JP4127374B2 - Pressure detection device package and pressure detection device - Google Patents

Pressure detection device package and pressure detection device Download PDF

Info

Publication number
JP4127374B2
JP4127374B2 JP2002277126A JP2002277126A JP4127374B2 JP 4127374 B2 JP4127374 B2 JP 4127374B2 JP 2002277126 A JP2002277126 A JP 2002277126A JP 2002277126 A JP2002277126 A JP 2002277126A JP 4127374 B2 JP4127374 B2 JP 4127374B2
Authority
JP
Japan
Prior art keywords
electrode
pressure detection
detection device
capacitance
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277126A
Other languages
Japanese (ja)
Other versions
JP2004117021A (en
Inventor
浩司 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002277126A priority Critical patent/JP4127374B2/en
Publication of JP2004117021A publication Critical patent/JP2004117021A/en
Application granted granted Critical
Publication of JP4127374B2 publication Critical patent/JP4127374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧力を検出するための圧力検出装置に使用される圧力検出装置用パッケージに関する。
【0002】
【従来の技術】
従来、圧力を検出するための圧力検出装置として静電容量型の圧力検出装置が知られている。この静電容量型の圧力検出装置は、図4に断面図で示すように、セラミックス材料や樹脂材料から成る配線基板21上に、静電容量型の感圧素子22と、パッケージ28に収容された演算用の半導体素子29とを備えている(特許文献1参照)。
【0003】
そして、感圧素子22は、例えばセラミックス材料等の電気絶縁材料から成り、上面中央部に静電容量形成用の一方の電極23が被着された凹部を有する絶縁基体24と、この絶縁基体24の上面に絶縁基体24との間に密閉空間を形成するようにして可撓な状態で接合され、下面に静電容量形成用の他方の電極25が被着された絶縁板26と、各静電容量形成用の電極23・25をそれぞれ外部に電気的に接続するための外部リード端子27とから構成されており、外部の圧力に応じて絶縁板26が撓むことにより各静電容量形成用の電極23・25間に形成される静電容量が変化する。そして、この静電容量の変化を演算用の半導体素子29により演算処理することにより外部の圧力を検出することができる。
【0004】
しかしながら、この従来の圧力検出装置によると、感圧素子22と半導体素子29とを配線基板21上に個別に実装していることから、圧力検出装置が大型化してしまうとともに圧力検出用の電極23・25と半導体素子29との間の配線が長いものとなり、この長い配線間に不要な静電容量が形成されるため感度が低いという問題点を有していた。
【0005】
そこで、上記特許文献1の図3に示すように、一方の主面に半導体素子13が搭載される搭載部11bを有する絶縁基体11と、この絶縁基体11の表面および内部に配設され、半導体素子13の各電極が電気的に接続される複数の配線導体15と、絶縁基体11の他方の主面の中央部に被着され、配線導体15の一つに電気的に接続された静電容量形成用の第一電極17と、絶縁基体11の他方の主面に、この主面の中央部との間に密閉空間を形成するように可撓な状態で接合された絶縁板12と、この絶縁板12の内側主面に第一電極17と対向して被着され、配線導体15の他の一つに電気的に接続された静電容量形成用の第二電極19とを具備する圧力検出装置用パッケージを提案した。この圧力検出用パッケージによると、一方の主面に半導体素子13が搭載される搭載部11bを有する絶縁基体11の他方の主面に静電容量形成用の第一電極17を設けるとともに、この第一電極17に対向する静電容量形成用の第二電極19を内側面に有する絶縁板12を、絶縁基体15の他方の主面との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子13を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子13とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。
【0006】
なお、上記特許文献1の圧力検出装置用パッケージによると、第一電極17、第二電極19が、それぞれ絶縁基体11の他方の主面および絶縁板12の内側主面が密閉空間内に露出する領域の略全面にわたって被着形成されていた。
【0007】
【特許文献1】
特開2001−356064号公報(第2頁、図3、図4)
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1の圧力検出装置用パッケージによると、第一電極17、第二電極19が、それぞれ絶縁基体11の他方の主面および絶縁板12の内側主面が密閉空間内に露出する領域の略全面にわたって被着形成されていることから、第一電極17と第二電極19との間に形成される静電容量は大きくなり、このパッケージに圧力が印加された場合に絶縁板12の密閉空間に対応する領域の中央部は大きく変位するものの外周部の変位は極めて小さいので、第一電極17および第二電極19の外周部は静電容量の変化にはあまり寄与することが無く、むしろ第一電極17と第二電極19との間の静電容量の変化率が小さいものとなり、圧力の検出感度が低下してしまうという問題点を有していた。
【0009】
本発明はかかる上述の問題点に鑑み案出されたものであり、その目的は、小型でかつ感度が高く、外部の圧力を正確に検出することが可能な圧力検出装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の一つの態様によれば、圧力検出装置用パッケージは、絶縁基体および絶縁板を備えている。絶縁基体は、半導体素子の搭載部を含む一方主面を有している。絶縁板は、絶縁基体の他方主面との間に略円形状の密閉空間を形成するように絶縁基体に接合されている。圧力検出装置用パッケージは、第一電極および第二電極を備えている。第一電極は、絶縁基体の他方主面における密閉空間内に露出された第1の領域の中心部に形成されている。第一電極は、第1の領域の直径に対して50〜80%の直径を有する略円形状である。第二電極は、絶縁板の内側表面における密閉空間内に露出された第2の領域の全面に形成されている。前記第一電極に接続された配線導体が、前記第一電極が設けられている平面方向に対して垂直な方向に配置されており、第一電極および第二電極からなる静電容量以外に、密閉空間内における静電容量は存在しない。
【0011】
本発明の圧力検出装置用パッケージによれば、第一電極は絶縁基体の他方の主面が密閉空間内に露出する領域の中心部に、その領域の直径に対して50〜80%の直径を有する略円形の形状に被着形成されており、第二電極は絶縁板の内側主面が密閉空間内に露出する領域の全面に被着形成されていることから、第一電極と第二電極の外周部に第一電極と第二電極の重なりから成る圧力検出部はなく、そのため第一電極と第二電極の外周部に静電容量の変化にあまり寄与することのない余計な静電容量が形成されることはない。
【0012】
【発明の実施の形態】
次に、本発明の圧力検出装置用パッケージを添付の図面に基づき詳細に説明する。図1は、本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図であり、図中、1は絶縁基体、2は絶縁板、3は半導体素子である。
【0013】
絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・炭化珪素質焼結体・窒化珪素質焼結体・ガラス−セラミックス等の電気絶縁材料から成る積層体であり、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基体1用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0014】
絶縁基体1は、その下面中央部に半導体素子3を収容するための凹部1aが形成されており、これにより半導体素子3を収容する容器として機能する。そして、この凹部1aの底面中央部が半導体素子3が搭載される搭載部1bとなっており、この搭載部1bに半導体素子3を搭載するとともに凹部1a内に例えばエポキシ樹脂等の樹脂製封止材4を充填することにより半導体素子3が封止される。なお、この例では半導体素子3は樹脂製封止材4を凹部1a内に充填することにより封止されるが、半導体素子3は絶縁基体1の下面に金属やセラミックスから成る蓋体を凹部1aを塞ぐように接合させることにより封止されてもよい。
【0015】
また、搭載部1bには半導体素子3の各電極と接続される複数の配線導体5が導出しており、この配線導体5と半導体素子3の各電極を半田バンプ6等の導電性材料から成る導電性接合部材を介して接合することにより半導体素子3の各電極と各配線導体5とが電気的に接続されるとともに半導体素子3が搭載部1bに固定される。なお、この例では、半導体素子3の電極と配線導体5とは半田バンプ6を介して接続されるが、半導体素子3の電極と配線導体5とはボンディングワイヤ等の他の種類の電気的接続手段により接続されてもよい。
【0016】
配線導体5は、半導体素子3の各電極を外部電気回路および後述する第一電極7・第二電極9に電気的に接続するための導電路として機能し、その一部は絶縁基体1の外周下面に導出し、別の一部は第一電極7・第二電極9に電気的に接続されている。そして、半導体素子3の各電極をこれらの配線導体5に導電性接合材6を介して電気的に接続するとともに半導体素子3を樹脂製封止材4で封止した後、配線導体5の絶縁基体1外周下面に導出した部位を外部電気回路基板の配線導体に半田等の導電性接合材を介して接合することにより、内部に収容する半導体素子3が外部電気回路に電気的に接続されることとなる。
【0017】
このような配線導体5は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の内部および表面に所定のパターンに形成される。なお、配線導体5の露出表面には、配線導体5が酸化腐食するのを防止するとともに配線導体5と半田等の導電性接合材との接合を良好なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0018】
また、絶縁基体1の上面外周部には高さが0.01〜5mm程度の枠状の突起部1cが設けられており、それにより上面中央部に底面が略平坦な凹部1dが形成されている。この凹部1dは、後述するように、絶縁板2との間に密閉空間を形成するためのものであり、この凹部1dの底面には静電容量形成用の第一電極7が被着されている。
【0019】
この第一電極7は、後述する第二電極9とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。そして、この第一電極7には配線導体5の一つ5aが接続されており、それによりこの配線導体5aに半導体素子3の電極を半田バンプ6等の導電性接合材を介して接続すると半導体素子3の電極と第一電極7とが電気的に接続されるようになっている。
【0020】
このような第一電極7は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の凹部1d底面に所定のパターンに形成される。なお、第一電極7の露出表面には、第一電極7が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0021】
また、絶縁基体1の突起部1cの上面にはその全周にわたり枠状の接合用メタライズ層8が被着されており、この接合用メタライズ層8には、下面に第二電極9を有する絶縁板2がこの第二電極9と接合用メタライズ層8とを銀−銅ろう材等の導電性接合材を介して接合することにより取着されている。
【0022】
この接合用メタライズ層8には配線導体5の一つ5bが接続されており、それによりこの配線導体5bに半導体素子3の電極を半田バンプ6等の導電性接合材を介して電気的に接続すると接合用メタライズ層8に接続された第二電極9と半導体素子3の電極とが電気的に接続されるようになっている。
【0023】
接合用メタライズ層8は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の突起部1c上面に枠状の所定のパターンに形成される。なお、接合用メタライズ層8の露出表面には、接合用メタライズ層8が酸化腐食するのを防止するとともに接合用メタライズ層8と導電性接合材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0024】
また、絶縁基体1の上面に取着された絶縁板2は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・炭化珪素質焼結体・ガラス−セラミックス等の電気絶縁材料から成る厚みが0.01〜5mmの略平板であり、外部の圧力に応じて絶縁基体1側に撓むいわゆる圧力検出用のダイアフラムとして機能する。
【0025】
なお、絶縁板2は、その厚みが0.01mm未満では、その機械的強度が小さいものとなってしまうため、これに大きな外部圧力が印加された場合に破壊されてしまう危険性が大きなものとなり、他方、5mmを超えると、小さな圧力では撓みにくくなり、圧力検出用のダイアフラムとしては不適となってしまう。したがって、絶縁板2の厚みは0.01〜5mmの範囲が好ましい。
【0026】
このような絶縁板2は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することによりセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工や切断加工を施すことにより絶縁板2用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0027】
また、絶縁板2の下面の略全面には静電容量形成用の第二電極9が被着されている。この第二電極9は、前述の第一電極7とともに感圧素子用の静電容量を形成するための電極として機能するとともに絶縁板2を絶縁基体1に接合するための接合用下地金属層として機能する。
【0028】
このような第二電極9は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁板2用のセラミックグリーンシートに印刷塗布し、これを絶縁板2用の生セラミック成形体とともに焼成することによって絶縁板2の下面の略全面に所定のパターンに形成される。なお、第二電極9の露出表面には、第二電極9が酸化腐食するのを防止するとともに第二電極9と導電性接合材との接合を良好とするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0029】
この第二電極9と接合用メタライズ層8とは銀−銅ろう材等の導電性接合材を介して接合されており、それにより、絶縁基体1上面と絶縁板2下面との間に密閉空間が形成されるとともに接合用メタライズ層8と第二電極9とが電気的に接続される。
【0030】
このとき、第一電極7と第二電極9とは、絶縁基体1と絶縁板2との間に形成された空間を挟んで対向しており、これらの間には、第一電極7や第二電極9の面積および第一電極7と第二電極9との間隔に応じて所定の静電容量が形成される。そして、絶縁板2の上面に外部の圧力が印加されると、その圧力に応じて絶縁板2が絶縁基体1側に撓んで第一電極7と第二電極9との間隔が変わり、それにより第一電極7と第二電極9との間の静電容量が変化するので、外部の圧力の変化を静電容量の変化として感知する感圧素子として機能する。そして、この静電容量の変化を凹部1a内に収容した半導体素子3に配線導体5a・5bを介して伝達し、これを半導体素子3で演算処理することによって外部の圧力の大きさを知ることができる。
【0031】
そして、本発明においては、第一電極7は図2(a)に平面図で示すように、絶縁基体1の他方の主面が密閉空間内に露出する領域の中心部に、その領域の直径に対して50〜80%の直径を有する略円形の形状に被着形成されており、また第二電極9は図2(b)に平面図で示すように、絶縁板2の内側主面が密閉空間内に露出する領域の全面に被着形成されており、そのことが重要である。このように第一電極7は絶縁基体1の他方の主面が密閉空間内に露出する領域の中心部に、その領域の直径に対して50〜80%の直径を有する略円形の形状に被着形成され、第二電極9は絶縁板2の内側主面が密閉空間内に露出する領域の全面に被着形成されていることから、第一電極7はパッケージに圧力が印加された場合に、絶縁板2の変位が大きな中心部領域にのみ配設されることとなり、第一電極7と第二電極9の外周部に第一電極7と第二電極9の重なりから成る圧力検出部はなく、そのため第一電極7と第二電極9の外周部に静電容量の変化にあまり寄与しない余計な静電容量が形成されることはない。また、第二電極9が絶縁板2の内側主面が密閉空間内に露出する領域の全面に被着形成されており、それにより絶縁板2の機械的強度が大きくなるため絶縁板2へ外部からの大きな圧力が印加されたとしてもその絶縁板2に欠けや割れが発生することもなくなる。したがって、本発明の圧力検出装置用パッケージによれば、第一電極7と第二電極9との間に形成される静電容量の変化率が高い、小型・高感度で外部の圧力を正確に検出することができる圧力検出装置とすることができる。
【0032】
なお、第一電極7の直径が絶縁基体1の他方の主面が密閉空間内に露出する領域の直径の50%未満であると、第一電極7と第二電極9との間に形成される静電容量が小さいものとなってしまい圧力を良好に検出することが困難となり、他方、80%を超えると、第一電極7と第二電極9との間に静電容量の変化に寄与しない余計な静電容量が形成されてしまい静電容量の変化率が低下するので圧力検出感度が低くなってしまう。したがって、第一電極7の直径は絶縁基体1の他方の主面が密閉空間内に露出する領域の直径の50〜80%の範囲に特定される。
【0033】
このように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子3が搭載される絶縁基体1の他方の主面に静電容量形成用の第一電極7を設けるとともに、この第一電極7に対向する静電容量形成用の第二電極9を内側面に有する絶縁板2を絶縁基体1との間に密閉空間を形成するように可撓な状態で絶縁基体1に接合させたことから、半導体素子3を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型化することができる。また、静電容量形成用の第一電極7および第二電極9を、絶縁基体1に設けた配線導体5a・5bを介して半導体素子3に接続することから、第一電極7および第二電極9を短い距離で半導体素子3に接続することができ、その結果、これらの配線導体5a・5b間に発生する不要な静電容量を小さなものとして感度の高い圧力検出装置を提供することができる。
【0034】
かくして、上述の圧力検出装置用パッケージによれば、搭載部1bに半導体素子3を搭載するとともに半導体素子3の各電極と配線導体5とを電気的に接続し、しかる後、半導体素子3を封止することによって小型でかつ感度の高く、外部の圧力を正確に検出することが可能な圧力検出装置となる。
【0035】
【実施例】
本発明の圧力検出装置用パッケージの実施例を以下に説明する。図2(a)の平面図で示すような、密閉空間内に露出する領域の直径に対して30〜100%の範囲内で異なる直径の第一電極7が形成された絶縁基体1を作成し、図2(b)に平面図で示すような、密閉空間内に露出する領域の全面に第二電極9が形成された絶縁板2を前述の絶縁基体1毎に作成しそれぞれ接合した8種類の評価用試料を作成した。
【0036】
また、絶縁基体1および絶縁板2の密閉空間内に露出する領域の直径は7.0mmとし、絶縁基体1および絶縁板2を第一電極7と第二電極9との距離が50μmとなるように銀−銅ろう材にて接合させた。
【0037】
そして、各8種類の試料において、絶縁板1の上面に1気圧(101KPa)および1800KPaの圧力を印加して、その圧力毎に各試料における第一電極7と第二電極9との間の静電容量を測定し、その測定値より各試料の1800KPa印加された時の静電容量の変化量を求めた。結果を表1に示す。
【0038】
【表1】

Figure 0004127374
【0039】
表1より、静電容量の変化量は80%を超えると変化量が減少することが判った。また、50%未満では変化量の値が3.0pFより小さくなっており、圧力変化に対する静電容量の検出が困難となることが判った。この評価結果より、密閉空間の領域の直径に対して第一電極7の直径を50〜80%とするのが好ましいことがわかった。
【0040】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば上述の実施の形態の一例では、絶縁基体1と絶縁板2とをろう付けにより接合したが、絶縁基体1と絶縁板2とは焼結一体化させることにより接合してもよい。
【0041】
【発明の効果】
以上、説明したように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される絶縁基体の他方の主面に静電容量形成用の第一電極を設けるとともに、この第一電極と対向する静電容量形成用の第二電極を有する絶縁板を絶縁基体の他方の主面との間に密閉空間を形成するように可撓な状態で接合したことから、半導体素子を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型化することができるとともに圧力検出用の電極と半導体素子とを接続する配線の短いものとして、これらの配線間に発生する不要な静電容量を小さいものとすることができる。さらに、第一電極が絶縁基体の他方の主面が密閉空間内に露出する領域の中心部に、その領域の直径に対して50〜80%の直径を有する略円形の形状に被着形成され、第二電極が絶縁板の内側主面が密閉空間内に露出する領域の全面に被着形成されていることから、第一電極と第二電極の外周部に第一電極と第二電極の重なりから成る圧力検出部はなく、そのため第一電極と第二電極の外周部に静電容量の変化にあまり寄与しない余計な静電容量が形成されることはない。したがって第一電極と第二電極との間に形成される静電容量の変化率が高いものとなり、その結果、外部の圧力を正確かつ感度よく検出することが可能な圧力検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図である。
【図2】(a)・(b)はそれぞれ図1に示す圧力検出装置用パッケージの第一電極7および第二電極9を示す平面図である。
【図3】従来の圧力検出装置用パッケージの断面図である。
【図4】従来の圧力検出装置用パッケージの断面図である。
【符号の説明】
1・・・・・・・・・・・絶縁基体
2・・・・・・・・・・・絶縁板
3・・・・・・・・・・・半導体素子
5、5a、5b・・・・・配線導体
7・・・・・・・・・・・第一電極
9・・・・・・・・・・・第二電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a package for a pressure detection device used in a pressure detection device for detecting pressure.
[0002]
[Prior art]
Conventionally, a capacitance type pressure detection device is known as a pressure detection device for detecting pressure. As shown in a cross-sectional view in FIG. 4, this capacitance type pressure detection device is accommodated in a capacitance type pressure sensitive element 22 and a package 28 on a wiring substrate 21 made of a ceramic material or a resin material. And a semiconductor element 29 for calculation (see Patent Document 1).
[0003]
The pressure-sensitive element 22 is made of, for example, an electrically insulating material such as a ceramic material, and has an insulating base 24 having a concave portion in which one electrode 23 for forming a capacitance is attached at the center of the upper surface, and the insulating base 24 An insulating plate 26 that is joined in a flexible state so as to form a sealed space between the upper surface of the substrate and the insulating base 24, and the other electrode 25 for forming a capacitance is attached to the lower surface, and each static plate Consists of external lead terminals 27 for electrically connecting the electrodes 23 and 25 for capacitance formation to the outside, and each capacitance is formed by bending the insulating plate 26 in response to external pressure. The capacitance formed between the electrodes 23 and 25 for use changes. Then, the external pressure can be detected by performing arithmetic processing on the change in the electrostatic capacitance by the semiconductor element 29 for arithmetic operation.
[0004]
However, according to this conventional pressure detection device, since the pressure sensitive element 22 and the semiconductor element 29 are individually mounted on the wiring board 21, the pressure detection device becomes large and the pressure detection electrode 23 is increased. The wiring between 25 and the semiconductor element 29 becomes long, and an unnecessary electrostatic capacity is formed between the long wiring, so that the sensitivity is low.
[0005]
Therefore, as shown in FIG. 3 of the above-mentioned Patent Document 1, an insulating base 11 having a mounting portion 11b on which a semiconductor element 13 is mounted on one main surface, and disposed on the surface and inside of the insulating base 11, a semiconductor A plurality of wiring conductors 15 to which the respective electrodes of the element 13 are electrically connected, and a static electricity which is attached to the central portion of the other main surface of the insulating base 11 and electrically connected to one of the wiring conductors 15 A first electrode 17 for capacitance formation, and an insulating plate 12 joined in a flexible state so as to form a sealed space between the other main surface of the insulating base 11 and the central portion of the main surface; A second electrode 19 for forming a capacitance is attached to the inner main surface of the insulating plate 12 so as to face the first electrode 17 and is electrically connected to the other one of the wiring conductors 15. A package for pressure sensing device was proposed. According to this pressure detection package, the first electrode 17 for forming a capacitance is provided on the other main surface of the insulating base 11 having the mounting portion 11b on which the semiconductor element 13 is mounted on one main surface. The insulating plate 12 having a second electrode 19 for forming a capacitance facing the one electrode 17 on the inner surface is flexible so as to form a sealed space between the other main surface of the insulating base 15 As a result, the pressure sensing element is integrally formed in the package that accommodates the semiconductor element 13. As a result, the pressure detection device can be reduced in size and the pressure detection electrode and the semiconductor element 13 are connected. By making the wiring to be short, unnecessary capacitance generated between these wirings can be made small.
[0006]
According to the pressure detection device package of Patent Document 1, the first electrode 17 and the second electrode 19 have the other main surface of the insulating base 11 and the inner main surface of the insulating plate 12 exposed in the sealed space, respectively. It was deposited over substantially the entire area.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-356064 (second page, FIGS. 3 and 4)
[0008]
[Problems to be solved by the invention]
However, according to the pressure detection device package of Patent Document 1, the first electrode 17 and the second electrode 19 have the other main surface of the insulating base 11 and the inner main surface of the insulating plate 12 exposed in the sealed space. Since it is formed over almost the entire surface of the region, the capacitance formed between the first electrode 17 and the second electrode 19 increases, and when pressure is applied to this package, the insulating plate 12 Although the central portion of the area corresponding to the sealed space is greatly displaced, the displacement of the outer peripheral portion is extremely small, so the outer peripheral portions of the first electrode 17 and the second electrode 19 do not contribute much to the change in capacitance. Rather, the change rate of the capacitance between the first electrode 17 and the second electrode 19 becomes small, and there is a problem that the pressure detection sensitivity is lowered.
[0009]
The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a pressure detection device that is small in size and high in sensitivity and can accurately detect external pressure. .
[0010]
[Means for Solving the Problems]
According to one aspect of the present invention, a package for a pressure detection device includes an insulating base and an insulating plate. The insulating base has one main surface including the mounting portion of the semiconductor element. The insulating plate is joined to the insulating base so as to form a substantially circular sealed space between the other main surface of the insulating base. The package for a pressure detection device includes a first electrode and a second electrode. The first electrode is formed at the center of the first region exposed in the sealed space on the other main surface of the insulating base. The first electrode has a substantially circular shape having a diameter of 50 to 80% with respect to the diameter of the first region. The second electrode is formed on the entire surface of the second region exposed in the sealed space on the inner surface of the insulating plate. The wiring conductor connected to the first electrode is arranged in a direction perpendicular to the planar direction in which the first electrode is provided, in addition to the capacitance consisting of the first electrode and the second electrode, There is no capacitance in the enclosed space.
[0011]
According to the pressure detection device package of the present invention, the first electrode has a diameter of 50 to 80% of the diameter of the region at the center of the region where the other main surface of the insulating base is exposed in the sealed space. Since the second electrode is formed on the entire surface of the inner main surface of the insulating plate exposed in the sealed space, the first electrode and the second electrode are formed. There is no pressure detection part consisting of the overlap of the first electrode and the second electrode at the outer peripheral part of the electrode, and therefore the extra capacitance that does not contribute much to the change in electrostatic capacity at the outer peripheral part of the first electrode and the second electrode Is not formed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the pressure detection device package of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a pressure detection device package according to the present invention, in which 1 is an insulating substrate, 2 is an insulating plate, and 3 is a semiconductor element.
[0013]
The insulating substrate 1 is a laminate made of an electrically insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or glass-ceramics. For example, in the case of an aluminum oxide sintered body, an appropriate organic binder, solvent, plasticizer, and dispersing agent are added to the ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Then, it is made into a mud shape and formed into a sheet shape by employing a conventionally known doctor blade method, and then a plurality of ceramic green sheets are obtained, and then appropriate punching and lamination are performed on these ceramic green sheets. By processing and cutting, a green ceramic molded body for the insulating substrate 1 is obtained and this green ceramic molded body is reduced to about 1 Manufactured by firing at a temperature of 600 ° C.
[0014]
The insulating base 1 is formed with a recess 1a for accommodating the semiconductor element 3 at the center of the lower surface thereof, thereby functioning as a container for accommodating the semiconductor element 3. The central portion of the bottom surface of the recess 1a is a mounting portion 1b on which the semiconductor element 3 is mounted. The semiconductor element 3 is mounted on the mounting portion 1b and the resin sealing such as an epoxy resin is provided in the recess 1a. The semiconductor element 3 is sealed by filling the material 4. In this example, the semiconductor element 3 is sealed by filling the recess 1a with a resin sealing material 4. However, the semiconductor element 3 has a lid made of metal or ceramics on the lower surface of the insulating base 1 to form the recess 1a. It may be sealed by bonding so as to block.
[0015]
A plurality of wiring conductors 5 connected to the respective electrodes of the semiconductor element 3 are led out to the mounting portion 1b. The wiring conductors 5 and the respective electrodes of the semiconductor element 3 are made of a conductive material such as a solder bump 6. By bonding through the conductive bonding member, each electrode of the semiconductor element 3 and each wiring conductor 5 are electrically connected and the semiconductor element 3 is fixed to the mounting portion 1b. In this example, the electrode of the semiconductor element 3 and the wiring conductor 5 are connected via the solder bumps 6. However, the electrode of the semiconductor element 3 and the wiring conductor 5 are connected to other types of electrical connections such as bonding wires. It may be connected by means.
[0016]
The wiring conductor 5 functions as a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit and a first electrode 7 and a second electrode 9 described later, and a part of the wiring conductor 5 is an outer periphery of the insulating base 1. It leads to the lower surface, and another part is electrically connected to the first electrode 7 and the second electrode 9. Then, each electrode of the semiconductor element 3 is electrically connected to these wiring conductors 5 through the conductive bonding material 6 and the semiconductor element 3 is sealed with the resin sealing material 4, and then the wiring conductor 5 is insulated. The portion led out to the lower surface of the outer periphery of the base 1 is joined to the wiring conductor of the external electric circuit board via a conductive bonding material such as solder, so that the semiconductor element 3 accommodated therein is electrically connected to the external electric circuit. It will be.
[0017]
Such a wiring conductor 5 is made of metal powder metallization such as tungsten, molybdenum, copper, or silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, dispersant, etc. to metal powder such as tungsten. The paste is applied in a predetermined pattern to a ceramic green sheet for the insulating substrate 1 by using a conventionally known screen printing method, and this is fired together with a green ceramic molded body for the insulating substrate 1 to synthesize the inside of the insulating substrate 1. In addition, a predetermined pattern is formed on the surface. In order to prevent the wiring conductor 5 from being oxidized and corroded on the exposed surface of the wiring conductor 5 and to improve the bonding between the wiring conductor 5 and a conductive bonding material such as solder, A nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited.
[0018]
Further, a frame-shaped protrusion 1c having a height of about 0.01 to 5 mm is provided on the outer peripheral portion of the upper surface of the insulating base 1, thereby forming a recess 1d having a substantially flat bottom surface at the center of the upper surface. As will be described later, the recess 1d is for forming a sealed space with the insulating plate 2, and a first electrode 7 for forming a capacitance is attached to the bottom surface of the recess 1d. Yes.
[0019]
The first electrode 7 is for forming a capacitance for a pressure sensitive element together with a second electrode 9 described later, and is formed in a substantially circular pattern, for example. Then, one of the wiring conductors 5a is connected to the first electrode 7, and when the electrode of the semiconductor element 3 is connected to the wiring conductor 5a via a conductive bonding material such as a solder bump 6, the semiconductor The electrode of the element 3 and the first electrode 7 are electrically connected.
[0020]
The first electrode 7 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersant to metal powder such as tungsten. The paste is printed and applied to a ceramic green sheet for the insulating substrate 1 using a conventionally known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to thereby form a predetermined surface on the bottom surface of the recess 1d of the insulating substrate 1. The pattern is formed. In order to prevent the first electrode 7 from being oxidatively corroded, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied to the exposed surface of the first electrode 7.
[0021]
Further, a frame-like bonding metallization layer 8 is deposited on the entire upper surface of the protruding portion 1c of the insulating substrate 1, and the bonding metallization layer 8 has an insulation having a second electrode 9 on the lower surface. The plate 2 is attached by bonding the second electrode 9 and the bonding metallization layer 8 via a conductive bonding material such as a silver-copper brazing material.
[0022]
One of the wiring conductors 5b is connected to the metallization layer 8 for bonding, whereby the electrode of the semiconductor element 3 is electrically connected to the wiring conductor 5b via a conductive bonding material such as a solder bump 6. Then, the second electrode 9 connected to the bonding metallization layer 8 and the electrode of the semiconductor element 3 are electrically connected.
[0023]
The metallization layer 8 for bonding is made of metal powder metallization such as tungsten, molybdenum, copper, and silver. A metallized paste obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, and dispersing agent to metal powder such as tungsten. A screen printing method known in the art is used to print and apply to a ceramic green sheet for the insulating substrate 1, and this is fired together with a green ceramic molded body for the insulating substrate 1 to form a frame shape on the upper surface of the protrusion 1 c of the insulating substrate 1. Are formed in a predetermined pattern. In order to prevent the joining metallized layer 8 from being oxidized and corroded on the exposed surface of the joining metallized layer 8 and to strengthen the joining between the joining metallized layer 8 and the conductive joining material, If so, a nickel plating layer having a thickness of about 1 to 10 μm is applied.
[0024]
The insulating plate 2 attached to the upper surface of the insulating substrate 1 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon nitride sintered body, or a silicon carbide sintered body. A substantially flat plate having a thickness of 0.01 to 5 mm made of an electrically insulating material such as glass-ceramics, and functions as a so-called pressure detecting diaphragm that bends toward the insulating substrate 1 in response to an external pressure.
[0025]
In addition, since the mechanical strength of the insulating plate 2 is less than 0.01 mm when the thickness is less, there is a greater risk of being destroyed when a large external pressure is applied thereto. On the other hand, when it exceeds 5 mm, it becomes difficult to bend at a small pressure, and it becomes unsuitable as a diaphragm for pressure detection. Therefore, the thickness of the insulating plate 2 is preferably in the range of 0.01 to 5 mm.
[0026]
If such an insulating plate 2 is made of, for example, an aluminum oxide sintered body, a suitable organic binder, solvent, plasticizer, dispersion for ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. A ceramic green sheet is obtained by adding an agent and mixing it into a mud and forming it into a sheet using the well-known doctor blade method, and then punching or cutting the ceramic green sheet appropriately. The raw ceramic molded body for the insulating plate 2 is obtained by processing, and the raw ceramic molded body is manufactured by firing at a temperature of about 1600 ° C.
[0027]
Further, a second electrode 9 for forming a capacitance is deposited on substantially the entire lower surface of the insulating plate 2. The second electrode 9 functions as an electrode for forming a capacitance for a pressure sensitive element together with the first electrode 7 described above, and as a bonding base metal layer for bonding the insulating plate 2 to the insulating substrate 1. Function.
[0028]
The second electrode 9 is made of metal powder metallization such as tungsten, molybdenum, copper, or silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, or dispersant to metal powder such as tungsten. The paste is printed and applied to a ceramic green sheet for the insulating plate 2 using a well-known screen printing method, and is fired together with a green ceramic molded body for the insulating plate 2 so that the paste is applied to substantially the entire lower surface of the insulating plate 2. A predetermined pattern is formed. In order to prevent the second electrode 9 from being oxidatively corroded on the exposed surface of the second electrode 9 and to improve the bonding between the second electrode 9 and the conductive bonding material, the thickness is usually determined. Is coated with a nickel plating layer of about 1 to 10 μm.
[0029]
The second electrode 9 and the bonding metallization layer 8 are bonded via a conductive bonding material such as a silver-copper brazing material, whereby a sealed space is formed between the upper surface of the insulating substrate 1 and the lower surface of the insulating plate 2. Is formed and the metallization layer 8 for bonding and the second electrode 9 are electrically connected.
[0030]
At this time, the first electrode 7 and the second electrode 9 are opposed to each other with a space formed between the insulating base 1 and the insulating plate 2 interposed therebetween. A predetermined capacitance is formed according to the area of the two electrodes 9 and the distance between the first electrode 7 and the second electrode 9. When an external pressure is applied to the upper surface of the insulating plate 2, the insulating plate 2 bends toward the insulating base 1 in accordance with the pressure, and the interval between the first electrode 7 and the second electrode 9 changes. Since the capacitance between the first electrode 7 and the second electrode 9 changes, it functions as a pressure-sensitive element that senses a change in external pressure as a change in capacitance. Then, the change in the electrostatic capacity is transmitted to the semiconductor element 3 accommodated in the recess 1a through the wiring conductors 5a and 5b, and this is processed by the semiconductor element 3 to know the magnitude of the external pressure. Can do.
[0031]
In the present invention, as shown in the plan view of FIG. 2A, the first electrode 7 has a diameter of the region at the center of the region where the other main surface of the insulating substrate 1 is exposed in the sealed space. The second electrode 9 is formed so as to have an inner main surface of the insulating plate 2 as shown in a plan view in FIG. 2 (b). This is important because it is deposited on the entire surface exposed in the sealed space. Thus, the first electrode 7 is covered in a substantially circular shape having a diameter of 50 to 80% of the diameter of the region at the center of the region where the other main surface of the insulating base 1 is exposed in the sealed space. Since the second electrode 9 is formed on the entire surface where the inner main surface of the insulating plate 2 is exposed in the sealed space, the first electrode 7 is applied when pressure is applied to the package. Therefore, the pressure detecting unit composed of the overlap of the first electrode 7 and the second electrode 9 on the outer periphery of the first electrode 7 and the second electrode 9 is disposed only in the central region where the displacement of the insulating plate 2 is large. Therefore, no extra capacitance that does not contribute much to the change in capacitance is formed on the outer periphery of the first electrode 7 and the second electrode 9. Further, the second electrode 9 is formed on the entire surface of the region where the inner main surface of the insulating plate 2 is exposed in the sealed space, thereby increasing the mechanical strength of the insulating plate 2, so that the second electrode 9 is externally connected to the insulating plate 2. Even if a large pressure is applied, the insulating plate 2 will not be chipped or cracked. Therefore, according to the package for a pressure detection device of the present invention, the rate of change in capacitance formed between the first electrode 7 and the second electrode 9 is high, and the external pressure is accurately measured with a small size and high sensitivity. It can be set as the pressure detection apparatus which can detect.
[0032]
When the diameter of the first electrode 7 is less than 50% of the diameter of the region where the other main surface of the insulating substrate 1 is exposed in the sealed space, the first electrode 7 is formed between the first electrode 7 and the second electrode 9. It becomes difficult to detect the pressure well due to the small capacitance, and if it exceeds 80%, it contributes to the change in capacitance between the first electrode 7 and the second electrode 9 An excessive capacitance that is not formed is formed, and the rate of change in capacitance is reduced, so that the pressure detection sensitivity is lowered. Therefore, the diameter of the first electrode 7 is specified in the range of 50 to 80% of the diameter of the region where the other main surface of the insulating base 1 is exposed in the sealed space.
[0033]
As described above, according to the pressure detection device package of the present invention, the first electrode 7 for forming a capacitance is provided on the other main surface of the insulating base 1 on which the semiconductor element 3 is mounted on one main surface. The insulating substrate 1 is flexible so as to form a sealed space between the insulating substrate 2 having the second electrode 9 for forming a capacitance facing the first electrode 7 on the inner surface and the insulating substrate 1. Therefore, the container for housing the semiconductor element 3 and the pressure sensitive element are integrated, and as a result, the pressure detecting device can be downsized. Further, since the first electrode 7 and the second electrode 9 for forming the capacitance are connected to the semiconductor element 3 via the wiring conductors 5a and 5b provided on the insulating base 1, the first electrode 7 and the second electrode 9 can be connected to the semiconductor element 3 at a short distance, and as a result, it is possible to provide a highly sensitive pressure detection device by reducing unnecessary capacitance generated between the wiring conductors 5a and 5b. .
[0034]
Thus, according to the above-described package for a pressure detection device, the semiconductor element 3 is mounted on the mounting portion 1b, and each electrode of the semiconductor element 3 and the wiring conductor 5 are electrically connected, and then the semiconductor element 3 is sealed. By stopping, the pressure detection device is small and highly sensitive, and can accurately detect the external pressure.
[0035]
【Example】
Embodiments of the pressure detection device package of the present invention will be described below. As shown in the plan view of FIG. 2 (a), an insulating substrate 1 having a first electrode 7 having a different diameter within a range of 30 to 100% with respect to the diameter of the region exposed in the sealed space is prepared. 8 types of insulating plates 2 each having the second electrode 9 formed on the entire surface exposed in the sealed space as shown in a plan view in FIG. Samples for evaluation were prepared.
[0036]
Further, the diameter of the region exposed in the sealed space of the insulating substrate 1 and the insulating plate 2 is 7.0 mm, and the distance between the first electrode 7 and the second electrode 9 is 50 μm in the insulating substrate 1 and the insulating plate 2. It joined with the silver-copper brazing material.
[0037]
In each of the eight types of samples, a pressure of 1 atm (101 KPa) and 1800 KPa is applied to the upper surface of the insulating plate 1, and the static electricity between the first electrode 7 and the second electrode 9 in each sample is applied for each pressure. The capacitance was measured, and the amount of change in capacitance when 1800 KPa was applied to each sample was determined from the measured value. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0004127374
[0039]
From Table 1, it was found that the amount of change decreased when the amount of change in capacitance exceeded 80%. In addition, when the amount is less than 50%, the amount of change is smaller than 3.0 pF, and it has been found that it is difficult to detect the capacitance with respect to the pressure change. From this evaluation result, it was found that the diameter of the first electrode 7 is preferably 50 to 80% with respect to the diameter of the region of the sealed space.
[0040]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the insulating base 1 and the insulating plate 2 are joined by brazing, but the insulating base 1 and the insulating plate 2 may be joined by sintering and integration.
[0041]
【The invention's effect】
As described above, according to the pressure detection device package of the present invention, the first electrode for forming the capacitance is provided on the other main surface of the insulating base on which the semiconductor element is mounted on one main surface. Since the insulating plate having the second electrode for forming the capacitance facing the first electrode is joined in a flexible state so as to form a sealed space between the other main surface of the insulating base, The container for housing the semiconductor element and the pressure sensitive element are integrated. As a result, the pressure detection device can be miniaturized, and the wiring for connecting the pressure detection electrode and the semiconductor element is short. Unnecessary capacitance generated in the meantime can be reduced. Further, the first electrode is formed in a substantially circular shape having a diameter of 50 to 80% with respect to the diameter of the region at the center of the region where the other main surface of the insulating base is exposed in the sealed space. Since the second electrode is formed on the entire surface of the region where the inner main surface of the insulating plate is exposed in the sealed space, the first electrode and the second electrode are arranged on the outer periphery of the first electrode and the second electrode. There is no overlapping pressure detector, and therefore no extra capacitance that does not contribute much to the change in capacitance is formed on the outer periphery of the first electrode and the second electrode. Therefore, the rate of change of the capacitance formed between the first electrode and the second electrode is high, and as a result, a pressure detection device capable of accurately and sensitively detecting external pressure is provided. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for a pressure detection device of the present invention.
2 (a) and 2 (b) are plan views showing a first electrode 7 and a second electrode 9 of the pressure detecting device package shown in FIG. 1, respectively.
FIG. 3 is a cross-sectional view of a conventional package for a pressure detection device.
FIG. 4 is a cross-sectional view of a conventional package for a pressure detection device.
[Explanation of symbols]
1. Insulating base 2 ... Insulating plate 3 ... Semiconductor elements 5, 5a, 5b ... .... Wiring conductor 7 ... 1st electrode 9 ... 2nd electrode

Claims (2)

半導体素子の搭載部を含む一方主面を有している絶縁基体と、
前記絶縁基体の他方主面との間に略円形状の密閉空間を形成するように前記絶縁基体に接合された絶縁板と、
前記絶縁基体の前記他方主面における前記密閉空間内に露出された第1の領域の中心部に形成された略円形状の第一電極と、
前記絶縁板の内側表面における前記密閉空間内に露出された第2の領域の全面に形成された第二電極とを備えており、
前記第一電極は、前記第1の領域の直径に対して50〜80%の直径を有しており、
前記第一電極に接続された配線導体が、前記第一電極が設けられている平面方向に対して垂直な方向に配置されており、前記第一電極および前記第二電極からなる静電容量以外に、前記密閉空間内における静電容量が存在しないことを特徴とする圧力検出装置用パッケージ。
An insulating substrate having one main surface including a semiconductor element mounting portion;
An insulating plate joined to the insulating base so as to form a substantially circular sealed space with the other main surface of the insulating base;
A substantially circular first electrode formed at the center of the first region exposed in the sealed space on the other main surface of the insulating base;
A second electrode formed on the entire surface of the second region exposed in the sealed space on the inner surface of the insulating plate,
The first electrode has a diameter of 50 to 80% with respect to the diameter of the first region,
The wiring conductor connected to the first electrode is arranged in a direction perpendicular to the planar direction in which the first electrode is provided, and other than the capacitance composed of the first electrode and the second electrode Further, there is no capacitance in the sealed space, and the pressure detection device package is characterized in that
請求項1記載の圧力検出装置用パッケージと、
前記絶縁基体の前記搭載部に搭載された半導体素子と、
を備えた圧力検出装置。
A package for a pressure detection device according to claim 1;
A semiconductor element mounted on the mounting portion of the insulating base;
A pressure detection device.
JP2002277126A 2002-09-24 2002-09-24 Pressure detection device package and pressure detection device Expired - Fee Related JP4127374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277126A JP4127374B2 (en) 2002-09-24 2002-09-24 Pressure detection device package and pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277126A JP4127374B2 (en) 2002-09-24 2002-09-24 Pressure detection device package and pressure detection device

Publications (2)

Publication Number Publication Date
JP2004117021A JP2004117021A (en) 2004-04-15
JP4127374B2 true JP4127374B2 (en) 2008-07-30

Family

ID=32272814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277126A Expired - Fee Related JP4127374B2 (en) 2002-09-24 2002-09-24 Pressure detection device package and pressure detection device

Country Status (1)

Country Link
JP (1) JP4127374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895604B2 (en) * 2005-12-22 2012-03-14 京セラ株式会社 Pressure detection device package and pressure detection device

Also Published As

Publication number Publication date
JP2004117021A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP2001356064A (en) Package for pressure detector
JP4127374B2 (en) Pressure detection device package and pressure detection device
JP4803917B2 (en) Package for pressure detection device
JP4822624B2 (en) Package for pressure detection device
JP4794073B2 (en) Package for pressure detection device
JP4863569B2 (en) Package for pressure detection device
JP4713029B2 (en) Package for pressure detection device
JP4925522B2 (en) Package for pressure detection device
JP4557405B2 (en) Package for pressure detection device
JP3716165B2 (en) Pressure detection device package and pressure detection device
JP2006047327A (en) Package for pressure detector, and the pressure detector
JP4974424B2 (en) Package for pressure detection device
JP4789357B2 (en) Package for pressure detection device
JP4859280B2 (en) Package for pressure detection device and manufacturing method thereof
JP4557406B2 (en) Package for pressure detection device
JP4582888B2 (en) Package for pressure detection device
JP4637342B2 (en) Package for pressure detection device
JP4753926B2 (en) Pressure detector and pressure detector assembly
JP3955067B2 (en) Pressure detection device package and pressure detection device
JP2002323394A (en) Package for pressure detector
JP2004205377A (en) Package for pressure detection device
JP2006047326A (en) Package for pressure detector, and pressure detector
JP2004198387A (en) Package for pressure detecting device
JP4794072B2 (en) Package for pressure detection device
JP2004163196A (en) Package for pressure detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees