JP4794072B2 - Package for pressure detection device - Google Patents

Package for pressure detection device Download PDF

Info

Publication number
JP4794072B2
JP4794072B2 JP2001194275A JP2001194275A JP4794072B2 JP 4794072 B2 JP4794072 B2 JP 4794072B2 JP 2001194275 A JP2001194275 A JP 2001194275A JP 2001194275 A JP2001194275 A JP 2001194275A JP 4794072 B2 JP4794072 B2 JP 4794072B2
Authority
JP
Japan
Prior art keywords
electrode
insulating
bonding
insulating plate
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001194275A
Other languages
Japanese (ja)
Other versions
JP2003004565A (en
Inventor
浩司 木野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001194275A priority Critical patent/JP4794072B2/en
Publication of JP2003004565A publication Critical patent/JP2003004565A/en
Application granted granted Critical
Publication of JP4794072B2 publication Critical patent/JP4794072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧力を検出するための圧力検出装置に使用される圧力検出装置用パッケージに関するものである。
【0002】
【従来の技術】
従来、圧力を検出するための圧力検出装置として静電容量型の圧力検出装置が知られている。この静電容量型の圧力検出装置は、例えば図2に断面図で示すように、セラミックス材料や樹脂材料から成る配線基板21上に、静電容量型の感圧素子22と、パッケージ28に収容された演算用の半導体素子29とを備えている。感圧素子22は、例えばセラミックス材料等の電気絶縁材料から成り、上面中央部に静電容量形成用の一方の電極23が被着された凹部を有する絶縁基体24と、この絶縁基体24の上面に絶縁基体24との間に密閉空間を形成するようにして可撓な状態で接合されており、下面に静電容量形成用の他方の電極25が被着された絶縁板26と、各静電容量形成用の電極23・25をそれぞれ外部に電気的に接続するための外部リード端子27とから構成されており、外部の圧力に応じて絶縁板26が撓むことにより各静電容量形成用の電極23・25間に形成される静電容量が変化する。そして、この静電容量の変化を演算用の半導体素子29により演算処理することにより外部の圧力を検出することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、この従来の圧力検出装置によると、感圧素子22と半導体素子29とを配線基板21上に個別に実装していることから、圧力検出装置が大型化してしまうとともに圧力検出用の電極23・25と半導体素子29との間の配線が長いものとなり、この長い配線間に不要な静電容量が形成されるため感度が低いという問題点を有していた。
【0004】
そこで、本願出願人は、先に特願2000-178618において、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設されており、半導体素子の各電極が電気的に接続される複数の配線導体と、絶縁基体の他方の主面の中央部に被着されており、配線導体の一つに電気的に接続された静電容量形成用の第一電極と、絶縁基体の他方の主面に、この主面の中央部との間に密閉空間を形成するように可撓な状態で接合された絶縁板と、この絶縁板の内側主面に第一電極に対向して被着されており、配線導体の他の一つに電気的に接続された静電容量形成用の第二電極とを具備する圧力検出装置用パッケージを提案した。この圧力検出装置用パッケージによると、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体の他方の主面に静電容量形成用の第一電極を設けるとともに、この第一電極に対向する静電容量形成用の第二電極を内側主面に有する絶縁板を、絶縁基体の他方の主面との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。なお、この特願2000-178618で提案した圧力検出装置用パッケージにおいては、例えば絶縁基体の他方の主面の外周部にセラミックスや金属から成る枠体を第一電極を取り囲むようにして設けておき、この枠体上に第二電極の外周部を銀−銅ろう等のろう材を介してろう付けすることにより絶縁板が絶縁基体に接合されていた。
【0005】
しかしながら、この特願2000-178618で提案した圧力検出装置用パッケージによると、絶縁基体と絶縁板とを接合する銀−銅ろうから成るろう材は大きな応力により塑性変形を起こしやすいことから、絶縁板に外部の圧力が長期間にわたり大きく印加された場合、絶縁板が撓むことにより発生する応力が絶縁基体と絶縁板とを接合するろう材の内周縁部に大きく作用してろう材に塑性変形が発生してしまい、その結果、圧力の印加が解除されても絶縁板が元の位置に完全には戻らず、外部の圧力を正確に検出することができなくなってしまうという問題点を有していた。
【0006】
本発明は、かかる上述の問題点に鑑み完成されたものであり、その目的は外部の圧力を長期間にわたり正確に検出することが可能な圧力検出装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の圧力検出装置用パッケージは、内部および表面に複数の配線導体を有するとともに一方の主面に半導体素子が搭載される搭載部を、他方の主面に配線導体の一つに電気的に接続された静電容量形成用の第一電極および該第一電極を取り囲み配線導体の他の一つに電気的に接続された枠状の第一接合用メタライズ層を有する絶縁基体と、一方の主面に第一電極に対向する静電容量形成用の第二電極および該第二電極に電気的に接続され、かつ第一接合用メタライズ層にろう付けされた枠状の第二接合用メタライズ層を有し、絶縁基体の他方の主面との間に密閉空間を形成するように可撓な状態で絶縁基体に接合された絶縁板とから成る圧力検出装置用パッケージであって、絶縁板はその一方の主面の外周部に枠状の突起部が形成されているとともにこの突起部主面の内周縁から0.05mm以上離間した位置に第二接合用メタライズ層が被着形成されていることを特徴とするものである。
【0008】
本発明の圧力検出装置用パッケージによれば、絶縁板の一方の主面の外周部に枠状の突起部が形成されているとともにこの突起部主面の内周縁から0.05mm以上離間した位置に絶縁基体の第一接合用メタライズ層にろう付けされた第二接合用メタライズ層が被着されていることから、絶縁板に外部の圧力が長期間にわたり大きく印加されたとしても、絶縁板が撓むことにより発生する応力は、突起部の内周根元付近に大きく集中し、絶縁基体と絶縁板とを接合するろう材の内周縁部に大きく作用することはない。
【0009】
【発明の実施の形態】
次に、本発明を添付の図面を基に詳細に説明する。図1は、本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図であり、図中、1は絶縁基体、2は絶縁板、3は半導体素子である。
【0010】
絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・ガラス−セラミックス等のセラミックス材料から成る積層体であり、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基体1用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0011】
絶縁基体1は、その下面中央部に半導体素子3を収容するための凹部1aが形成されており、これにより半導体素子3を収容する容器として機能する。そして、この凹部1aの底面中央部が半導体素子3が搭載される搭載部1bとなっており、この搭載部1bに半導体素子3を搭載するとともに凹部1a内に例えばエポキシ樹脂等の樹脂製封止材4を充填することにより半導体素子3が封止される。なお、この例では半導体素子3は樹脂製封止材4を凹部1a内に充填することにより封止されるが、半導体素子3は絶縁基体1の下面に金属やセラミックスから成る蓋体を凹部1aを塞ぐように接合させることにより封止されてもよい。
【0012】
また、搭載部1bには半導体素子3の各電極に接続される複数のメタライズ配線導体5が導出しており、このメタライズ配線導体5と半導体素子3の各電極を半田バンプ6等の導電性材料から成る導電性接合部材を介して接合することにより半導体素子3の各電極と各メタライズ配線導体5とが電気的に接続されるとともに半導体素子3が搭載部1bに固定される。なお、この例では、半導体素子3の電極とメタライズ配線導体5とは半田バンプ6を介して接続されるが、半導体素子3の電極とメタライズ配線導体5とはボンディングワイヤ等の他の種類の電気的接続手段により接続されてもよい。
【0013】
メタライズ配線導体5は、半導体素子3の各電極を外部電気回路および後述する第一電極7・第二電極9に電気的に接続するための導電路として機能し、その一部は絶縁基体1の外周下面に導出し、別の一部は第一電極7・第二電極9に電気的に接続されている。そして、半導体素子3の各電極をこれらのメタライズ配線導体5に導電性接合材を介して電気的に接続するとともに半導体素子3を樹脂製封止材4で封止した後、メタライズ配線導体5の絶縁基体1外周下面に導出した部位を外部電気回路基板の配線導体に半田等の導電性接合材を介して接合することにより、内部に収容する半導体素子3が外部電気回路に電気的に接続されることとなる。
【0014】
このようなメタライズ配線導体5は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の内部および表面に所定のパターンに形成される。なお、メタライズ配線導体5の表面には、メタライズ配線導体5が酸化腐食するのを防止するとともにメタライズ配線導体5と半田等の導電性接合材との接合を良好なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0015】
また、絶縁基体1の上面中央部には静電容量形成用の第一電極7が被着されている。この第一電極7は、後述する第二電極9とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。そして、この第一電極7にはメタライズ配線導体5の一つ5aが接続されており、それによりこのメタライズ配線導体5aに半導体素子3の電極を半田バンプ6等の導電性接合材を介して接続すると半導体素子3の電極と第一電極7とが電気的に接続されるようになっている。
【0016】
このような第一電極7は、厚みが10〜50μm程度のタングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の上面中央部に所定のパターンに形成される。なお、第一電極7の表面には、第一電極7が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0017】
また、絶縁基体1の上面外周部には第一電極7を取り囲む略円形や略八角形の枠状の第一接合用メタライズ層8が被着されている。第一接合用メタライズ層8は、絶縁基体1に絶縁板2を接合するための下地金属として機能し、この第一接合用メタライズ層8には下面に第二電極9およびこの第二電極9に電気的に接続された第二接合用メタライズ層10を有する絶縁板2が第二接合用メタライズ層10と第一接合用メタライズ層8とを銀−銅ろう等のろう材11を介してろう付けすることにより接合されている。
【0018】
この第一接合用メタライズ層8にはメタライズ配線導体5の一つ5bが接続されており、それによりこのメタライズ配線導体5bに半導体素子3の電極を半田バンプ6等の導電性接合材を介して電気的に接続すると、半導体素子3の電極と第二電極9とが電気的に接続されるようになっている。
【0019】
このような第一接合用メタライズ層8は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の上面外周部に枠状の所定のパターンに形成される。
【0020】
なお、第一接合用メタライズ層8の表面には、第一接合用メタライズ層8が酸化腐食するのを防止するとともに第一接合用メタライズ層8とろう材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0021】
また、絶縁基体1の上面に取着された絶縁板2は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・ガラス−セラミックス等のセラミックス材料から成る略四角または略八角あるいは円形等の略平板であり、その絶縁基体1側主面の外周部に枠状の突起部2aを有している。そして、外部の圧力に応じて絶縁基体1側に撓むいわゆる圧力検出用のダイアフラムとして機能する。
【0022】
なお、絶縁板2は、その中央部の厚みが0.01mm未満では、その機械的強度が小さいものとなってしまうため、これに大きな外部圧力が印加された場合に破壊されてしまう危険性が大きなものとなり、他方、中央部の厚みが5mmを超えると、小さな圧力では撓みにくくなり、圧力検出用のダイアフラムとしては不適となってしまう。したがって、絶縁板2の中央部の厚みは0.01〜5mmの範囲が好ましい。また、突起部2aの高さが0.01mm未満では、絶縁基体1と絶縁板2との間に形成される隙間が狭いものとなりすぎて、絶縁板2に圧力が印加された際に第一電極7と第二電極9とが接触してしまう危険性が大きなものとなり、他方、突起部2aの高さが5mmを超えると、第一電極7と第二電極9との間に形成される静電容量が小さなものとなって感圧素子の感度が低くなってしまう。したがって、突起部2aの高さは0.01〜5mmの範囲が好ましい。
【0023】
このような絶縁板2は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することによりセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工や切断加工を施すことにより絶縁板2用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0024】
また、絶縁板2の下面にはその中央部に第一電極7と対向する静電容量形成用の第二電極9が被着されている。この第二電極9は、前述の第一電極7とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。
【0025】
このような第二電極9は、厚みが10〜50μm程度のタングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁板2用のセラミックグリーンシートに印刷塗布し、これを絶縁板2用の生セラミック成形体とともに焼成することによって絶縁板2の下面中央部に所定のパターンに形成される。なお、第二電極9の表面には、第二電極9が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0026】
さらに、絶縁板2の突起部2a下面には第二電極9に電気的に接続された略円形や略八角形の枠状の第二接合用メタライズ層10が突起部2aの内周から0.05mm以上離間した位置に被着されている。この第二接合用メタライズ層10は、絶縁板2を絶縁基体1に接合するための接合用下地金属層として機能し、第二接合用メタライズ層10と第一接合用メタライズ層8とを銀−銅ろう等のろう材11を介してろう付けすることにより絶縁基体1と絶縁板2とが接合されるとともに第一接合用メタライズ層8と第二接合用メタライズ層10とが電気的に接続される。
【0027】
このとき、第一電極7と第二電極9とは、絶縁基体1と絶縁板2との間に形成された密閉空間を挟んで対向しており、これらの間には、第一電極7や第二電極9の面積および第一電極7と第二電極9との間隔に応じて所定の静電容量が形成される。そして、絶縁板2の上面に外部の圧力が印加されると、その圧力に応じて絶縁板2が絶縁基体1側に撓んで第一電極7と第二電極9との間隔が変わり、それにより第一電極7と第二電極9との間の静電容量が変化するので、外部の圧力の変化を静電容量の変化として感知する感圧素子として機能する。そして、この静電容量の変化を凹部1a内に収容した半導体素子3にメタライズ配線導体5a・5bを介して伝達し、これを半導体素子3で演算処理することによって外部の圧力の大きさを知ることができる。
【0028】
また、第二接合用メタライズ層10は突起部2aの下面に突起部2aの内周から0.05mm以上離間して被着されていることから、絶縁板2が外部の圧力により大きく撓んだとしても、その撓みにより発生する応力は、突起部2aの内周の根元付近に大きく集中し、ろう材11の内周縁部に大きく作用することはない。したがって、本発明の圧力検出装置用パッケージによれば、絶縁板2に外部の圧力が長期間にわたり大きく印加されたとしてもろう材11に塑性変形が発生することはなく、外部の圧力を長期間にわたり正確に検出することが可能な圧力検出装置を提供することができる。
【0029】
なお、第二接合用メタライズ層10は、突起部2aの内周から0.05mm未満離間した位置に被着形成されていると、絶縁板2が外部の圧力により大きく撓んだ際に発生する応力がろう材11の内周縁部に大きく印加されてろう材11に塑性変形が発生する危険性が大きくなるとともに、その応力が突起部2aの内周側面と下面との間の角部に大きく印加されて絶縁板2にクラックや欠けが発生する危険性が大きくなる。したがって、第二接合用メタライズ層10の形成位置は、突起部2aの内周から0.05mm以上離間した位置に特定される。
【0030】
このような第二接合用メタライズ層10は、厚みが10〜50μm程度のタングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁板2用のセラミックグリーンシートに印刷塗布し、これを絶縁板2用の生セラミック成形体とともに焼成することによって絶縁板2の突起部2a下面に所定のパターンに形成される。
【0031】
なお、第二接合用メタライズ層10の表面には、第二接合用メタライズ層10が酸化腐食するのを防止するとともに第二接合用メタライズ層10とろう材11との接合を良好とするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0032】
このように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子3が搭載される絶縁基体1の他方の主面に、静電容量形成用の第一電極7を設けるとともにこの第一電極7に対向する静電容量形成用の第二電極9を一方の主面に有する絶縁板2を絶縁基体1との間に密閉空間を形成するように可撓な状態で接合させたことから、半導体素子3を収容する容器と感圧素子とが一体となり、その結果、圧力検出装置を小型化することができる。また、静電容量形成用の第一電極7および第二電極9を、絶縁基体1に設けたメタライズ配線導体5a・5bを介して半導体素子3に接続することから、第一電極7および第二電極9を短い距離で半導体素子3に接続することができ、その結果、これらのメタライズ配線導体5a・5b間に発生する不要な静電容量を小さなものとして感度の高い圧力検出装置を提供することができる。
【0033】
なお、絶縁基体1に絶縁板2を接合するには、第一接合用メタライズ層8および第二接合用メタライズ層10の表面に予め1〜10μm程度の厚みのニッケルめっき層をそれぞれ被着させておくとともに、第一接合用メタライズ層8と第二接合用メタライズ層10との間に厚みが10〜200μm程度の銀−銅ろうから成るろう材箔を挟んで絶縁基体1と絶縁板2とを重ね合わせ、これらを還元雰囲気中、約850℃の温度に加熱してろう材箔を溶融させて第一接合用メタライズ層8と第二接合用メタライズ層10とをろう付けする方法が採用される。
【0034】
かくして、上述の圧力検出装置用パッケージによれば、搭載部1bに半導体素子3を搭載するとともに半導体素子3の各電極とメタライズ配線導体5とを電気的に接続し、しかる後、半導体素子3を封止することによって小型でかつ感度が高い圧力検出装置となる。
【0035】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であることはいうまでもない。
【0036】
【発明の効果】
以上、説明したように、本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体の他方の主面の中央部に静電容量形成用の第一電極を設けるとともに、この第一電極に対向する静電容量形成用の第二電極を有する絶縁板を、絶縁基体との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができる。さらに絶縁板の内側主面の外周部に枠状の突起部が形成されているとともにこの突起部主面の内周縁から0.05mm以上離間した位置に絶縁基体の第一接合用メタライズ層にろう付けされた第二接合用メタライズ層が被着されていることから、絶縁板に外部の圧力が長期間にわたり大きく印加されたとしても、絶縁板が撓むことにより発生する応力は、突起部の内周根元付近に大きく集中し、絶縁基体と絶縁板とを接合するろう材の内周縁部に大きく作用することはない。したがって、絶縁板に外部の圧力が長期間にわたり大きく印加されたとしてもろう材に塑性変形が発生することはなく、外部の圧力を長期間にわたり正確に検出することが可能な圧力検出装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図である。
【図2】従来の圧力検出装置を示す断面図である。
【符号の説明】
1・・・・・絶縁基体
2・・・・・絶縁板
2a・・・・突起部
3・・・・・半導体素子
7・・・・・第一電極
8・・・・・第一接合用メタライズ層
9・・・・・第二電極
10・・・・・第二接合用メタライズ層
11・・・・・ろう材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure detection device package used in a pressure detection device for detecting pressure.
[0002]
[Prior art]
Conventionally, a capacitance type pressure detection device is known as a pressure detection device for detecting pressure. For example, as shown in a cross-sectional view in FIG. 2, the capacitance type pressure detection device is accommodated in a capacitance type pressure sensitive element 22 and a package 28 on a wiring substrate 21 made of a ceramic material or a resin material. And a semiconductor element 29 for operation. The pressure sensitive element 22 is made of, for example, an electrically insulating material such as a ceramic material, and has an insulating base 24 having a concave portion in which one electrode 23 for forming a capacitance is attached at the center of the upper face, and an upper face of the insulating base 24 The insulating plate 26 is joined in a flexible state so as to form a sealed space with the insulating base 24, and the other electrode 25 for forming a capacitance is attached to the lower surface, and each static plate Consists of external lead terminals 27 for electrically connecting the electrodes 23 and 25 for capacitance formation to the outside, and each capacitance is formed by bending the insulating plate 26 in response to external pressure. The capacitance formed between the electrodes 23 and 25 for use changes. Then, the external pressure can be detected by performing arithmetic processing on the change in the electrostatic capacitance by the semiconductor element 29 for arithmetic operation.
[0003]
[Problems to be solved by the invention]
However, according to this conventional pressure detection device, since the pressure sensitive element 22 and the semiconductor element 29 are individually mounted on the wiring board 21, the pressure detection device becomes large and the pressure detection electrode 23 is increased. The wiring between 25 and the semiconductor element 29 becomes long, and an unnecessary electrostatic capacity is formed between the long wiring, so that the sensitivity is low.
[0004]
Therefore, the applicant of the present application previously described in Japanese Patent Application No. 2000-178618, an insulating base having a mounting portion on which one of the semiconductor elements is mounted on one main surface, and the surface and the inside of the insulating base. A plurality of wiring conductors to which each electrode of the element is electrically connected, and a capacitance formation that is attached to the central portion of the other main surface of the insulating base and is electrically connected to one of the wiring conductors An insulating plate joined in a flexible state so as to form a sealed space between the first electrode for use and the other main surface of the insulating base and the central portion of the main surface, and an inner side of the insulating plate Proposed a pressure sensing device package comprising a second electrode for forming a capacitance that is attached to the main surface facing the first electrode and is electrically connected to the other one of the wiring conductors did. According to this pressure detection device package, the first electrode for forming a capacitance is provided on the other main surface of the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface. Because the insulating plate having the second electrode for forming the opposing capacitance on the inner main surface is joined in a flexible state so as to form a sealed space with the other main surface of the insulating base. The pressure-sensitive element is integrally formed in the package that accommodates the semiconductor element. As a result, the pressure detection device can be reduced in size, and the wiring for connecting the pressure detection electrode and the semiconductor element can be shortened. Unnecessary capacitance generated between the wirings can be reduced. In the pressure detection device package proposed in Japanese Patent Application No. 2000-178618, for example, a frame made of ceramics or metal is provided on the outer peripheral portion of the other main surface of the insulating base so as to surround the first electrode. The insulating plate was joined to the insulating base by brazing the outer peripheral portion of the second electrode onto the frame through a brazing material such as silver-copper brazing.
[0005]
However, according to the package for a pressure detection device proposed in Japanese Patent Application No. 2000-178618, the brazing material made of silver-copper brazing that joins the insulating base and the insulating plate is likely to be plastically deformed by a large stress. When an external pressure is applied to the brazing material for a long period of time, the stress generated by the bending of the insulating plate acts greatly on the inner peripheral edge of the brazing material joining the insulating base and the insulating plate, and the brazing material is plastically deformed. As a result, even if the application of pressure is released, the insulating plate does not return completely to the original position, and the external pressure cannot be accurately detected. It was.
[0006]
The present invention has been completed in view of the above-described problems, and an object of the present invention is to provide a pressure detection device capable of accurately detecting an external pressure over a long period of time.
[0007]
[Means for Solving the Problems]
The package for a pressure detecting device of the present invention has a plurality of wiring conductors inside and on the surface, and a mounting portion on which a semiconductor element is mounted on one main surface, and is electrically connected to one of the wiring conductors on the other main surface. An insulating substrate having a first electrode for forming capacitance connected and a frame-shaped first bonding metallization layer surrounding the first electrode and electrically connected to the other one of the wiring conductors; A second electrode for forming a capacitance facing the first electrode on the main surface, and a frame-like second metallization for bonding that is electrically connected to the second electrode and brazed to the metallization layer for the first bonding A pressure detecting device package comprising: an insulating plate having a layer and an insulating plate joined to the insulating substrate in a flexible state so as to form a sealed space with the other main surface of the insulating substrate; Has a frame-shaped projection on the outer periphery of one of its main surfaces. Rutotomoni is characterized in that the second bonding metallization layer is deposited and formed at a position spaced above 0.05mm from the inner peripheral edge of the protrusion main surface.
[0008]
According to the package for a pressure detection device of the present invention, a frame-shaped protrusion is formed on the outer peripheral portion of one main surface of the insulating plate, and at a position separated by 0.05 mm or more from the inner periphery of the main surface of the protrusion. Since the second bonding metallized layer brazed to the first bonding metallized layer of the insulating substrate is attached, the insulating plate is bent even when a large external pressure is applied to the insulating plate for a long period of time. The stress generated by this is greatly concentrated in the vicinity of the inner peripheral root of the protrusion, and does not act greatly on the inner peripheral edge of the brazing material that joins the insulating base and the insulating plate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a pressure detection device package according to the present invention, in which 1 is an insulating substrate, 2 is an insulating plate, and 3 is a semiconductor element.
[0010]
The insulating substrate 1 is a laminated body made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or glass-ceramics. For example, the insulating substrate 1 is made of an aluminum oxide sintered body. If there is, add a suitable organic binder, solvent, plasticizer, and dispersant to ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. Are formed into a sheet shape to obtain a plurality of ceramic green sheets, and then these ceramic green sheets are subjected to appropriate punching, laminating, and cutting processes to produce a raw ceramic for the insulating substrate 1. A green body is obtained by firing this green ceramic body at a temperature of about 1600 ° C. Made.
[0011]
The insulating base 1 is formed with a recess 1a for accommodating the semiconductor element 3 at the center of the lower surface thereof, thereby functioning as a container for accommodating the semiconductor element 3. The central portion of the bottom surface of the recess 1a is a mounting portion 1b on which the semiconductor element 3 is mounted. The semiconductor element 3 is mounted on the mounting portion 1b and the resin sealing such as an epoxy resin is provided in the recess 1a. The semiconductor element 3 is sealed by filling the material 4. In this example, the semiconductor element 3 is sealed by filling the recess 1a with a resin sealing material 4. However, the semiconductor element 3 has a lid made of metal or ceramics on the lower surface of the insulating base 1 to form the recess 1a. It may be sealed by bonding so as to block.
[0012]
Also, a plurality of metallized wiring conductors 5 connected to the respective electrodes of the semiconductor element 3 are led out to the mounting portion 1b. The metallized wiring conductor 5 and the respective electrodes of the semiconductor element 3 are connected to a conductive material such as a solder bump 6 or the like. The electrodes of the semiconductor element 3 and the metallized wiring conductors 5 are electrically connected to each other through the conductive bonding member made of the semiconductor element 3 and the semiconductor element 3 is fixed to the mounting portion 1b. In this example, the electrode of the semiconductor element 3 and the metallized wiring conductor 5 are connected via the solder bumps 6. However, the electrode of the semiconductor element 3 and the metalized wiring conductor 5 are connected to other types of electric wires such as bonding wires. It may be connected by a general connection means.
[0013]
The metallized wiring conductor 5 functions as a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit and a first electrode 7 and a second electrode 9 to be described later. It leads to the outer peripheral lower surface, and another part is electrically connected to the first electrode 7 and the second electrode 9. Each electrode of the semiconductor element 3 is electrically connected to these metallized wiring conductors 5 through a conductive bonding material and the semiconductor element 3 is sealed with a resin sealing material 4. The part led out to the lower surface of the outer periphery of the insulating substrate 1 is joined to the wiring conductor of the external electric circuit board via a conductive bonding material such as solder, so that the semiconductor element 3 accommodated therein is electrically connected to the external electric circuit. The Rukoto.
[0014]
Such a metallized wiring conductor 5 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver, and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, dispersant, and the like to metal powder such as tungsten. The metallized paste is printed and applied in a predetermined pattern on a ceramic green sheet for the insulating substrate 1 using a well-known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to thereby form the insulating substrate 1. A predetermined pattern is formed inside and on the surface. In order to prevent the metallized wiring conductor 5 from being oxidized and corroded on the surface of the metallized wiring conductor 5 and to improve the bonding between the metalized wiring conductor 5 and a conductive bonding material such as solder, it is usual. If present, a nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited.
[0015]
A first electrode 7 for forming a capacitance is attached to the center of the upper surface of the insulating substrate 1. The first electrode 7 is for forming a capacitance for a pressure sensitive element together with a second electrode 9 described later, and is formed in a substantially circular pattern, for example. The first electrode 7 is connected to one of the metallized wiring conductors 5a, whereby the electrode of the semiconductor element 3 is connected to the metallized wiring conductor 5a via a conductive bonding material such as a solder bump 6. Then, the electrode of the semiconductor element 3 and the first electrode 7 are electrically connected.
[0016]
Such a first electrode 7 is made of metal powder metallization such as tungsten, molybdenum, copper, and silver having a thickness of about 10 to 50 μm, and an appropriate organic binder, solvent, plasticizer, and dispersant are applied to the metal powder such as tungsten. The metallized paste obtained by adding and mixing is printed on a ceramic green sheet for the insulating substrate 1 by employing a conventionally well-known screen printing method, and is fired together with the green ceramic molded body for the insulating substrate 1 to thereby insulate the insulating substrate. 1 is formed in a predetermined pattern in the central portion of the upper surface of 1. In addition, in order to prevent the first electrode 7 from being oxidatively corroded, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied to the surface of the first electrode 7.
[0017]
In addition, a substantially circular or substantially octagonal frame-shaped first bonding metallization layer 8 surrounding the first electrode 7 is attached to the outer peripheral portion of the upper surface of the insulating substrate 1. The first bonding metallization layer 8 functions as a base metal for bonding the insulating plate 2 to the insulating substrate 1. The first bonding metallization layer 8 has a second electrode 9 on the lower surface and a second electrode 9 on the lower surface. An insulating plate 2 having a second bonding metallization layer 10 electrically connected is brazed to the second bonding metallization layer 10 and the first bonding metallization layer 8 via a brazing material 11 such as silver-copper brazing. It is joined by doing.
[0018]
One metallized wiring conductor 5b is connected to the first metallizing layer 8 for bonding, whereby the electrode of the semiconductor element 3 is connected to the metallized wiring conductor 5b via a conductive bonding material such as a solder bump 6. When electrically connected, the electrode of the semiconductor element 3 and the second electrode 9 are electrically connected.
[0019]
The metallization layer 8 for the first bonding is made of metal powder metallization such as tungsten, molybdenum, copper or silver, and an appropriate organic binder, solvent, plasticizer or dispersant is added to and mixed with metal powder such as tungsten. The obtained metallized paste is printed and applied to a ceramic green sheet for the insulating substrate 1 by using a conventionally known screen printing method, and this is fired together with a green ceramic molded body for the insulating substrate 1 to obtain the outer periphery of the upper surface of the insulating substrate 1. A predetermined frame-like pattern is formed on the part.
[0020]
The first bonding metallization layer 8 is prevented from being oxidized and corroded on the surface of the first bonding metallization layer 8 and the bonding between the first bonding metallization layer 8 and the brazing material is strengthened. Further, usually, a nickel plating layer having a thickness of about 1 to 10 μm is applied.
[0021]
The insulating plate 2 attached to the upper surface of the insulating substrate 1 is substantially square or substantially made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or glass-ceramics. It is a substantially flat plate such as an octagon or a circle, and has a frame-like protrusion 2a on the outer peripheral portion of the main surface on the insulating base 1 side. Then, it functions as a so-called pressure detecting diaphragm that bends toward the insulating base 1 according to the external pressure.
[0022]
In addition, since the mechanical strength of the insulating plate 2 is small when the thickness of the central portion is less than 0.01 mm, there is a high risk of destruction when a large external pressure is applied thereto. On the other hand, if the thickness of the central portion exceeds 5 mm, it becomes difficult to bend with a small pressure, making it unsuitable as a pressure detecting diaphragm. Therefore, the thickness of the central portion of the insulating plate 2 is preferably in the range of 0.01 to 5 mm. Further, if the height of the protrusion 2a is less than 0.01 mm, the gap formed between the insulating base 1 and the insulating plate 2 becomes too narrow, and the first electrode is applied when pressure is applied to the insulating plate 2. On the other hand, if the height of the protrusion 2a exceeds 5 mm, the static electricity formed between the first electrode 7 and the second electrode 9 is increased. The capacitance becomes small and the sensitivity of the pressure sensitive element is lowered. Therefore, the height of the protrusion 2a is preferably in the range of 0.01 to 5 mm.
[0023]
If such an insulating plate 2 is made of, for example, an aluminum oxide sintered body, a suitable organic binder, solvent, plasticizer, dispersion for ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. A ceramic green sheet is obtained by adding an agent and mixing it into a mud and forming it into a sheet using the well-known doctor blade method, and then punching or cutting the ceramic green sheet appropriately. The raw ceramic molded body for the insulating plate 2 is obtained by processing, and the raw ceramic molded body is manufactured by firing at a temperature of about 1600 ° C.
[0024]
Further, a second electrode 9 for forming a capacitance facing the first electrode 7 is attached to the lower surface of the insulating plate 2 at the center thereof. The second electrode 9 is for forming a capacitance for the pressure sensitive element together with the first electrode 7 described above, and is formed in a substantially circular pattern, for example.
[0025]
Such a second electrode 9 is made of metal powder metallization of tungsten, molybdenum, copper, silver or the like having a thickness of about 10 to 50 μm, and an appropriate organic binder, solvent, plasticizer, or dispersant is applied to the metal powder such as tungsten. The metallized paste obtained by addition and mixing is applied to a ceramic green sheet for the insulating plate 2 by employing a conventionally known screen printing method, and is fired together with the green ceramic molded body for the insulating plate 2 to synthesize the insulating plate. 2 is formed in a predetermined pattern at the center of the lower surface. In addition, in order to prevent the second electrode 9 from being oxidatively corroded, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied to the surface of the second electrode 9.
[0026]
Furthermore, a substantially circular or substantially octagonal frame-shaped second bonding metallization layer 10 electrically connected to the second electrode 9 is formed on the lower surface of the protrusion 2a of the insulating plate 2 by 0.05 mm from the inner periphery of the protrusion 2a. It is attached to the positions separated as described above. The second bonding metallization layer 10 functions as a bonding base metal layer for bonding the insulating plate 2 to the insulating substrate 1, and the second bonding metallization layer 10 and the first bonding metallization layer 8 are silver- By brazing via a brazing material 11 such as copper brazing, the insulating substrate 1 and the insulating plate 2 are joined, and the first joining metallized layer 8 and the second joining metallized layer 10 are electrically connected. The
[0027]
At this time, the first electrode 7 and the second electrode 9 are opposed to each other with a sealed space formed between the insulating base 1 and the insulating plate 2 interposed therebetween. A predetermined capacitance is formed according to the area of the second electrode 9 and the distance between the first electrode 7 and the second electrode 9. When an external pressure is applied to the upper surface of the insulating plate 2, the insulating plate 2 bends toward the insulating base 1 in accordance with the pressure, and the interval between the first electrode 7 and the second electrode 9 changes. Since the capacitance between the first electrode 7 and the second electrode 9 changes, it functions as a pressure-sensitive element that senses a change in external pressure as a change in capacitance. Then, the change in electrostatic capacity is transmitted to the semiconductor element 3 accommodated in the recess 1a through the metallized wiring conductors 5a and 5b, and this is processed by the semiconductor element 3 so as to know the magnitude of the external pressure. be able to.
[0028]
Further, since the second bonding metallization layer 10 is attached to the lower surface of the protrusion 2a at a distance of 0.05 mm or more from the inner periphery of the protrusion 2a, the insulating plate 2 is greatly bent by external pressure. However, the stress generated by the bending is largely concentrated in the vicinity of the root of the inner periphery of the protrusion 2 a and does not act on the inner peripheral edge of the brazing material 11. Therefore, according to the package for a pressure detection device of the present invention, even when an external pressure is applied to the insulating plate 2 for a long period of time, plastic deformation does not occur in the brazing material 11, and the external pressure is maintained for a long period of time. It is possible to provide a pressure detection device that can accurately detect the pressure.
[0029]
If the metallization layer 10 for second bonding is deposited and formed at a position separated by less than 0.05 mm from the inner periphery of the protrusion 2a, the stress generated when the insulating plate 2 is greatly bent by external pressure. A large risk is applied to the inner peripheral edge of the brazing filler metal 11 to increase the risk of plastic deformation in the brazing filler metal 11, and the stress is greatly applied to the corner between the inner peripheral side surface and the lower surface of the protrusion 2a. As a result, the risk of cracks and chipping in the insulating plate 2 increases. Therefore, the formation position of the second bonding metallization layer 10 is specified at a position spaced 0.05 mm or more from the inner periphery of the protrusion 2a.
[0030]
Such a second bonding metallization layer 10 is made of metal powder metallization such as tungsten, molybdenum, copper, silver, etc. with a thickness of about 10 to 50 μm, and suitable organic binder, solvent, plasticizer, A metallized paste obtained by adding and mixing a dispersant is applied and applied to a ceramic green sheet for the insulating plate 2 using a conventionally known screen printing method, and is fired together with a green ceramic molded body for the insulating plate 2 Thus, a predetermined pattern is formed on the lower surface of the protrusion 2a of the insulating plate 2.
[0031]
In order to prevent the second bonding metallization layer 10 from being oxidatively corroded on the surface of the second bonding metallization layer 10, and to improve the bonding between the second bonding metallization layer 10 and the brazing material 11 Normally, a nickel plating layer having a thickness of about 1 to 10 μm is applied.
[0032]
Thus, according to the package for a pressure detection device of the present invention, the first electrode 7 for forming a capacitance is provided on the other main surface of the insulating base 1 on which the semiconductor element 3 is mounted on one main surface. At the same time, the insulating plate 2 having the second electrode 9 for forming a capacitance facing the first electrode 7 on one main surface is joined in a flexible state so as to form a sealed space between the insulating base 1 and the insulating plate 2. Therefore, the container for housing the semiconductor element 3 and the pressure sensitive element are integrated, and as a result, the pressure detection device can be reduced in size. Further, since the first electrode 7 and the second electrode 9 for forming the capacitance are connected to the semiconductor element 3 through the metallized wiring conductors 5a and 5b provided on the insulating base 1, the first electrode 7 and the second electrode 9 are formed. The electrode 9 can be connected to the semiconductor element 3 at a short distance, and as a result, a highly sensitive pressure detecting device is provided by reducing unnecessary capacitance generated between the metallized wiring conductors 5a and 5b. Can do.
[0033]
In order to bond the insulating plate 2 to the insulating substrate 1, a nickel plating layer having a thickness of about 1 to 10 μm is deposited in advance on the surfaces of the first bonding metallization layer 8 and the second bonding metallization layer 10, respectively. The insulating substrate 1 and the insulating plate 2 are sandwiched between a first bonding metallization layer 8 and a second bonding metallization layer 10 with a brazing material foil made of silver-copper brazing having a thickness of about 10 to 200 μm. A method is used in which the first bonding metallized layer 8 and the second bonding metallized layer 10 are brazed by superimposing and heating them to a temperature of about 850 ° C. in a reducing atmosphere to melt the brazing material foil. .
[0034]
Thus, according to the above-described package for the pressure detection device, the semiconductor element 3 is mounted on the mounting portion 1b, and each electrode of the semiconductor element 3 and the metallized wiring conductor 5 are electrically connected. By sealing, the pressure detection device is small and has high sensitivity.
[0035]
In addition, this invention is not limited to an example of the above-mentioned embodiment, It cannot be overemphasized that a various change is possible if it is a range which does not deviate from the summary of this invention.
[0036]
【The invention's effect】
As described above, according to the package for a pressure detection device of the present invention, a capacitance forming device is formed at the central portion of the other main surface of the insulating substrate having a mounting portion on which a semiconductor element is mounted on one main surface. In addition, an insulating plate having a second electrode for forming a capacitance opposite to the first electrode is joined in a flexible state so as to form a sealed space with the insulating base. Therefore, the pressure-sensitive element is integrally formed in the package that accommodates the semiconductor element. As a result, the pressure detection device can be reduced in size, and the wiring for connecting the pressure detection electrode and the semiconductor element is short. As a matter of fact, unnecessary capacitance generated between these wirings can be made small. Further, a frame-like protrusion is formed on the outer peripheral portion of the inner main surface of the insulating plate, and brazed to the metallization layer for the first bonding of the insulating substrate at a position separated by 0.05 mm or more from the inner peripheral edge of the main surface of the protrusion. Since the second metallization layer for bonding is applied, even if a large external pressure is applied to the insulating plate over a long period of time, the stress generated by the bending of the insulating plate It concentrates in the vicinity of the peripheral root and does not act greatly on the inner peripheral edge of the brazing material that joins the insulating base and the insulating plate. Accordingly, there is provided a pressure detection device capable of accurately detecting external pressure over a long period of time without causing plastic deformation in the brazing material even when external pressure is applied to the insulating plate for a long period of time. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for a pressure detection device of the present invention.
FIG. 2 is a cross-sectional view showing a conventional pressure detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 2 ... Insulation board 2a ... Projection part 3 ... Semiconductor element 7 ... 1st electrode 8 ... For 1st joining Metallized layer 9 ... second electrode
10 ・ ・ ・ ・ ・ Metalized layer for second bonding
11 Brazing material

Claims (1)

内部および表面に複数の配線導体を有するとともに一方の主面に半導体素子が搭載される搭載部を、他方の主面に前記配線導体の一つに電気的に接続された静電容量形成用の第一電極および該第一電極を取り囲み前記配線導体の他の一つに電気的に接続された枠状の第一接合用メタライズ層を有する絶縁基体と、一方の主面に前記第一電極に対向する静電容量形成用の第二電極および該第二電極に電気的に接続され、かつ前記第一接合用メタライズ層にろう付けされた枠状の第二接合用メタライズ層を有し、前記絶縁基体の他方の主面との間に密閉空間を形成するように可撓な状態で前記絶縁基体に接合された絶縁板とから成る圧力検出装置用パッケージであって、前記絶縁板はその一方の主面の外周部に枠状の突起部が形成されているとともに該突起部主面の内周縁から0.05mm以上離間した位置に前記第二接合用メタライズが被着形成されていることを特徴とする圧力検出装置用パッケージ。A mounting portion having a plurality of wiring conductors inside and on the surface and mounting a semiconductor element on one main surface, and for forming a capacitance electrically connected to one of the wiring conductors on the other main surface An insulating base having a first electrode and a frame-like first bonding metallization layer surrounding the first electrode and electrically connected to the other one of the wiring conductors; A second electrode for forming a capacitance opposite to each other, and a frame-shaped second bonding metallization layer electrically connected to the second electrode and brazed to the first bonding metallization layer, A package for a pressure detecting device, comprising: an insulating plate joined to the insulating base in a flexible state so as to form a sealed space with the other main surface of the insulating base, the insulating plate being one of the insulating plates When a frame-shaped protrusion is formed on the outer periphery of the main surface of Package for pressure detection device, characterized in that the from the inner periphery of the protrusion portion main surface at a position spaced above 0.05mm second bonding metallization layer is deposited and formed on.
JP2001194275A 2001-06-27 2001-06-27 Package for pressure detection device Expired - Fee Related JP4794072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194275A JP4794072B2 (en) 2001-06-27 2001-06-27 Package for pressure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194275A JP4794072B2 (en) 2001-06-27 2001-06-27 Package for pressure detection device

Publications (2)

Publication Number Publication Date
JP2003004565A JP2003004565A (en) 2003-01-08
JP4794072B2 true JP4794072B2 (en) 2011-10-12

Family

ID=19032441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194275A Expired - Fee Related JP4794072B2 (en) 2001-06-27 2001-06-27 Package for pressure detection device

Country Status (1)

Country Link
JP (1) JP4794072B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206228A (en) * 1988-02-12 1989-08-18 Hitachi Ltd Manufacture of semiconductor strain gage type pressure sensor
JP3494523B2 (en) * 1996-03-28 2004-02-09 長野計器株式会社 Capacitive pressure sensor
JPH09304208A (en) * 1996-05-14 1997-11-28 Matsushita Electric Ind Co Ltd Capacitive pressure sensor and its manufacture and gas-abnormality monitoring apparatus using the capacitive pressure sensor
JPH11295176A (en) * 1998-04-14 1999-10-29 Nagano Keiki Co Ltd Differential pressure sensor

Also Published As

Publication number Publication date
JP2003004565A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP2002107254A (en) Package for pressure detector
JP4034988B2 (en) Pressure detection device package and pressure detection device
JP4803917B2 (en) Package for pressure detection device
JP4794072B2 (en) Package for pressure detection device
JP4822624B2 (en) Package for pressure detection device
JP4974424B2 (en) Package for pressure detection device
JP4557405B2 (en) Package for pressure detection device
JP3716165B2 (en) Pressure detection device package and pressure detection device
JP3850263B2 (en) Pressure detection device package and pressure detection device
JP4223709B2 (en) Method for manufacturing package for pressure detection device
JP4794073B2 (en) Package for pressure detection device
JP4582889B2 (en) Package for pressure detection device
JP4859280B2 (en) Package for pressure detection device and manufacturing method thereof
JP3878836B2 (en) Package for pressure detection device
JP4863569B2 (en) Package for pressure detection device
JP4925522B2 (en) Package for pressure detection device
JP4713029B2 (en) Package for pressure detection device
JP4034995B2 (en) Pressure detection device package and pressure detection device
JP4557406B2 (en) Package for pressure detection device
JP4582888B2 (en) Package for pressure detection device
JP4789357B2 (en) Package for pressure detection device
JP3955067B2 (en) Pressure detection device package and pressure detection device
JP4753926B2 (en) Pressure detector and pressure detector assembly
JP2002323394A (en) Package for pressure detector
JP4077690B2 (en) Package for pressure detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees