JPH0987857A - Carbide coating method by plasma cvd - Google Patents

Carbide coating method by plasma cvd

Info

Publication number
JPH0987857A
JPH0987857A JP7274681A JP27468195A JPH0987857A JP H0987857 A JPH0987857 A JP H0987857A JP 7274681 A JP7274681 A JP 7274681A JP 27468195 A JP27468195 A JP 27468195A JP H0987857 A JPH0987857 A JP H0987857A
Authority
JP
Japan
Prior art keywords
powder
plasma
carbide
methane
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274681A
Other languages
Japanese (ja)
Inventor
Kazuo Sugiyama
和夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP7274681A priority Critical patent/JPH0987857A/en
Publication of JPH0987857A publication Critical patent/JPH0987857A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To coat the surface of the powder of metallic oxide with carbide and to modify the powder. SOLUTION: A vessel 7 in which the powder of metallic oxide is evacuated, and while the vessel 7 is rotated, a gaseous mixture of methane and hydrogen is fed thereto. Moreover, the powder is irradiated with electromagnetic waves of 1MHz to 10GHz to generate plasma, the methane is decomposed by the plasma, and C as an active radical decomposed from the methane is substituted for latticed oxygen in the metallic oxide, by which a carbide coating layer high in catalytic activity is formed on the surface of the powdery grains. The vessel 7 in which the powder is housed is rotated at a rate of 20 to 100 rotation per min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタニア,ジルコニア
等の金属酸化物粉末粒子の表面を炭化物でコーティング
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating the surface of metal oxide powder particles such as titania and zirconia with a carbide.

【0002】[0002]

【従来の技術】ダイヤモンド膜やダイヤモンド状炭素膜
は、高硬度,耐摩耗性,低摩擦抵抗等の優れた特性を呈
することから、切削材料,半導体保護膜等として広範な
分野で使用されている。ダイヤモンド膜,ダイヤモンド
状炭素膜等の合成には、プラズマCVD法が多用されて
いる。
2. Description of the Related Art Diamond films and diamond-like carbon films are used in a wide range of fields as cutting materials, semiconductor protective films, etc. because they exhibit excellent characteristics such as high hardness, wear resistance, and low friction resistance. . A plasma CVD method is often used for synthesizing a diamond film, a diamond-like carbon film and the like.

【0003】[0003]

【発明が解決しようとする課題】プラズマCVDでは、
ダイヤモンド膜やダイヤモンド状炭素膜を基板上で合成
しているが、金属酸化物粉体をコーティング対象とした
例はない。しかし、金属酸化物の粉末にダイヤモンド膜
やダイヤモンド状炭素膜をコーティングするとき、酸化
物粉体に新たに表面特性を付与できることが考えられ
る。本発明は、このような要求に応えるべく案出された
ものであり、電子密度や電離度が高く、長時間の安定性
に優れた低温プラズマCVD法を使用することにより、
酸化物粉体の表面を炭化物でコーティングし、高機能粉
末粒子を得ることを目的とする。
In plasma CVD,
Although a diamond film and a diamond-like carbon film are synthesized on a substrate, there is no example in which metal oxide powder is used as a coating target. However, when coating a metal oxide powder with a diamond film or a diamond-like carbon film, it is considered that new surface characteristics can be imparted to the oxide powder. The present invention has been devised to meet such a demand, and has a high electron density and ionization degree, and by using a low temperature plasma CVD method excellent in stability for a long time,
The purpose is to obtain high-performance powder particles by coating the surface of oxide powder with carbide.

【0004】[0004]

【課題を解決するための手段】本発明のコーティング方
法は、その目的を達成するため、金属酸化物の粉体を収
容した容器を真空引きし、前記容器を回転させながらメ
タンと水素との混合ガスを供給すると共に、前記粉体に
電磁波を照射してプラズマを発生させ、該プラズマによ
りメタンを分解して得られる炭素と前記粉体中の格子状
酸素とを置換し、前記粉体の粒子表面に炭化物を付着さ
せることを特徴とする。金属酸化物の粉体を収容した容
器を毎分20〜100回転の速度で回転させるとき、個
々の粉末粒子にプラズマが均等に照射され、均一な炭化
物のコーティングが施される。また、メタンを効率よく
分解させて繊維状の炭素系物質を得る上では、照射する
電磁波の周波数を1MHz〜10GHzの範囲に維持す
ることが好ましい。
In order to achieve the object, the coating method of the present invention is to evacuate a container containing a powder of metal oxide and to mix methane and hydrogen while rotating the container. While supplying gas, the powder is irradiated with electromagnetic waves to generate plasma, and carbon obtained by decomposing methane by the plasma is replaced with lattice oxygen in the powder, and particles of the powder are obtained. Characterized by depositing carbide on the surface. When the container containing the powder of the metal oxide is rotated at a speed of 20 to 100 revolutions per minute, the individual powder particles are uniformly irradiated with plasma, and a uniform carbide coating is applied. Further, in order to efficiently decompose methane to obtain a fibrous carbon-based substance, it is preferable to maintain the frequency of the electromagnetic wave to be irradiated within the range of 1 MHz to 10 GHz.

【0005】本発明では、たとえば図1に示す設備構成
の電磁波プラズマ加熱装置が使用される。電磁波発振器
1から発振された電磁波は、アイソレータ2を経て送り
出され、パワーモニター3で出力が測定される。次い
で、スリースタブチューナ4を経て反応室5に送り込ま
れる。反応室5の下部には、プランジャー6が設けられ
ている。プランジャー6の上方に、処理される粉体を収
容した石英製反応管7が配置されている。石英製反応管
7は、スターラ8によって回転可能になっている。石英
製反応管7の内部は、トラップ9を介して接続された真
空ポンプによって真空引きされ、真空ゲージ11によっ
て内圧が測定される。処理される粉体には、チタニア,
ジルコニア等の外にSc,Y,ランタノイド元素,H
f,V,Nb,Ta等の酸化物や複合酸化物等が使用さ
れる。粉体粒子の粒径は、使用目的にもよるが、1〜2
000μmの範囲にあることが好ましい。
In the present invention, for example, an electromagnetic wave plasma heating device having the equipment structure shown in FIG. 1 is used. The electromagnetic wave oscillated from the electromagnetic wave oscillator 1 is sent out through the isolator 2 and the output is measured by the power monitor 3. Then, it is fed into the reaction chamber 5 via the three-stub tuner 4. A plunger 6 is provided below the reaction chamber 5. Above the plunger 6, a quartz reaction tube 7 containing the powder to be treated is arranged. The quartz reaction tube 7 is rotatable by a stirrer 8. The inside of the quartz reaction tube 7 is evacuated by a vacuum pump connected via a trap 9, and the internal pressure is measured by a vacuum gauge 11. The powder to be treated includes titania,
In addition to zirconia, etc., Sc, Y, lanthanoid element, H
An oxide such as f, V, Nb, or Ta, a complex oxide, or the like is used. The particle size of the powder particles depends on the purpose of use, but is 1-2.
It is preferably in the range of 000 μm.

【0006】適宜の混合ガス給気管が石英製反応管7に
接続されており、この給気管を介しメタンと水素の混合
ガスが石英製反応管7の内部に送り込まれる。混合ガス
としては、水素に対して0.1〜10体積%のメタンを
混合したものが好ましい。メタンは、分解によって炭素
系物質となるものであり、1体積%に達しないと有効な
炭素系物質のコーティングが得られない。しかし、10
体積%を超える配合比率では、その分だけ水素分圧が不
足し、雰囲気に含まれている酸素や水分の悪影響が現れ
易い。電磁波発振器1では、周波数1MHz〜10GH
zの電磁波を発生させる。この電磁波を石英製反応管7
に収容されている粉体に照射すると、粉体粒子が内部か
ら加熱され、粒子の表面が活性化される。また、石英製
反応管7の内部雰囲気に含まれているメタンが分解し、
活性度の高い炭素が生成する。この炭素が粉体粒子の格
子状酸素と置換し、電気伝導性に優れた炭化物コーティ
ング層を形成する。
An appropriate mixed gas feed pipe is connected to the quartz reaction pipe 7, and a mixed gas of methane and hydrogen is fed into the quartz reaction pipe 7 through this feed pipe. The mixed gas is preferably a mixture of hydrogen and 0.1 to 10% by volume of methane. Methane becomes a carbon-based substance by decomposition, and an effective coating of the carbon-based substance cannot be obtained unless it reaches 1% by volume. But 10
When the blending ratio exceeds volume%, the partial pressure of hydrogen is insufficient and the adverse effects of oxygen and water contained in the atmosphere are likely to appear. In the electromagnetic wave oscillator 1, the frequency is 1 MHz to 10 GH
Generates an electromagnetic wave of z. This electromagnetic wave causes the quartz reaction tube 7
When the powder contained in the powder is irradiated, the powder particles are heated from the inside, and the surfaces of the particles are activated. Further, methane contained in the internal atmosphere of the quartz reaction tube 7 is decomposed,
Highly active carbon is produced. This carbon replaces the lattice-like oxygen of the powder particles to form a carbide coating layer having excellent electrical conductivity.

【0007】このようにして粉体粒子の表面に形成され
た炭化物コーティング層を観察すると、コーティング層
は、緻密で均一な層構造をもっており、母材に対する密
着性に優れ、硬質で熱伝導性にも優れている。コーティ
ング層を備えた粒子は、表面に導電性が発現して半導体
特性が向上するため、光触媒,ガスセンサー等として使
用される。
Observing the carbide coating layer formed on the surface of the powder particles in this way, the coating layer has a dense and uniform layer structure, is excellent in adhesion to the base material, is hard and has high thermal conductivity. Is also excellent. The particles provided with a coating layer are used as a photocatalyst, a gas sensor, etc. because the surface exhibits conductivity and semiconductor characteristics are improved.

【0008】[0008]

【実施例】平均粒径20〜60メッシュのアナターゼ型
チタニア粉末を原料として使用し、チタニア粉末10g
を容量200ccの石英製反応管7に収容した。真空ポ
ンプで系内を排気した後、500Wで電磁波を照射しな
がらテスラーコイルによってプラズマを発生させた。そ
して、所定の混合比になるようにマスフロメータで流量
を30cc/分に調整したCH4 1%−H2 混合ガスを
所定の圧力で導入し、石英反応管7を70rpmで回転
させながら処理を開始した。所定時間(2時間)反応さ
せた後、電磁波照射を止め、処理を終了した。なお、ガ
ス圧は、1,10,20,30,40トールに設定し
た。雰囲気圧1トールで発生したプラズマは、図2
(a)に示す発光スペクトルをもっており、活性度の高
い分解生成物−CHが生成していた。このときのプラズ
マガスの温度は、約1000℃であった。プラズマの発
光スペクトルは、図2で(b),(c)として示すよう
に雰囲気圧に応じて変化した。
EXAMPLE Anatase type titania powder having an average particle size of 20 to 60 mesh was used as a raw material, and 10 g of titania powder was used.
Was stored in a quartz reaction tube 7 having a capacity of 200 cc. After evacuating the system with a vacuum pump, plasma was generated with a Tesler coil while irradiating an electromagnetic wave at 500 W. Then, a CH 4 1% -H 2 mixed gas whose flow rate was adjusted to 30 cc / min by a mass flow meter so as to have a predetermined mixing ratio was introduced at a predetermined pressure, and the treatment was started while rotating the quartz reaction tube 7 at 70 rpm. did. After reacting for a predetermined time (2 hours), the electromagnetic wave irradiation was stopped and the treatment was completed. The gas pressure was set to 1, 10, 20, 30, 40 Torr. The plasma generated at an atmospheric pressure of 1 Torr is shown in FIG.
It has an emission spectrum shown in (a), and a highly active decomposition product -CH was produced. The temperature of the plasma gas at this time was about 1000 ° C. The emission spectrum of the plasma changed according to the atmospheric pressure as shown in FIGS. 2 (b) and 2 (c).

【0009】プラズマ処理した試料を、粉末X線回折法
(XRD)及びラマン分光法で物性評価した。また、プ
ラズマ中に発生した活性種を発光分光分析法(OES)
で測定した。アナターゼ型のチタニアをメタン水素プラ
ズマ処理したところ、表面のみが灰色になった。また、
ラマン分光法による分光結果を示す図3にみられるよう
に、チタニア表面に炭化チタンが形成されていることが
確認された。この結果は、TiO2 の酸素格子にCH4
の炭素が置換することにより生じたものと推察される。
そこで、炭化チタン合成の最適条件を調査するため、反
応条件のうちでガス圧力を変化させて反応を行わせた。
Physical properties of the plasma-treated sample were evaluated by powder X-ray diffraction (XRD) and Raman spectroscopy. In addition, active species generated in plasma are analyzed by optical emission spectroscopy (OES).
It was measured at. When anatase type titania was treated with methane hydrogen plasma, only the surface became gray. Also,
As seen in FIG. 3, which shows the result of spectroscopy by Raman spectroscopy, it was confirmed that titanium carbide was formed on the titania surface. This result indicates that CH 4 is attached to the oxygen lattice of TiO 2.
It is presumed that it was caused by the substitution of the carbons of.
Therefore, in order to investigate the optimal conditions for titanium carbide synthesis, the gas pressure was changed under the reaction conditions to carry out the reaction.

【0010】その結果、1トールで処理した試料では表
面全体が灰色になったのに対し、40トールで処理した
試料では表面の一部のみが灰色になっていることを目視
観察によっても確認できた。チタニア表面に形成された
炭化チタンをラマン分光法で定量したところ、図4に示
すようにガス圧の上昇に応じて炭化チタンのラマンピー
クが減少していた。本来、電磁波電力を一定にしてもガ
ス圧力が高くなるに従ってプラズマ域が狭くなり、電力
が集中し、試料温度が上昇する。そのため、ガス圧力を
高くした方が膜の生成速度が早くなると予想されるが、
本実施例では全く逆の結果が得られた。そこで、プラズ
マ中の気相反応で重要な役割を果していると考えられて
いるラジカルやイオン等の活性種がガス圧の変化によっ
てどのような影響を受けるかを発光分光分析で調査し
た。調査結果は、前掲した図2に示されているように、
1トールのガス圧力ではCH(420nm),Hα(6
60nm),Hβ(486nm),H2 (600nm付
近)に基づく発光ピークが明確に確認された。しかし、
ガス圧力が20トール,40トールと高くなるに従っ
て、全ての発光強度が激減した。このことは、圧力の増
加によってガスの電離が抑制され、プラズマ中の活性種
の濃度が減少したことを示す。すなわち、ガス圧力の増
加は、炭化チタンの生成を減少させる一番の原因といえ
る。
As a result, it can be confirmed by visual observation that the entire surface of the sample treated with 1 Torr is gray, whereas the sample treated with 40 Torr is gray only in a part of the surface. It was When the titanium carbide formed on the titania surface was quantified by Raman spectroscopy, the Raman peak of titanium carbide decreased with increasing gas pressure, as shown in FIG. Originally, even if the electromagnetic wave power is kept constant, the plasma region becomes narrower as the gas pressure becomes higher, the power is concentrated, and the sample temperature rises. Therefore, it is expected that the higher the gas pressure, the faster the film formation rate.
In this example, the exact opposite result was obtained. Therefore, we investigated by emission spectroscopy how the active species such as radicals and ions, which are considered to play an important role in the gas phase reaction in plasma, are affected by the change in gas pressure. The survey results, as shown in Figure 2 above,
At a gas pressure of 1 torr, CH (420 nm), Hα (6
The emission peaks based on 60 nm), Hβ (486 nm), and H 2 (near 600 nm) were clearly confirmed. But,
As the gas pressure increased to 20 Torr and 40 Torr, all the emission intensity decreased drastically. This indicates that the increase in pressure suppressed the ionization of gas and decreased the concentration of active species in plasma. That is, it can be said that the increase in gas pressure is the primary cause of reducing the production of titanium carbide.

【0011】次いで、表面を炭化したチタニアをアセト
アルデヒドの光分解に使用し、光触媒としての性能を調
査した。試験には、チタンテトライソプロポキシドを加
水分解し、水洗・濾過後、空気中で500℃に2時間焼
成したアナターゼ型のチタニアを試料Aとして使用し
た。また、試料Aを1トールの減圧雰囲気中でCH4
%−H2 混合ガスを流量30ml/分で供給しながら5
00Wで2時間プラズマ処理した試料Bを使用した。試
験は、アセトアルデヒド濃度1000ppm,反応器容
積2リットル,試料表面における紫外線強度2.0mW
/cm2 の条件下で行った。試験結果を示す図5にみら
れるように、プラズマ処理で表面をTiCコーティング
した試料Bは、試料Aに比較して2倍のアルデヒド光分
解性能を示した。
Next, titania whose surface was carbonized was used for the photolysis of acetaldehyde, and the performance as a photocatalyst was investigated. In the test, anatase-type titania which was obtained by hydrolyzing titanium tetraisopropoxide, washed with water, filtered, and calcined in air at 500 ° C. for 2 hours was used as a sample A. Further, CH 4 1 Sample A in 1 Torr vacuum atmosphere
While supplying the% -H 2 mixed gas at a flow rate of 30 ml / min, 5
A sample B plasma-treated with 00W for 2 hours was used. The test was conducted with acetaldehyde concentration of 1000 ppm, reactor volume of 2 liters, and UV intensity of 2.0 mW on the sample surface.
It was performed under the condition of / cm 2 . As shown in FIG. 5, which shows the test results, Sample B, the surface of which was coated with TiC by plasma treatment, showed twice the aldehyde photodegradation performance as Sample A.

【0012】[0012]

【発明の効果】以上に説明したように、本発明において
は、電磁波で誘導されたプラズマで金属酸化物の粉体粒
子を処理することにより、粒子表面を炭化物コーティン
グしている。形成されたコーティング層は、硬質で電気
伝導性,熱伝導性等に優れているため、粉体粒子に高機
能が付与され、しかも耐摩耗性が改善されていることか
ら、寿命の長い触媒等の機能材料として使用できる。
As described above, in the present invention, the surface of the particles is coated with carbide by treating the metal oxide powder particles with the plasma induced by the electromagnetic wave. The formed coating layer is hard and has excellent electrical conductivity, thermal conductivity, etc., so high functionality is given to the powder particles, and abrasion resistance is improved. It can be used as a functional material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で使用する電磁波プラズマ加熱装置FIG. 1 is an electromagnetic wave plasma heating apparatus used in the present invention.

【図2】 メタン−水素混合ガスに電磁波を照射して発
生させたプラズマの発光スペクトルに及ぼすガス圧の影
FIG. 2 Effect of gas pressure on emission spectrum of plasma generated by irradiating methane-hydrogen mixed gas with electromagnetic wave

【図3】 チタニアと炭化チタンのラマンスペクトルFIG. 3 Raman spectra of titania and titanium carbide

【図4】 雰囲気圧に応じたラマンスペクトルの変化FIG. 4 Changes in Raman spectrum depending on atmospheric pressure

【図5】 プラズマ処理の有無がチタニアの光触媒機能
に及ぼす影響
FIG. 5: Effect of presence or absence of plasma treatment on photocatalytic function of titania

【符号の説明】[Explanation of symbols]

1:電磁波発振器 2:アイソレータ 3:パワー
モニター 4:スリースタブチューナ 5:反応室 6:プラ
ンジャー 7:石英製反応管 8:スターラ 9:トラップ
10:真空ポンプ 11:真空ゲージ
1: Electromagnetic wave oscillator 2: Isolator 3: Power monitor 4: Three-stub tuner 5: Reaction chamber 6: Plunger 7: Quartz reaction tube 8: Stirrer 9: Trap
10: Vacuum pump 11: Vacuum gauge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物の粉体を収容した容器を真空
引きし、前記容器を回転させながらメタンと水素との混
合ガスを供給すると共に、前記粉体に電磁波を照射して
プラズマを発生させ、該プラズマによりメタンを分解し
て得られる炭素と前記粉体中の格子状酸素とを置換し、
前記粉体の粒子表面に炭化物を付着させることを特徴と
するプラズマCVDによる炭化物コーティング方法。
1. A vacuum is applied to a container containing a powder of metal oxide, a mixed gas of methane and hydrogen is supplied while the container is rotated, and a plasma is generated by irradiating the powder with an electromagnetic wave. By replacing the carbon obtained by decomposing methane by the plasma with the lattice oxygen in the powder,
A method for coating a carbide by plasma CVD, which comprises depositing a carbide on the particle surface of the powder.
【請求項2】 請求項1記載の容器を毎分20〜100
回転の速度で回転させる炭化物コーティング方法。
2. The container according to claim 1 at a rate of 20 to 100 per minute.
A carbide coating method of rotating at a rotation speed.
【請求項3】 周波数1MHz〜10GHzの電磁波を
照射する請求項1記載の炭化物コーティング方法。
3. The carbide coating method according to claim 1, wherein electromagnetic waves having a frequency of 1 MHz to 10 GHz are irradiated.
JP7274681A 1995-09-27 1995-09-27 Carbide coating method by plasma cvd Pending JPH0987857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274681A JPH0987857A (en) 1995-09-27 1995-09-27 Carbide coating method by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274681A JPH0987857A (en) 1995-09-27 1995-09-27 Carbide coating method by plasma cvd

Publications (1)

Publication Number Publication Date
JPH0987857A true JPH0987857A (en) 1997-03-31

Family

ID=17545086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274681A Pending JPH0987857A (en) 1995-09-27 1995-09-27 Carbide coating method by plasma cvd

Country Status (1)

Country Link
JP (1) JPH0987857A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060943A (en) * 2000-08-22 2002-02-28 Tohoku Electric Power Co Inc Method and device for coating high purity silicon
JP2003512527A (en) * 1999-10-15 2003-04-02 エーエスエム アメリカ インコーポレイテッド Transition metal carbide deposition
WO2005056865A1 (en) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry Method for producing substrate having carbon-doped titanium oxide layer
WO2005056866A1 (en) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
JP2006230368A (en) * 2005-02-28 2006-09-07 Central Res Inst Of Electric Power Ind Working machine
JP2006231292A (en) * 2005-02-28 2006-09-07 Central Res Inst Of Electric Power Ind Purification apparatus
JP2006243044A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Multifunctional material having mirror finished surface
JP2006238710A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Tool for animal husbandry and sun light-feeding system for animal husbandry tool
JP2006239474A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Oil treatment equipment
WO2008051851A1 (en) * 2006-10-25 2008-05-02 Asm America, Inc. Plasma-enhanced deposition of metal carbide films
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
US8841182B1 (en) 2013-03-14 2014-09-23 Asm Ip Holding B.V. Silane and borane treatments for titanium carbide films
US8846550B1 (en) 2013-03-14 2014-09-30 Asm Ip Holding B.V. Silane or borane treatment of metal thin films
US8993055B2 (en) 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
US9394609B2 (en) 2014-02-13 2016-07-19 Asm Ip Holding B.V. Atomic layer deposition of aluminum fluoride thin films
US9631272B2 (en) 2008-04-16 2017-04-25 Asm America, Inc. Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
US9704716B2 (en) 2013-03-13 2017-07-11 Asm Ip Holding B.V. Deposition of smooth metal nitride films
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786492B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9941425B2 (en) 2015-10-16 2018-04-10 Asm Ip Holdings B.V. Photoactive devices and materials
US10002936B2 (en) 2014-10-23 2018-06-19 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US10504901B2 (en) 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
US10600637B2 (en) 2016-05-06 2020-03-24 Asm Ip Holding B.V. Formation of SiOC thin films
US10643925B2 (en) 2014-04-17 2020-05-05 Asm Ip Holding B.V. Fluorine-containing conductive films
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512527A (en) * 1999-10-15 2003-04-02 エーエスエム アメリカ インコーポレイテッド Transition metal carbide deposition
JP2002060943A (en) * 2000-08-22 2002-02-28 Tohoku Electric Power Co Inc Method and device for coating high purity silicon
KR100789662B1 (en) * 2003-12-09 2008-01-02 자이단호징 덴료쿠추오켄큐쇼 Method for producing substrate having carbon-doped titanium oxide layer
WO2005056865A1 (en) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry Method for producing substrate having carbon-doped titanium oxide layer
WO2005056866A1 (en) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
US7838113B2 (en) 2003-12-09 2010-11-23 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
US7524791B2 (en) 2003-12-09 2009-04-28 Central Research Institute Of Electric Power Industry Method for producing substrate having carbon-doped titanium oxide layer
KR100821521B1 (en) * 2003-12-09 2008-04-14 자이단호징 덴료쿠추오켄큐쇼 Multifunctional material having carbon-doped titanium oxide layer
JP2006231292A (en) * 2005-02-28 2006-09-07 Central Res Inst Of Electric Power Ind Purification apparatus
JP2006239474A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Oil treatment equipment
JP2006238710A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Tool for animal husbandry and sun light-feeding system for animal husbandry tool
JP2006243044A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Multifunctional material having mirror finished surface
JP2006230368A (en) * 2005-02-28 2006-09-07 Central Res Inst Of Electric Power Ind Working machine
US10964534B2 (en) 2005-10-27 2021-03-30 Asm International Enhanced thin film deposition
US10297444B2 (en) 2005-10-27 2019-05-21 Asm International N.V. Enhanced thin film deposition
US8993055B2 (en) 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
US9831094B2 (en) 2005-10-27 2017-11-28 Asm International N.V. Enhanced thin film deposition
US9127351B2 (en) 2005-10-27 2015-09-08 Asm International N.V. Enhanced thin film deposition
WO2008051851A1 (en) * 2006-10-25 2008-05-02 Asm America, Inc. Plasma-enhanced deposition of metal carbide films
US9631272B2 (en) 2008-04-16 2017-04-25 Asm America, Inc. Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
US9704716B2 (en) 2013-03-13 2017-07-11 Asm Ip Holding B.V. Deposition of smooth metal nitride films
US10074541B2 (en) 2013-03-13 2018-09-11 Asm Ip Holding B.V. Deposition of smooth metal nitride films
US9583348B2 (en) 2013-03-14 2017-02-28 Asm Ip Holding B.V. Silane and borane treatments for titanium carbide films
US9236247B2 (en) 2013-03-14 2016-01-12 Asm Ip Holding B.V. Silane and borane treatments for titanium carbide films
US9111749B2 (en) 2013-03-14 2015-08-18 Asm Ip Holdings B.V. Silane or borane treatment of metal thin films
US8841182B1 (en) 2013-03-14 2014-09-23 Asm Ip Holding B.V. Silane and borane treatments for titanium carbide films
US8846550B1 (en) 2013-03-14 2014-09-30 Asm Ip Holding B.V. Silane or borane treatment of metal thin films
US9394609B2 (en) 2014-02-13 2016-07-19 Asm Ip Holding B.V. Atomic layer deposition of aluminum fluoride thin films
US11823976B2 (en) 2014-04-17 2023-11-21 ASM IP Holding, B.V. Fluorine-containing conductive films
US11450591B2 (en) 2014-04-17 2022-09-20 Asm Ip Holding B.V. Fluorine-containing conductive films
US10643925B2 (en) 2014-04-17 2020-05-05 Asm Ip Holding B.V. Fluorine-containing conductive films
US10636889B2 (en) 2014-10-23 2020-04-28 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US10002936B2 (en) 2014-10-23 2018-06-19 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US11139383B2 (en) 2014-10-23 2021-10-05 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US11362222B2 (en) 2015-10-16 2022-06-14 Asm Ip Holding B.V. Photoactive devices and materials
US10861986B2 (en) 2015-10-16 2020-12-08 Asm Ip Holding B.V. Photoactive devices and materials
US9941425B2 (en) 2015-10-16 2018-04-10 Asm Ip Holdings B.V. Photoactive devices and materials
US10510529B2 (en) 2015-11-12 2019-12-17 Asm Ip Holding B.V. Formation of SiOCN thin films
US10424476B2 (en) 2015-11-12 2019-09-24 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US11107673B2 (en) 2015-11-12 2021-08-31 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786492B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US10600637B2 (en) 2016-05-06 2020-03-24 Asm Ip Holding B.V. Formation of SiOC thin films
US11562900B2 (en) 2016-05-06 2023-01-24 Asm Ip Holding B.V. Formation of SiOC thin films
US11195845B2 (en) 2017-04-13 2021-12-07 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10504901B2 (en) 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US11776807B2 (en) 2017-05-05 2023-10-03 ASM IP Holding, B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces

Similar Documents

Publication Publication Date Title
JPH0987857A (en) Carbide coating method by plasma cvd
TW414726B (en) Method and apparatus for coating diamond-like networks onto particles
WO1998023374A1 (en) Photocatalyst having visible light activity and uses thereof
JPH0366014B2 (en)
JPS5891100A (en) Synthesizing method for diamond
Kawarada et al. Diamond synthesis on a metal substrate
JP3062589B2 (en) Thin film formation method by radical control
Honda et al. Low-temperature SiO2 film coatings onto Cu particles using the polygonal barrel-plasma chemical vapor deposition method
JPH11333300A (en) Manufacture of photocatalyst
JPS62265198A (en) Method for synthesizing diamond
JPS6033300A (en) Process and apparatus for synthesizing diamond in gaseous phase
Teii et al. Kinetics and role of C, O, and OH in low-pressure nanocrystalline diamond growth
JPS62158195A (en) Synthesizing method of diamond
JP2004249157A (en) Photocatalyst and its manufacturing method
JP2003236376A (en) Treatment method for zinc oxide photocatalyst thin film
JPH06280019A (en) Production of thin film of diamond-like carbon
JPS60145995A (en) Preparation of diamond-shaped carbon
US20220195593A1 (en) Method for producing N-doped carbon nanomesh
JPH0341436B2 (en)
JPH08199362A (en) Microwave plasma cvd apparatus
JPS60112699A (en) Manufacture of diamond
Ibrahim et al. Photocatalytic Properties of Bismuth Oxyfluoride Thin Films Deposited by Reactive Magnetron Sputtering in Ar/O2/CF4 Atmosphere
JPH08155385A (en) Coating method with filamental carbon based substance
Kapica et al. Characterization of palladium-based thin films prepared by plasma-enhanced metalorganic chemical vapor deposition
JPH0248494A (en) Method for preparing carbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822