a technique for forming an oxide film. In the present invention, by incorporating a soluble substance dissolved in an electrolyte into a film formed by anodic oxidation, a heat treatment (hydrothermal treatment) is performed in a liquid or vapor to elute the soluble substance. Form a porous titanium oxide film.

【0027】本発明では、電解質中に含まれている物質
が陽極酸化の最中に皮膜に取り込まれるならば、どのよ
うな電解質でも使用可能である。しかし、以下に詳述す
るように、チタンの陽極酸化皮膜は、陽極酸化条件、特
に電圧及び電解質の種類と濃度により、皮膜の色調、皮
膜の厚さ、気孔の数と大きさ、結晶相の種類と組成など
に相違がみられる。
In the present invention, any electrolyte can be used as long as the substance contained in the electrolyte is incorporated into the film during the anodization. However, as will be described in detail below, the anodized film of titanium depends on the anodizing conditions, particularly the voltage and the type and concentration of the electrolyte, the color of the film, the thickness of the film, the number and size of the pores, the crystal phase. There are differences in type and composition.

【0028】皮膜の色調は、酸化チタンを構成する酸素
原子とチタン原子の比率で決まる。TiO2 では、酸素
とチタンの原子比率は本来2であり、白色を呈している
が、チタンが過剰となると黒色がかった色調となる。チ
タンの陽極酸化に従来使用されているリン酸、硫酸又は
これらの混酸のような強酸を用いると、チタン基板から
のチタンの溶出が多くなって黒色がかった色調の酸化チ
タンが得られる。
The color tone of the film is determined by the ratio of oxygen atoms and titanium atoms constituting titanium oxide. In TiO 2 , the atomic ratio between oxygen and titanium is originally 2 and is white, but if titanium is excessive, the color tone becomes blackish. When a strong acid such as phosphoric acid, sulfuric acid, or a mixed acid thereof conventionally used for anodizing titanium is used, elution of titanium from the titanium substrate increases, and titanium oxide having a blackish color tone is obtained.

【0029】一方、本発明におけるようにグリセロリン
酸塩と金属酢酸塩の混合溶液を用いると、この電解質溶
液は弱アルカリ性であるため、チタンの溶出が抑制され
るので、酸素とチタンの原子比率がほぼ2となり、白色
を呈する。皮膜の厚さを数μm 程度に厚くしたい場合
は、リン酸、硫酸あるいはこれらの混酸、又はグリセロ
リン酸塩と金属酢酸塩の混合溶液等を用いることが好ま
しい。グリセロリン酸塩と金属酢酸塩の混合溶液は、陽
極酸化皮膜の膜厚の制御及び多孔質化の点で特に好まし
い。グリセロリン酸塩としてはグリセロリン酸ナトリウ
ム、グリセロリン酸カルシウムなどがあるが、水に非常
に溶けやすいことからグリセロリン酸ナトリウムが最も
好ましい。
On the other hand, when a mixed solution of glycerophosphate and metal acetate is used as in the present invention, the elution of titanium is suppressed because the electrolyte solution is weakly alkaline, so that the atomic ratio of oxygen to titanium is reduced. It becomes almost 2, and exhibits a white color. When it is desired to increase the thickness of the film to about several μm, it is preferable to use phosphoric acid, sulfuric acid or a mixed acid thereof, or a mixed solution of glycerophosphate and metal acetate. A mixed solution of glycerophosphate and metal acetate is particularly preferred in terms of controlling the thickness of the anodic oxide film and making the film porous. Examples of the glycerophosphate include sodium glycerophosphate and calcium glycerophosphate, and sodium glycerophosphate is most preferable because it is very soluble in water.

【0030】金属酢酸塩ならばどの種類でも使用できる
が、特にアルカリ金属(リチウム、ナトリウム、カリウ
ム、ルビジウム、セシウム)の酢酸塩、アルカリ土類金
属(マグネシウム、カルシウム、ストロンチウム、バリ
ウム)の酢酸塩、さらに酢酸ランタンなどは、グリセロ
リン酸塩の水溶液に対する溶解度が非常に高く、しかも
高い電圧まで安定に陽極酸化できるので好適である。
Any kind of metal acetate can be used, but especially acetates of alkali metals (lithium, sodium, potassium, rubidium, cesium), acetates of alkaline earth metals (magnesium, calcium, strontium, barium), Further, lanthanum acetate or the like is preferable because it has a very high solubility in an aqueous solution of glycerophosphate and can stably anodize up to a high voltage.

【0031】これらの電解質を用いてチタンを陽極酸化
すると、リン酸やグリセロリン酸塩からリンイオンある
いはリン酸イオンが、金属酢酸塩から金属イオンが取り
込まれた陽極酸化皮膜が形成される。金属酢酸塩の中で
は、特にアルカリ土類金属の酢酸塩や酢酸ランタンを用
い、なおかつ濃度を高くすることによって、多量のアル
カリ土類金属イオンやランタンイオンを皮膜中に取り込
むことができる。
When titanium is anodized using these electrolytes, an anodic oxide film is formed in which phosphorus ions or phosphate ions are taken in from phosphoric acid or glycerophosphate and metal ions are taken in from metal acetate. Among metal acetates, a large amount of alkaline earth metal ions or lanthanum ions can be taken into the film by using, in particular, an alkaline earth metal acetate or lanthanum acetate and increasing the concentration.

【0032】例えば、β−グリセロリン酸ナトリウムと
酢酸ストロンチウムを電解質に用いた場合、PとSrを
含む陽極酸化皮膜が形成され、その含有量はこれらの電
解質の濃度によってほぼ決まる。どの電解質を用いても
電解質濃度を高くするほど皮膜に取り込まれるイオンの
量が増加する傾向が見られる。皮膜からのイオンの溶出
量が多いほど、陽極酸化皮膜に形成される気孔の径が大
きくなる。従って、皮膜中の可溶性物質の割合すなわち
電解質濃度によって、気孔径を制御できる。気孔の密度
(気孔率)は、電解質の組成によって制御できる。例え
ば、電解質として、濃度0.26mol/l のリン酸を単独で用
いる場合よりも、このリン酸に濃度0.1mol/lの酢酸カル
シウムを加えた場合の方が陽極酸化皮膜中のPの含有量
が大幅に増し、気孔率の高い皮膜が得られている。
For example, when sodium β-glycerophosphate and strontium acetate are used for the electrolyte, an anodic oxide film containing P and Sr is formed, and its content is almost determined by the concentration of these electrolytes. Regardless of which electrolyte is used, there is a tendency that the higher the electrolyte concentration is, the more the amount of ions taken into the film is. The larger the amount of ions eluted from the film, the larger the diameter of pores formed in the anodized film. Therefore, the pore size can be controlled by the ratio of the soluble substance in the film, that is, the electrolyte concentration. The pore density (porosity) can be controlled by the composition of the electrolyte. For example, the content of P in the anodic oxide film is higher when 0.1 mol / l calcium acetate is added to this phosphoric acid than when phosphoric acid having a concentration of 0.26 mol / l is used alone as an electrolyte. A film having a significantly increased porosity is obtained.

【0033】また、電解質濃度は、陽極酸化条件にも関
係し、グリセロリン酸ナトリウムの濃度を0.001mol/lよ
り低くすると電流が流れ難くなり、0.15mol/l より高く
すると酢酸塩と反応して沈澱を生じやすくなる。金属酢
酸塩の濃度は、0.01mol/l より低くとも0.5mol/lより高
くとも陽極酸化処理が困難となる。従って本発明では、
グリセロリン酸ナトリウムの濃度範囲を 0.001〜0.15mo
l/l 、金属酢酸塩の濃度範囲を0.01〜0.5mol/lとした。
The electrolyte concentration also depends on the anodic oxidation conditions. If the concentration of sodium glycerophosphate is lower than 0.001 mol / l, it becomes difficult for electric current to flow, and if it is higher than 0.15 mol / l, it reacts with acetate to precipitate. Tends to occur. When the concentration of the metal acetate is lower than 0.01 mol / l or higher than 0.5 mol / l, the anodic oxidation treatment becomes difficult. Therefore, in the present invention,
0.001 ~ 0.15mo concentration range of sodium glycerophosphate
l / l and the concentration range of the metal acetate were 0.01 to 0.5 mol / l.

【0034】尚、電解質として酢酸カルシウム又は酢酸
ストロンチウムを用いた場合、その濃度によっては、そ
れぞれカルシウムアパタイト又はストロンチウムアパタ
イトの結晶が、水熱処理によって陽極酸化皮膜上に析出
することがある。しかし、これらの酢酸塩濃度を調節す
ることによって、アパタイト結晶を全く析出させないこ
とができる。すなわち、酢酸塩とβ−グリセロリン酸ナ
トリウムの濃度を共に低くすると、溶出したイオンの濃
度が低すぎるために結晶が形成されなくなる。あるいは
また、β−グリセロリン酸ナトリウム濃度に対して酢酸
塩濃度を 1/5から1/20と低くすると、溶出したイオンの
濃度比がアパタイト結晶の組成比と大きく異なるので結
晶が形成されなくなる。このようにして、陽極酸化皮膜
の表面にアパタイト結晶が析出しないように電解質濃度
を調整することが望ましい。
When calcium acetate or strontium acetate is used as the electrolyte, calcium apatite or strontium apatite crystals may be deposited on the anodic oxide film by hydrothermal treatment depending on their concentrations. However, by adjusting the concentration of these acetates, no apatite crystals can be precipitated. That is, when the concentrations of the acetate and the sodium β-glycerophosphate are both reduced, crystals are not formed because the concentration of the eluted ions is too low. Alternatively, if the concentration of acetate is reduced from 1/5 to 1/20 with respect to the concentration of sodium β-glycerophosphate, crystals are not formed because the concentration ratio of the eluted ions is significantly different from the composition ratio of apatite crystals. Thus, it is desirable to adjust the electrolyte concentration so that apatite crystals do not precipitate on the surface of the anodic oxide film.

【0035】これらの電解液を用いて陽極酸化を始める
前には、あらかじめ最高到達電圧を設定しておく。陽極
酸化を開始すると電圧は徐々に上昇し、その最高電圧に
到達すると電流が流れなくなり陽極酸化が終了するよう
にする。陽極酸化にかかる時間は、電流密度を高くして
速く昇圧するほど短時間で終了させることができるが、
5〜10分程度と比較的短くする。陽極酸化皮膜の表面
積を増大させるには、皮膜の厚さがある程度以上、例え
ば1μm 以上であれば一層望ましい。陽極酸化皮膜の厚
さは電圧に比例するので、高い電圧で陽極酸化して膜厚
を大きくするとよい。しかし、膜厚が大きすぎると安定
して陽極酸化ができなくなるので、 500V程度が限界で
ある。電圧が 100Vを越えたあたりから、陽極酸化皮膜
の表面で火花放電が発生し、陽極酸化皮膜が局所的に高
い温度に加熱される。このような皮膜に対する加熱が無
数に繰り返された結果、陽極酸化皮膜全体が結晶化さ
れ、結晶性の高いチタン陽極酸化皮膜が形成される。ま
た、電解質から陽極酸化皮膜への可溶性物質の取り込み
も、火花放電による加熱で行われる。陽極酸化法では、
チタン基板が大面積や複雑な形状をしていても、厚さが
均一な酸化チタン皮膜を形成させることができ、1回の
反応時間は数分程度と比較的短時間で済む。また、特殊
な装置を必要とせず、室温の水溶液中で処理できるの
で、エネルギー消費量が非常に小さくて済む。
Before starting anodic oxidation using these electrolytes, the highest attainable voltage is set in advance. When the anodization is started, the voltage gradually increases. When the voltage reaches the maximum voltage, no current flows and the anodization is terminated. The time required for anodic oxidation can be completed in a shorter time as the current density is increased and the pressure is increased faster.
Make it relatively short, about 5 to 10 minutes. In order to increase the surface area of the anodic oxide film, it is more preferable that the thickness of the film is not less than a certain value, for example, not less than 1 μm. Since the thickness of the anodized film is proportional to the voltage, it is preferable to increase the film thickness by anodizing at a high voltage. However, if the film thickness is too large, anodic oxidation cannot be performed stably, so that about 500 V is the limit. When the voltage exceeds about 100 V, spark discharge occurs on the surface of the anodic oxide film, and the anodic oxide film is locally heated to a high temperature. As a result of repeatedly heating the film innumerably, the entire anodic oxide film is crystallized, and a titanium anodic oxide film having high crystallinity is formed. Incorporation of a soluble substance from the electrolyte into the anodic oxide film is also performed by heating by spark discharge. In the anodizing method,
Even if the titanium substrate has a large area or a complicated shape, a titanium oxide film having a uniform thickness can be formed, and a single reaction time is relatively short, about several minutes. In addition, since the treatment can be performed in an aqueous solution at room temperature without requiring a special device, the energy consumption can be extremely small.

【0036】溶出方法としては、オートクレーブのよう
な密閉容器中の液体又は蒸気中で陽極酸化皮膜を 100〜
500℃の範囲で加熱する、いわゆる水熱法が有効であ
る。加熱温度が 100℃より低いと可溶性物質はほとんど
溶出しない。また、オートクレーブを 500℃より高い温
度に加熱することは、装置が非常に大がかりになり一般
的でない。容器内の圧力は、内在する液体の種類、量に
もよるが、加熱温度によって大きく変わる。本発明では
通常のオートクレーブにて許容される圧力範囲を使用し
た。液体としては一般に純水が用いられるが、それだけ
に限定されるものではなく、陽極酸化皮膜から可溶性物
質の溶出を促進させるために、酸性又はアルカリ性にす
ることもある。また、液体を攪拌しながら加熱処理する
と溶出が促進される。この水熱処理によって、チタン陽
極酸化皮膜に取り込まれた可溶性物質を溶出させれば、
無数の気孔が形成されるので皮膜の表面積を著しく増大
させることができる。また、加熱によって、皮膜の結晶
化が進み結晶性はさらに高くなる。
As the elution method, the anodic oxide film is coated with a liquid or vapor in a closed container such as an autoclave for 100 to 100 minutes.
The so-called hydrothermal method of heating in the range of 500 ° C. is effective. If the heating temperature is lower than 100 ° C, the soluble substance hardly elutes. Also, heating the autoclave to a temperature higher than 500 ° C. is not common since the equipment becomes very large. The pressure in the container varies greatly depending on the heating temperature, depending on the type and amount of the liquid contained therein. In the present invention, the pressure range allowed in a normal autoclave was used. In general, pure water is used as the liquid, but the liquid is not limited to pure water, and may be made acidic or alkaline in order to promote elution of the soluble substance from the anodic oxide film. When the liquid is heated while being stirred, the elution is promoted. By dissolving the soluble substances taken into the titanium anodic oxide film by this hydrothermal treatment,
Since numerous pores are formed, the surface area of the coating can be significantly increased. Further, by heating, crystallization of the film proceeds, and the crystallinity further increases.

【0037】このようにして形成される多孔質酸化チタ
ン皮膜の結晶相は、通常は、アナターゼ相とルチル相か
ら構成されているが、その割合は水溶液中の電解質濃度
や組成比率によって左右される。例えば、電解質の種類
が同じでも、濃度や組成比率を調節することによって、
活性の高いアナターゼ相の割合を90〜 100%と高くする
ことができる。
The crystalline phase of the porous titanium oxide film thus formed is usually composed of an anatase phase and a rutile phase, but the ratio depends on the electrolyte concentration in the aqueous solution and the composition ratio. . For example, even if the type of electrolyte is the same, by adjusting the concentration and composition ratio,
The proportion of the highly active anatase phase can be as high as 90-100%.

【0038】以下、実施形態により本発明をさらに詳し
く説明する。これらの実施形態では、被処理物は板状の
チタンであるが、板状のみに限られず、繊維状、織物状
若しくは網状又はこれらを2次元、3次元に組み合わせ
た集合体を被処理物とすることができる。以下の実施形
態中、第6及び第7の実施形態では、本発明による多孔
質酸化チタン皮膜が形成されたチタン板を用いて、その
NOx 分解用光触媒としての触媒活性について説明す
る。
Hereinafter, the present invention will be described in more detail with reference to embodiments. In these embodiments, the object to be treated is plate-shaped titanium, but is not limited to plate-like titanium, and may be a fibrous, woven, or net-like or an aggregate obtained by combining these two-dimensionally and three-dimensionally with the object to be treated. can do. In the following embodiments, in the sixth and seventh embodiments, by using a titanium plate porous titanium oxide film according to the present invention is formed, it is described for the catalyst activity as the NO x decomposition photocatalytic.

【0039】〔第1の実施形態〕チタン基板の陽極酸化
条件は、濃度0.08mol/l のβ−グリセロリン酸ナトリウ
ムと0.05mol/l の酢酸ストロンチウムからなる電解質水
溶液を用い、電解質温度40℃、電流密度50mA/cm2とし、
電圧を 400Vまでとした。水熱処理条件は、高圧水中に
おいて 300℃、2時間とした。
[First Embodiment] The anodizing conditions of a titanium substrate were as follows: an electrolyte aqueous solution consisting of sodium β-glycerophosphate at a concentration of 0.08 mol / l and strontium acetate at a concentration of 0.05 mol / l was used. the density of 50mA / cm 2,
The voltage was up to 400V. Hydrothermal treatment conditions were 300 ° C. for 2 hours in high-pressure water.

【0040】図1は、上記の処理を終了した多孔質酸化
チタン皮膜の断面を示した模式図である。多孔質酸化チ
タン皮膜1は、酸化チタン微粒子2とその境界に形成さ
れた気孔3とから構成され、またその最表面には微細な
凹凸4が形成されている。陽極酸化の際にP、Sr等の
イオンが気孔3の中に取り込まれるので、多孔質酸化チ
タン皮膜1の表面積の増加は主として表面の微細な凹凸
4に負っている。
FIG. 1 is a schematic diagram showing a cross section of the porous titanium oxide film after the above-mentioned treatment. The porous titanium oxide film 1 is composed of titanium oxide fine particles 2 and pores 3 formed at the boundaries thereof, and fine irregularities 4 are formed on the outermost surface. Since ions such as P and Sr are taken into the pores 3 at the time of anodic oxidation, an increase in the surface area of the porous titanium oxide film 1 mainly depends on fine irregularities 4 on the surface.

【0041】水熱処理によってこれらのイオンを高温高
圧の水中に溶出させると、気孔3の内部は空になるの
で、多孔質酸化チタン皮膜1の表面積はさらに一層増加
する。図2は、上記の処理を終了した多孔質酸化チタン
皮膜の表面構造を示すSEM写真である。この皮膜は、
粒径が約40nmの非常に微細な酸化チタン微粒子からな
り、微粒子間には気孔が存在している多孔質構造であっ
た。尚、微粒子の結晶相はアナターゼ型であった。
When these ions are eluted into high-temperature and high-pressure water by the hydrothermal treatment, the inside of the pores 3 becomes empty, so that the surface area of the porous titanium oxide film 1 further increases. FIG. 2 is an SEM photograph showing the surface structure of the porous titanium oxide film after the above treatment. This film is
The porous structure was composed of very fine titanium oxide fine particles with a particle size of about 40 nm, and pores exist between the fine particles. The crystal phase of the fine particles was of the anatase type.

【0042】又、多孔質酸化チタン皮膜の膜厚は約12μ
m であり、これに対する元素分析の結果、陽極酸化の際
に皮膜中に取り込まれたP、Sr等の元素を示す回折ピ
ークは低い値を示し、水熱処理によって皮膜から水中へ
溶出したことが明らかとなった。この様に、陽極酸化皮
膜からPとSrを溶出させることによって、大きな表面
積をもつ多孔質酸化チタン皮膜が形成された。
The thickness of the porous titanium oxide film is about 12 μm.
m, and the results of elemental analysis showed that the diffraction peaks indicating elements such as P and Sr incorporated in the film during anodic oxidation showed low values, and it was clear that the sample was eluted from the film into water by hydrothermal treatment. It became. As described above, by eluting P and Sr from the anodic oxide film, a porous titanium oxide film having a large surface area was formed.

【0043】〔第2の実施形態〕チタン基板の陽極酸化
条件は、濃度0.005mol/lのβ−グリセロリン酸ナトリウ
ムと 0.08mol/lの酢酸ストロンチウムからなる電解質水
溶液を用い、電解質温度40℃、電流密度50mA/cm2とし、
電圧を 350Vまでとした。水熱処理条件は、高圧水中に
おいて 300℃、2時間とした。
[Second Embodiment] The anodizing conditions for a titanium substrate were as follows: an electrolyte aqueous solution comprising 0.005 mol / l sodium β-glycerophosphate and 0.08 mol / l strontium acetate was used. the density of 50mA / cm 2,
The voltage was up to 350V. Hydrothermal treatment conditions were 300 ° C. for 2 hours in high-pressure water.

【0044】未処理のチタン基板の表面積に対し、陽極
酸化終了後の表面積は60倍に増加し、水熱処理終了後で
は98倍に増加した。尚、表面積測定法として窒素吸着法
を用いた。 〔第3の実施形態〕チタン基板の陽極酸化条件は、濃度
0.005mol/lのβ−グリセロリン酸ナトリウムと 0.13mol
/lの酢酸ナトリウムからなる電解質水溶液を用い、電解
質温度40℃、電流密度50mA/cm2とし、電圧を 350Vまで
とした。水熱処理条件は、高圧水中において 300℃、2
時間とした。
The surface area after the completion of the anodic oxidation was 60 times as large as that of the untreated titanium substrate, and was 98 times after the completion of the hydrothermal treatment. Note that a nitrogen adsorption method was used as a surface area measuring method. [Third Embodiment] Anodizing conditions for a titanium substrate are as follows:
0.005mol / l β-glycerophosphate sodium and 0.13mol
The electrolyte temperature was 40 ° C., the current density was 50 mA / cm 2 , and the voltage was up to 350 V using an aqueous solution of sodium acetate composed of 1 / l sodium acetate. Hydrothermal treatment conditions are 300 ° C, 2
Time.

【0045】未処理のチタン基板の表面積に対し、陽極
酸化終了後の表面積は35倍に増加し、水熱処理終了後で
は63倍に増加した。 〔第4の実施形態〕チタン基板の陽極酸化条件は、濃度
0.02mol/lのβ−グリセロリン酸ナトリウムと 0.09mol
/lの酢酸ストロンチウムからなる電解質水溶液を用い、
電解質温度40℃、電流密度50mA/cm2とし、電圧を 350V
までとした。水熱処理条件は、高圧水中において 300
℃、2時間とした。
The surface area after the anodization was 35 times larger than that of the untreated titanium substrate, and 63 times after the completion of the hydrothermal treatment. [Fourth Embodiment] The conditions for anodizing a titanium substrate are as follows:
0.02mol / l β-glycerophosphate sodium and 0.09mol
Using an aqueous electrolyte solution consisting of / l strontium acetate,
Electrolyte temperature 40 ° C., and a current density of 50mA / cm 2, 350V voltage
Up to. Hydrothermal treatment conditions are 300
C. for 2 hours.

【0046】その結果、多孔質酸化チタン皮膜の膜厚は
2.5μm となった。また、電圧のみを 400Vまでとした
場合には、多孔質酸化チタン皮膜の膜厚は 9.0μm とな
った。つまり、高い電圧まで陽極酸化するほど膜厚の増
加がみられる。 〔第5の実施形態〕チタン基板の陽極酸化条件は、β−
グリセロリン酸ナトリウムの濃度を0.005mol/l一定と
し、酢酸カルシウムの濃度を 0〜0.4mol/lの範囲で変化
させ、その他の条件は、第1の実施形態と同様に、電解
質温度40℃、電流密度50mA/cm2とし、電圧を 350Vまで
とした。水熱処理条件も、高圧水中において 300℃、2
時間とした。
As a result, the thickness of the porous titanium oxide film is
It was 2.5 μm. When only the voltage was set to 400 V, the thickness of the porous titanium oxide film was 9.0 μm. That is, the film thickness increases as the anodic oxidation is performed up to a higher voltage. [Fifth Embodiment] The anodizing condition of the titanium substrate is β-
The concentration of sodium glycerophosphate was kept constant at 0.005 mol / l, the concentration of calcium acetate was changed in the range of 0 to 0.4 mol / l, and the other conditions were the same as in the first embodiment. The density was 50 mA / cm 2 and the voltage was up to 350V. The conditions of hydrothermal treatment are as follows:
Time.

【0047】図3は、本実施形態に係る多孔質酸化チタ
ン皮膜の結晶相の組成変化を示す図である。図3に示す
ように、アナターゼ相及びルチル相の組成比率は、酢酸
カルシウムの濃度に応じて変化する。アナターゼ相の組
成比率は、酢酸カルシウムの濃度範囲を0.05〜0.1mol/l
としたときに90〜 100%であった。アナターゼ相の回折
強度は、酢酸カルシウムの濃度を 0.09mol/lとしたとき
に最大になり、その組成比率は92%であった。しかし、
酢酸カルシウムの濃度を高めてゆくと、ルチル相の割合
が増加してしまう。従って、酢酸カルシウムの濃度をあ
る範囲に限定することによって、アナターゼ相の組成比
率を90〜 100%とすることができる。本実施形態では、
酢酸カルシウムの濃度範囲を0.05〜0.1mol/lとしたとき
に、ほぼアナターゼ単一相の多孔質酸化チタン皮膜が得
られたが、使用する金属酢酸塩の種類や他の陽極酸化条
件によってアナターゼ相の組成比率が異なるので、適切
なな条件を選ぶ必要がある。
FIG. 3 is a diagram showing a change in the composition of the crystal phase of the porous titanium oxide film according to the present embodiment. As shown in FIG. 3, the composition ratio of the anatase phase and the rutile phase changes according to the concentration of calcium acetate. The composition ratio of the anatase phase, the concentration range of calcium acetate is 0.05 to 0.1 mol / l.
And it was 90-100%. The diffraction intensity of the anatase phase was maximized when the concentration of calcium acetate was 0.09 mol / l, and the composition ratio was 92%. But,
As the concentration of calcium acetate increases, the proportion of the rutile phase increases. Therefore, by limiting the concentration of calcium acetate to a certain range, the composition ratio of the anatase phase can be 90 to 100%. In this embodiment,
When the concentration range of calcium acetate was set to 0.05 to 0.1 mol / l, a porous titanium oxide film of almost anatase single phase was obtained, but depending on the type of metal acetate used and other anodic oxidation conditions, anatase phase was obtained. Therefore, it is necessary to select an appropriate condition because the composition ratio of the compound is different.

【0048】〔第6の実施形態〕本実施形態では、幅20
mm、長さ 150mm、厚さ 0.5mmのチタン基板(チタン板)
に本発明の陽極酸化処理と水熱処理を施して形成された
多孔質酸化チタン皮膜に関し、そのNOx 分解用光触媒
としての性能について説明する。チタン基板の陽極酸化
条件は、濃度0.02mol/l のβ−グリセロリン酸ナトリウ
ムと0.08mol/l の酢酸ストロンチウムからなる電解質水
溶液を用い、電解質温度40℃、電流密度50mA/cm2とし、
電圧を 400Vまでとした。陽極酸化に要した時間は、約
7分であった。次に、水熱処理条件は、高圧水中におい
て 180℃、4時間とした。水熱処理には、蒸留水を 0.9
l入れた、容量 1.3lのオートクレーブを用いた。
[Sixth Embodiment] In this embodiment, the width 20
mm, length 150mm, thickness 0.5mm titanium substrate (titanium plate)
It relates porous titanium oxide film formed by anodizing treatment and hydrothermal treatment of the present invention, the performance as the NO x decomposition photocatalytic described. Anodizing conditions for the titanium substrate were as follows: using an aqueous electrolyte solution consisting of sodium β-glycerophosphate at a concentration of 0.02 mol / l and strontium acetate at 0.08 mol / l, at an electrolyte temperature of 40 ° C. and a current density of 50 mA / cm 2 ,
The voltage was up to 400V. The time required for anodization was about 7 minutes. Next, the hydrothermal treatment conditions were 180 ° C. for 4 hours in high-pressure water. For hydrothermal treatment, use distilled water 0.9
An autoclave with a capacity of 1.3 l was used.

【0049】図4は、上記の処理により製造されたNO
x 分解用光触媒の部分断面図である。チタン基板5の表
面に多孔質酸化チタン皮膜1が形成されている。この多
孔質酸化チタン皮膜1は、粒径が約30nmの微細な酸化チ
タン微粒子からなり、微粒子間には気孔が存在している
多孔質構造であり、チタン基板5と強固に結合されてい
た。微粒子の結晶相は 100%アナターゼ相であった。こ
の多孔質酸化チタン皮膜の膜厚は約8μm であり、その
表面積は 700〜 800倍と著しく増大していた。
FIG. 4 shows the NO produced by the above process.
FIG. 3 is a partial cross-sectional view of an x- decomposition photocatalyst. A porous titanium oxide film 1 is formed on the surface of a titanium substrate 5. The porous titanium oxide film 1 was composed of fine titanium oxide fine particles having a particle size of about 30 nm, had a porous structure in which pores exist between the fine particles, and were firmly bonded to the titanium substrate 5. The crystal phase of the fine particles was 100% anatase phase. The thickness of the porous titanium oxide film was about 8 μm, and the surface area was remarkably increased by 700 to 800 times.

【0050】続いて、上記の処理を終了した多孔質酸化
チタン皮膜について、閉鎖循環系反応装置を用いて触媒
活性の評価を行った。 (a)蛍光灯光による触媒活性の評価 フラスコに上記の多孔質酸化チタンが形成されたチタン
板及び濃度が10.5ppmのNO標準ガスを約 650mmHg導入
して封入した。フラスコに 100Wの蛍光灯の光を照射
し、経時的にNOガスの濃度を測定した。
Subsequently, the catalytic activity of the porous titanium oxide film after the above treatment was evaluated using a closed circulation system reactor. (A) Evaluation of Catalytic Activity by Fluorescent Light A titanium plate on which the above-mentioned porous titanium oxide was formed and a NO standard gas having a concentration of 10.5 ppm were introduced into the flask at about 650 mmHg and sealed. The flask was irradiated with 100 W fluorescent light to measure the concentration of NO gas over time.

【0051】図5は、3つの条件下で光を照射したと
き、NO標準ガス濃度の経時変化を示すグラフである。
NOガス濃度は、照射時間にほぼ比例して減少し、その
減少量によって光触媒効果が評価できる。図5に示すよ
うに、蛍光灯の光を24時間照射すると、初期濃度 10.5p
pmのNO標準ガスが2.2ppmに減少した。次に、光による
NOガスの自然分解の可能性を調べるために、NO標準
ガスのみを入れて蛍光灯の光を照射するブランク実験を
行なった。その結果、初期濃度 10.5ppmのNO標準ガス
が8.6ppmに減少した。さらに、触媒やフラスコ等への吸
着を調べるために、多孔質酸化チタンが形成されたチタ
ン板及びNO標準ガスをフラスコに入れ、外部光を遮断
するダーク実験を行なったところ、初期濃度 10.5ppmの
NO標準ガスが8.7ppmに減少した。以上の実験結果か
ら、24時間の照射後に少なくとも6ppmのNOガスが光触
媒作用により分解されたと考えられる。
FIG. 5 is a graph showing the change over time of the NO standard gas concentration when light is irradiated under three conditions.
The NO gas concentration decreases almost in proportion to the irradiation time, and the photocatalytic effect can be evaluated by the amount of the decrease. As shown in FIG. 5, when the light of the fluorescent lamp is irradiated for 24 hours, the initial concentration is 10.5 p.
pm NO standard gas was reduced to 2.2 ppm. Next, in order to investigate the possibility of spontaneous decomposition of NO gas by light, a blank experiment was conducted in which only a NO standard gas was inserted and light from a fluorescent lamp was applied. As a result, the NO standard gas having an initial concentration of 10.5 ppm was reduced to 8.6 ppm. Furthermore, in order to examine the adsorption to the catalyst and the flask, etc., a titanium plate on which porous titanium oxide was formed and a NO standard gas were placed in the flask, and a dark experiment was conducted in which external light was blocked. The NO standard gas was reduced to 8.7 ppm. From the above experimental results, it is considered that at least 6 ppm of NO gas was decomposed by photocatalysis after irradiation for 24 hours.

【0052】(b)高圧水銀灯光による触媒活性の評価 フラスコに上記の多孔質酸化チタンが形成されたチタン
板及び濃度が 10.0ppmのNO標準ガスを約 650mmHg導入
して封入した。フラスコに 450W高圧水銀灯の光を照射
し、経時的にNOガスの濃度を測定した。図5に示すよ
うに、水銀灯の光を1時間照射すると、初期濃度 10.0p
pmのNO標準ガスが0.6ppmに減少した。次に、光による
NOガスの自然分解の可能性を調べるために、NO標準
ガスのみを入れて水銀灯の光を照射するブランク実験を
行なった。1時間後に、初期濃度 10.0ppmのNO標準ガ
スが9.4ppmに減少した。さらに、触媒やフラスコ等への
吸着を調べるために、多孔質酸化チタンが形成されたチ
タン板及びNO標準ガスをフラスコに入れ、ダーク実験
を行なった。18時間後、初期濃度 10.0ppmのNO標準ガ
スが8.5ppmに減少した。以上の実験結果から、1時間後
に少なくとも8ppmのNOガスが光触媒作用により分解さ
れたと考えられる。
(B) Evaluation of catalytic activity by high-pressure mercury lamp light A titanium plate on which the porous titanium oxide was formed and a NO standard gas having a concentration of 10.0 ppm were introduced into the flask and sealed at about 650 mmHg. The flask was irradiated with light from a 450 W high-pressure mercury lamp, and the concentration of NO gas was measured over time. As shown in Fig. 5, when the light of a mercury lamp is irradiated for 1 hour, the initial concentration is 10.0p.
pm NO standard gas was reduced to 0.6 ppm. Next, in order to investigate the possibility of spontaneous decomposition of NO gas by light, a blank experiment was conducted in which only a NO standard gas was inserted and light from a mercury lamp was irradiated. After one hour, the NO standard gas having an initial concentration of 10.0 ppm was reduced to 9.4 ppm. Further, in order to examine adsorption to a catalyst, a flask, and the like, a titanium plate on which porous titanium oxide was formed and a NO standard gas were placed in the flask, and a dark experiment was performed. After 18 hours, the NO standard gas with an initial concentration of 10.0 ppm was reduced to 8.5 ppm. From the above experimental results, it is considered that at least 8 ppm of NO gas was decomposed by photocatalysis after 1 hour.

【0053】以上のように、アナタ−ゼ相の結晶性が高
く、しかも単位面積当たりの表面積が非常に大きい多孔
質酸化チタン皮膜を光触媒に用いると、その表面に吸着
できるNO分子の数が飛躍的に多くなり、短時間に効率
よくNOガスを分解することができる。 〔第7の実施形態〕本実施形態では、幅20mm、長さ 150
mm、厚さ 0.5mmのチタン基板(チタン板)に本発明の陽
極酸化処理と水熱処理を施して形成された多孔質酸化チ
タン皮膜に関し、そのNOx 分解用光触媒としての性能
について説明する。
As described above, when a porous titanium oxide film having a high crystallinity of an anatase phase and a very large surface area per unit area is used for a photocatalyst, the number of NO molecules adsorbable on the surface is greatly increased. And the NO gas can be efficiently decomposed in a short time. [Seventh Embodiment] In this embodiment, the width is 20 mm and the length is 150 mm.
mm, relates porous titanium oxide film formed by anodizing treatment and hydrothermal treatment of the present invention to a titanium substrate having a thickness of 0.5 mm (titanium plate), it will be described performance as the NO x decomposition photocatalytic.

【0054】チタン基板の陽極酸化条件は、濃度0.01mo
l/l のβ−グリセロリン酸ナトリウムと0.13mol/l の酢
酸ナトリウムからなる電解質水溶液を用い、電解質温度
40℃、電流密度50mA/cm2とし、電圧を 350Vまでとし
た。陽極酸化に要した時間は、約5分であった。次に、
水熱処理条件は、高圧水中において 300℃、2時間とし
た。水熱処理には、蒸留水を 0.2l入れた、容量 1.3l
のオートクレーブを用いた。
Anodizing conditions for the titanium substrate are as follows:
Using an aqueous electrolyte solution consisting of l / l sodium β-glycerophosphate and 0.13 mol / l sodium acetate,
The temperature was 40 ° C., the current density was 50 mA / cm 2 , and the voltage was 350 V. The time required for the anodization was about 5 minutes. next,
Hydrothermal treatment conditions were 300 ° C. for 2 hours in high-pressure water. For hydrothermal treatment, 0.2 l of distilled water was added, and the volume was 1.3 l
Autoclave was used.

【0055】続いて、上記の処理を終了した多孔質酸化
チタン皮膜について、閉鎖循環系反応装置を用いて触媒
活性の評価を行った。 (c)太陽光による触媒活性の評価 容量2lのフラスコに上記の多孔質酸化チタンが形成さ
れたチタン板及び濃度が10.5ppm のNO標準ガスを約 6
50mmHg導入して封入した。フラスコに太陽光を照射し、
経時的にNOガスの濃度を測定した。
Subsequently, the catalytic activity of the porous titanium oxide film after the above treatment was evaluated using a closed circulation system reactor. (C) Evaluation of catalytic activity by sunlight A titanium plate on which the porous titanium oxide was formed and a NO standard gas having a concentration of 10.5 ppm were placed in a flask having a capacity of 2 liters for about 6 hours.
50 mmHg was introduced and sealed. Irradiate the flask with sunlight,
The concentration of the NO gas was measured over time.

【0056】太陽光を延べ24時間照射すると、初期濃度
10.0ppmのNO標準ガスが0.1ppmに減少した。次に、光
によるNOガスの自然分解の可能性を調べるために、N
O標準ガスのみを入れて太陽光を照射するブランク実験
を行なった。24時間後に、初期濃度 10.5ppmのNO標準
ガスが9.0ppmに減少した。さらに、触媒やフラスコ等へ
の吸着を調べるために、多孔質酸化チタンが形成された
チタン板及びNO標準ガスをフラスコに入れ、ダーク実
験を行なった。24時間後、初期濃度 10.5ppmのNO標準
ガスが10.0ppm に減少した。以上の実験結果から、太陽
光によって24時間後に少なくとも8ppmのNOガスが光触
媒作用により分解されたと考えられる。
When irradiated with sunlight for a total of 24 hours, the initial concentration
10.0 ppm NO standard gas was reduced to 0.1 ppm. Next, to investigate the possibility of spontaneous decomposition of NO gas by light,
A blank experiment was conducted in which only the O standard gas was introduced and sunlight was irradiated. After 24 hours, the NO standard gas having an initial concentration of 10.5 ppm was reduced to 9.0 ppm. Further, in order to examine adsorption to a catalyst, a flask, and the like, a titanium plate on which porous titanium oxide was formed and a NO standard gas were placed in the flask, and a dark experiment was performed. After 24 hours, the NO standard gas with an initial concentration of 10.5 ppm was reduced to 10.0 ppm. From the above experimental results, it is considered that at least 8 ppm of NO gas was decomposed by photocatalysis after 24 hours by sunlight.

【0057】以上、第6及び第7の実施形態で説明した
NOx 分解用光触媒は、多孔質酸化チタン皮膜の結晶性
が高いので、触媒活性を向上させる効果がある。又、光
触媒の製造に通常用いられる助触媒である白金の担持等
の修飾を本発明の光触媒にも適用できる。先述したよう
に、本発明の多孔質酸化チタン皮膜は、板状のチタンの
みに限定されず、繊維状、織物状若しくは網状又はこれ
らを2次元、3次元に組み合わせた集合体の表面上にも
均一な厚さに形成させることができる。これらの形態を
とれば、ガスの流路を遮るように配置することも可能で
あり、NOx を透過させて除去を行うことができる。
[0057] above, sixth and 7 NO x decomposition photocatalytic described in the embodiment of, because of the high crystallinity of the porous titanium oxide film, an effect of improving the catalytic activity. Further, modifications such as loading of platinum, which is a cocatalyst usually used in the production of photocatalysts, can be applied to the photocatalyst of the present invention. As described above, the porous titanium oxide film of the present invention is not limited to only plate-like titanium, but may also be formed on the surface of a fibrous, woven, or net-like or an aggregate obtained by combining these two-dimensionally and three-dimensionally. It can be formed to a uniform thickness. With these configurations, it is possible to dispose the gas so as to block the gas flow path, and it is possible to remove NO x by passing it through.

【0058】[0058]

【発明の効果】本発明では、陽極酸化で形成される皮膜
に電解質中に溶解している可溶性物質を取り込ませた後
に、液体中または蒸気中で水熱処理を行い、可溶性物質
を溶出させることによって、多孔質の酸化チタン皮膜を
形成する。この多孔質酸化チタン皮膜は、大面積の複雑
形状のチタン基板上に均一な厚さで形成できる。多孔質
酸化チタン皮膜には微細な気孔が無数形成されるので、
実際の表面積は見かけの面積の50倍以上に増加させる
ことができる。また、陽極酸化条件における電解質の濃
度、組成比率等の比較的少ないパラメーターを制御する
だけで、活性の高いアナターゼ相の組成比率を高めるこ
とができる。
According to the present invention, after a soluble substance dissolved in an electrolyte is incorporated into a film formed by anodic oxidation, a hydrothermal treatment is performed in a liquid or steam to elute the soluble substance. To form a porous titanium oxide film. This porous titanium oxide film can be formed with a uniform thickness on a titanium substrate having a large area and a complicated shape. Since numerous fine pores are formed in the porous titanium oxide film,
The actual surface area can be increased by more than 50 times the apparent area. Further, the composition ratio of the anatase phase having high activity can be increased only by controlling relatively few parameters such as the concentration and composition ratio of the electrolyte under anodizing conditions.

【0059】また、本発明では、チタン基板上に上記の
多孔質酸化チタン皮膜を形成させ、これをNOx 分解用
光触媒に応用した。この光触媒は、人工光照射でも自然
光の下でもNOx 分解に関して高い触媒活性を示すと共
に、多孔質酸化チタン皮膜がチタン基板に強固に結合し
ており、多孔質酸化チタン皮膜が基板から剥離したり脱
落することがほとんど全くない。さらに、板状のチタン
に限らず、繊維状、織物状若しくは網状又はこれらを2
次元、3次元に組み合わせた集合体に対してもその表面
上にも均一な厚さの多孔質酸化チタン皮膜を形成させる
ことができるので、装置やデバイスに組み込む際の設計
の自由度が増す。
[0059] In the present invention, to form the porous titanium oxide film on the titanium substrate, which is applied to NO x decomposition photocatalytic. The photocatalyst exhibit both high catalytic activity for NO x decomposition even under natural light in artificial light irradiation, porous titanium oxide film are strongly bonded to the titanium substrate, or a porous titanium oxide film is peeled off from the substrate There is almost no dropout. Furthermore, it is not limited to plate-like titanium, but may be fibrous, woven, or net-like,
Since a porous titanium oxide film having a uniform thickness can be formed on the surface of the aggregate formed three-dimensionally and three-dimensionally, the degree of freedom of design when incorporating the same into an apparatus or a device is increased.

【0060】また、本発明の多孔質酸化チタン皮膜の製
造法は、他の製造法に比べて装置の値段、装置の稼働費
用及びメンテナンス費用が安い。
Further, the method for producing a porous titanium oxide film of the present invention is lower in equipment price, equipment operation cost and maintenance cost than other production methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る多孔質酸化チタン皮膜の
断面を示す部分模式図である。
FIG. 1 is a partial schematic view showing a cross section of a porous titanium oxide film according to a first embodiment.

【図2】第1の実施形態に係る多孔質酸化チタン皮膜の
表面のSEM写真である。
FIG. 2 is an SEM photograph of a surface of a porous titanium oxide film according to the first embodiment.

【図3】第5の実施形態に係る多孔質酸化チタン皮膜の
結晶相の組成変化を示す図である。
FIG. 3 is a diagram showing a composition change of a crystal phase of a porous titanium oxide film according to a fifth embodiment.

【図4】第6の実施形態に係るNOx 分解用光触媒の部
分断面図である。
4 is a partial cross-sectional view of the NO x decomposition photocatalytic according to a sixth embodiment.

【図5】第6の実施形態に係る、光を照射したときのN
O標準ガス濃度の経時変化を示すグラフである。
FIG. 5 is a view showing N when irradiated with light according to a sixth embodiment.
It is a graph which shows a temporal change of O standard gas concentration.

【符号の説明】[Explanation of symbols]

1・・・多孔質酸化チタン皮膜 2・・・酸化チタン微粒子 3・・・気孔 4・・・微細な凹凸 5・・・チタン基板 DESCRIPTION OF SYMBOLS 1 ... Porous titanium oxide film 2 ... Titanium oxide fine particles 3 ... Porosity 4 ... Fine unevenness 5 ... Titanium substrate

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 グリセロリン酸塩と金属酢酸塩とから成
る電解質の水溶液中でチタン基板を陽極酸化して、液体
に可溶な物質を含有する、少なくとも 0.1μm の厚さの
陽極酸化皮膜を作製する工程と、 前記陽極酸化皮膜が形成された前記チタン基板を液体中
またはその蒸気中で水熱処理して前記陽極酸化皮膜中
の、液体に可溶な物質を溶出させて、微小な気孔を形成
させる工程と、 から成ることを特徴とする多孔質酸化チタン皮膜の製造
方法。
1. Anodizing a titanium substrate in an aqueous solution of an electrolyte comprising glycerophosphate and a metal acetate to form an anodized film having a thickness of at least 0.1 μm and containing a substance soluble in a liquid. Performing a hydrothermal treatment of the titanium substrate on which the anodized film is formed in a liquid or a vapor thereof to elute a substance soluble in the liquid in the anodized film to form fine pores. A method for producing a porous titanium oxide film, comprising the steps of:
【請求項2】 前記金属酢酸塩は、アルカリ金属若しく
はアルカリ土類金属の酢酸塩又は酢酸ランタンであるこ
とを特徴とする請求項1に記載の多孔質酸化チタン皮膜
の製造方法。
2. The method for producing a porous titanium oxide film according to claim 1, wherein the metal acetate is an alkali metal or alkaline earth metal acetate or lanthanum acetate.
【請求項3】 前記グリセロリン酸塩は、グリセロリン
酸ナトリウムであり、前記グリセロリン酸ナトリウムの
水溶液中の濃度を 0.001〜0.15mol/l とし、 前記金属酢酸塩の水溶液中の濃度を0.01〜0.5mol/lとし
たことを特徴とする請求項1に記載の多孔質酸化チタン
皮膜の製造方法。
3. The glycerophosphate is sodium glycerophosphate, wherein the concentration of the sodium glycerophosphate in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. 2. The method for producing a porous titanium oxide film according to claim 1, wherein
【請求項4】 グリセロリン酸塩と金属酢酸塩とから成
る電解質の水溶液中でチタン細線から構成されたチタン
網を陽極酸化して、液体に可溶な物質を含有する、少な
くとも 0.1μm の厚さの陽極酸化皮膜を作製する工程
と、 前記陽極酸化皮膜が形成された前記チタン網を液体中ま
たはその蒸気中で水熱処理して前記陽極酸化皮膜中の、
液体に可溶な物質を溶出させて、微小な気孔を形成させ
る工程と、 から成ることを特徴とする多孔質酸化チタン皮膜の製造
方法。
4. A thickness of at least 0.1 μm containing a substance soluble in a liquid by anodizing a titanium net composed of fine titanium wires in an aqueous solution of an electrolyte comprising glycerophosphate and metal acetate. A step of producing an anodic oxide film of the above, the titanium net having the anodic oxide film formed thereon is subjected to a hydrothermal treatment in a liquid or a vapor thereof in the anodic oxide film,
A process of eluting a substance soluble in a liquid to form fine pores, comprising the steps of:
【請求項5】 前記金属酢酸塩は、アルカリ金属若しく
はアルカリ土類金属の酢酸塩又は酢酸ランタンであるこ
とを特徴とする請求項4に記載の多孔質酸化チタン皮膜
の製造方法。
5. The method for producing a porous titanium oxide film according to claim 4, wherein the metal acetate is an alkali metal or alkaline earth metal acetate or lanthanum acetate.
【請求項6】 前記グリセロリン酸塩は、グリセロリン
酸ナトリウムであり、前記グリセロリン酸ナトリウムの
水溶液中の濃度を 0.001〜0.15mol/l とし、 前記金属酢酸塩の水溶液中の濃度を0.01〜0.5mol/lとし
たことを特徴とする請求項4に記載の多孔質酸化チタン
皮膜の製造方法。
6. The glycerophosphate salt is sodium glycerophosphate, wherein the concentration of the sodium glycerophosphate in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. The method for producing a porous titanium oxide film according to claim 4, wherein
【請求項7】 チタンをグリセロリン酸塩と金属酢酸塩
とから成る電解質の水溶液中で陽極酸化し、さらに、液
体中またはその蒸気中で水熱処理することにより形成さ
れた、無数の微小な気孔を含有する少なくとも 0.1μm
の厚さの酸化チタン皮膜であることを特徴とする多孔質
酸化チタン皮膜。
7. Titanium is anodized in an aqueous solution of an electrolyte composed of glycerophosphate and metal acetate, and is further treated with hydrothermal treatment in a liquid or in a vapor thereof to form an infinite number of minute pores. Contains at least 0.1μm
A porous titanium oxide film, characterized in that it is a titanium oxide film having a thickness of 3 mm.
【請求項8】 前記金属酢酸塩は、アルカリ金属若しく
はアルカリ土類金属の酢酸塩又は酢酸ランタンであるこ
とを特徴とする請求項7に記載の多孔質酸化チタン皮
膜。
8. The porous titanium oxide film according to claim 7, wherein the metal acetate is an alkali metal or alkaline earth metal acetate or lanthanum acetate.
【請求項9】 前記グリセロリン酸塩は、グリセロリン
酸ナトリウムであり、前記グリセロリン酸ナトリウムの
水溶液中の濃度を 0.001〜0.15mol/l とし、 前記金属酢酸塩の水溶液中の濃度を0.01〜0.5mol/lとし
たことを特徴とする請求項7に記載の多孔質酸化チタン
皮膜。
9. The glycerophosphate is sodium glycerophosphate, wherein the concentration of the sodium glycerophosphate in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. 8. The porous titanium oxide film according to claim 7, wherein the thickness is l.
【請求項10】 チタン基板又はチタン網と、該チタン
基板又はチタン網をグリセロリン酸塩と金属酢酸塩とか
ら成る電解質の水溶液中で陽極酸化し、さらに、液体中
またはその蒸気中で水熱処理することにより形成され
た、無数の微小な気孔を含有する少なくとも 0.1μm の
厚さの酸化チタン皮膜と、から成ることを特徴とする窒
素酸化物ガス分解用光触媒。
10. Anodizing a titanium substrate or a titanium mesh in an aqueous solution of an electrolyte comprising glycerophosphate and a metal acetate, and subjecting the titanium substrate or the titanium mesh to a hydrothermal treatment in a liquid or in a vapor thereof. A titanium oxide film having a thickness of at least 0.1 μm and containing a myriad of fine pores formed thereby.
【請求項11】 前記金属酢酸塩は、アルカリ金属若し
くはアルカリ土類金属の酢酸塩又は酢酸ランタンである
ことを特徴とする請求項10に記載の窒素酸化物ガス分
解用光触媒。
11. The photocatalyst for nitrogen oxide gas decomposition according to claim 10, wherein the metal acetate is an alkali metal or alkaline earth metal acetate or lanthanum acetate.
【請求項12】 前記グリセロリン酸塩は、グリセロリ
ン酸ナトリウムであり、前記グリセロリン酸ナトリウム
の水溶液中の濃度を 0.001〜0.15mol/l とし、 前記金属酢酸塩の水溶液中の濃度を0.01〜0.5mol/lとし
たことを特徴とする請求項10に記載の窒素酸化物ガス
分解用光触媒。
12. The glycerophosphate salt is sodium glycerophosphate, wherein the concentration of the sodium glycerophosphate in the aqueous solution is 0.001 to 0.15 mol / l, and the concentration of the metal acetate in the aqueous solution is 0.01 to 0.5 mol / l. 11. The photocatalyst for decomposing nitrogen oxide gas according to claim 10, wherein the photocatalyst is l.
JP9010550A 1996-09-04 1997-01-23 Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox Pending JPH10130887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9010550A JPH10130887A (en) 1996-09-04 1997-01-23 Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-234173 1996-09-04
JP23417396 1996-09-04
JP9010550A JPH10130887A (en) 1996-09-04 1997-01-23 Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox

Publications (1)

Publication Number Publication Date
JPH10130887A true JPH10130887A (en) 1998-05-19

Family

ID=26345834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9010550A Pending JPH10130887A (en) 1996-09-04 1997-01-23 Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox

Country Status (1)

Country Link
JP (1) JPH10130887A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202302A (en) * 1998-12-31 2000-07-25 Lg Electronics Inc Film type photocatalyst and its manufacture
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
JP2008254983A (en) * 2007-04-06 2008-10-23 National Institute Of Advanced Industrial & Technology ACICULAR ANATASE-TYPE TiO2 NANOCRYSTAL ACCUMULATED GRAINS, POROUS ANATASE-TYPE TiO2 CRYSTAL FILM, AND METHOD FOR PRODUCING THE SAMES
JP2009023854A (en) * 2007-07-17 2009-02-05 National Institute Of Advanced Industrial & Technology Epitaxial nano tio2 particle coating and method for preparing the same
JP2009067655A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology NANOCRYSTAL-ACCUMULATED TiO2 AND ITS PRODUCING METHOD
CN101862668A (en) * 2010-06-30 2010-10-20 哈尔滨工业大学 Surface gaseous penetration modification method of nanometer titanium dioxide film photocatalyst
JP2011047878A (en) * 2009-08-28 2011-03-10 Nippon Steel Corp Method for evaluating resistance of titanium to discoloration in atmospheric environment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202302A (en) * 1998-12-31 2000-07-25 Lg Electronics Inc Film type photocatalyst and its manufacture
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction
JP2008254983A (en) * 2007-04-06 2008-10-23 National Institute Of Advanced Industrial & Technology ACICULAR ANATASE-TYPE TiO2 NANOCRYSTAL ACCUMULATED GRAINS, POROUS ANATASE-TYPE TiO2 CRYSTAL FILM, AND METHOD FOR PRODUCING THE SAMES
JP2009023854A (en) * 2007-07-17 2009-02-05 National Institute Of Advanced Industrial & Technology Epitaxial nano tio2 particle coating and method for preparing the same
JP2009067655A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology NANOCRYSTAL-ACCUMULATED TiO2 AND ITS PRODUCING METHOD
JP2011047878A (en) * 2009-08-28 2011-03-10 Nippon Steel Corp Method for evaluating resistance of titanium to discoloration in atmospheric environment
CN101862668A (en) * 2010-06-30 2010-10-20 哈尔滨工业大学 Surface gaseous penetration modification method of nanometer titanium dioxide film photocatalyst

Similar Documents

Publication Publication Date Title
Momeni et al. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst
Stojadinović et al. Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
EP3166724A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
Wang et al. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization
JP2002370034A (en) Oxide photocatalyst material using inorganic metallic compound and applied article thereof
JPWO2004026471A1 (en) Photocatalyst material and production method thereof
JPS6397234A (en) Fixation photocatalyst
JP2002253975A (en) Oxide photocatalytic material using organometallic compound and its application article
JP2000178791A (en) Production of porous titanium oxide film
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JPH10130887A (en) Production of porous titanium oxide film, porous titanium oxide film and photocatalyst for decomposing gaseous nox
WO2009130924A1 (en) Dendritic substances and structures containing the same
KR100225342B1 (en) Method for preparing titanium oxide photocatalyst
WO2008001405A2 (en) Metal or metalized fabrics coated with nanostructured titanium dioxide
JPH0788370A (en) Photocatalyst and production of photocatalyst
JP4163374B2 (en) Photocatalytic membrane
KR20090121447A (en) Cr(vi) reduction apparatus by immobilized nanotubular tio2 grown on rotating titanium meshes
KR101814483B1 (en) Ultra-porous Photocatalytic Material, Method for the Manufacture and the Uses therof
JP2003299965A (en) Photocatalyst material and production method of the same
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP3911355B2 (en) Method for producing photocatalyst
Du et al. Ce (4+) doped TiO 2 thin films: Characterization and photocatalysis
KR100888677B1 (en) Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
JP3887510B2 (en) Photocatalyst film and method for producing the same