JP4557406B2 - Package for pressure detection device - Google Patents

Package for pressure detection device Download PDF

Info

Publication number
JP4557406B2
JP4557406B2 JP2000329626A JP2000329626A JP4557406B2 JP 4557406 B2 JP4557406 B2 JP 4557406B2 JP 2000329626 A JP2000329626 A JP 2000329626A JP 2000329626 A JP2000329626 A JP 2000329626A JP 4557406 B2 JP4557406 B2 JP 4557406B2
Authority
JP
Japan
Prior art keywords
electrode
insulating
semiconductor element
capacitance
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000329626A
Other languages
Japanese (ja)
Other versions
JP2002131164A (en
Inventor
浩司 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000329626A priority Critical patent/JP4557406B2/en
Publication of JP2002131164A publication Critical patent/JP2002131164A/en
Application granted granted Critical
Publication of JP4557406B2 publication Critical patent/JP4557406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧力を検出するための圧力検出装置に使用される圧力検出装置用パッケージに関するものである。
【0002】
【従来の技術】
従来、圧力を検出するための圧力検出装置として静電容量型の圧力検出装置が知られている。この静電容量型の圧力検出装置は、例えば図2に断面図で示すように、セラミックス材料や樹脂材料から成る配線基板21上に、静電容量型の感圧素子22と、パッケージ28に収容された演算用の半導体素子29とを備えている。感圧素子22は、例えばセラミックス材料等の電気絶縁材料から成り、上面中央部に静電容量形成用の一方の電極23が被着された凹部を有する絶縁基体24と、この絶縁基体24の上面に絶縁基体24との間に密閉空間を形成するようにして可撓な状態で接合され、下面に静電容量形成用の他方の電極25が被着された絶縁板26と、各静電容量形成用の電極23・25をそれぞれ外部に電気的に接続するための外部リード端子27とから構成されており、外部の圧力に応じて絶縁板26が撓むことにより各静電容量形成用の電極23・25間に形成される静電容量が変化する。そして、この静電容量の変化を演算用の半導体素子29により演算処理することにより外部の圧力を検出することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来の圧力検出装置によると、感圧素子22と半導体素子29とを配線基板21上に個別に実装していることから、圧力検出装置が大型化してしまうとともに圧力検出用の電極23・25と半導体素子29との間の配線が長いものとなり、この長い配線間に不要な静電容量が形成されるため感度が低いという問題点を有していた。
【0004】
そこで、本願出願人は、先に特願2000-178618号において、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設され、半導体素子の各電極が電気的に接続される複数の配線導体と、絶縁基体の他方の主面の中央部に被着され、配線導体の一つに電気的に接続された静電容量形成用の第一電極と、絶縁基体の他方の主面に、この主面の中央部との間に密閉空間を形成するように可撓な状態で接合された絶縁板と、この絶縁板の内側主面に第一電極に対向して被着され、配線導体の他の一つに電気的に接続された静電容量形成用の第二電極とを具備する圧力検出装置用パッケージを提案した。この圧力検出装置用パッケージによると、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体の他方の主面に静電容量形成用の第一電極を設けるとともに、この第一電極に対向する静電容量形成用の第二電極を内側面に有する絶縁板を、絶縁基体の他方の主面との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。なお、この特願2000-178618号で提案した圧力検出装置用パッケージにおいては、絶縁基体の他方の主面の外周部にセラミックスや金属から成る枠体を第一電極を取り囲むようにして設けておき、この枠体上に第二電極の外周部を銀−銅ろう等のろう材を介してろう付けすることにより絶縁板が絶縁基体に接合されていた。
【0005】
しかしながら、この特願2000-178618号で提案した圧力検出装置用パッケージによると、セラミックスや金属から成る枠体上に絶縁板の第二電極の外周部を銀−銅ろう等のろう材を介してろう付けする際に、両者を接合するろう材の厚みがろう付けの温度や雰囲気・荷重等のばらつきに起因して一定となりにくく、そのため第一電極と第二電極との間隔が大きくばらついてしまうとともに、両者を接合するろう材の一部が第二電極の中央部に多量に流れ出してしまいやすい。そして、このような第一電極と第二電極との間隔のばらつきや第二電極中央部に流出したろう材により第一電極と第二電極との間に形成される静電容量が大きくばらついてしまい、その結果、外部の圧力を正確に検出することが困難であるという問題点を有していた。
【0006】
本発明は、かかる上述の問題点に鑑み完成されたものであり、その目的は、小型でかつ感度が高く、しかも外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の圧力検出装置用パッケージは、内部および表面に複数の配線導体を有するとともに一方の主面に半導体素子が搭載される搭載部を、他方の主面に配線導体の一つに電気的に接続された静電容量形成用の第一電極およびこの第一電極を取り囲み配線導体の他の一つに電気的に接続された枠状の接合用メタライズ層を有する絶縁基体と、一方の主面に中央部が第一電極に対向するとともに外周部が接合用メタライズ層にろう付けされた静電容量形成用の第二電極を有し、絶縁基体の他方の主面との間に密閉空間を形成するように可撓な状態で絶縁基体に接合された絶縁板とから成る圧力検出装置用パッケージであって、第二電極は、そのろう付けされた外周部と第一電極に対向する中央部との間に絶縁基体の他方の主面に当接する枠状の絶縁層が被着されていることを特徴とするものである。
【0008】
本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体の他方の主面の中央部に静電容量形成用の第一電極を設けるとともに、この第一電極に対向する静電容量形成用の第二電極を有する絶縁板を、絶縁基体との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。さらに、絶縁基体の接合用メタライズ層にろう付けされた第二電極の外周部と第一電極に対向する中央部との間に絶縁基体に当接する絶縁層を被着したことから、第一電極と第二電極との間隔が第二電極に被着させた絶縁層によって正確に規定されるとともに、接合用メタライズ層と第二電極とを接合するろう材が第一電極に対向する第二電極の中央部に流出することはなく、その結果、第一電極と第二電極との間に形成される静電容量に大きなばらつきが発生することがない。
【0009】
【発明の実施の形態】
次に、本発明を添付の図面を基に詳細に説明する。図1は、本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図であり、図中、1は絶縁基体、2は絶縁板、3は半導体素子である。
【0010】
絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・炭化珪素質焼結体・窒化珪素質焼結体・ガラス−セラミックス等のセラミックス材料から成る積層体であり、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基体1用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0011】
絶縁基体1は、その下面中央部に半導体素子3を収容するための凹部1aが形成されており、これにより半導体素子3を収容する容器として機能する。そして、この凹部1aの底面中央部が半導体素子3が搭載される搭載部1bとなっており、この搭載部1bに半導体素子3を搭載するとともに凹部1a内に例えばエポキシ樹脂等の樹脂製封止材4を充填することにより半導体素子3が封止される。なお、この例では半導体素子3は樹脂製封止材4を凹部1a内に充填することにより封止されるが、半導体素子3は絶縁基体1の下面に金属やセラミックスから成る蓋体を凹部1aを塞ぐように接合させることにより封止されてもよい。
【0012】
また、搭載部1bには半導体素子3の各電極に接続される複数のメタライズ配線導体5が導出しており、このメタライズ配線導体5と半導体素子3の各電極を半田バンプ6等の導電性材料から成る導電性接合部材を介して接合することにより半導体素子3の各電極と各メタライズ配線導体5とが電気的に接続されるとともに半導体素子3が搭載部1bに固定される。なお、この例では、半導体素子3の電極とメタライズ配線導体5とは半田バンプ6を介して接続されるが、半導体素子3の電極とメタライズ配線導体5とはボンディングワイヤ等の他の種類の電気的接続手段により接続されてもよい。
【0013】
メタライズ配線導体5は、半導体素子3の各電極を外部電気回路および後述する第一電極7・第二電極9に電気的に接続するための導電路として機能し、その一部は絶縁基体1の外周下面に導出し、別の一部は第一電極7・第二電極9に電気的に接続されている。そして、半導体素子3の各電極をこれらのメタライズ配線導体5に導電性接合材を介して電気的に接続するとともに半導体素子3を樹脂製封止材4で封止した後、メタライズ配線導体5の絶縁基体1外周下面に導出した部位を外部電気回路基板の配線導体に半田等の導電性接合材を介して接合することにより、内部に収容する半導体素子3が外部電気回路に電気的に接続されることとなる。
【0014】
このようなメタライズ配線導体5は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の内部および表面に所定のパターンに形成される。なお、メタライズ配線導体5の露出表面には、メタライズ配線導体5が酸化腐食するのを防止するとともにメタライズ配線導体5と半田等の導電性接合材との接合を良好なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0015】
また、絶縁基体1の上面中央部には静電容量形成用の第一電極7が被着されている。この第一電極7は、後述する第二電極9とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。そして、この第一電極7にはメタライズ配線導体5の一つ5aが接続されており、それによりこのメタライズ配線導体5aに半導体素子3の電極を半田バンプ6等の導電性接合材を介して接続すると半導体素子3の電極と第一電極7とが電気的に接続されるようになっている。
【0016】
このような第一電極7は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の上面中央部に所定のパターンに形成される。なお、第一電極7の露出表面には、第一電極7が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0017】
また、絶縁基体1の上面外周部には第一電極7を取り囲む略円形の枠状の接合用メタライズ層8が被着されており、この接合用メタライズ層8には、下面に第二電極9を有する絶縁板2が第二電極9の外周部と接合用メタライズ層8とを銀−銅ろう材等のろう材を介してろう付けすることにより取着されている。
【0018】
この接合用メタライズ層8にはメタライズ配線導体5の一つ5bが接続されており、それによりこのメタライズ配線導体5bに半導体素子3の電極を半田バンプ6等の導電性接合材を介して電気的に接続すると、半導体素子3の電極と第二電極9とが電気的に接続されるようになっている。
【0019】
接合用メタライズ層8は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の上面外周部に枠状の所定のパターンに形成される。なお、接合用メタライズ層8の露出表面には、接合用メタライズ層8が酸化腐食するのを防止するとともに接合用メタライズ層8とろう材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0020】
また、絶縁基体1の上面に取着された絶縁板2は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・炭化珪素質焼結体・ガラス−セラミックス等のセラミックス材料から成る厚みが0.01〜5mmの略四角または略八角あるいは円形等の平板であり、外部の圧力に応じて絶縁基体1側に撓むいわゆる圧力検出用のダイアフラムとして機能する。
【0021】
なお、絶縁板2は、その厚みが0.01mm未満では、その機械的強度が小さいものとなってしまうため、これに大きな外部圧力が印加された場合に破壊されてしまう危険性が大きなものとなり、他方、5mmを超えると、小さな圧力では撓みにくくなり、圧力検出用のダイアフラムとしては不適となってしまう。したがって、絶縁板2の厚みは0.01〜5mmの範囲が好ましい。
【0022】
このような絶縁板2は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することによりセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工や切断加工を施すことにより絶縁板2用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0023】
また、絶縁板2の下面には静電容量形成用の略円形や略八角形の第二電極9が被着されている。この第二電極9は、前述の第一電極7とともに感圧素子用の静電容量を形成するための電極として機能するとともに絶縁板2を絶縁基体1に接合するための接合用下地金属層として機能する。
【0024】
このような第二電極9は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁板2用のセラミックグリーンシートに印刷塗布し、これを絶縁板2用の生セラミック成形体とともに焼成することによって絶縁板2の下面の略全面に所定のパターンに形成される。なお、第二電極9の露出表面には、第二電極9が酸化腐食するのを防止するとともに第二電極9とろう材との接合を良好とするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0025】
そして、この第二電極9と接合用メタライズ層8とは銀−銅ろう材等のろう材を介して接合されており、それにより、絶縁基体1上面と絶縁板2下面との間に密閉空間が形成されるとともに接合用メタライズ層8と第二電極9とが電気的に接続される。
【0026】
このとき、第一電極7と第二電極9とは、絶縁基体1と絶縁板2との間に形成された空間を挟んで対向しており、これらの間には、第一電極7や第二電極9の面積および第一電極7と第二電極9との間隔に応じて所定の静電容量が形成される。そして、絶縁板2の上面に外部の圧力が印加されると、その圧力に応じて絶縁板2が絶縁基体1側に撓んで第一電極7と第二電極9との間隔が変わり、それにより第一電極7と第二電極9との間の静電容量が変化するので、外部の圧力の変化を静電容量の変化として感知する感圧素子として機能する。そして、この静電容量の変化を凹部1a内に収容した半導体素子3にメタライズ配線導体5a・5bを介して伝達し、これを半導体素子3で演算処理することによって外部の圧力の大きさを知ることができる。
【0027】
このように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子3が搭載される絶縁基体1の他方の主面に、静電容量形成用の第一電極7を設けるとともにこの第一電極7に対向する静電容量形成用の第二電極9を内側面に有する絶縁板2を絶縁基体1との間に密閉空間を形成するように可撓な状態で接合させたことから、半導体素子3を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型化することができる。また、静電容量形成用の第一電極7および第二電極9を、絶縁基体1に設けたメタライズ配線導体5a・5bを介して半導体素子3に接続することから、第一電極7および第二電極9を短い距離で半導体素子3に接続することができ、その結果、これらのメタライズ配線導体5a・5b間に発生する不要な静電容量を小さなものとして感度の高い圧力検出装置を提供することができる。
【0028】
さらに、第二電極9の表面には、接合用メタライズ層8にろう付けされた外周部と第一電極7に対向する中央部との間に絶縁基体1の上面に当接する略円形の枠状の絶縁層10が被着されている。この絶縁層10は、例えば絶縁板2と実質的に同一のセラミックス材料から成り、第二電極9の外周部を接合用メタライズ層8にろう付けする際に、第一電極7と第二電極9との間隔を所定の間隔に保つためのスペーサーとして機能するとともにろう材の一部が第二電極9の中央部に流出するのを防止するためのダム部材として機能する。そして、このように第二電極9の接合用メタライズ層8にろう付けされた外周部と第一電極7に対向する中央部との間に絶縁基体1の上面に当接する枠状の絶縁層10が被着されていることから、接合用メタライズ層8に第二電極9の外周部をろう付けする際に絶縁基体1と絶縁板2との間隔が絶縁層10の厚みによって正確に規定され、そのため第一電極7と第二電極9との間隔に大きなばらつきが発生することを有効に防止することができる。また同時に、ろう材の一部が第二電極9の中央部に流出することが絶縁層10により有効に防止される。したがって、本発明の圧力検出装置用パッケージによれば、第一電極7と第二電極9との間に形成される静電容量に大きなばらつきが発生することはなく、外部の圧力を正確に検出することが可能な圧力検出装置を提供することができる。
【0029】
なお、絶縁層10は、その厚みが0.01mm未満では、絶縁板2に大きな圧力が印加された際に、第一電極7と第二電極9とが接触して圧力を検出することができなくなってしまう危険性があり、他方、0.2mmを超えると、接合用メタライズ層8と第二電極9の外周部とをろう付けする際に接合用メタライズ層8と第二電極9の外周部とを気密性高く良好に接合することが困難となる傾向にある。したがって、絶縁層10の厚みは、0.01〜0.2mmの範囲が好ましい。また、絶縁層10は、その幅が0.1mm未満では、接合用メタライズ層8に第二電極9の外周部をろう付けする際、ろう材が第二電極の中央部に流出することを防止することができなくなる恐れがある。したがって絶縁層10の幅は、0.1mm以上であることが好ましい。
【0030】
このような絶縁層10は、絶縁板2用のセラミックグリーンシートに含有される原料粉末と実質的に同一の原料粉末に適当な有機バインダ・溶剤を添加混合して得た絶縁ペーストを絶縁板2用のセラミックグリーンシートに印刷塗布した第二電極9用の金属ペースト上に従来周知のスクリーン印刷法を採用して所定のパターンに印刷塗布し、これを絶縁板2用の生セラミック成形体および第二電極9用の金属ペーストとともに焼成することによって第二電極9のろう付けされた外周部と第一電極7に対向する中央部との間に枠状のパターンに被着形成される。
【0031】
なお、絶縁基体1に絶縁板2を接合するには、接合用メタライズ層8および第二電極9の表面に予め1〜10μmの厚みのニッケルめっき層をそれぞれ被着させておくとともに、接合用メタライズ層8と第二電極9との間に厚みが10〜200μm程度の銀−銅ろうから成るろう材箔を挟んで絶縁基体1と絶縁板2とを重ね合わせ、これらを還元雰囲気中、約850℃の温度に加熱してろう材箔を溶融させて接合用メタライズ層8と第二電極9の外周部とをろう付けする方法が採用される。
【0032】
かくして、上述の圧力検出装置用パッケージによれば、搭載部1bに半導体素子3を搭載するとともに半導体素子3の各電極とメタライズ配線導体5とを電気的に接続し、しかる後、半導体素子3を封止することによって小型でかつ感度が高く、しかも外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置となる。
【0033】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば上述の実施の形態の一例では、第二電極9に被着させた絶縁層10を絶縁板2と実質的に同一の材料で形成したが、絶縁層10は、絶縁板2と異なる材料で形成してもよい。この場合、絶縁板2と異なる材料としては、接合用メタライズ層8と第二電極9とを接合するろう材の融点より高い軟化点を有するガラスやセラミックス材料を用いればよく、そのようなガラスやセラミックス用の絶縁ペーストを絶縁板2に被着された第二電極9上に所定の枠状に塗布するとともに、これを高温で焼き付けることによって絶縁層10を形成すればよい。
【0034】
【発明の効果】
以上、説明したように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される絶縁基体の他方の主面に静電容量形成用の第一電極を設けるとともに、この第一電極に対向する静電容量形成用の第二電極を有する絶縁板を絶縁基体との間に密閉空間を形成するように可撓な状態で接合させたことから、半導体素子を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとして感度の高い圧力検出装置を提供することができる。さらに、絶縁基体の接合用メタライズ層にろう付けされた第二電極の外周部と第一電極に対向する中央部との間に絶縁基体に当接する絶縁層を被着したことから、第一電極と第二電極との間隔が第二電極に被着させた絶縁層によって正確に規定されるとともに、接合用メタライズ層と第二電極とを接合するろう材が第一電極に対向する第二電極の中央部に流出することはなく、その結果、第一電極と第二電極との間に形成される静電容量に大きなばらつきが発生することがなく、外部の圧力をばらつきなく正確に検出することが可能な圧力検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図である。
【図2】従来の圧力検出装置を示す断面図である。
【符号の説明】
1・・・・・絶縁基体
2・・・・・絶縁板
3・・・・・半導体素子
7・・・・・第一電極
8・・・・・接合用メタライズ層
9・・・・・第二電極
10・・・・・絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure detection device package used in a pressure detection device for detecting pressure.
[0002]
[Prior art]
Conventionally, a capacitance type pressure detection device is known as a pressure detection device for detecting pressure. For example, as shown in a cross-sectional view in FIG. 2, the capacitance type pressure detection device is accommodated in a capacitance type pressure sensitive element 22 and a package 28 on a wiring substrate 21 made of a ceramic material or a resin material. And a semiconductor element 29 for operation. The pressure sensitive element 22 is made of, for example, an electrically insulating material such as a ceramic material, and has an insulating base 24 having a concave portion in which one electrode 23 for forming a capacitance is attached at the center of the upper face, and an upper face of the insulating base 24 And an insulating plate 26 which is joined in a flexible state so as to form a sealed space with the insulating base 24, and the other electrode 25 for forming a capacitance is attached to the lower surface, and each capacitance It is composed of external lead terminals 27 for electrically connecting the forming electrodes 23 and 25 to the outside, and the insulating plate 26 bends in response to external pressure, thereby forming each capacitance. The capacitance formed between the electrodes 23 and 25 changes. Then, the external pressure can be detected by performing arithmetic processing on the change in the electrostatic capacitance by the semiconductor element 29 for arithmetic operation.
[0003]
[Problems to be solved by the invention]
However, according to this conventional pressure detection device, since the pressure sensitive element 22 and the semiconductor element 29 are individually mounted on the wiring board 21, the pressure detection device becomes large and the pressure detection electrode 23 is increased. The wiring between 25 and the semiconductor element 29 becomes long, and an unnecessary electrostatic capacity is formed between the long wiring, so that the sensitivity is low.
[0004]
Accordingly, the applicant of the present application previously disclosed in Japanese Patent Application No. 2000-178618, an insulating base having a mounting portion on which one of the main surfaces is mounted with a semiconductor element, and the surface of and inside the insulating base. A plurality of wiring conductors that are electrically connected to each other, and a second electrode for forming a capacitance that is attached to the central portion of the other main surface of the insulating base and is electrically connected to one of the wiring conductors. An insulating plate joined in a flexible state so as to form a sealed space between one electrode and the other main surface of the insulating base and a central portion of the main surface, and an inner main surface of the insulating plate A pressure sensing device package comprising a second electrode for forming a capacitance that is deposited opposite to the first electrode and electrically connected to the other one of the wiring conductors has been proposed. According to this pressure detection device package, the first electrode for forming a capacitance is provided on the other main surface of the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. Since the insulating plate having the second electrode for forming the opposing capacitance on the inner surface is joined in a flexible state so as to form a sealed space between the other main surface of the insulating base, A pressure-sensitive element is integrally formed in a package that houses a semiconductor element. As a result, the pressure detection device can be reduced in size, and the wiring for connecting the pressure detection electrode and the semiconductor element can be shortened. Unnecessary capacitance generated between the wirings can be reduced. In the pressure detection device package proposed in Japanese Patent Application No. 2000-178618, a frame made of ceramics or metal is provided on the outer peripheral portion of the other main surface of the insulating base so as to surround the first electrode. The insulating plate was joined to the insulating base by brazing the outer peripheral portion of the second electrode onto the frame through a brazing material such as silver-copper brazing.
[0005]
However, according to the package for a pressure detection device proposed in Japanese Patent Application No. 2000-178618, the outer peripheral portion of the second electrode of the insulating plate is placed on a frame made of ceramic or metal via a brazing material such as silver-copper brazing. When brazing, the thickness of the brazing material that joins the two is difficult to be constant due to variations in brazing temperature, atmosphere, load, etc., so that the distance between the first electrode and the second electrode varies greatly. At the same time, a part of the brazing material joining the two tends to flow out to the center of the second electrode in a large amount. Then, the capacitance formed between the first electrode and the second electrode varies greatly due to such a variation in the distance between the first electrode and the second electrode and the brazing material that has flowed out to the center of the second electrode. As a result, it has been difficult to accurately detect the external pressure.
[0006]
The present invention has been completed in view of the above-described problems, and an object of the present invention is to provide a pressure detection device that is small in size and high in sensitivity and can accurately detect external pressure without variation. There is.
[0007]
[Means for Solving the Problems]
The package for a pressure detection device of the present invention has a plurality of wiring conductors inside and on the surface, and a mounting portion on which a semiconductor element is mounted on one main surface, and is electrically connected to one wiring conductor on the other main surface. An insulating substrate having a connected first electrode for forming a capacitance and a frame-like bonding metallization layer surrounding the first electrode and electrically connected to the other one of the wiring conductors, and one main surface Having a second electrode for forming a capacitance whose central portion faces the first electrode and whose outer peripheral portion is brazed to the metallization layer for bonding, and a sealed space is formed between the other main surface of the insulating substrate. A package for a pressure detecting device comprising an insulating plate joined to an insulating base in a flexible state so as to form, wherein the second electrode has a brazed outer peripheral portion and a central portion facing the first electrode A frame-like shape in contact with the other main surface of the insulating base Edge layer is characterized in that it is deposited.
[0008]
According to the pressure sensing device package of the present invention, the first electrode for forming a capacitance is provided at the center of the other main surface of the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. Since the insulating plate having the second electrode for forming the capacitance facing the first electrode is joined in a flexible state so as to form a sealed space between the insulating substrate and the semiconductor element, As a result, the pressure sensing element can be made compact, and the wiring for connecting the pressure sensing electrode and the semiconductor element can be made short, and the space between these wirings can be reduced. Unnecessary capacitance generated in the circuit can be reduced. Furthermore, since the insulating layer that contacts the insulating base is attached between the outer peripheral portion of the second electrode brazed to the bonding metallization layer of the insulating base and the central portion facing the first electrode, the first electrode And a second electrode in which a brazing material that joins the joining metallization layer and the second electrode is opposed to the first electrode. As a result, there is no large variation in the capacitance formed between the first electrode and the second electrode.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a pressure detection device package according to the present invention, in which 1 is an insulating substrate, 2 is an insulating plate, and 3 is a semiconductor element.
[0010]
The insulating substrate 1 is a laminated body made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or glass-ceramics. For example, in the case of an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, and dispersant are added to and mixed with ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Then, it is made into a mud shape and formed into a sheet shape by adopting a conventionally known doctor blade method, and then a plurality of ceramic green sheets are obtained. -A green ceramic molded body for the insulating substrate 1 is obtained by cutting, and the green ceramic molded body. It is manufactured by firing at a temperature of about 1600 ° C..
[0011]
The insulating base 1 is formed with a recess 1a for accommodating the semiconductor element 3 at the center of the lower surface thereof, thereby functioning as a container for accommodating the semiconductor element 3. The central portion of the bottom surface of the recess 1a is a mounting portion 1b on which the semiconductor element 3 is mounted. The semiconductor element 3 is mounted on the mounting portion 1b and the resin sealing such as an epoxy resin is provided in the recess 1a. The semiconductor element 3 is sealed by filling the material 4. In this example, the semiconductor element 3 is sealed by filling the recess 1a with a resin sealing material 4. However, the semiconductor element 3 has a lid made of metal or ceramics on the lower surface of the insulating base 1 to form the recess 1a. It may be sealed by bonding so as to block.
[0012]
Also, a plurality of metallized wiring conductors 5 connected to the respective electrodes of the semiconductor element 3 are led out to the mounting portion 1b. The metallized wiring conductor 5 and the respective electrodes of the semiconductor element 3 are connected to a conductive material such as a solder bump 6 or the like. The electrodes of the semiconductor element 3 and the metallized wiring conductors 5 are electrically connected to each other through the conductive bonding member made of the semiconductor element 3 and the semiconductor element 3 is fixed to the mounting portion 1b. In this example, the electrode of the semiconductor element 3 and the metallized wiring conductor 5 are connected via the solder bumps 6. However, the electrode of the semiconductor element 3 and the metalized wiring conductor 5 are connected to other types of electric wires such as bonding wires. It may be connected by a general connection means.
[0013]
The metallized wiring conductor 5 functions as a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit and a first electrode 7 and a second electrode 9 to be described later. It leads to the outer peripheral lower surface, and another part is electrically connected to the first electrode 7 and the second electrode 9. Each electrode of the semiconductor element 3 is electrically connected to these metallized wiring conductors 5 through a conductive bonding material and the semiconductor element 3 is sealed with a resin sealing material 4. The part led out to the lower surface of the outer periphery of the insulating substrate 1 is joined to the wiring conductor of the external electric circuit board via a conductive bonding material such as solder, so that the semiconductor element 3 accommodated therein is electrically connected to the external electric circuit. The Rukoto.
[0014]
Such a metallized wiring conductor 5 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, dispersant, and the like to metal powder such as tungsten. The metallized paste is printed and applied in a predetermined pattern on a ceramic green sheet for the insulating substrate 1 using a well-known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to thereby form the insulating substrate 1. A predetermined pattern is formed inside and on the surface. In order to prevent the metallized wiring conductor 5 from being oxidized and corroded on the exposed surface of the metallized wiring conductor 5 and to improve the bonding between the metallized wiring conductor 5 and a conductive bonding material such as solder, If so, a nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited.
[0015]
A first electrode 7 for forming a capacitance is attached to the center of the upper surface of the insulating substrate 1. The first electrode 7 is for forming a capacitance for a pressure sensitive element together with a second electrode 9 described later, and is formed in a substantially circular pattern, for example. The first electrode 7 is connected to one of the metallized wiring conductors 5a, whereby the electrode of the semiconductor element 3 is connected to the metallized wiring conductor 5a via a conductive bonding material such as a solder bump 6. Then, the electrode of the semiconductor element 3 and the first electrode 7 are electrically connected.
[0016]
The first electrode 7 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersant to metal powder such as tungsten. The paste is printed and applied to a ceramic green sheet for the insulating substrate 1 by using a conventionally known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to be predetermined at the center of the upper surface of the insulating substrate 1. The pattern is formed. In order to prevent the first electrode 7 from being oxidatively corroded, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied to the exposed surface of the first electrode 7.
[0017]
In addition, a substantially circular frame-shaped bonding metallization layer 8 surrounding the first electrode 7 is deposited on the outer peripheral portion of the upper surface of the insulating substrate 1, and the second electrode 9 is formed on the lower surface of the bonding metallization layer 8. Is attached by brazing the outer peripheral portion of the second electrode 9 and the metallizing layer 8 for bonding through a brazing material such as a silver-copper brazing material.
[0018]
One metal metallization wiring conductor 5b is connected to the metallization layer 8 for bonding, whereby the electrode of the semiconductor element 3 is electrically connected to the metallized wiring conductor 5b via a conductive bonding material such as a solder bump 6. When connected to, the electrode of the semiconductor element 3 and the second electrode 9 are electrically connected.
[0019]
The metallization layer 8 for bonding is made of metal powder metallization such as tungsten, molybdenum, copper, and silver. A metallized paste obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersing agent to metal powder such as tungsten. A conventionally known screen printing method is used to print and apply to a ceramic green sheet for the insulating substrate 1, and this is fired together with a green ceramic molded body for the insulating substrate 1, thereby forming a frame-like shape on the outer periphery of the upper surface of the insulating substrate 1. A predetermined pattern is formed. In order to prevent the bonding metallized layer 8 from being oxidatively corroded on the exposed surface of the bonding metallized layer 8 and to strengthen the bonding between the bonding metallized layer 8 and the brazing material, it is usual. For example, a nickel plating layer having a thickness of about 1 to 10 μm is applied.
[0020]
The insulating plate 2 attached to the upper surface of the insulating substrate 1 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon nitride sintered body, or a silicon carbide sintered body. A flat plate having a thickness of 0.01 to 5 mm and made of a ceramic material such as glass-ceramics, and functions as a so-called pressure detection diaphragm that bends toward the insulating substrate 1 in response to external pressure. To do.
[0021]
In addition, since the mechanical strength of the insulating plate 2 is less than 0.01 mm when the thickness is less, there is a greater risk of being destroyed when a large external pressure is applied thereto. On the other hand, when it exceeds 5 mm, it becomes difficult to bend at a small pressure, and it becomes unsuitable as a diaphragm for pressure detection. Therefore, the thickness of the insulating plate 2 is preferably in the range of 0.01 to 5 mm.
[0022]
If such an insulating plate 2 is made of, for example, an aluminum oxide sintered body, a suitable organic binder, solvent, plasticizer, dispersion for ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. A ceramic green sheet is obtained by adding an agent and mixing it into a mud and forming it into a sheet using the well-known doctor blade method, and then punching or cutting the ceramic green sheet appropriately. The raw ceramic molded body for the insulating plate 2 is obtained by processing, and the raw ceramic molded body is manufactured by firing at a temperature of about 1600 ° C.
[0023]
Further, a substantially circular or substantially octagonal second electrode 9 for forming a capacitance is attached to the lower surface of the insulating plate 2. The second electrode 9 functions as an electrode for forming a capacitance for a pressure sensitive element together with the first electrode 7 described above, and as a bonding base metal layer for bonding the insulating plate 2 to the insulating substrate 1. Function.
[0024]
The second electrode 9 is made of metal powder metallization such as tungsten, molybdenum, copper, or silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, or dispersant to metal powder such as tungsten. The paste is printed and applied to a ceramic green sheet for the insulating plate 2 using a well-known screen printing method, and is fired together with a green ceramic molded body for the insulating plate 2 so that the paste is applied to substantially the entire lower surface of the insulating plate 2. A predetermined pattern is formed. Note that the thickness of the exposed surface of the second electrode 9 is usually 1 in order to prevent the second electrode 9 from being oxidatively corroded and to improve the bonding between the second electrode 9 and the brazing material. A nickel plating layer of about ˜10 μm is applied.
[0025]
The second electrode 9 and the metallizing layer 8 for bonding are bonded via a brazing material such as a silver-copper brazing material, whereby a sealed space is formed between the upper surface of the insulating substrate 1 and the lower surface of the insulating plate 2. Is formed and the metallization layer 8 for bonding and the second electrode 9 are electrically connected.
[0026]
At this time, the first electrode 7 and the second electrode 9 are opposed to each other with a space formed between the insulating base 1 and the insulating plate 2 interposed therebetween. A predetermined capacitance is formed according to the area of the two electrodes 9 and the distance between the first electrode 7 and the second electrode 9. When an external pressure is applied to the upper surface of the insulating plate 2, the insulating plate 2 bends toward the insulating base 1 in accordance with the pressure, and the interval between the first electrode 7 and the second electrode 9 changes. Since the capacitance between the first electrode 7 and the second electrode 9 changes, it functions as a pressure-sensitive element that senses a change in external pressure as a change in capacitance. Then, the change in electrostatic capacity is transmitted to the semiconductor element 3 accommodated in the recess 1a through the metallized wiring conductors 5a and 5b, and this is processed by the semiconductor element 3 so as to know the magnitude of the external pressure. be able to.
[0027]
Thus, according to the package for a pressure detection device of the present invention, the first electrode 7 for forming a capacitance is provided on the other main surface of the insulating base 1 on which the semiconductor element 3 is mounted on one main surface. In addition, the insulating plate 2 having the second electrode 9 for forming a capacitance facing the first electrode 7 on the inner surface is joined in a flexible state so as to form a sealed space with the insulating base 1. Therefore, the container for housing the semiconductor element 3 and the pressure sensitive element are integrated, and as a result, the pressure detection device can be miniaturized. Further, since the first electrode 7 and the second electrode 9 for forming the capacitance are connected to the semiconductor element 3 through the metallized wiring conductors 5a and 5b provided on the insulating base 1, the first electrode 7 and the second electrode 9 are formed. The electrode 9 can be connected to the semiconductor element 3 at a short distance, and as a result, a highly sensitive pressure detecting device is provided by reducing unnecessary capacitance generated between the metallized wiring conductors 5a and 5b. Can do.
[0028]
Furthermore, the surface of the second electrode 9 has a substantially circular frame shape that abuts on the upper surface of the insulating substrate 1 between the outer peripheral portion brazed to the bonding metallization layer 8 and the central portion facing the first electrode 7. The insulating layer 10 is deposited. The insulating layer 10 is made of, for example, a ceramic material that is substantially the same as that of the insulating plate 2. When the outer peripheral portion of the second electrode 9 is brazed to the bonding metallized layer 8, the first electrode 7 and the second electrode 9 are formed. And function as a dam member for preventing a part of the brazing material from flowing out to the central portion of the second electrode 9. The frame-like insulating layer 10 that contacts the upper surface of the insulating substrate 1 between the outer peripheral portion brazed to the bonding metallization layer 8 of the second electrode 9 and the central portion facing the first electrode 7 in this way. Therefore, when the outer peripheral portion of the second electrode 9 is brazed to the bonding metallized layer 8, the distance between the insulating base 1 and the insulating plate 2 is accurately defined by the thickness of the insulating layer 10, Therefore, it is possible to effectively prevent a large variation in the distance between the first electrode 7 and the second electrode 9. At the same time, the insulating layer 10 effectively prevents a part of the brazing material from flowing out to the central portion of the second electrode 9. Therefore, according to the package for the pressure detection device of the present invention, the capacitance formed between the first electrode 7 and the second electrode 9 does not vary greatly, and the external pressure is accurately detected. It is possible to provide a pressure detection device that can do this.
[0029]
If the thickness of the insulating layer 10 is less than 0.01 mm, when the large pressure is applied to the insulating plate 2, the first electrode 7 and the second electrode 9 come into contact with each other and the pressure cannot be detected. On the other hand, if the thickness exceeds 0.2 mm, the bonding metallized layer 8 and the outer periphery of the second electrode 9 are bonded together when the bonding metallized layer 8 and the outer periphery of the second electrode 9 are brazed. It tends to be difficult to bond well with high airtightness. Therefore, the thickness of the insulating layer 10 is preferably in the range of 0.01 to 0.2 mm. Further, when the width of the insulating layer 10 is less than 0.1 mm, the brazing material is prevented from flowing out to the central portion of the second electrode when the outer peripheral portion of the second electrode 9 is brazed to the bonding metallized layer 8. There is a risk that you will not be able to. Therefore, the width of the insulating layer 10 is preferably 0.1 mm or more.
[0030]
Such an insulating layer 10 is formed by using an insulating paste obtained by adding and mixing an appropriate organic binder and solvent to the raw material powder substantially the same as the raw material powder contained in the ceramic green sheet for the insulating plate 2. On the metal paste for the second electrode 9 printed and applied to the ceramic green sheet for printing, a screen printing method known in the art is employed to apply a predetermined pattern to the green ceramic molded body for the insulating plate 2 and By baking together with the metal paste for the two electrodes 9, a frame-like pattern is deposited between the brazed outer peripheral portion of the second electrode 9 and the central portion facing the first electrode 7.
[0031]
In order to bond the insulating plate 2 to the insulating substrate 1, a nickel plating layer having a thickness of 1 to 10 μm is previously deposited on the surfaces of the bonding metallization layer 8 and the second electrode 9, and the bonding metallization is performed. The insulating substrate 1 and the insulating plate 2 are overlapped with the brazing material foil made of silver-copper brazing having a thickness of about 10 to 200 μm between the layer 8 and the second electrode 9, and these are placed in a reducing atmosphere in a reducing atmosphere. A method is adopted in which the brazing material foil is melted by heating to a temperature of ° C. and the bonding metallized layer 8 and the outer peripheral portion of the second electrode 9 are brazed.
[0032]
Thus, according to the above-described package for the pressure detection device, the semiconductor element 3 is mounted on the mounting portion 1b, and each electrode of the semiconductor element 3 and the metallized wiring conductor 5 are electrically connected. By sealing, the pressure detection device is small and highly sensitive, and can accurately detect external pressure without variation.
[0033]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the example of the embodiment described above, the insulating layer 10 applied to the second electrode 9 is formed of substantially the same material as the insulating plate 2, but the insulating layer 10 is made of a material different from that of the insulating plate 2. It may be formed. In this case, as the material different from the insulating plate 2, a glass or ceramic material having a softening point higher than the melting point of the brazing material for joining the joining metallized layer 8 and the second electrode 9 may be used. The insulating layer 10 may be formed by applying an insulating paste for ceramics in a predetermined frame shape on the second electrode 9 applied to the insulating plate 2 and baking it at a high temperature.
[0034]
【The invention's effect】
As described above, according to the pressure detection device package of the present invention, the first electrode for forming the capacitance is provided on the other main surface of the insulating base on which the semiconductor element is mounted on one main surface. Since the insulating plate having the second electrode for forming the electrostatic capacitance facing the first electrode is joined in a flexible state so as to form a sealed space between the insulating base and the semiconductor element, the semiconductor element is accommodated. As a result, the pressure detecting device can be reduced in size, and the wiring for connecting the pressure detecting electrode and the semiconductor element can be shortened and generated between these wirings. It is possible to provide a highly sensitive pressure detecting device with a small unnecessary capacitance. Furthermore, since the insulating layer that contacts the insulating base is attached between the outer peripheral portion of the second electrode brazed to the bonding metallization layer of the insulating base and the central portion facing the first electrode, the first electrode And a second electrode in which a brazing material that joins the joining metallization layer and the second electrode is opposed to the first electrode. As a result, the capacitance formed between the first electrode and the second electrode does not vary greatly, and the external pressure is accurately detected without variation. It is possible to provide a pressure detecting device capable of performing the above.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for a pressure detection device of the present invention.
FIG. 2 is a cross-sectional view showing a conventional pressure detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 2 ... Insulation board 3 ... Semiconductor element 7 ... 1st electrode 8 ... Metallization layer 9 for joining ... Two electrodes
10: Insulating layer

Claims (1)

内部および表面に複数の配線導体を有するとともに一方の主面に半導体素子が搭載される搭載部を、他方の主面に前記配線導体の一つに電気的に接続された静電容量形成用の第一電極および該第一電極を取り囲み前記配線導体の他の一つに電気的に接続された枠状の接合用メタライズ層を有する絶縁基体と、一方の主面に中央部が前記第一電極に対向するとともに外周部が前記接合用メタライズ層にろう付けされた静電容量形成用の第二電極を有し、前記他方の主面との間に密閉空間を形成するように可撓な状態で前記絶縁基体に接合された絶縁板とから成る圧力検出装置用パッケージであって、前記第二電極は、前記ろう付けされた外周部と前記第一電極に対向する中央部との間に前記他方の主面に当接する枠状の絶縁層が被着されていることを特徴とする圧力検出装置用パッケージ。A mounting portion having a plurality of wiring conductors inside and on the surface and mounting a semiconductor element on one main surface, and for forming a capacitance electrically connected to one of the wiring conductors on the other main surface An insulating substrate having a first electrode and a frame-like joining metallization layer surrounding the first electrode and electrically connected to the other one of the wiring conductors, and a central portion on one main surface of the first electrode A second electrode for forming a capacitance that is brazed to the bonding metallization layer and has a flexible state so as to form a sealed space with the other main surface And the insulating plate bonded to the insulating substrate, wherein the second electrode is disposed between the brazed outer peripheral portion and the central portion facing the first electrode. A frame-like insulating layer that is in contact with the other main surface is applied. Package for pressure detection apparatus according to claim and.
JP2000329626A 2000-10-27 2000-10-27 Package for pressure detection device Expired - Fee Related JP4557406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329626A JP4557406B2 (en) 2000-10-27 2000-10-27 Package for pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329626A JP4557406B2 (en) 2000-10-27 2000-10-27 Package for pressure detection device

Publications (2)

Publication Number Publication Date
JP2002131164A JP2002131164A (en) 2002-05-09
JP4557406B2 true JP4557406B2 (en) 2010-10-06

Family

ID=18806269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329626A Expired - Fee Related JP4557406B2 (en) 2000-10-27 2000-10-27 Package for pressure detection device

Country Status (1)

Country Link
JP (1) JP4557406B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363939U (en) * 1989-10-26 1991-06-21
JPH04266054A (en) * 1991-02-21 1992-09-22 Ibiden Co Ltd Preparation of a mounting board for electronic components
JPH06288852A (en) * 1993-03-30 1994-10-18 Honda Motor Co Ltd Pressure sensor
JPH0749277A (en) * 1990-01-22 1995-02-21 Endress & Hauser Gmbh & Co Pressure sensor and manufacture thereof
JPH08204047A (en) * 1995-01-23 1996-08-09 Kyocera Corp Package for housing of electronic component
JPH11265899A (en) * 1998-03-17 1999-09-28 Ngk Spark Plug Co Ltd Printed wiring board
JP2002039897A (en) * 2000-07-26 2002-02-06 Kyocera Corp Package for pressure detection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363939U (en) * 1989-10-26 1991-06-21
JPH0749277A (en) * 1990-01-22 1995-02-21 Endress & Hauser Gmbh & Co Pressure sensor and manufacture thereof
JPH04266054A (en) * 1991-02-21 1992-09-22 Ibiden Co Ltd Preparation of a mounting board for electronic components
JPH06288852A (en) * 1993-03-30 1994-10-18 Honda Motor Co Ltd Pressure sensor
JPH08204047A (en) * 1995-01-23 1996-08-09 Kyocera Corp Package for housing of electronic component
JPH11265899A (en) * 1998-03-17 1999-09-28 Ngk Spark Plug Co Ltd Printed wiring board
JP2002039897A (en) * 2000-07-26 2002-02-06 Kyocera Corp Package for pressure detection apparatus

Also Published As

Publication number Publication date
JP2002131164A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP2002107254A (en) Package for pressure detector
JP4803917B2 (en) Package for pressure detection device
JP4557406B2 (en) Package for pressure detection device
JP4557405B2 (en) Package for pressure detection device
JP4822624B2 (en) Package for pressure detection device
JP3716165B2 (en) Pressure detection device package and pressure detection device
JP4974424B2 (en) Package for pressure detection device
JP4794073B2 (en) Package for pressure detection device
JP4127374B2 (en) Pressure detection device package and pressure detection device
JP3878836B2 (en) Package for pressure detection device
JP4794072B2 (en) Package for pressure detection device
JP2006047327A (en) Package for pressure detector, and the pressure detector
JP4789357B2 (en) Package for pressure detection device
JP4863569B2 (en) Package for pressure detection device
JP4223709B2 (en) Method for manufacturing package for pressure detection device
JP4925522B2 (en) Package for pressure detection device
JP4582888B2 (en) Package for pressure detection device
JP4637342B2 (en) Package for pressure detection device
JP4582889B2 (en) Package for pressure detection device
JP3955067B2 (en) Pressure detection device package and pressure detection device
JP2002039897A (en) Package for pressure detection apparatus
JP2004205377A (en) Package for pressure detection device
JP2006047326A (en) Package for pressure detector, and pressure detector
JP2002039894A (en) Package for pressure detection apparatus
JP2002039895A (en) Package for pressure detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees