JP4578274B2 - Animal husbandry equipment - Google Patents
Animal husbandry equipment Download PDFInfo
- Publication number
- JP4578274B2 JP4578274B2 JP2005054454A JP2005054454A JP4578274B2 JP 4578274 B2 JP4578274 B2 JP 4578274B2 JP 2005054454 A JP2005054454 A JP 2005054454A JP 2005054454 A JP2005054454 A JP 2005054454A JP 4578274 B2 JP4578274 B2 JP 4578274B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- titanium oxide
- titanium
- layer
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241001465754 Metazoa Species 0.000 title claims description 31
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 185
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 182
- 239000010410 layer Substances 0.000 claims description 162
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 67
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 63
- 239000000758 substrate Substances 0.000 claims description 62
- 239000010936 titanium Substances 0.000 claims description 61
- 229910052719 titanium Inorganic materials 0.000 claims description 61
- 229910052799 carbon Inorganic materials 0.000 claims description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 55
- 239000002344 surface layer Substances 0.000 claims description 55
- 244000144972 livestock Species 0.000 claims description 39
- 238000002485 combustion reaction Methods 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 25
- 229930195733 hydrocarbon Natural products 0.000 claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 239000000567 combustion gas Substances 0.000 claims description 9
- 238000004873 anchoring Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 63
- 238000010438 heat treatment Methods 0.000 description 54
- 239000010408 film Substances 0.000 description 49
- 239000011941 photocatalyst Substances 0.000 description 38
- 239000010409 thin film Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 25
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 24
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 24
- 239000013078 crystal Substances 0.000 description 22
- 239000000126 substance Substances 0.000 description 21
- 239000011162 core material Substances 0.000 description 16
- 230000001699 photocatalysis Effects 0.000 description 15
- 238000005299 abrasion Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000007777 multifunctional material Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000000844 anti-bacterial effect Effects 0.000 description 11
- 239000000543 intermediate Substances 0.000 description 11
- 230000001954 sterilising effect Effects 0.000 description 11
- 238000004659 sterilization and disinfection Methods 0.000 description 11
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 10
- 230000003373 anti-fouling effect Effects 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 239000012855 volatile organic compound Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000004332 deodorization Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- -1 various containers Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical group [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000002781 deodorant agent Substances 0.000 description 4
- 238000009408 flooring Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000001877 deodorizing effect Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000004298 light response Effects 0.000 description 3
- 239000010871 livestock manure Substances 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 235000019645 odor Nutrition 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 101100258086 Postia placenta (strain ATCC 44394 / Madison 698-R) STS-01 gene Proteins 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910021652 non-ferrous alloy Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 101100500493 Mus musculus Eapp gene Proteins 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical class O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/50—Livestock or poultry management
- Y02P60/52—Livestock or poultry management use of renewable energies
Landscapes
- Housing For Livestock And Birds (AREA)
- Catalysts (AREA)
Description
本発明は、床材、各種容器、糞尿処理装置、轡のはみなどであって、炭素ドープ酸化チタン層を備えた畜産用器具に関し、より具体的には、第1の発明は、炭素がTi−C結合の状態でドープされた、炭素ドープされた酸化チタン層(以下、炭素ドープ酸化チタン層という)を有し、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する炭素ドープ酸化チタン層を有する畜産用器具に関する。
また、第2の発明は、少なくとも一部の表面部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有しているので揮発性有機化合物(VOC)も容易に吸着でき、表面積が大きく且つ炭素ドープされているので光触媒としての活性が高く且つ可視光応答型光触媒として機能し、また硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れている炭素ドープ酸化チタン層を有する畜産用器具に関する。
The present invention relates to a flooring, various containers, excrement disposal equipment, salmon scissors, etc., and relates to a livestock instrument provided with a carbon-doped titanium oxide layer. More specifically, the first invention relates to carbon It has a carbon-doped titanium oxide layer (hereinafter referred to as carbon-doped titanium oxide layer) doped in a Ti-C bond state, and has durability (high hardness, scratch resistance, abrasion resistance, chemical resistance) The present invention relates to a livestock instrument having a carbon-doped titanium oxide layer that is excellent in heat resistance and functions as a visible light responsive photocatalyst.
In addition, since the second invention has a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface portion, it can easily adsorb volatile organic compounds (VOC) and has a large surface area. In addition, carbon-doped titanium oxide has high activity as a photocatalyst because it is carbon-doped, functions as a visible light responsive photocatalyst, has high hardness, and has excellent peel resistance, wear resistance, chemical resistance, and heat resistance. The present invention relates to a livestock instrument having a layer.
近年、光触媒の実用化を図るための研究が多くの技術分野で数多く実施されており、光触媒の殺菌・消臭・防汚等の機能やその超親水性を利用した成果物として、抗菌タイルなども開発されている。 In recent years, many researches have been carried out in many technical fields in order to put the photocatalyst into practical use. Has also been developed.
従来より、光触媒機能を呈する物質として二酸化チタンTiO2(本明細書、請求の範囲においては、単に、酸化チタンという)が知られている。チタン金属上に酸化チタン膜を形成する方法として、1970年代より、チタン金属上に陽極酸化によって酸化チタン膜を形成する方法、酸素を供給した電気炉中でチタン金属板上に熱的に酸化チタン膜を形成する方法、チタン板を都市ガスの1100〜1400℃の火炎中で加熱してチタン金属上に酸化チタン膜を形成する方法等が知られている(非特許文献1参照)。また、光触媒の実用化を図るための研究が多くの技術分野で数多く実施されている。 Conventionally, titanium dioxide TiO 2 (simply referred to as titanium oxide in the present specification and claims) is known as a substance exhibiting a photocatalytic function. As a method of forming a titanium oxide film on titanium metal, since the 1970s, a method of forming a titanium oxide film on titanium metal by anodic oxidation, thermal titanium oxide on a titanium metal plate in an electric furnace supplied with oxygen A method of forming a film, a method of forming a titanium oxide film on titanium metal by heating a titanium plate in a flame of city gas at 1100 to 1400 ° C. are known (see Non-Patent Document 1). In addition, many studies for practical application of photocatalysts have been carried out in many technical fields.
このような光触媒機能により消臭、抗菌、防曇や防汚の効果が得られる光触媒製品を製造する場合、一般的には、酸化チタンゾルをスプレーコーティング、スピンコーティング、ディッピング等により基体上に付与して成膜している(例えば、特許文献1〜3参照)。なお、スパッタリング法によって光触媒皮膜を成膜する方法も知られている(例えば、特許文献4〜5参照)。 When manufacturing photocatalyst products that can provide deodorant, antibacterial, anti-fogging and antifouling effects by such photocatalytic function, titanium oxide sol is generally applied to the substrate by spray coating, spin coating, dipping, etc. (For example, refer to Patent Documents 1 to 3). In addition, the method of forming a photocatalyst film | membrane by sputtering method is also known (for example, refer patent documents 4-5).
また、酸化チタンを光触媒として機能させるためには波長が400nm以下の紫外線が必要であるが、種々の元素をドープして可視光により機能する酸化チタン光触媒の研究が数多く実施されている。例えば、F、N、C、S、P、Ni等をそれぞれドープした酸化チタンを比較して、窒素ドープ酸化チタンが可視光応答型光触媒として優れているという報告がある(非特許文献2参照)。 Further, in order to make titanium oxide function as a photocatalyst, ultraviolet rays having a wavelength of 400 nm or less are necessary. However, many studies of titanium oxide photocatalysts that function by visible light by doping various elements have been conducted. For example, comparing titanium oxides doped with F, N, C, S, P, Ni, etc., there is a report that nitrogen-doped titanium oxide is superior as a visible light responsive photocatalyst (see Non-Patent Document 2). .
また、このように他元素をドープした酸化チタン光触媒としては、酸化チタンの酸素サイトを窒素等の原子で置換してなるチタン化合物、酸化チタンの結晶の格子間に窒素等の原子をドーピングしてなるチタン化合物、或いは酸化チタン結晶の多結晶集合体の粒界に窒素等の原子を配してなるチタン化合物からなる光触媒が提案されている(例えば、特許文献6〜9等参照)。更に、例えば、天然ガス及び酸素の流量を調整することによって燃焼炎の温度が850℃付近に維持された天然ガス燃焼炎をチタン金属に当てることにより化学修飾酸化チタンであるn−TiO2-xCxが得られ、これが535nm以下の光を吸
収する旨の報告がある(非特許文献3参照)。
In addition, titanium oxide photocatalysts doped with other elements in this way include titanium compounds in which the oxygen sites of titanium oxide are replaced with atoms such as nitrogen, and atoms such as nitrogen are doped between the lattices of titanium oxide crystals. There has been proposed a photocatalyst comprising a titanium compound or a titanium compound in which atoms such as nitrogen are arranged at grain boundaries of a polycrystalline aggregate of titanium oxide crystals (see, for example, Patent Documents 6 to 9). Further, for example, n-TiO 2 -xCx, which is a chemically modified titanium oxide, is obtained by applying a natural gas combustion flame in which the temperature of the combustion flame is maintained at around 850 ° C. by adjusting the flow rates of natural gas and oxygen to titanium metal. There is a report that this absorbs light of 535 nm or less (see Non-Patent Document 3).
更に、CVD法又はPVD法などの各種製法により作製した結晶核を無機金属化合物又は有機金属化合物から成るゾル溶液中に入れるか、又は該結晶核にゾル溶液を塗布し、固化させ、熱処理して酸化チタン結晶を該結晶核より成長させることにより、その結晶核より成長させた酸化チタン結晶の結晶形状が柱状結晶を成すことで高活性な光触媒機能が得られることが知られている(例えば、特許文献10〜12参照)。
牛、馬、豚、鶏等の家畜を飼育する畜産業では、少なくとも夜間は畜舎に家畜を収容して休息させてやるが、家畜は畜舎内でも糞尿をするためその糞尿の清掃は日々欠かすことはできない。この清掃が十分でないと、雑菌の発生等により家畜の健康を損ない、また、悪臭が発生する原因となることがあった。
また糞尿の処理に用いられる各種器具には腐食が特に進行し易く、いったん腐食が始まると加速度的に腐食が進行してしまうことが多いといった問題もあった。
さらに牛等を繋留するための轡のはみは長時間牛等の口に銜えられ、雑菌が繁殖しやすい環境にあり、これを清潔に維持することは家畜の健康を保つうえで非常に重要であるが、飼料等の咀嚼によってその表面に傷や摩耗が生じ易く、はみを清潔に維持することは容易なことではなかった。
In the livestock industry that raises livestock such as cattle, horses, pigs, and chickens, at least at night, livestock are housed and rested. I can't. If this cleaning is not sufficient, the health of livestock may be impaired due to the generation of various germs and the like, which may cause bad odor.
In addition, various instruments used for manure treatment are particularly prone to corrosion, and once corrosion starts, corrosion often proceeds at an accelerated rate.
In addition, the scissors for anchoring cattle etc. are kept in the mouth of cattle etc. for a long time and are in an environment in which miscellaneous germs are easy to breed. Maintaining them cleanly is very important for maintaining the health of livestock. However, it is not easy to keep the scissors clean because the surface of the feed is easily damaged and worn by chewing feed.
雑菌や悪臭の発生を効果的に抑制する手段として、畜産用器具(床材、各種容器、糞尿処理装置、轡のはみなど)に光触媒を適用し、光触媒の殺菌・抗菌・消臭等の作用を利用するとともに、超親水性による洗浄の容易化を図ってやることが考えられる。 As a means to effectively suppress the generation of various germs and odors, photocatalysts are applied to livestock equipment (flooring materials, various containers, manure processing equipment, salmon scissors, etc.) It is conceivable to use the action and facilitate cleaning by super hydrophilicity.
しかしながら上述した酸化チタンゾルをスプレーコーティング、スピンコーティング、ディッピング等により基体上に付与して成膜した酸化チタン皮膜やスパッタリング法によって成膜した酸化チタン皮膜や、天然ガス燃焼炎をチタン金属に当てることにより成膜した化学修飾酸化チタンであるn−TiO2-XCxの皮膜はその硬度や耐久性が十分でないため、これを畜産用器具に適用した場合、洗浄の繰り返しや、経年使用によって光触媒には剥離や摩耗が生じやすく、光触媒による殺菌・抗菌・消臭等の作用や超親水性を維持したまま長期に亘ってこれを使用することは困難であった。 However, by applying the above-mentioned titanium oxide sol onto the substrate by spray coating, spin coating, dipping, etc., or by applying a titanium oxide film formed by sputtering or a natural gas combustion flame to titanium metal The film of n-TiO 2-X Cx, which is a chemically modified titanium oxide film, does not have sufficient hardness and durability, so when applied to livestock equipment, it can be used as a photocatalyst by repeated washing or aging. Peeling and abrasion are likely to occur, and it has been difficult to use this for a long period of time while maintaining the action of sterilization, antibacterial, deodorant, etc. by the photocatalyst and super hydrophilicity.
また酸化チタン結晶を該結晶核より成長させることにより、その結晶核より成長させた
酸化チタン結晶の結晶形状が柱状結晶を成すようにしたものでは、高活性な光触媒機能が得られるものの、単に基体上に置かれた種結晶から柱状結晶が成長するだけであるため、形成された柱状結晶の基体への付着強度が充分ではなかった。そのため、作製された光触媒は耐摩耗性等の耐久性の点については必ずしも満足できるものではなかった。
In addition, when a titanium oxide crystal is grown from the crystal nucleus so that the crystal shape of the titanium oxide crystal grown from the crystal nucleus forms a columnar crystal, a highly active photocatalytic function can be obtained, but only the substrate Since the columnar crystal only grows from the seed crystal placed thereon, the adhesion strength of the formed columnar crystal to the substrate was not sufficient. Therefore, the produced photocatalyst is not always satisfactory in terms of durability such as wear resistance.
本発明はこのような問題点を解決するためになされたものでありその第一の目的は、可視光応答型光触媒として機能し且つ光触媒活性が高く、殺菌・滅菌・消臭・防汚等の機能や超親水性に優れるとともに、皮膜硬度が高く、また、耐久性(耐剥離性、耐摩耗性、耐薬品性、耐熱性、耐食性)にも優れた炭素ドープ酸化チタン層を備えた畜産用器具を提供することにある。 The present invention has been made to solve such problems, and the first object thereof is to function as a visible light responsive photocatalyst and has high photocatalytic activity, such as sterilization, sterilization, deodorization, and antifouling. For livestock with a carbon-doped titanium oxide layer with excellent function and super hydrophilicity, high film hardness, and excellent durability (peeling resistance, abrasion resistance, chemical resistance, heat resistance, corrosion resistance) To provide an instrument.
本発明の第二の目的は、VOCも容易に吸着でき、表面積が大きく且つ炭素ドープされているので光触媒としての活性が高く且つ可視光応答型光触媒として機能し、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れた炭素ドープ酸化チタン層を備えた畜産用器具を提供することにある。 The second object of the present invention is that VOC can be easily adsorbed, has a large surface area and is carbon-doped, and therefore has high activity as a photocatalyst and functions as a visible light responsive photocatalyst. An object of the present invention is to provide an animal husbandry instrument provided with a carbon-doped titanium oxide layer excellent in chemical resistance and heat resistance.
本発明者は上記の目的を達成するために鋭意検討した結果、表面層がチタン又はチタン合金からなる基体の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより、炭素がTi−C結合の状態でドープされており、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する炭素ドープ酸化チタン層を表面層として有する畜産用器具に適用するのに有用な部材(以下、「多機能材」という。)が得られることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned object, the present inventor heat-treats the surface of a substrate whose surface layer is made of titanium or a titanium alloy at a high temperature using a combustion flame of a gas containing hydrocarbon as a main component. As a result, carbon is doped in a Ti-C bond state, and has excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and functions as a visible light responsive photocatalyst. The present invention was completed by finding that a member (hereinafter referred to as “multifunctional material”) useful for application to livestock equipment having a carbon-doped titanium oxide layer as a surface layer was obtained.
即ち、本発明の第1の畜産用器具は、少なくとも表面層が炭素ドープ酸化チタン層からなり、該炭素がTi−C結合の状態でドープされており、耐久性に優れ且つ可視光応答型光触媒として機能する多機能材(第1の多機能材)によって形成されたことを特徴とする。 That is, the first livestock instrument of the present invention has at least a surface layer composed of a carbon-doped titanium oxide layer, the carbon is doped in a Ti-C bond state, and has excellent durability and a visible light responsive photocatalyst. It is formed by the multifunctional material (1st multifunctional material) which functions as.
さらに、本発明者は上記の目的を達成するために鋭意検討した結果、少なくとも表面層がチタン又はチタン合金からなる基体の表面に不飽和炭化水素、特にアセチレンの燃焼炎を直接当てて特定の条件下で加熱処理するか、又は該基体の表面を特定の条件下で不飽和炭化水素、特にアセチレンの燃焼排ガス雰囲気中で加熱処理することによって、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が形成されること、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とが得られること、即ち、この両者とも表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有していること、この両者とも有用な多機能材であること、また該酸化チタン又はチタン合金酸化物からなる突起部である微細柱、連続した狭幅突起部が炭素ドープされていることにより、光触媒活性が高く、可視光応答型光触媒として機能し、更にVOCも容易に吸着でき、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れた多機能材が得られることを見出し、本発明を完成した。 Furthermore, as a result of intensive investigations to achieve the above-mentioned object, the present inventor has determined that specific conditions are obtained by directly applying a combustion flame of unsaturated hydrocarbon, particularly acetylene, to the surface of a substrate whose surface layer is made of titanium or a titanium alloy. The surface layer is heated in a flue gas atmosphere of unsaturated hydrocarbons, particularly acetylene, under specific conditions, so that titanium oxide or titanium alloy oxide is formed inside the surface layer. A layer in which the fine pillars are erected is formed, and the layer in which the fine pillars are erected is cut in a direction along the surface layer to oxidize the titanium oxide or titanium alloy on at least a part of the substrate. A member in which a layer in which fine pillars made of material are erected is exposed, a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on a thin film, and erections on the protrusions It is possible to obtain a member with an exposed thin column, that is, both of them have a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface, both of which are useful. The photocatalytic activity is high and the visible light responsive photocatalyst is a multi-functional material, and the fine column which is a protrusion made of the titanium oxide or titanium alloy oxide and the continuous narrow protrusion are carbon-doped. The present invention was completed by finding that a multifunctional material capable of functioning as a VOC, easily adsorbing VOC, having high hardness, and excellent in peeling resistance, abrasion resistance, chemical resistance and heat resistance can be obtained.
即ち、本発明の第2の畜産用器具は、表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有しており、例えば、表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出しているか又は薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出しており、該突起部、例えば該微細柱、該狭幅突起部が炭素ドー
プされた多機能材(第2の多機能材)によって形成されたことを特徴とする。
That is, the second animal husbandry instrument of the present invention has a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface, for example, titanium oxide or titanium on at least a part of the surface. A layer in which fine columns made of an alloy oxide are exposed is exposed, or a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on a thin film, and a fine structure that stands on the protrusions Columns are exposed, and the protrusions, for example, the fine columns and the narrow protrusions are formed of a carbon-doped multifunctional material (second multifunctional material).
本発明は、畜産業において使用される種々の器具(畜産用器具)の少なくとも一部を第1の多機能材又は第2の多機能材で形成するものである。 In the present invention, at least a part of various instruments (livestock instruments) used in the livestock industry is formed of the first multifunctional material or the second multifunctional material.
上記第1の発明に使用される多機能材によれば、畜産用器具の基体の表面層に炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層が形成さるため、この層が400nm以上の波長にも応答する高活性の可視光応答型光触媒として有効に機能して、有機物分解機能による殺菌・抗菌・消臭作用等を発揮するとともに、超親水性による汚れの除去の容易化を達成することができる。また形成された炭素ドープ酸化チタン層は非常に硬度が高く、耐久性(耐剥離性、耐摩耗性、耐薬品性、耐熱性、耐食性)に優れるため、光触媒による殺菌・抗菌・消臭等の作用や超親水性を維持したまま長期に亘ってこれを使用可能な畜産用器具が提供される。またこの多機能材によれば従来硬質クロムめっきが利用されていた種々の畜産用器具にこれを適用することができる。また、基材の電位を低下させて孔食や全面腐食、並びに応力腐食割れ等の防止等を目的とする畜産用器具への応用が期待できる。
なおバインダーを使用していないため、畜産用器具を酸等で洗浄した場合にもバインダーの劣化による製品の耐用年数の短縮を招くことはない。
また光触媒による殺菌によれば、消毒剤による殺菌のように家畜の健康を損なう恐れや耐性菌を生む心配はなく、これにより感染症の発生等を有効に予防することが可能となる。
According to the multifunctional material used in the first invention, a carbon-doped titanium oxide layer in which carbon is doped in a Ti-C bond state is formed on the surface layer of the base for livestock equipment. It functions effectively as a highly active visible light responsive photocatalyst that responds to wavelengths of 400 nm or longer, and exhibits sterilization, antibacterial, and deodorizing effects due to the organic substance decomposition function, and facilitates removal of dirt due to super hydrophilicity. Can be achieved. In addition, the formed carbon-doped titanium oxide layer is extremely hard and has excellent durability (peeling resistance, abrasion resistance, chemical resistance, heat resistance, corrosion resistance). An animal husbandry tool that can be used over a long period of time while maintaining its action and super hydrophilicity is provided. Moreover, according to this multifunctional material, this can be applied to various livestock appliances for which hard chrome plating has been conventionally used. In addition, it can be expected to be applied to livestock instruments for the purpose of reducing the potential of the base material to prevent pitting corrosion, overall corrosion, stress corrosion cracking, and the like.
In addition, since the binder is not used, even if the livestock equipment is washed with an acid or the like, the service life of the product is not shortened due to the deterioration of the binder.
In addition, sterilization with a photocatalyst is unlikely to impair the health of livestock and worry about producing resistant bacteria unlike sterilization with a disinfectant, and thus it is possible to effectively prevent the occurrence of infectious diseases.
また上記第2の発明に使用される多機能材によれば、上記効果に加え可視光下(すなわち通常の可視光照明)でも光触媒活性が非常に高く殺菌・抗菌・消臭等の作用にも優れ、更にVOCも容易に吸着できる耐久性の高い畜産用器具が提供される。 Further, according to the multifunctional material used in the second invention, in addition to the above effects, the photocatalytic activity is very high even under visible light (that is, normal visible light illumination), and it is effective for sterilization, antibacterial, deodorization and the like. A highly durable animal husbandry tool that is excellent and can easily adsorb VOCs is also provided.
なお蓄舎などでは周辺環境への影響が問題となっており、悪臭の発生および飛散を防止し、また殺菌等を十分に行うためには、光触媒活性がより高い第2の発明に使用される多機能材を用いることがより適している。 In addition, in a storage building or the like, the influence on the surrounding environment is a problem, and it is used in the second invention with higher photocatalytic activity in order to prevent the generation and scattering of bad odors and to sufficiently perform sterilization and the like. It is more suitable to use a multifunctional material.
本発明は畜産用の各種器具、例えば各種容器、糞尿処理装置、轡のはみなどの主として抗菌金属製品に関するものであるが、その他にも蓄舎の床材や壁面材、シンクなどにも適用することが可能である。すなわち可視光応答型光触媒の殺菌・抗菌・消臭等の作用および耐久性を向上させることで家畜の健康維持・向上に貢献するものであれば、種々の畜産用器具に適用することができる。
本発明は、従来の光触媒では十分といえなかった光触媒や製品自体の高耐久性を実現し(第1の発明)、さらに高度の殺菌・抗菌・消臭等の作用を発揮させる(第2の発明)ものである。
The present invention mainly relates to antibacterial metal products such as various instruments for livestock, such as various containers, excrement disposal equipment, and scissors, but also applies to flooring, wall materials, sinks, etc. Is possible. That is, as long as it contributes to maintaining and improving the health of livestock by improving the action and durability of the visible light responsive photocatalyst such as sterilization, antibacterial and deodorization, it can be applied to various livestock instruments.
The present invention realizes the high durability of the photocatalyst and the product itself that could not be said to be sufficient with the conventional photocatalyst (the first invention), and further exhibits a high degree of sterilization / antibacterial / deodorant effects (the second Invention).
第1の発明の畜産用器具は、少なくとも表面層がチタン又はチタン合金からなる基体の表面を、例えば、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより製造することができるが、この少なくとも表面層がチタン又はチタン合金からなる基体は、その基体の全体がチタン又はチタン合金で構成されていても、或いは表面部形成層と心材とで構成されていてそれらの材質が異なっていてもよい。また、その基体の形状については、殺菌・抗菌・消臭等の作用等を有しかつ高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性等の耐久性が望まれる最終商品形状(平板状や立体状)や、表面に可視光応答型光触媒機能を有することが望まれる最終商品形状であってもよく、表面に形成された炭素ドープ酸化チタン層が加工工程で切削や研削等により除去されない限りその材料としての形状であってもよい。 The animal husbandry instrument of the first invention is manufactured by heat-treating at least a surface of a substrate whose surface layer is made of titanium or a titanium alloy at a high temperature using, for example, a combustion flame of a gas containing hydrocarbon as a main component. However, the substrate whose at least surface layer is made of titanium or a titanium alloy may be composed of the surface portion forming layer and the core material even if the entire substrate is made of titanium or a titanium alloy. The material may be different. In addition, the shape of the substrate is a final product that has sterilization, antibacterial, deodorant, etc., and durability such as high hardness, scratch resistance, abrasion resistance, chemical resistance, and heat resistance. It may be the shape (flat or three-dimensional) or the final product shape that is desired to have a visible light responsive photocatalytic function on the surface, and the carbon-doped titanium oxide layer formed on the surface is cut or ground in the processing process. The shape may be a material as long as it is not removed by, for example.
少なくとも表面層がチタン又はチタン合金からなる基体が表面部形成層と心材とで構成されていてそれらの材質が異なっている場合には、その表面部形成層の厚さは形成される炭素ドープ酸化チタン層の厚さと同一であっても(即ち、表面部形成層全体が炭素ドープ酸化チタン層となる)、厚くてもよい(即ち、表面部形成層の厚さ方向の一部が炭素ドープ酸化チタン層となり、一部がそのまま残る)。また、その心材の材質は第1の発明の製造方法における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、セラミックス、その他の陶磁器、高温耐熱性ガラス等を用いることができる。このような薄膜状の表面層と心材とで構成されている基体としては、例えば、心材の表面にチタン又はチタン合金からなる皮膜をスパッタリング、蒸着、溶射等の方法で形成したもの、あるいは、市販の酸化チタンゾルをスプレーコーティング、スピンコーティングやディッピングにより心材の表面上に付与して皮膜を形成したもの等を挙げることができる。 If at least the surface layer is made of titanium or a titanium alloy and the surface portion forming layer and the core material are made of different materials, the thickness of the surface portion forming layer is the carbon-doped oxidation formed. It may be the same as the thickness of the titanium layer (that is, the entire surface portion forming layer becomes a carbon-doped titanium oxide layer) or may be thick (that is, a portion of the surface portion forming layer in the thickness direction is carbon-doped oxidized. It becomes a titanium layer and a part remains as it is). The material of the core material is not particularly limited as long as it does not burn, melt or deform during the heat treatment in the manufacturing method of the first invention. For example, iron, iron alloy, non-ferrous alloy, ceramics, other ceramics, high temperature heat resistant glass, etc. can be used as the core material. As a substrate composed of such a thin film surface layer and a core material, for example, a film made of titanium or a titanium alloy on the surface of the core material by a method such as sputtering, vapor deposition or thermal spraying, or a commercially available one The titanium oxide sol may be applied to the surface of the core material by spray coating, spin coating or dipping to form a film.
また、第1の発明畜産用器具は、炭素ドープされた酸化チタン又はチタン合金酸化物からなる層と中間層と心材とで構成されており、該中間層がチタン又はチタン合金であり、該心材がチタン又はチタン合金以外の材質で構成されていてもよい。 Moreover, 1st invention animal husbandry instrument is comprised by the layer which consists of carbon-doped titanium oxide or titanium alloy oxide, the intermediate | middle layer, and the core material, and this intermediate | middle layer is titanium or a titanium alloy, This core material May be made of a material other than titanium or a titanium alloy.
上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V
、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、Ti−13V−11Cr−3Al等を用いることができる。
Various known titanium alloys can be used as the titanium alloy, and are not particularly limited. For example, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-7Al-4Mo, Ti-5Al-2.5Sn, Ti- 6Al-5Zr-0.5Mo-0.2Si, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si, Ti-8Al-1Mo-1V
Ti-6Al-2Sn-4Zr-2Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-11.5Mo-6Zr-4.5Sn, Ti-15V-3Cr-3Al-3Sn, Ti-15Mo-5Zr -3Al, Ti-15Mo-5Zr, Ti-13V-11Cr-3Al, or the like can be used.
第1の発明の畜産用器具の製造においては、少なくとも表面層がチタン又はチタン合金からなる床材、各種容器、糞尿処理装置、轡のはみ等の基体を用意し、その表面層を、炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用いることができ、特に還元炎を利用することが望ましい。この炭化水素を主成分とするガスとは炭化水素を少なくとも50容量%含有するガスを意味し、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを意味する。本発明の畜産用器具の製造においては、炭化水素を主成分とするガスがアセチレンを50容量%以上含有することが好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられる。 In the production of livestock equipment according to the first invention, at least a surface layer of a flooring made of titanium or a titanium alloy, various containers, a manure treatment device, a base such as a spider scissors is prepared, and the surface layer is carbonized. A gas combustion flame mainly composed of hydrogen, particularly acetylene, can be used, and it is particularly desirable to use a reducing flame. This hydrocarbon-based gas means a gas containing at least 50% by volume of hydrocarbon, for example, a gas containing at least 50% by volume of acetylene and appropriately mixed with air, hydrogen, oxygen, etc. To do. In the production of the animal husbandry instrument of the present invention, the gas containing hydrocarbon as a main component preferably contains 50% by volume or more of acetylene, and the hydrocarbon is most preferably 100% acetylene. When unsaturated hydrocarbons, especially acetylene having a triple bond, are used, in the process of combustion, especially in the reducing flame part, the unsaturated bond part decomposes to form an intermediate radical substance. It is considered that carbon doping is likely to occur because of its high activity.
本発明の畜産用器具の製造において、加熱処理する基体の表面層がチタン又はチタン合金である場合には、該チタン又はチタン合金を酸化する酸素が必要であり、その分だけ空気又は酸素を含んでいる必要がある。 In the production of the animal husbandry apparatus of the present invention, when the surface layer of the substrate to be heat-treated is titanium or a titanium alloy, oxygen that oxidizes the titanium or titanium alloy is necessary, and air or oxygen is included correspondingly. It is necessary to be out.
第1の発明の畜産用器具の製造においては、表面層がチタン又はチタン合金からなる基体の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理するが、この場合に、基体の表面に炭化水素を主成分とするガスの燃焼炎を直接当てて高温で加熱処理しても、そのような基体の表面を炭化水素を主成分とするガスの燃焼ガス雰囲気中で高温で加熱処理してもよく、この加熱処理は例えば炉内で実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その燃
焼炎を該基体の表面に当てればよい。燃焼ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼ガス雰囲気を利用する。
In the production of the animal husbandry instrument of the first invention, the surface of the substrate whose surface layer is made of titanium or a titanium alloy is heated at a high temperature using a combustion flame of a gas mainly composed of hydrocarbons. In addition, even if a combustion flame of a gas containing hydrocarbon as a main component is directly applied to the surface of the substrate and subjected to heat treatment at a high temperature, the surface of such a substrate is in a combustion gas atmosphere of a gas containing hydrocarbon as a main component. Heat treatment may be performed at a high temperature, and this heat treatment can be performed in a furnace, for example. When heat treatment is performed at a high temperature by directly applying a combustion flame, the above-described fuel gas may be burned in a furnace and the combustion flame may be applied to the surface of the substrate. When heat treatment is performed in a combustion gas atmosphere at a high temperature, the above fuel gas is burned in a furnace and the high-temperature combustion gas atmosphere is used.
第1の発明での加熱処理については、基体の表面温度が900〜1500℃、好ましくは1000〜1200℃となり、基体の表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層が形成されるように加熱処理する必要がある。基体の表面温度が900℃未満で終わる加熱処理の場合には、得られる炭素ドープ酸化チタン層を有する基体の耐久性は不十分となり、且つ可視光下での光触媒活性も不十分となる。一方、基体の表面温度が1500℃を超える加熱処理の場合には、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じ、第1の発明で目的としている可視光応答性を有する高耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)の炭素ドープ酸化チタン層を備えた畜産用器具を得ることができない。 Regarding the heat treatment in the first invention, the surface temperature of the substrate is 900 to 1500 ° C., preferably 1000 to 1200 ° C., and carbon is doped with carbon in a Ti—C bond state as the surface layer of the substrate. It is necessary to heat-process so that a layer may be formed. In the case of the heat treatment in which the surface temperature of the substrate ends below 900 ° C., the durability of the substrate having the carbon-doped titanium oxide layer obtained is insufficient and the photocatalytic activity under visible light is also insufficient. On the other hand, in the case of heat treatment in which the surface temperature of the substrate exceeds 1500 ° C., the ultrathin film is peeled off from the surface of the substrate during cooling after the heat treatment, and has the visible light response that is the object of the first invention. It is not possible to obtain livestock equipment provided with a carbon-doped titanium oxide layer having high durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance).
また、基体の表面温度が900〜1500℃の範囲内となる加熱処理の場合であっても、加熱処理時間が長くなると、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じ、第1の発明で目的としている耐久性等の効果が得られないので、加熱処理後の冷却時にその基体表面部に剥離をもたらさない程度の時間であることが必要である。即ち、その加熱処理時間は該表面層を炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層とするのに十分な時間であるが加熱後の冷却時にその基体表面部からの極薄膜の剥離をもたらすことのない時間である必要がある。この加熱処理時間は加熱温度と相関関係にあるが、約400秒以下であることが好ましい。 Moreover, even in the case of heat treatment in which the surface temperature of the substrate is in the range of 900 to 1500 ° C., if the heat treatment time is long, peeling of the ultrathin film from the surface portion of the substrate occurs during cooling after the heat treatment, Since the effect such as durability which is the object of the first invention cannot be obtained, it is necessary to have a time that does not cause peeling on the surface of the substrate during cooling after the heat treatment. That is, the heat treatment time is sufficient to make the surface layer a carbon-doped titanium oxide layer doped with carbon in a Ti-C bond state. It must be a time that does not result in peeling of the thin film. This heat treatment time is correlated with the heating temperature, but is preferably about 400 seconds or less.
上述した第1の発明の畜産用器具の製造においては、加熱温度及び加熱処理時間を調整することにより炭素を0.3〜15at%、好ましくは1〜10at%含有する炭素がT
i−C結合の状態でドープされた炭素ドープ酸化チタン層を比較的容易に得ることができる。炭素のドープ量が少ない場合には炭素ドープ酸化チタン層は透明であり、炭素のドープ量が増えるに従って炭素ドープ酸化チタン層は半透明、不透明となる。従って、透明な板状心材の上に透明な炭素ドープ酸化チタン層を形成することにより耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する透明板を得ることができ、また、表面に有色模様を有する板上に透明な炭素ドープ酸化チタン層を形成することにより耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する化粧板を得ることができる。なお、少なくとも表面層がチタン又はチタン合金からなる基体が表面部形成層と心材とで構成されていてその表面部形成層の厚さが500nm以下である場合には、その表面部形成層の融点近傍まで加熱すると、海に浮かぶ多数の小島状の起伏が表面に生じて半透明となる。
In the production of the animal husbandry instrument of the first invention described above, carbon containing 0.3 to 15 at%, preferably 1 to 10 at% carbon is adjusted by adjusting the heating temperature and the heat treatment time.
A carbon-doped titanium oxide layer doped in an i-C bond state can be obtained relatively easily. When the carbon doping amount is small, the carbon-doped titanium oxide layer is transparent, and as the carbon doping amount increases, the carbon-doped titanium oxide layer becomes translucent and opaque. Therefore, by forming a transparent carbon-doped titanium oxide layer on a transparent plate-shaped core material, it has excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and visible light response A transparent plate that functions as a mold photocatalyst can be obtained, and durability (high hardness, scratch resistance, abrasion resistance) can be obtained by forming a transparent carbon-doped titanium oxide layer on a plate having a colored pattern on the surface. , A decorative plate that is excellent in chemical resistance and heat resistance) and functions as a visible light responsive photocatalyst. In the case where at least the substrate whose surface layer is made of titanium or a titanium alloy is composed of the surface portion forming layer and the core material, and the thickness of the surface portion forming layer is 500 nm or less, the melting point of the surface portion forming layer When heated to the vicinity, many small island-like undulations floating in the sea are generated on the surface and become translucent.
炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を備えた畜産用器具においては、炭素ドープ酸化チタン層の厚さは10nm以上であることが好ましく、高硬度、耐スクラッチ性、耐摩耗性を達成するためには50nm以上であることが一層好ましい。炭素ドープ酸化チタン層の厚さが10nm未満である場合には、得られる炭素ドープ酸化チタン層を有する畜産用器具の耐久性は不十分となる傾向がある。炭素ドープ酸化チタン層の厚さの上限については、コストと達成される効果とを考慮する必要があるが、特に制限されるものではない。 In livestock equipment provided with a carbon-doped titanium oxide layer doped with carbon in a Ti-C bond state, the thickness of the carbon-doped titanium oxide layer is preferably 10 nm or more, high hardness, scratch resistance, In order to achieve wear resistance, the thickness is more preferably 50 nm or more. When the thickness of the carbon-doped titanium oxide layer is less than 10 nm, the durability of the animal husbandry device having the carbon-doped titanium oxide layer obtained tends to be insufficient. The upper limit of the thickness of the carbon-doped titanium oxide layer is not particularly limited, although it is necessary to consider the cost and the effect achieved.
第1の発明の畜産用器具の炭素ドープ酸化チタン層は、前記した非特許文献3に記載されているような化学修飾酸化チタンや、従来から提案されている種々の原子又はアニオンXをドープしてなるチタン化合物Ti−O−Xを含有する酸化チタンとは異なり、炭素を比較的多量に含有し、ドープされた炭素がTi−C結合の状態で含まれている。この結果として、耐スクラッチ性、耐磨耗性等の機械的強度が向上し、ビッカース硬度が著しく増
大すると考えられる。また、耐熱性も向上する。
The carbon-doped titanium oxide layer of the animal husbandry instrument of the first invention is doped with chemically modified titanium oxide as described in Non-Patent Document 3 described above, and various conventionally proposed atoms or anions X. Unlike the titanium oxide containing the titanium compound Ti—O—X, a relatively large amount of carbon is contained, and doped carbon is contained in a Ti—C bond state. As a result, it is considered that mechanical strength such as scratch resistance and abrasion resistance is improved, and the Vickers hardness is remarkably increased. Moreover, heat resistance is also improved.
第1の発明の畜産用器具の炭素ドープ酸化チタン層は、300以上、好ましくは500以上、さらに好ましくは700以上、最も好ましくは1000以上のビッカース硬度を有している。1000以上のビッカース硬度は硬質クロムめっきの硬度よりも固いものである。従って、第1の多機能材は、従来硬質クロムめっきが利用されていた種々の畜産用器具に有意に利用できる。 The carbon-doped titanium oxide layer of the animal husbandry instrument of the first invention has a Vickers hardness of 300 or more, preferably 500 or more, more preferably 700 or more, and most preferably 1000 or more. A Vickers hardness of 1000 or more is harder than that of hard chrome plating. Therefore, the first multifunctional material can be significantly used for various livestock appliances for which hard chrome plating has been conventionally used.
このような炭素ドープ酸化チタン層は、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として有効に作用するものである。従って、第1の発明の畜産用器具は可視光応答型光触媒の作用により可視光でも高い殺菌性・抗菌・消臭等の機能を発揮する。またこの炭素ドープ酸化チタン層は接触角3°以下の超親水性を示す。そのため洗浄が容易で、その水切れも迅速に行われることとなる。 Such a carbon-doped titanium oxide layer responds not only to ultraviolet rays but also to visible light having a wavelength of 400 nm or more, and functions effectively as a photocatalyst. Therefore, the animal husbandry instrument of the first invention exhibits high functions such as bactericidal properties, antibacterial properties, and deodorization even with visible light by the action of the visible light responsive photocatalyst. The carbon-doped titanium oxide layer exhibits super hydrophilicity with a contact angle of 3 ° or less. Therefore, it is easy to clean and the water drains quickly.
更に、第1の発明の畜産用器具の炭素ドープ酸化チタン層は耐薬品性にも優れており、1M硫酸及び1M水酸化ナトリウムのそれぞれの水溶液に一週間浸漬した後、皮膜硬度、耐摩耗性及び光電流密度を測定し、処理前の測定値と比較したところ、有為な変化はみられなかった。したがって糞尿の処理に用いられる各種器具などの表面層を炭素ドープ酸化チタンとすることで、腐食が発生しにくい高耐久性の畜産用器具を提供することができる。
因みに、市販の酸化チタン皮膜については、一般的にはバインダーはその種類によって酸又はアルカリに溶解するので膜が剥離してしまい、耐酸性、耐アルカリ性がほとんどない。
Furthermore, the carbon-doped titanium oxide layer of the animal husbandry instrument of the first invention is also excellent in chemical resistance, and after being immersed in an aqueous solution of 1M sulfuric acid and 1M sodium hydroxide for one week, the film hardness and abrasion resistance When the photocurrent density was measured and compared with the measured value before the treatment, no significant change was observed. Therefore, by using carbon-doped titanium oxide as the surface layer of various instruments used for excrement treatment, it is possible to provide a highly durable animal husbandry instrument that is unlikely to cause corrosion.
Incidentally, with respect to commercially available titanium oxide films, generally, the binder dissolves in acid or alkali depending on the kind thereof, so that the film peels off, and there is almost no acid resistance and alkali resistance.
第2の発明の畜産用器具は、第1の発明の畜産用器具と同様に少なくとも表面層がチタン又はチタン合金からなる基体の表面層を加熱処理するものであり、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面を例えば不飽和炭化水素、特にアセチレンの燃焼炎で加熱処理して、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に、普通には該基体上の大部分に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることにより製造できる。 The animal husbandry instrument of the second invention heat-treats at least the surface layer of the substrate made of titanium or a titanium alloy as in the animal husbandry instrument of the first invention, and at least the surface layer is titanium and oxidized. The surface of the substrate made of titanium, titanium alloy or titanium alloy oxide is heated with, for example, a combustion flame of unsaturated hydrocarbon, particularly acetylene, and fine columns made of titanium oxide or titanium alloy oxide are formed inside the surface layer. At least a part of the surface of the substrate by cutting the layer in which the micro pillars are erected in a direction along the surface layer by applying, for example, thermal stress, shear stress, or tensile force. In addition, a member in which a layer in which fine columns made of the titanium oxide or titanium alloy oxide are usually formed on the substrate is exposed, and a titanium oxide or titanium alloy oxide on the thin film. Many Continuous narrow projections and micro columns protruding have bristled on raised portions can be produced by obtaining the member exposed.
この少なくとも表面層がチタン又はチタン合金からなる基体は、その基体の全体がチタン又はチタン合金で構成されていてもよく、或いはチタン又はチタン合金からなる表面部形成層とその他の材質からなる心材とで構成されていてもよい。また、その基体の形状については、光触媒活性及び/又は超親水性が望まれる如何なる最終商品形状(平板状や立体状)であってもよい。 The substrate whose at least surface layer is made of titanium or a titanium alloy may be composed entirely of titanium or a titanium alloy, or a surface portion forming layer made of titanium or a titanium alloy and a core material made of other materials. It may be comprised. Further, the shape of the substrate may be any final product shape (flat plate shape or three-dimensional shape) where photocatalytic activity and / or super hydrophilicity is desired.
少なくとも表面層がチタン又はチタン合金からなる基体が、チタン又はチタン合金からなる表面部形成層とその他の材質からなる心材とで構成されている場合には、その表面部形成層の厚さ(量)は形成される酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の量に匹敵する厚さであっても(即ち、表面部形成層全体が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となる)、それより厚くてもよい(即ち、表面部形成層の厚さ方向の一部が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となり、残部が変化しないでそのまま残る)。また、その心材の材質は第2の発明の畜産用器具の製造における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄
合金、ガラス、セラミックス、その他の陶磁器を用いることができる。このような薄膜状の表面層と心材とで構成されている基体としては、第1の発明で記載されたものと、同様のものを使用することができる。この表面層の厚さについては好ましくは0.5μm以上、より好ましくは4μm以上である。
In the case where at least the substrate whose surface layer is made of titanium or a titanium alloy is composed of a surface portion forming layer made of titanium or a titanium alloy and a core material made of another material, the thickness (amount) of the surface portion forming layer ) Even if the thickness is comparable to the amount of layers in which fine columns made of titanium oxide or titanium alloy oxide are formed (that is, the entire surface layer forming layer is made of titanium oxide or titanium alloy oxide). The fine pillars become forested layers) and may be thicker (that is, the fine pillars in which part of the surface portion forming layer in the thickness direction is made of titanium oxide or titanium alloy oxide are forested. Layer, and the rest remains unchanged). The material of the core material is not particularly limited as long as it does not burn, melt, or deform during the heat treatment in the production of the animal husbandry apparatus of the second invention. For example, iron, iron alloy, non-ferrous alloy, glass, ceramics, and other ceramics can be used as the core material. As the substrate composed of such a thin film-like surface layer and a core material, those similar to those described in the first invention can be used. The thickness of this surface layer is preferably 0.5 μm or more, more preferably 4 μm or more.
チタン合金としては、公知の種々のチタン合金を用いることができ、特に制限されることはなく、第1の発明と同様のものが用いられる。 As the titanium alloy, various known titanium alloys can be used, and the titanium alloy is not particularly limited, and those similar to the first invention are used.
第2の畜産用器具の製造においては、例えば、不飽和炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用い、特に還元炎を利用することが望ましい。第2の畜産用器具の製造においては不飽和炭化水素を少なくとも50容量%含有するガス、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを用いることが好ましい。第2の畜産用器具の製造においては、燃料成分がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易く、ドープされた炭素がTi−C結合の状態で含まれる。
このように微細柱に炭素ドープが生じると微細柱の硬度が高くなり、結果として畜産用器具の表面層の硬度、耐磨耗性等の機械的強度が向上し、耐熱性も向上することはもちろん、表面積の増大によりVOCも容易に吸着でき、光触媒としての活性も高くなる。また炭素ドーピングによって、この微細柱は可視光応答型光触媒としても機能する。
In the production of the second animal husbandry instrument, for example, it is desirable to use a combustion flame of a gas mainly composed of an unsaturated hydrocarbon, particularly acetylene, and particularly to use a reducing flame. In the production of the second animal husbandry instrument, a gas containing at least 50% by volume of unsaturated hydrocarbon, for example, a gas containing at least 50% by volume of acetylene and appropriately mixed with air, hydrogen, oxygen or the like is used. preferable. In the production of the second animal husbandry instrument, the fuel component is most preferably 100% acetylene. When unsaturated hydrocarbons, especially acetylene having a triple bond, are used, in the process of combustion, especially in the reducing flame part, the unsaturated bond part decomposes to form an intermediate radical substance. Has a strong activity, and carbon doping is likely to occur, and doped carbon is contained in a Ti-C bond state.
Thus, when carbon dope occurs in the fine pillars, the hardness of the fine pillars is increased, and as a result, the mechanical strength such as the hardness of the surface layer of the animal husbandry equipment, wear resistance, etc. is improved, and the heat resistance is also improved. Of course, VOC can be easily adsorbed by increasing the surface area, and the activity as a photocatalyst is increased. Further, due to carbon doping, this fine column also functions as a visible light responsive photocatalyst.
第2の畜産用器具の製造においては、表面層がチタン又はチタン合金からなる基体の表面に燃焼炎を直接当てて加熱処理するか、又は該基体の表面を燃焼排ガス雰囲気中で加熱処理するのであるが、この加熱処理は例えばガスバーナーにより、或いは炉内で実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、ガスバーナーにより、その燃焼炎を該基体の表面に当てればよい。燃焼排ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼排ガスを含む雰囲気を利用すればよい。 In the production of the second animal husbandry instrument, the surface layer is heated by directly applying a combustion flame to the surface of the substrate made of titanium or a titanium alloy, or the surface of the substrate is heated in a combustion exhaust gas atmosphere. However, this heat treatment can be carried out, for example, with a gas burner or in a furnace. When the combustion flame is directly applied and heat treatment is performed at a high temperature, the combustion flame may be applied to the surface of the substrate by a gas burner. When heat treatment is performed in a combustion exhaust gas atmosphere at a high temperature, the above-described fuel gas may be burned in a furnace and an atmosphere containing the high-temperature combustion exhaust gas may be used.
加熱処理については、少なくとも表面層がチタン又はチタン合金からなる該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に該酸化チタン又はチタン合金酸化物からなる多数の連続した幅狭突起部及び該突起部上に林立している微細柱が露出している部材とを得ることが可能なように、加熱温度、加熱処理時間を調整する必要がある。この加熱処理は600℃以上の温度で実施することが好ましい。 For the heat treatment, at least the surface layer is made of titanium or a titanium alloy, a layer in which fine columns made of titanium oxide or a titanium alloy oxide are formed is formed inside the surface layer, and then, for example, thermal stress, shear stress, By applying a tensile force, the layer in which the fine columns are erected is cut in a direction along the surface layer, and at least a part of the titanium oxide or titanium alloy oxide is erected in at least a part of the substrate. A member in which a layer is exposed, and a member in which a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on a thin film and fine columns standing on the protrusions are exposed Therefore, it is necessary to adjust the heating temperature and the heat treatment time. This heat treatment is preferably performed at a temperature of 600 ° C. or higher.
このような条件下で加熱処理することにより、微細柱が林立している層の高さが1〜20μm程度であり、その上の薄膜の厚さが0.1〜10μm程度であり、微細柱の平均太
さが0.2〜3μm程度である中間体が形成される。その後に、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させることにより、該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材(即ち、基体上の微細柱が林立している層の上に存在していた薄膜の全部又は大部分が剥離するが、微細柱が林立している層の上に存在していた薄膜の一部が剥離しないで残ることがある)と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得る。
By performing the heat treatment under such conditions, the height of the layer in which the fine pillars stand is about 1 to 20 μm, and the thickness of the thin film thereon is about 0.1 to 10 μm. Intermediates having an average thickness of about 0.2 to 3 μm are formed. Thereafter, for example, by applying a thermal stress, a shear stress, or a tensile force to cut the layer in which the fine pillars are erected in a direction along the surface layer, at least a part of the titanium oxide or the substrate is formed on the substrate. A member in which a layer with fine columns made of titanium alloy oxide is exposed (that is, all or most of the thin film existing on the layer with fine columns on the substrate is peeled off) However, a part of the thin film existing on the layer where the fine pillars are erected may remain without being peeled) and a large number of continuous narrow widths made of titanium oxide or titanium alloy oxide on the thin film A protrusion and a member in which a fine pillar standing on the protrusion is exposed are obtained.
熱応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、基体の表面及び裏面の何れか一方を冷却するか、又は加熱することにより基体の表面と裏面との間に温度差を設ける。この冷却方法として例えば上記の熱い中間体の表面又は裏面の何れかを冷却用物体、例えばステンレスブロックと接触させるか、冷気(常温の空気)を上記の熱い中間体の表面又は裏面の何れかに吹き付ける。上記の熱い中間体を放冷しても熱応力が生じるが、その程度は低い。 In the case of cutting a layer in which fine columns are erected by applying thermal stress in a direction along the surface layer, for example, either the surface or the back surface of the substrate is cooled or heated to heat the surface of the substrate. A temperature difference is provided between the back surface and the back surface. As this cooling method, for example, either the surface or the back surface of the hot intermediate is brought into contact with a cooling object, such as a stainless steel block, or cold air (room temperature air) is applied to either the surface or the back surface of the hot intermediate. Spray. Even if the hot intermediate is allowed to cool, thermal stress is generated, but the degree is low.
剪断応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、上記の中間体の表面及び裏面に摩擦力により相対的に逆方向の力を与える。また、引張力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、真空吸着盤等を用いて上記の中間体の表面及び裏面をそれらの面の垂直方向で逆方向に引張る。なお、基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材のみを利用する場合には、上記の中間体の薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材に相当する部分を研磨、スパッタリング等によって除去することもできる。 When shearing stress is applied and the layer in which the fine pillars are erected is cut in a direction along the surface layer, for example, a relatively reverse force is applied to the front and back surfaces of the intermediate by frictional force. In addition, when a layer in which fine columns are erected is cut in a direction along the surface layer by applying a tensile force, for example, the surface and the back surface of the above intermediate body are removed from those surfaces using a vacuum suction disk or the like. Pull in the opposite direction in the vertical direction. When using only a member in which a layer in which fine columns made of titanium oxide or titanium alloy oxide are forested is exposed on at least a part of the substrate, oxidation is performed on the intermediate thin film. A portion corresponding to a member in which a large number of continuous narrow protrusions made of titanium or a titanium alloy oxide and fine columns standing on the protrusions are exposed can be removed by polishing, sputtering, or the like.
上記のようにして得られた基体上の少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している畜産用器具においては、微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって微細柱が林立している層の高さが変化するが、微細柱が林立している層の高さは一般的には1〜20μm程度であり、微細柱の平均太さが0.5〜3μm程度である。この部材はVOCを容易に吸着
でき、表面積が大きいので光触媒としての活性が高く、更には皮膜硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性にも優れた畜産用器具である。
In livestock equipment in which a layer in which fine columns made of titanium oxide or titanium alloy oxide are forested is exposed on at least a part of the substrate obtained as described above, the fine columns are forested. The height of the layer where the fine column stands is changed depending on the height position of the fine column obtained by cutting the layer in the direction along the surface layer, but the height of the layer where the fine column stands is generally It is about 1-20 micrometers, and the average thickness of a fine pillar is about 0.5-3 micrometers. This member can easily adsorb VOCs, has a large surface area, has high activity as a photocatalyst, and also has high film hardness, and is a livestock instrument with excellent peeling resistance, abrasion resistance, chemical resistance, and heat resistance. is there.
一方、上記のようにして得られた薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は小片状となり、各小片上の突起部の高さは2〜12μm程度であり、該微細柱の高さは微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって変化するが、微細柱が林立している層の高さは一般的には1〜5μm程度であり、微細柱の平均太さが0.2〜0.5μm程度である。しかし、微細柱が林立している層を表面層に沿う方向で切断させる条件によっては微細柱がほとんど存在しないで多数の連続した幅狭突起部が露出している場合もある。この部材もVOCを吸着でき、表面積が大きいので光触媒としての活性が高い。また、この部材はそのまま用いることも粉砕して用いることもでき、その粉砕物もVOCを容易に吸着でき、表面積が大きいので光触媒としての活性が高い。 On the other hand, on the thin film obtained as described above, a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide and members with exposed fine columns standing on the protrusions are small. The height of the protrusion on each small piece is about 2 to 12 μm, and the height of the fine column is the height of the fine column obtained by cutting the layer in which the fine column stands in the direction along the surface layer. Although the height varies depending on the position, the height of the layer in which the fine pillars stand is generally about 1 to 5 μm, and the average thickness of the fine pillars is about 0.2 to 0.5 μm. However, depending on the conditions for cutting the layer in which the fine columns are erected in the direction along the surface layer, there are cases where a large number of continuous narrow protrusions are exposed without the presence of the fine columns. This member can also adsorb VOCs and has a large surface area, so it has high activity as a photocatalyst. Further, this member can be used as it is or after being pulverized, and the pulverized product can easily adsorb VOC and has a large surface area, so it has high activity as a photocatalyst.
第2の畜産用器具においては、酸化チタン又はチタン合金酸化物からなる微細柱、多数の連続した狭幅突起部及び該突起部上に林立している微細柱が炭素ドープされているので、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として特に有効に作用し、可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現する。 In the second animal husbandry instrument, carbon-doped fine columns made of titanium oxide or titanium alloy oxide, a large number of continuous narrow protrusions, and fine columns standing on the protrusions are carbon-doped. Needless to say, it also responds to visible light having a wavelength of 400 nm or more, works particularly effectively as a photocatalyst, and can be used as a visible light responsive photocatalyst, and exhibits a photocatalytic function not only outdoors but also indoors.
第2の畜産用器具を構成する酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の各々の微細柱の形状については、図10及び図13の顕微鏡写真から判断されるように、角柱状、円柱状、角錐状、円錐状、逆角錐状若しくは逆円錐状等で、基板の表面とは直角方向又は傾斜した方向に真っ直ぐ伸びているもの、湾曲又は屈曲しながら伸びているもの、枝状に分岐して伸びているもの、それらの複合体状のもの等がある。また、その全体形状としては、霜柱状、起毛カーペット状、珊瑚状、列柱状、積木で組み立てられた柱状等の種々の表現で示すことができる。また、それらの微細柱の太さ、高さ、その付け根(底面)の大きさ等は加熱条件等により変化する。 About the shape of each micro pillar of the layer where the micro pillar which consists of titanium oxide or titanium alloy oxide which constitutes the 2nd animal husbandry stands is judged from the micrograph of Drawing 10 and Drawing 13 , Prismatic, cylindrical, pyramidal, conical, inverted pyramid or inverted conical, etc., extending straight or perpendicular to the surface of the substrate, extending while curving or bending , Branched and extended, and composites thereof. Moreover, as the whole shape, it can show by various expressions, such as a frost column shape, a raising carpet shape, a basket shape, a row column shape, and the column shape assembled with blocks. In addition, the thickness and height of the fine columns, the size of the base (bottom surface), and the like vary depending on heating conditions and the like.
薄膜状に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は、図12の顕微鏡写真から判断されるように、その多数の連続した幅狭突起部はクルミの殻の外側の外見、軽石の外見をしていると見ることができ、また各々の連続した狭幅突起部は湯じわやちぢみ状の模様が屈曲していると見ることができる。また、該突起部上に林立している微細柱の形状は上記した基体上の微細柱が林立している層の各々の微細柱の形状と同様であるが、微細柱と薄膜との接合部で切断されるものが多いので、該突起部上に林立している微細柱の密度は上記の基体上の微細柱が林立している層の微細柱の密度よりも一般的に小さくなる。 A member in which a large number of continuous narrow protrusions made of titanium oxide or a titanium alloy oxide in a thin film form and fine columns standing on the protrusions are exposed is judged from the micrograph in FIG. In addition, it can be seen that the many continuous narrow protrusions look like the outside of the walnut shell and the appearance of pumice. It can be seen that the pattern is bent. In addition, the shape of the fine column standing on the protrusion is the same as the shape of each fine column in the layer where the fine column on the base is standing, but the junction between the fine column and the thin film Therefore, the density of the fine columns standing on the protrusion is generally smaller than the density of the fine columns in the layer where the fine columns on the base are standing.
以下に、実施例及び比較例に基づいて本発明の畜産用器具の表面に形成される炭素ドープ酸化チタン層についてさらに詳細に説明する。 Below, based on an Example and a comparative example, the carbon dope titanium oxide layer formed in the surface of the livestock instrument of this invention is demonstrated still in detail.
[実施例1〜3]
アセチレンの燃焼炎を用い、厚さ0.3mmのチタン板をその表面温度が約1100℃
となるように加熱処理することにより、表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を形成した。1100℃での加熱処理時間をそれぞれ5秒(実施例1)、3秒(実施例2)、1秒(実施例3)に調整することにより炭素ドープ量及び炭素ドープ酸化チタン層の厚さが異なる炭素ドープ酸化チタン層を有するチタン板を形成した。
[Examples 1 to 3]
Using an acetylene flame, a titanium plate with a thickness of 0.3 mm has a surface temperature of about 1100 ° C.
Then, a titanium plate having a carbon-doped titanium oxide layer doped with carbon in a Ti—C bond state was formed as a surface layer. By adjusting the heat treatment time at 1100 ° C. to 5 seconds (Example 1), 3 seconds (Example 2), and 1 second (Example 3), respectively, the amount of carbon doping and the thickness of the carbon-doped titanium oxide layer were reduced. Titanium plates with different carbon doped titanium oxide layers were formed.
この実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について蛍光X線分析装置で炭素含有量を求めた。その炭素含有量に基づいてTiO2-xCxの分子構造を仮定すると、実施例1については炭素含有量8at%、TiO1. 76C0.24、実施例2については炭素含有量約3.3at%、TiO1.90C0.10、実施例3については炭素含有量1.7at%、TiO1.95C0.05であった。また、実施例1〜3
で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
The carbon content was calculated | required with the fluorescent-X-ray-analysis apparatus about the carbon dope titanium oxide layer with which the carbon formed in this Example 1-3 was doped in the state of Ti-C bond. Assuming a molecular structure of TiO 2-x C x based on the carbon content, carbon content 8at% for Example 1, TiO 1. 76 C 0.24, carbon content of about 3.3At% for Examples 2, TiO 1.90 C 0.10 and Example 3 had a carbon content of 1.7 at% and TiO 1.95 C 0.05 . Examples 1 to 3
The carbon-doped titanium oxide layer doped with carbon formed in the state of Ti—C bonds was superhydrophilic with a contact angle with water droplets of about 2 °.
[比較例1]
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン
板にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有するチタン板を形成した。
[Comparative Example 1]
A commercially available titanium oxide sol (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) was spin-coated on a titanium plate having a thickness of 0.3 mm, and then a titanium plate having a titanium oxide film whose adhesion was improved by heating was formed.
[比較例2]
SUS板上に酸化チタンがスプレーコートされている市販品を比較例2の酸化チタン皮膜を有する基体とした。
[Comparative Example 2]
A commercially available product in which titanium oxide was spray-coated on a SUS plate was used as the substrate having the titanium oxide film of Comparative Example 2.
試験例1(ビッカース硬度)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、ナノハードネステスター(NHT)(スイスのCSM
Instruments製)により、圧子:ベルコビッチタイプ、試験荷重:2mN、負荷除荷速度:4mN/minの条件下で皮膜硬度を測定したところ、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層はビッカース硬度が1340と高い値であった。一方、比較例1の酸化チタン皮膜のビッカース硬度は160であった。
Test Example 1 (Vickers hardness)
For the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state and the titanium oxide film of Comparative Example 1, the nano-hardness tester (NHT) (CSM in Switzerland)
The film hardness was measured under the conditions of indenter: Belkovic type, test load: 2 mN, load unloading rate: 4 mN / min, and the carbon of Example 1 was doped in a Ti—C bond state. The carbon-doped titanium oxide layer had a high Vickers hardness of 1340. On the other hand, the Vickers hardness of the titanium oxide film of Comparative Example 1 was 160.
これらの結果を図1に示す。なお、参考のため、硬質クロムメッキ層及びニッケルメッキ層のビッカース硬度の文献値(友野、「実用めっきマニュアル」、6章、オーム社(1971)から引用)を併せて示す。実施例1の炭素がTi−C結合の状態でドープされた
炭素ドープ酸化チタン層は、ニッケルメッキ層や硬質クロムメッキ層よりも高硬度であることは明らかである。
These results are shown in FIG. For reference, the literature values of Vickers hardness of hard chrome plating layer and nickel plating layer (Tomono, “Practical Plating Manual”, Chapter 6, Ohmsha (1971)) are also shown. It is obvious that the carbon-doped titanium oxide layer in which the carbon of Example 1 is doped in a Ti—C bond state has higher hardness than the nickel plating layer and the hard chromium plating layer.
試験例2(耐スクラッチ性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、マイクロスクラッチテスター(MST)(スイスのCSM Instruments製)により、圧子:ロックウェル(ダイヤモンド)、先端半
径200μm、初期荷重:0N、最終荷重:30N、負荷速度:50N/min、スクラッチ長:6mm、ステージ速度:10.5mm/minの条件下で耐スクラッチ性試験を実施した。スクラッチ痕内に小さな膜の剥離が起こる「剥離開始」荷重及びスクラッチ痕全体に膜の剥離が起こる「全面剥離」荷重を求めた。その結果は第1表に示す通りであった。
For the carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state and the titanium oxide film of Comparative Example 1, a microscratch tester (MST) (manufactured by CSM Instruments, Switzerland) was used as an indenter: Rockwell. The scratch resistance test was performed under the conditions of (diamond), tip radius 200 μm, initial load: 0 N, final load: 30 N, load speed: 50 N / min, scratch length: 6 mm, stage speed: 10.5 mm / min. A “peeling start” load at which a small film peels off within the scratch mark and an “overall peel” load at which the film peels across the scratch mark were determined. The results were as shown in Table 1.
この表からも明らかなように、実施例Aの炭素ドープ酸化チタン表層が比較例1の酸化チタン皮膜よりも耐スクラッチ性に優れていることが分かる。 As is apparent from this table, it can be seen that the carbon-doped titanium oxide surface layer of Example A is superior to the titanium oxide film of Comparative Example 1 in scratch resistance.
試験例3(耐摩耗性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、高温トライボメーター(HT−TRM)(スイスのCSM Instruments製)により、試験温度:室温及び470℃、ボール:直径1
2.4mmのSiC球、荷重:1N、摺動速度:20mm/sec、回転半径:1mm、試験回転数:1000回転の条件下で摩耗試験を実施した。
Test Example 3 (Abrasion resistance)
The carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state and the titanium oxide film of Comparative Example 1 were tested at a test temperature using a high-temperature tribometer (HT-TRM) (manufactured by CSM Instruments, Switzerland). : Room temperature and 470 ° C, Ball: Diameter 1
A wear test was performed under the conditions of 2.4 mm SiC sphere, load: 1 N, sliding speed: 20 mm / sec, rotation radius: 1 mm, and test rotation speed: 1000 rotations.
この結果、比較例1の酸化チタン皮膜については、室温及び470℃の両方について剥離が発生したが、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層については、室温及び470℃の両方の条件下で有意なトレース摩耗は検出されなかった。 As a result, for the titanium oxide film of Comparative Example 1, peeling occurred at both room temperature and 470 ° C., but for the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state, No significant trace wear was detected under both room temperature and 470 ° C conditions.
試験例4(耐薬品性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬した後、上記の皮膜硬度、耐摩耗性、及び後記する光電流密度を測定したところ、浸漬の前後で、結果に有意な差は認められなかった。即ち、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は高い耐薬品性を有することが認められた。
Test Example 4 (Chemical resistance)
After immersing the titanium plate having the carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state in a 1M sulfuric acid aqueous solution and a 1M sodium hydroxide aqueous solution for 1 week at room temperature, When the wear resistance and the photocurrent density described below were measured, no significant difference was observed in the results before and after immersion. That is, it was confirmed that the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state had high chemical resistance.
試験例5(炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の構造)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がS
iO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の
結果を図2に示す。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.7eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例1の炭素ドープ酸化チタン層中ではCがTi−C結合としてドープされていると判断される。なお、炭素ドープ酸化チタン層の深さ方向の異なる位置の11点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
Test Example 5 (Structure of carbon-doped titanium oxide layer doped with carbon in a Ti-C bond state)
For the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state, the acceleration voltage was 10 kV, the target was Al, and Ar ion sputtering was performed for 2700 seconds using an X-ray photoelectron spectrometer (XPS). Done and started the analysis. This sputter rate is S
If the iO 2 film equivalent 0.64 Å / s, the depth is about 173 nm. The result of the XPS analysis is shown in FIG. The highest peak appears when the binding energy is 284.6 eV. This is judged to be a C—H (C) bond commonly found in Cls analysis. The next highest peak is seen when the binding energy is 281.7 eV. Since the bond energy of the Ti—C bond is 281.6 eV, it is determined that C is doped as a Ti—C bond in the carbon-doped titanium oxide layer of Example 1. As a result of XPS analysis at 11 points at different positions in the depth direction of the carbon-doped titanium oxide layer, similar peaks appeared in the vicinity of 281.6 eV at all points.
また、炭素ドープ酸化チタン層と基体との境界でもTi−C結合が確認された。従って、炭素ドープ酸化チタン層中のTi−C結合により硬度が高くなっており、また、炭素ドープ酸化チタン層と基体との境界でのTi−C結合により皮膜剥離強度が著しく大きくなっていることが予想される。 Ti-C bonds were also confirmed at the boundary between the carbon-doped titanium oxide layer and the substrate. Accordingly, the hardness is increased due to the Ti—C bond in the carbon-doped titanium oxide layer, and the film peeling strength is significantly increased due to the Ti—C bond at the boundary between the carbon-doped titanium oxide layer and the substrate. Is expected.
試験例6(波長応答性)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜の波長応答性をOriel社のモノクロメーターを用いて測定した。具体的には、それぞれの層、皮膜に対し、0.05M硫酸ナトリウム水溶液中
で対極との間に電圧を0.3V印加し、光電流密度を測定した。
Test Example 6 (wavelength response)
The wavelength responsiveness of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 were doped in a Ti—C bond state and the titanium oxide films of Comparative Examples 1 and 2 were measured using an Oriel monochromator. Specifically, a voltage of 0.3 V was applied to each layer and film between the counter electrode in a 0.05 M aqueous sodium sulfate solution, and the photocurrent density was measured.
その結果を図3に示す。図3には、得られた光電流密度jpを照射波長に対して示して
ある。実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の波長吸収端は、490nmに及んでおり、炭素ドープ量の増大に伴って光電流密度が増大することが認められた。なお、ここには示していないが、炭素ドープ量が10at%を越えると電流密度が減少する傾向になり、さらに15at%を越えるとその傾向は顕著になることがわかった。よって、炭素ドープ量が1〜10at%程度に最適値があることが認められた。一方、比較例1、2の酸化チタン皮膜では、光電流密度が著しく小さく、且つ波長吸収端も410nm程度であることが認められた。
The result is shown in FIG. FIG. 3 shows the obtained photocurrent density jp with respect to the irradiation wavelength. The wavelength absorption edge of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state extends to 490 nm, and the photocurrent density increases as the carbon doping amount increases. Was recognized. Although not shown here, it has been found that when the carbon doping amount exceeds 10 at%, the current density tends to decrease, and when the carbon doping amount exceeds 15 at%, the tendency becomes remarkable. Therefore, it was recognized that the carbon doping amount has an optimum value of about 1 to 10 at%. On the other hand, in the titanium oxide films of Comparative Examples 1 and 2, it was confirmed that the photocurrent density was extremely small and the wavelength absorption edge was about 410 nm.
試験例7(光エネルギー変換効率)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜について、式
η=jp(Ews−Eapp)/I
で定義される光エネルギー変換効率ηを求めた。ここで、Ewsは水の理論分解電圧(=1.23V)、Eappは印加電圧(=0.3V)、Iは照射光強度である。この結果を図4に
示す。図4は光エネルギー変換効率ηを照射光波長に対して示してある。
Test example 7 (light energy conversion efficiency)
For the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state and the titanium oxide films of Comparative Examples 1 and 2, the formula η = jp (Ews−Eapp) / I
The light energy conversion efficiency η defined by Here, Ews is the theoretical decomposition voltage of water (= 1.23 V), Eapp is the applied voltage (= 0.3 V), and I is the irradiation light intensity. The result is shown in FIG. FIG. 4 shows the light energy conversion efficiency η with respect to the irradiation light wavelength.
図4から明らかなように、実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の光エネルギー変換効率は著しく高く、波長450nm付近での変換効率が比較例1、2の酸化チタン皮膜の紫外線領域(200〜380nm)での変換効率より優れていることが認められた。また、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の水分解効率は、波長370nmで約8%であり、350nm以下では10%を越える効率が得られることがわかった。 As is clear from FIG. 4, the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state has extremely high light energy conversion efficiency, and the conversion efficiency in the vicinity of a wavelength of 450 nm is a comparative example. It was recognized that the conversion efficiency in the ultraviolet region (200 to 380 nm) of the 1 and 2 titanium oxide films was superior. Further, the water decomposition efficiency of the carbon-doped titanium oxide layer in which the carbon of Example 1 is doped in a Ti—C bond state is about 8% at a wavelength of 370 nm, and an efficiency exceeding 10% can be obtained at 350 nm or less. I understood.
試験例8(消臭試験)
実施例1及び2の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、消臭試験を実施した。具体的には、消臭試験に一般的に用いられるアセトアルデヒドを炭素ドープ酸化チタン層を有する基体と共に1000mlのガラス容器に封入し、初期の吸着による濃度減少の影響が無視できるようになってから、UVカットフィルタ付き蛍光灯にて可視光を照射し、所定の照射時間毎にアセト
アルデヒド濃度をガスクロマトグラフィーで測定した。なお、各皮膜の表面積は8.0c
m2とした。
Test Example 8 (Deodorization test)
A deodorizing test was performed on the carbon-doped titanium oxide layer in which the carbons of Examples 1 and 2 were doped in a Ti-C bond state and the titanium oxide film of Comparative Example 1. Specifically, after acetaldehyde generally used in deodorization tests is enclosed in a 1000 ml glass container together with a substrate having a carbon-doped titanium oxide layer, the influence of concentration reduction due to initial adsorption can be ignored. Visible light was irradiated with a fluorescent lamp with a UV cut filter, and the acetaldehyde concentration was measured by gas chromatography at every predetermined irradiation time. The surface area of each film is 8.0c.
It was m 2.
この結果を図5に示す。図5には、アセトアルデヒド濃度を可視光照射後の経過時間に対して示してある。実施例1及び2の炭素ドープ酸化チタン層のアセトアルデヒド分解速度は、比較例1の酸化チタン皮膜のアセトアルデヒド分解速度の約2倍以上の高い値となっており、また、炭素ドープ量が多く、光エネルギー変換効率の高い実施例1の炭素ドープ酸化チタン層の方が、実施例2の炭素ドープ酸化チタン層と比較して分解速度が高いことがわかった。 The result is shown in FIG. FIG. 5 shows the acetaldehyde concentration with respect to the elapsed time after irradiation with visible light. The acetaldehyde decomposition rate of the carbon-doped titanium oxide layers of Examples 1 and 2 is higher than the acetaldehyde decomposition rate of the titanium oxide film of Comparative Example 1, and the carbon doping amount is large. It was found that the carbon-doped titanium oxide layer of Example 1 having a higher energy conversion efficiency has a higher decomposition rate than the carbon-doped titanium oxide layer of Example 2.
試験例9(防汚試験)
実施例1の炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、防汚試験を実施した。各皮膜を(財)電力中央研究所内の喫煙室内に設置し、145日後の表面の汚れを観察した。なお、この喫煙室内には太陽光の直接の入射はない。
Test example 9 (antifouling test)
An antifouling test was carried out on the carbon-doped titanium oxide layer of Example 1 and the titanium oxide film of Comparative Example 1. Each coating was placed in a smoking room in the Central Research Institute of Electric Power Co., Ltd., and surface contamination after 145 days was observed. There is no direct incidence of sunlight in the smoking room.
この結果を示す写真を図6に示す。比較例1の酸化チタン皮膜の表面には脂が付着し、薄い黄色を呈していたが、実施例1の炭素ドープ酸化チタン層の表面は特に変化がみられず、清浄に保たれており、防汚効果が十分に発揮されたことが認められた。 A photograph showing the results is shown in FIG. Fat was attached to the surface of the titanium oxide film of Comparative Example 1 and had a pale yellow color, but the surface of the carbon-doped titanium oxide layer of Example 1 was not particularly changed and was kept clean. It was confirmed that the antifouling effect was sufficiently exhibited.
[実施例4〜7]
実施例1〜3と同様にアセチレンの燃焼炎を用い、厚さ0.3mmのチタン板を、第2
表に示す表面温度で第2表に示す時間の間加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン板を形成した。
[Examples 4 to 7]
Using a acetylene combustion flame in the same manner as in Examples 1 to 3, a 0.3 mm thick titanium plate was
The titanium plate which has a carbon dope titanium oxide layer as a surface layer was formed by heat-processing for the time shown in Table 2 at the surface temperature shown in a table | surface.
[比較例3]
天然ガスの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2
表に示す時間の間加熱処理した。
[Comparative Example 3]
Using a natural gas combustion flame, a titanium plate with a thickness of 0.3 mm is
Heat treatment was performed for the time shown in the table.
試験例10
実施例4〜7の炭素ドープ酸化チタン層及び比較例3の皮膜について、上記の試験例1と同様にしてビッカース硬度(HV)を測定した。それらの結果を第2表に示す。また、実施例4〜11で形成された炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
The Vickers hardness (HV) of the carbon-doped titanium oxide layers of Examples 4 to 7 and the film of Comparative Example 3 was measured in the same manner as in Test Example 1 above. The results are shown in Table 2. Moreover, the carbon dope titanium oxide layer formed in Examples 4-11 was super hydrophilicity whose contact angle with a water droplet was about 2 degrees.
第2表に示すデータから明らかなように、天然ガスの燃焼ガスで表面温度が850℃になるように加熱処理した場合にはビッカース硬度160の皮膜しか得られなかったが、表
面温度が1000℃以上になるようにアセチレンの燃焼ガスを用いて加熱処理した実施例4〜7の場合にはビッカース硬度1200の炭素ドープ酸化チタン層が得られた。
As is apparent from the data shown in Table 2, when the heat treatment was performed with the combustion gas of natural gas so that the surface temperature became 850 ° C., only a film having a Vickers hardness of 160 was obtained, but the surface temperature was 1000 ° C. In Examples 4 to 7 where heat treatment was performed using acetylene combustion gas as described above, a carbon-doped titanium oxide layer having a Vickers hardness of 1200 was obtained.
試験例11
実施例4〜7の炭素ドープ酸化チタン層及び比較例1及び3の酸化チタン皮膜について、試験例6と同様に、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、300nm〜520nmの光を照射して光電流密度を測定した。その結果を図7に示す。図7には、得られた光電流密度jpを電位ECP(V vs. SSE)に対して示
してある。
Test Example 11
For the carbon-doped titanium oxide layers of Examples 4 to 7 and the titanium oxide films of Comparative Examples 1 and 3, as in Test Example 6, a voltage of 0.3 V was applied between the counter electrode in a 0.05 M sodium sulfate aqueous solution. The photocurrent density was measured by irradiating with light of 300 nm to 520 nm. The result is shown in FIG. FIG. 7 shows the obtained photocurrent density jp with respect to the potential ECP (V vs. SSE).
アセチレンの燃焼ガスを用いて表面温度が1000〜1200℃になるように加熱処理して得た実施例4〜6の炭素ドープ酸化チタン層は、相対的に光電流密度が大きく優れていることがわかった。一方、表面温度が850℃になるように加熱処理して得た比較例3の酸化チタン及び表面温度が1500℃になるように加熱処理して得た実施例7の炭素ドープ酸化チタン層は光電流密度が相対的に小さいことがわかった。 The carbon-doped titanium oxide layers of Examples 4 to 6 obtained by heat treatment using an acetylene combustion gas so that the surface temperature becomes 1000 to 1200 ° C. have relatively high photocurrent density and are excellent. all right. On the other hand, the titanium oxide of Comparative Example 3 obtained by heat treatment so that the surface temperature becomes 850 ° C. and the carbon-doped titanium oxide layer of Example 7 obtained by heat treatment so that the surface temperature becomes 1500 ° C. It was found that the current density was relatively small.
[実施例8]
アセチレンの燃焼炎を用い、厚さ0.3mmのTi−6Al−4V合金板をその表面温
度が約1100℃となるように加熱処理することにより、表面層が炭素ドープ酸化チタンを含有するチタン合金からなる合金板を形成した。1100℃での加熱処理時間を60秒とした。このようにして形成された炭素ドープ酸化チタンを含有する層は水滴との接触角が2°程度の超親水性であり、また実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
[Example 8]
A titanium alloy whose surface layer contains carbon-doped titanium oxide by heat treatment of a Ti-6Al-4V alloy plate having a thickness of 0.3 mm using an acetylene combustion flame so that its surface temperature is about 1100 ° C. An alloy plate made of The heat treatment time at 1100 ° C. was 60 seconds. The layer containing carbon-doped titanium oxide thus formed is superhydrophilic with a contact angle with water droplets of about 2 °, and has the same photocatalytic activity as that of the carbon-doped titanium oxide layer obtained in Example 4. showed that.
[実施例9]
厚さ0.3mmのステンレス鋼板(SUS316)の表面にスパッタリングによって膜
厚が約500nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が約900℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するステンレス鋼板を形成した。900℃での加熱処理時間を15秒とした。このようにして形成された炭素ドープ酸化チタン層は水滴との接触角が2°程度の超親水性であり、また、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
[Example 9]
A titanium thin film having a thickness of about 500 nm was formed on the surface of a stainless steel plate (SUS316) having a thickness of 0.3 mm by sputtering. A stainless steel sheet having a carbon-doped titanium oxide layer as a surface layer was formed by heat treatment using an acetylene combustion flame so that the surface temperature was about 900 ° C. The heat treatment time at 900 ° C. was 15 seconds. The carbon-doped titanium oxide layer thus formed is superhydrophilic with a contact angle with water droplets of about 2 °, and exhibits the same photocatalytic activity as the carbon-doped titanium oxide layer obtained in Example 4. It was.
[実施例10]
粒径20μmの酸化チタン粉末をアセチレンの燃焼炎中に供給し、燃焼炎中に所定時間滞留させてその表面温度が約1000℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン粉末を形成した。1000℃での加熱処理時間を4秒とした。このようにして形成された炭素ドープ酸化チタン層を有するチタン粉末、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
[Example 10]
A titanium oxide powder having a particle size of 20 μm is supplied into an acetylene combustion flame, and is retained in the combustion flame for a predetermined time, and heat-treated so that the surface temperature is about 1000 ° C. A titanium powder having a layer was formed. The heat treatment time at 1000 ° C. was 4 seconds. The titanium powder having the carbon-doped titanium oxide layer formed as described above showed the same photocatalytic activity as that of the carbon-doped titanium oxide layer obtained in Example 4.
[実施例11〜12]
厚さ1mmのガラス板(パイレックス(登録商標))の表面にスパッタリングによって膜厚が約100nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が1100℃(実施例11)、又は1500℃(実施例12)となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するガラス板を形成した。1100℃、又は1500℃での加熱処理時間を10秒とした。このようにして形成された炭素ドープ酸化チタン層は表面温度が1100℃の場合には図8(a)に写真で示すように透明であったが、表面温度が1500℃の場合には図9に示すように海に浮かぶ多数の小島状の起伏が表面に生じており、図8(b)に示すように半透明となった。
[Examples 11 to 12]
A titanium thin film having a thickness of about 100 nm was formed by sputtering on the surface of a 1 mm thick glass plate (Pyrex (registered trademark)). A glass plate having a carbon-doped titanium oxide layer as a surface layer is obtained by heat treatment using an acetylene combustion flame so that the surface temperature is 1100 ° C. (Example 11) or 1500 ° C. (Example 12). Formed. The heat treatment time at 1100 ° C. or 1500 ° C. was 10 seconds. The carbon-doped titanium oxide layer thus formed was transparent as shown in the photograph in FIG. 8A when the surface temperature was 1100 ° C., but when the surface temperature was 1500 ° C., FIG. As shown in FIG. 8, many small island-like undulations floating in the sea are generated on the surface, and it became translucent as shown in FIG.
[実施例13〜16]
厚さ0.3mmのチタン板の表面を、アセチレンの燃焼炎により、第3表に示す表面層
温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。即ち、加熱処理で表面層内部に形成された酸化チタンからなる微細柱が林立している層がその後の冷却で該微細柱が林立している層が該表面層に沿う方向で切断された。このようにして実施例13〜16を得た。
[Examples 13 to 16]
The surface of the titanium plate having a thickness of 0.3 mm was subjected to heat treatment with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the flame is applied is brought into contact with a flat surface of a stainless steel block having a thickness of 30 mm and cooled, a layer in which fine columns made of white titanium oxide stand on the most part of the titanium plate surface is exposed. And a small piece member in which a large number of continuous narrow protrusions made of white titanium oxide on the thin film and fine columns standing on the protrusions are exposed. That is, the layer in which the fine columns made of titanium oxide formed in the surface layer by heat treatment are erected is cut in the direction along the surface layer by the subsequent cooling. In this way, Examples 13 to 16 were obtained.
図10は、実施例13で得られた部材の顕微鏡写真であり、チタン板表面1上に白色の酸化チタンからなる微細柱が林立している層2が露出しており、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3がその層2上の一部に残っているの状態を示している。なお、実施例13〜16の製造法ではチタン板表面1は露出しないが、図10の顕微鏡写真は微細柱が林立している層2の一部を除去した状態を示している。図11は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真であり、図12は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態示す顕微鏡写真であり、図13は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。 FIG. 10 is a photomicrograph of the member obtained in Example 13, in which a layer 2 in which fine columns made of white titanium oxide are forested is exposed on the titanium plate surface 1, and a white color is formed on the thin film. A state is shown in which a small piece member 3 in which a large number of continuous narrow protrusion portions made of titanium oxide and fine columns standing on the protrusion portions are exposed remains on a part of the layer 2. . In addition, in the manufacturing method of Examples 13-16, although the titanium plate surface 1 is not exposed, the micrograph of FIG. 10 has shown the state which removed a part of layer 2 in which the fine pillar stands. FIG. 11 is a photomicrograph showing the state of the surface on the thin film side of the small piece member 3 in which a large number of continuous narrow protrusions made of white titanium oxide and thin columns standing on the protrusions are exposed on the thin film. FIG. 12 shows a number of continuous narrow widths of small piece members 3 in which a large number of continuous narrow-width projections made of white titanium oxide are exposed on a thin film and fine columns standing on the projections are exposed. FIG. 13 is a photomicrograph showing the state of the protrusion and the surface on the side where the fine pillar standing on the protrusion is exposed, and FIG. 13 is the state of the layer 2 where the fine pillar made of white titanium oxide is standing FIG.
[実施例17]
厚さ0.3mmのTi−6Al−4V合金板の表面を、アセチレンの燃焼炎により、第
3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン合金板表面の大部分にチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上にチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
[Example 17]
The surface of a Ti-6Al-4V alloy plate having a thickness of 0.3 mm was heat-treated with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the flame is applied is brought into contact with a flat surface of a stainless steel block having a thickness of 30 mm and cooled, a layer in which fine columns made of titanium alloy oxide stand on most of the surface of the titanium alloy plate is exposed. And a small piece member in which a number of continuous narrow protrusions made of titanium alloy oxide on the thin film and fine columns standing on the protrusions are exposed.
[実施例18]
厚さ0.3mmのステンレス鋼板(SUS316)の表面に電子ビーム蒸着によって膜
厚が約3μmのチタン薄膜を形成した。その薄膜表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、ステンレス鋼板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
[Example 18]
A titanium thin film having a thickness of about 3 μm was formed on the surface of a stainless steel plate (SUS316) having a thickness of 0.3 mm by electron beam evaporation. The surface of the thin film was heat-treated with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the combustion flame is applied is brought into contact with a flat surface of a 30 mm thick stainless steel block and cooled, a layer in which fine columns made of white titanium oxide are forested is exposed on the majority of the surface of the stainless steel plate. And a small piece member in which a large number of continuous narrow protrusions made of white titanium oxide on the thin film and fine columns standing on the protrusions are exposed.
[比較例4]
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン
板にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有するチタン板を形成した。
[Comparative Example 4]
A commercially available titanium oxide sol (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) was spin-coated on a titanium plate having a thickness of 0.3 mm, and then a titanium plate having a titanium oxide film whose adhesion was improved by heating was formed.
試験例12(引っかき硬度試験:鉛筆法)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材の微細柱側表面について、JIS K 5600−5−4(1999)に基づき、三菱鉛筆株式会社製ユニ1H〜9H鉛筆を用いて鉛筆引っかき硬度試験を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められなかった。
Test Example 12 (Scratch hardness test: pencil method)
Mitsubishi Pencil Co., Ltd., based on JIS K 5600-5-4 (1999), on the surface of the fine column side of the member in which the layer in which the fine column is grown is exposed on the substrate surface obtained in Examples 13 to 18 A pencil scratch hardness test was carried out using Uni 1H-9H pencils. The results were as shown in Table 3. That is, no damage was observed when a 9H pencil was used for all the test pieces.
試験例13(耐薬品性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬し、水洗し、乾燥させた後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐薬品性を有することが認められた。
Test Example 13 (Chemical resistance test)
The members having exposed layers with fine pillars exposed on the substrate surfaces obtained in Examples 13 to 18 were immersed in 1M sulfuric acid aqueous solution and 1M sodium hydroxide aqueous solution for 1 week at room temperature, washed with water and dried. Then, the above scratch hardness test: the pencil method was carried out. The results were as shown in Table 3. That is, even when a 9H pencil was used for all the test pieces, no damage was observed, and it was confirmed that the test pieces had high chemical resistance.
試験例14(耐熱性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を管状炉内に入れ、大気雰囲気下で室温から1時間かけて500℃まで昇温させ、500℃の恒温で2時間保持し、更に1時間かけて室温まで静置冷却した後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐熱性を有することが認められた。
A member in which a layer in which fine columns are erected is exposed on the surface of the substrate obtained in Examples 13 to 18 is placed in a tubular furnace, and the temperature is raised from room temperature to 500 ° C. in an air atmosphere over 1 hour. After holding at a constant temperature of 500 ° C. for 2 hours and further allowing to cool to room temperature over 1 hour, the above-described scratch hardness test: pencil method was performed. The results were as shown in Table 3. That is, no damage was observed even when a 9H pencil was used for all the test pieces, and it was confirmed that the specimen had high heat resistance.
試験例15(防汚試験)
試料として、実施例16で得られた基板表面に微細柱が林立している層が露出している表面積8cm2の部材及び比較例4で得られた酸化チタン皮膜を有する表面積8cm2のチタン板を用いて防汚試験を実施した。具体的には、それらの試料をそれぞれ、約10μmol/Lの濃度に調整したメチレンブルー水溶液80mL中に浸漬し、初期の吸着による濃度減少の影響が無視できるようになってから、松下電器産業株式会社製のUVカットフィルター付き蛍光灯により可視光を照射し、所定の照射時間毎に波長660nmにおけるメチレンブルー水溶液の吸光度をHACH社製水質検査装置DR/2400で測定した。その結果は図14に示す通りであった。
Test Example 15 (Anti-fouling test)
As a sample, a titanium plate surface area 8 cm 2 having a titanium oxide film obtained in member and Comparative Example 4 of surface area 8 cm 2 of the layer minute columns the resulting substrate surface in Example 16 is bristled is exposed An antifouling test was conducted using Specifically, each of these samples was immersed in 80 mL of an aqueous methylene blue solution adjusted to a concentration of about 10 μmol / L, and the influence of the decrease in concentration due to initial adsorption became negligible. Matsushita Electric Industrial Co., Ltd. Visible light was irradiated with a fluorescent lamp with a UV cut filter manufactured, and the absorbance of the aqueous methylene blue solution at a wavelength of 660 nm was measured with a water quality inspection apparatus DR / 2400 manufactured by HACH at every predetermined irradiation time. The result was as shown in FIG.
図14から、実施例16で得られた基板表面に微細柱が林立している層が露出している部材は、比較例4で得られた酸化チタン皮膜を有するチタン板に比較して、メチレンブルーの分解速度が速く、防汚効果が高いことが分かる。 From FIG. 14, the member in which the layer with the fine pillars exposed on the surface of the substrate obtained in Example 16 is exposed to methylene blue as compared with the titanium plate having the titanium oxide film obtained in Comparative Example 4. It can be seen that the decomposition speed of is high and the antifouling effect is high.
試験例16(結晶構造と結合状態)
実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱から得た試料についてX線解析(XRD)を行った結果、ルチル型の結晶構造を有することが判明した。
Test Example 16 (Crystal structure and bonding state)
As a result of performing X-ray analysis (XRD) on the sample obtained from the fine column of the member in which the layer with the fine column grown on the substrate surface obtained in Example 15 is exposed, it has a rutile crystal structure. It has been found.
また、実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱部分について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ター
ゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる
。そのXPS分析の結果は図15に示す通りであった。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.6eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例15の微細柱中ではCがTi−C結合としてドープされていると判断される。なお、微細柱の高さ位置の異なる位置の14点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
Further, with respect to the fine column portion of the member in which the layer with the fine columns grown on the surface of the substrate obtained in Example 15 is exposed, an X-ray photoelectron spectrometer (XPS) is used to accelerate voltage: 10 kV, target: Al was used for Ar sputtering for 2700 seconds, and analysis was started. If this sputtering rate is 0.64 Å / s corresponding to the SiO 2 film, the depth is about 173 nm. The result of the XPS analysis was as shown in FIG. The highest peak appears when the binding energy is 284.6 eV. This is judged to be a C—H (C) bond commonly found in Cls analysis. The next highest peak is seen when the binding energy is 281.6 eV. Since the bond energy of the Ti—C bond is 281.6 eV, it is determined that C is doped as a Ti—C bond in the fine column of Example 15. As a result of XPS analysis at 14 points at different heights of the fine columns, similar peaks appeared in the vicinity of 281.6 eV at all points.
[実施例19]
試験片として直径32mm、厚さ0.3mmの円板を用い、その表面を表面温度が約1
150℃に維持されるようにアセチレンの燃焼炎により加熱した。第一の試験片については加熱時間120秒の時点で加熱を止めて放冷した。第二の試験片については180秒の時点で加熱を止めて放冷した。第三の試験片については480秒間加熱し、直ちにその燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却した。この冷却によりチタン板表面から薄膜が剥離し、その下から白色の酸化チタンからなる微細柱が林立している層が露出している部材が得られた。これらの3枚の試験片について、セイコーインスツルメンツ社製FIB−SEM装置SMI8400SEを用いて試験片表面に3μm×12μmで深さ10μmの穴を掘り、その側面及び底面をキーエンス社製SEM装置VE7800により観察を行った。120秒後の試験片のSEM写真は図16であり、180秒後の試験片のSEM写真は図17であり、480秒後の試験片のSEM写真は図18である。180秒後の図17では皮膜下部に微細柱構造の兆候が現れ始めており、更に火炎処理を続けることで微細柱長く伸びて本発明で目的とするような微細柱構造が形成されると考えられる。
[Example 19]
A disk having a diameter of 32 mm and a thickness of 0.3 mm was used as a test piece, and the surface temperature was about 1 on the surface.
The mixture was heated by an acetylene combustion flame so as to be maintained at 150 ° C. About the 1st test piece, the heating was stopped at the time of the heating time of 120 seconds, and it stood to cool. About the 2nd test piece, the heating was stopped at the time of 180 second and it stood to cool. The third test piece was heated for 480 seconds, and immediately the surface to which the flame was applied was brought into contact with the flat surface of a 30 mm thick stainless steel block and cooled. By this cooling, a thin film was peeled off from the surface of the titanium plate, and a member in which a layer in which fine columns made of white titanium oxide were erected was exposed. With respect to these three test pieces, using a FIB-SEM apparatus SMI8400SE manufactured by Seiko Instruments Inc., a hole of 3 μm × 12 μm and a depth of 10 μm was dug on the surface of the test piece, and the side and bottom surfaces thereof were observed with a SEM apparatus VE7800 manufactured by Keyence Corporation. Went. The SEM photograph of the test piece after 120 seconds is FIG. 16, the SEM photograph of the test piece after 180 seconds is FIG. 17, and the SEM photograph of the test piece after 480 seconds is FIG. In FIG. 17 after 180 seconds, signs of a fine column structure begin to appear in the lower part of the film, and it is considered that by continuing the flame treatment, the fine column is elongated and a fine column structure as intended in the present invention is formed. .
[具体例]
図19に本発明の炭素ドープ酸化チタン層を備えた畜産用器具へ太陽光を供給するためのシステムを示した。
[Concrete example]
FIG. 19 shows a system for supplying sunlight to livestock equipment provided with the carbon-doped titanium oxide layer of the present invention.
図に示したように蓄舎の天井等に紫外線や可視光を照射する照明を取り付けるものも考えられるが、蓄舎の屋根等に太陽光を集光するためのレンズ集光機4を取り付け、ここから光ファイバ5を用いて集光した太陽光を蓄舎6内に導き入れ、畜産用器具7(図面では床材)へ太陽光を照射することが好ましい。これにより照明のための電気代等のランニングコストを低減することができる。なお本発明の炭素ドープ酸化チタン層はその光応答域が広いため、光ファイバを通過することによって太陽光中の紫外線が減衰したとしても、十分な殺菌・抗菌・消臭等の作用や超親水性を発揮する。 As shown in the figure, it is possible to attach an illumination that irradiates ultraviolet light or visible light to the ceiling of the storage building, etc., but a lens concentrator 4 for concentrating sunlight is attached to the roof of the storage building, From here, it is preferable to introduce the sunlight condensed by using the optical fiber 5 into the storage house 6 and irradiate the animal equipment 7 (floor material in the drawing) with sunlight. Thereby, running costs, such as an electricity bill for illumination, can be reduced. Since the carbon-doped titanium oxide layer of the present invention has a wide light response range, even if ultraviolet rays in sunlight are attenuated by passing through an optical fiber, it can be sufficiently sterilized, antibacterial, deodorized, etc. Demonstrate sex.
1 基体の表面
2 微細柱
3 薄膜
4 レンズ集光機
5 光ファイバ
6 蓄舎
7 畜産用器具(床材)
DESCRIPTION OF SYMBOLS 1 Surface of substrate 2 Fine column 3 Thin film 4 Lens concentrator 5 Optical fiber 6 Storage building 7 Animal husbandry (floor material)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005054454A JP4578274B2 (en) | 2005-02-28 | 2005-02-28 | Animal husbandry equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005054454A JP4578274B2 (en) | 2005-02-28 | 2005-02-28 | Animal husbandry equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006238710A JP2006238710A (en) | 2006-09-14 |
JP4578274B2 true JP4578274B2 (en) | 2010-11-10 |
Family
ID=37045733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005054454A Expired - Fee Related JP4578274B2 (en) | 2005-02-28 | 2005-02-28 | Animal husbandry equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4578274B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001112367A (en) * | 1999-10-14 | 2001-04-24 | Fujitec:Kk | Deodorizing and lighting system for barn |
JP2004167370A (en) * | 2002-11-20 | 2004-06-17 | Japan Atom Energy Res Inst | Highly active photocatalyst carbon-doped titanium dioxide and its manufacturing method |
JP2004283790A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Ceramics Co Ltd | Visible light-active photocatalyst particle |
JP2004322045A (en) * | 2003-04-28 | 2004-11-18 | Kagawa Industry Support Foundation | Novel visible light excitation photocatalyst and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0198427A (en) * | 1987-10-09 | 1989-04-17 | Orion Mach Co Ltd | Milking equipment |
JPH05176634A (en) * | 1991-12-26 | 1993-07-20 | Motoda Electron Co Ltd | Underground growing facilities of organism |
JPH0987857A (en) * | 1995-09-27 | 1997-03-31 | Res Dev Corp Of Japan | Carbide coating method by plasma cvd |
JPH11333300A (en) * | 1998-05-22 | 1999-12-07 | Kankyo Device Kenkyusho:Kk | Manufacture of photocatalyst |
-
2005
- 2005-02-28 JP JP2005054454A patent/JP4578274B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001112367A (en) * | 1999-10-14 | 2001-04-24 | Fujitec:Kk | Deodorizing and lighting system for barn |
JP2004167370A (en) * | 2002-11-20 | 2004-06-17 | Japan Atom Energy Res Inst | Highly active photocatalyst carbon-doped titanium dioxide and its manufacturing method |
JP2004283790A (en) * | 2003-03-25 | 2004-10-14 | Toshiba Ceramics Co Ltd | Visible light-active photocatalyst particle |
JP2004322045A (en) * | 2003-04-28 | 2004-11-18 | Kagawa Industry Support Foundation | Novel visible light excitation photocatalyst and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2006238710A (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4902125B2 (en) | Multifunctional material with mirror surface | |
JP4692987B2 (en) | Antiseptic equipment | |
JP4010558B2 (en) | Multifunctional material | |
JP4756575B2 (en) | Cultivation medium container | |
JP4587302B2 (en) | Antibacterial products for doctors | |
JP4822245B2 (en) | Power supply equipment | |
JP4578274B2 (en) | Animal husbandry equipment | |
JP4534144B2 (en) | Purification device | |
JP4716309B2 (en) | Heat exchanger | |
JP5126855B2 (en) | Glass product having multifunctional film and method for producing the same | |
JP4843231B2 (en) | Kitchen products | |
JP2006239477A (en) | Sanitary product and washing system for sanitary product provided with carbon-doped titanium oxide surface layer | |
JP2006238940A (en) | Restroom utensil | |
JP4555704B2 (en) | Glass product having multifunctional film and method for producing the same | |
JP4623503B2 (en) | Multi-functional coating composition | |
JP5240789B2 (en) | Purification device | |
JP5041392B2 (en) | Oil treatment equipment | |
JP4502325B2 (en) | Ultrasonic horn | |
JP4428705B2 (en) | Play equipment | |
JP2006242401A (en) | Cold air generator | |
JP2006230927A (en) | Deodorizing apparatus and deodorizing system | |
JP4756574B2 (en) | air conditioner | |
JP4915634B2 (en) | Antifouling buildings | |
JP2006240768A (en) | Dust box | |
JP4915635B2 (en) | panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100824 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |