JP4536240B2 - Curable resin composition and metal base circuit board using the same - Google Patents
Curable resin composition and metal base circuit board using the same Download PDFInfo
- Publication number
- JP4536240B2 JP4536240B2 JP2000308707A JP2000308707A JP4536240B2 JP 4536240 B2 JP4536240 B2 JP 4536240B2 JP 2000308707 A JP2000308707 A JP 2000308707A JP 2000308707 A JP2000308707 A JP 2000308707A JP 4536240 B2 JP4536240 B2 JP 4536240B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- circuit board
- curable resin
- skeleton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Epoxy Resins (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、応力緩和性に優れ、しかも絶縁信頼性及び放熱性に優れた金属ベ−ス回路基板とそれに用いて好適な硬化性樹脂組成物に関する。
【0002】
【従来の技術】
従来より、金属板上に無機フィラ−を充填したエポキシ樹脂等からなる絶縁層を設け、その上に導電回路を配設した金属ベース回路基板が、熱放散性に優れることから高発熱性電子部品を実装する回路基板として用いられている。
【0003】
特に、車載用電子機器について、その小型化、省スペ−ス化と共に電子機器をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きいなど過酷な環境であり、放熱面積の大きな基板が必要とされる。このような用途に対して、放熱性に優れる前記金属ベ−ス回路基板が注目されている。
【0004】
従来の金属ベ−ス回路基板は、熱放散性や経済的な理由からアルミニウム板を用いることが多いが、実使用下で加熱/冷却が繰り返されると、前記アルミニウム板と電子部品、特にチップ部品との熱膨張率の差に起因して大きな熱応力が発生し、部品を固定している半田部分或いはその近傍にクラックが発生するなど電気的信頼性が低下するという問題点がある。
【0005】
前記問題点を改良するためには、絶縁接着層を熱伝導性が高く、低弾性率にして、さらに高レベルの耐熱性、耐湿性を有することが必要であり、出願人は特願平2000−200598号において、特定のエポキシ硬化剤を使用する技術を開示したいるものの、耐湿性、特に高温高湿雰囲気下に放置後の絶縁抵抗の低下について、更なる改良が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みてなされたものであり、低弾性率で、接着性、耐熱性に優れ、更に硬化体の耐湿性が一層改善された硬化性樹脂組成物を提供すること、更に、金属板と導電回路との密着性が優れ、応力緩和性に優れ、急激な加熱/冷却を受けても半田或いはその近傍でクラック発生等の異常を生じない、耐熱性、耐湿性及び放熱性に優れる金属ベ−ス回路基板を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、(1)エポキシ樹脂、(2)ポリエーテル骨格を有し、主鎖の末端に1級アミン基を有する硬化剤、(3)ウレイド基を有するシランカップリング剤、及び(4)無機充填剤を必須成分とする硬化性樹脂組成物である。
【0008】
また、本発明は、エポキシ樹脂が、ジシクロペンタジエン骨格を持つエポキシ樹脂、ナフタレン骨格を持つエポキシ樹脂、ビフェニル骨格を持つエポキシ樹脂及びノボラック骨格を持つエポキシ樹脂から選ばれた1種以上を全エポキシ樹脂中10質量パーセント以上含むことを特徴とする前記の硬化性樹脂組成物であり、更に好ましくは、硬化後の貯蔵弾性率が300Kで15000MPa以下であることを特徴とする前記の硬化性樹脂組成物である。
【0009】
加えて、本発明は、金属板の少なくとも一主面に絶縁層を介して回路を設けてなる金属ベース回路基板であって、前記絶縁層が前記の硬化性樹脂組成物の硬化体からなることを特徴とする金属ベース回路基板である。
【0010】
【発明の実施の形態】
本発明において、硬化性樹脂組成物は、(1)エポキシ樹脂、(2)ポリエーテル骨格を有し、主鎖の末端に1級アミン基を有する硬化剤、(3)ウレイド基を有するシランカップリング剤、及び(4)無機充填剤を組み合わせた組成を有することにより、応力緩和性、電気絶縁性、放熱性、耐熱性、耐湿性のいずれにも優れた硬化物を提供することができる。
【0011】
エポキシ樹脂としては、ビスフェノールF型エポキシ樹脂やビスフェノールA型エポキシ樹脂等の汎用のエポキシ樹脂を用いることができるが、ジシクロペンタジエン骨格を持つエポキシ樹脂、ナフタレン骨格を持つエポキシ樹脂、ビフェニル骨格を持つエポキシ樹脂及びノボラック骨格を持つエポキシ樹脂から選ばれた1種以上を、全エポキシ樹脂中10質量パーセント以上含むと、応力緩和性と耐湿性のバランスが更に向上するので好ましい。
【0012】
ノボラック骨格を持つ代表的なエポキシ樹脂には、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂があるが、ジシクロペンタジエン骨格、ナフタレン骨格またはビフェニル骨格とノボラック骨格を併せ持つエポキシ樹脂を用いることもできる。エポキシ樹脂として、上記の骨格を持つエポキシ樹脂を単独で使用してもかまわない。
【0013】
また、エポキシ樹脂を主体に他の樹脂として、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂やフェノキシ樹脂、アクリルゴム、アクリロニトリル−ブタジエンゴム等の高分子量樹脂を配合してもよいが、応力緩和性、電気絶縁性、耐熱性、耐湿性のバランスを考慮すると、上記高分子量樹脂の配合量はエポキシ樹脂との合計量に対して30質量パーセント以下であることが好ましい。
【0014】
本発明に用いる硬化剤は、ポリエーテル骨格を有し、主鎖の末端に1級アミン基を有する硬化剤を、硬化後の樹脂組成物の貯蔵弾性率を下げるために使用するが、他の硬化剤と併用することができるし、ポリエーテル骨格を有し、主鎖の末端に1級アミン基を有する硬化剤同士の中で2種以上を混合使用することもできる。また、芳香族アミン系硬化剤を併用すると、応力緩和性、電気絶縁性、耐湿性等のバランスを更に好適にすることができ、このような芳香族アミン系硬化剤としては、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、メタフェニレンジアミン等が使用できる。更に、フェノールノボラック樹脂等の硬化剤を更に併用することもできる。尚、硬化剤の添加量としては、エポキシ当量に見合う量の活性水素当量が望ましい。
【0015】
シランカップリング剤としては、従来は、γグリシドキシプロピルトリメトキシシラン(日本ユニカ社A−187)等がエポキシ樹脂によく用いられているが、これを用いた硬化体の環境(高温多湿)試験後の絶縁信頼性が必ずしも十分ではない。本発明においては、ウレイド基及び/又はメルカプト基を有するシランカップリング剤を選択することで、前記欠点の改善を図ることができる。ウレイド基を有するシランカップリング剤としては、γウレイドプロピルトリエトキシシラン(日本ユニカA−1160)等、メルカプト基を有するシランカップリング剤としては、γメルカプトプロピルトリメトキシシラン(日本ユニカ社A−189)等が例示される。使用量としては無機充填剤の1質量パーセント程度を加えれば良い。 尚、本発明の硬化性樹脂組成物の作製にあたり、シランカップリング剤は予め無機充填剤を処理するようにしても、或いは硬化性樹脂組成物を配合・混合する際に添加しても構わない。
【0016】
本発明に用いる無機充填剤は、電気絶縁性が良好で、しかも高熱伝導率のものが用いられ、このようなものとして酸化アルミニウム、窒化アルミニウム、窒化珪素、窒化ホウ素、シリカ(酸化珪素)等があり、単独系でも混合系でも用いることができる。これらのうち、酸化アルミニウムは粒子形状が球状で高充填可能なものが安価に、容易に入手できるという理由で好ましい。使用量としては全組成物の40〜90体積%程度である。
【0017】
本発明において、硬化性樹脂組成物の硬化後の貯蔵弾性率は、300Kで15000MPa以下であることが好ましい。15000MPa以上だと、応力緩和性に優れる金属ベース回路基板が得難くなり、本発明の目的を達成できないことがある。一方、あまりに貯蔵弾性率が小さいと、外力が加わった時に変形して、絶縁信頼性が損なわれることがあることから、300Kで100MPa以上であることが好ましい。
【0018】
本発明の樹脂組成物を金属ベース回路基板に適用する場合、前記樹脂組成物が硬化して形成される絶縁層の厚みは、応力緩和性、放熱性、絶縁信頼性、生産性等を考慮して決められるが、通常は50〜150μm程度である。
【0019】
金属ベース回路基板の回路の材質は、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウムのいずれか、これらの金属を2種類以上含む合金、或いは前記金属又は合金を使用したクラッド箔等を用いることができる。尚、前記箔の製造方法は電解法でも圧延法で作製したものでもよく、箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁層との接着性の点から回路の絶縁層に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。
【0020】
本発明の金属ベース回路基板に用いられる金属板は、アルミニウム、鉄、銅およびそれらの合金、もしくはこれらのクラッド材等からなり、その厚みは特に規定するものではない。しかし、熱放散性に富みしかも経済的であることから、0.5〜5.0mmのアルミニウムが好ましく選択される。
【0021】
尚、本発明の金属ベース回路基板の製造方法に関しては、前記硬化性樹脂組成物に適宜消泡剤やレベリング剤等の添加剤を添加した材料を、金属板及び/又は導体箔上に塗布し、導体箔又は金属板を重ねた後に十分に硬化させ、その後導体箔より回路形成する方法、或いは予め絶縁材料からなるシ−トを作製しておき、前記シートを介して金属板と導体箔を張り合わせ回路形成する方法、或いは前記方法に於いて導体箔に変えて予め回路形成されている導体回路を直接に用いる方法等の従来公知の方法で得ることができる。
【0022】
以下、実施例に基づき、本発明を更に詳細に説明する。
【0023】
【実施例】
〔実施例1〕エポキシ樹脂としてビスフェノールF型エポキシ樹脂(エピコート807:エポキシ当量=173、油化シェルエポキシ株式会社製)100質量部、シランカップリング剤、γ−ウレイドプロピルトリエトキシシラン(A−1160:日本ユニカー株式会社製)5質量部、無機フィラーとして平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製)500質量部を、万能混合攪拌機で混合し、これに硬化剤としてポリオキシプロピレンアミン(ジェファーミンT−403:テキサコケミカル社製)25質量部、ポリオキシプロピレンアミン(ジェファーミンD2000:テキサコケミカル社製)20質量部を配合、混合した。
【0024】
上記混合物を厚さ2.0mmのアルミニウム板上に硬化後の絶縁層の厚みが100μmになるように塗布し、Bステージ状態に予備硬化させ、ラミネーターで厚さ70μmの電解銅箔を張り合わせ、その後80℃×2時間+150℃×3時間アフターキュアを行い絶縁層付き銅箔基板を作製し、更に、銅箔をエッチングしてパッド部を有する所望の回路を形成して、金属ベース回路基板とした。また、前記樹脂組成物を80℃×2時間+150℃×3時間硬化させて、厚さ約100μm幅約3mm長さ約50mmの硬化体の試験片を別途作製し、貯蔵弾性率の測定に供した。
【0025】
上記の硬化体については、動的粘弾性測定器(レオメトリックス社製;RSA2)を用い、周波数11Hz、昇温速度10℃/分の条件下、−50℃〜+150℃の温度範囲で貯蔵弾性率を測定した。300Kでの貯蔵弾性率測定結果を表1に示した。又、金属ベ−ス基板について耐電圧及び銅箔ピール強度測定と、金属ベース回路基板についてヒ−トサイクル試験を次に示す条件で測定し、その測定結果も表1に示した。
【0026】
<耐電圧測定方法>温度121℃、相対湿度100%、気圧2026HPaのプレッシャークッカーテスターにて96時間処理後と処理前の試験片を絶縁油中に浸漬し、室温で銅箔とアルミニウム板間に交流電圧を印加し、絶縁破壊する電圧を測定した。初期印加電圧は0.5kVであり、各電圧で30秒間保持した後、0.5kVずつ段階的に昇圧する方法で印加した。
【0027】
<絶縁抵抗測定方法>印可電圧を100VDC、金属板と回路との間について、アドバンテスト社製R8340型で測定した。1GΩ以上を良好と判定した。
【0028】
<銅箔ピール強度測定方法>テンシロン(オリエンテック社製;型式UCT−1T)を用い、1cm幅で90°の方向に室温で50mm/分の速度で剥離した時の強度を求めた。
【0029】
<ヒ−トサイクル試験方法>パッド間にチップサイズ2.0mm×1.25mmのチップ抵抗を半田付けし、−40℃7分〜+125℃7分を1サイクルとして500回のヒートサイクル試験を行なった後、顕微鏡で半田部分のクラックの有無を観察した。半田部分のクラックの発生が10%以上あるものは不良とし、半田クラックの発生が10%未満のものを良好と判定した。
【0030】
【0031】
〔比較例1〕シランカップリング剤として、γメルカプトプロピルメトキシシラン(A−189:日本ユニカー株式会社製)を5質量部に変えたこと以外は実施例1と同様に試験した。
【0032】
〔比較例2〕シランカップリングとして剤、γ−ウレイドプロピルトリエトキシシラン(A−1160:日本ユニカー株式会社製)2.5質量部、及びγメルカプトプロピルメトキシシラン(A−189:日本ユニカー株式会社製)を2.5質量部を用いた他は、実施例1と同様に試験した。
【0033】
〔比較例3〕シランカップリング剤として、γ−ウレイドプロピルトリエトキシシラン(A−1160:日本ユニカー株式会社製)4質量部、及びγメルカプトプロピルメトキシシラン(A−189:日本ユニカー株式会社製)を1質量部を用いた他は、実施例1と同様に試験した。
【0034】
〔比較例4〕シランカップリング剤として、γ−ウレイドプロピルトリエトキシシラン(A−1160:日本ユニカー株式会社製)1質量部、及びγメルカプトプロピルメトキシシラン(A−189:日本ユニカー株式会社製)を4質量部を用いた他は、実施例1と同様に試験した。
【0035】
〔比較例5〕シランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン(A−187:日本ユニカー株式会社製)5質量部、を用いたこと以外は実施例1と同様に試験した。
【0036】
表1から明かなとおりに、比較例の金属ベース回路基板はPCT処理後の耐電圧並びに絶縁抵抗が低いのに対して、実施例1の金属ベース回路基板は、貯蔵弾性率が低く、ヒートサイクル試験結果も良好であり、PCT処理後の耐電圧、絶縁抵抗ピール強度も良好であった。
【0037】
【発明の効果】
本発明の硬化性樹脂組成物は、応力緩和性に優れ、絶縁信頼性にも優れている特徴を有しており、それを用いた金属ベ−ス回路基板は、実使用条件下で受ける激しい温度変化によっても、チップを固定している半田部分にクラックを生じることがなく高信頼性の混成集積回路を提供することができる特徴を有している。
【0038】
また、本発明の硬化性樹脂組成物は、無機充填剤を含有させていることで従来からの熱放散性が優れる点、耐電圧等の電気絶縁性に優れる点等が良好のままに維持されていながら、前記応力緩和性が改善されている特徴をゆうしているので、それを用いた本発明の金属ベース回路基板は、自動車のエンジンル−ム等過酷な環境でも使用することができ、産業上非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-based circuit board having excellent stress relaxation properties and excellent insulation reliability and heat dissipation, and a curable resin composition suitable for use therein.
[0002]
[Prior art]
Conventionally, a metal base circuit board in which an insulating layer made of an epoxy resin or the like filled with an inorganic filler is provided on a metal plate and a conductive circuit is provided thereon has excellent heat dissipation, so that a highly heat-generating electronic component Is used as a circuit board for mounting.
[0003]
In particular, regarding in-vehicle electronic devices, it is desired to install the electronic devices in an engine room together with downsizing and space saving. The engine room has a severe environment such as a high temperature and a large temperature change, and a substrate having a large heat radiation area is required. For such applications, the metal-based circuit board that is excellent in heat dissipation has attracted attention.
[0004]
Conventional metal-based circuit boards often use aluminum plates for heat dissipation and economical reasons. However, when heating / cooling is repeated under actual use, the aluminum plates and electronic components, particularly chip components, are used. A large thermal stress is generated due to the difference in thermal expansion coefficient with respect to the solder, and there is a problem that the electrical reliability is lowered, for example, a crack is generated in the solder portion where the component is fixed or in the vicinity thereof.
[0005]
In order to improve the above problems, it is necessary that the insulating adhesive layer has a high thermal conductivity, a low elastic modulus, and a high level of heat resistance and moisture resistance. Although the technology using a specific epoxy curing agent is disclosed in No. -20588, further improvement is desired with respect to moisture resistance, particularly a decrease in insulation resistance after standing in a high-temperature and high-humidity atmosphere.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a curable resin composition having a low elastic modulus, excellent adhesiveness and heat resistance, and further improved moisture resistance of a cured product, Furthermore, it has excellent adhesion between the metal plate and the conductive circuit, excellent stress relaxation, and does not cause any abnormalities such as cracking in the solder or its vicinity even when subjected to rapid heating / cooling, heat resistance, moisture resistance and heat dissipation An object of the present invention is to provide a metal base circuit board having excellent properties.
[0007]
[Means for Solving the Problems]
The present invention includes (1) an epoxy resin, (2) a curing agent having a polyether skeleton and having a primary amine group at the end of the main chain, (3) a silane coupling agent having a ureido group , and (4) It is a curable resin composition containing an inorganic filler as an essential component.
[0008]
In the present invention, the epoxy resin may be one or more selected from an epoxy resin having a dicyclopentadiene skeleton, an epoxy resin having a naphthalene skeleton, an epoxy resin having a biphenyl skeleton, and an epoxy resin having a novolac skeleton. 10% by mass or more of the curable resin composition, and more preferably, the storage elastic modulus after curing is 15,000 MPa or less at 300K. It is.
[0009]
In addition, the present invention is a metal base circuit board in which a circuit is provided on at least one main surface of a metal plate via an insulating layer, and the insulating layer is made of a cured body of the curable resin composition. Is a metal-based circuit board.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the curable resin composition comprises (1) an epoxy resin, (2) a polyether skeleton, a curing agent having a primary amine group at the end of the main chain, and (3) a silane cup having a ureido group. By having a composition that combines a ring agent and (4) an inorganic filler, a cured product excellent in all of stress relaxation, electrical insulation, heat dissipation, heat resistance, and moisture resistance can be provided.
[0011]
As the epoxy resin, general-purpose epoxy resins such as bisphenol F type epoxy resin and bisphenol A type epoxy resin can be used. Epoxy resin having a dicyclopentadiene skeleton, epoxy resin having a naphthalene skeleton, epoxy having a biphenyl skeleton It is preferable to include at least 10 mass percent of all epoxy resins containing at least one selected from a resin and an epoxy resin having a novolak skeleton, since the balance between stress relaxation and moisture resistance is further improved.
[0012]
Typical epoxy resins having a novolak skeleton include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin, but an epoxy resin having a dicyclopentadiene skeleton, a naphthalene skeleton, or a biphenyl skeleton and a novolak skeleton can also be used. As the epoxy resin, an epoxy resin having the above skeleton may be used alone.
[0013]
In addition, a thermosetting resin such as a phenol resin or a polyimide resin, or a high molecular weight resin such as a phenoxy resin, an acrylic rubber, or an acrylonitrile-butadiene rubber may be blended as the other resin mainly composed of an epoxy resin, but the stress relaxation property. In consideration of the balance of electrical insulation, heat resistance and moisture resistance, the amount of the high molecular weight resin is preferably 30% by mass or less based on the total amount with the epoxy resin.
[0014]
As the curing agent used in the present invention, a curing agent having a polyether skeleton and having a primary amine group at the end of the main chain is used to lower the storage elastic modulus of the resin composition after curing. It can be used in combination with a curing agent, or a mixture of two or more curing agents having a polyether skeleton and a primary amine group at the end of the main chain can be used. Further, when an aromatic amine curing agent is used in combination, the balance of stress relaxation, electrical insulation, moisture resistance and the like can be further improved. Examples of such aromatic amine curing agents include diaminodiphenylmethane, diamino Diphenyl sulfone, metaphenylenediamine, etc. can be used. Further, a curing agent such as a phenol novolac resin can be further used in combination. In addition, as an addition amount of a hardening | curing agent, the active hydrogen equivalent of the quantity corresponding to an epoxy equivalent is desirable.
[0015]
As a silane coupling agent, γ-glycidoxypropyltrimethoxysilane (Nippon Unica A-187) and the like are conventionally used for epoxy resins, but the environment of the cured body using this (high temperature and high humidity) The insulation reliability after the test is not always sufficient. In the present invention, the above-mentioned defects can be improved by selecting a silane coupling agent having a ureido group and / or a mercapto group. Examples of the silane coupling agent having a ureido group include γ-ureidopropyltriethoxysilane (Nihon Unica A-1160), and examples of the silane coupling agent having a mercapto group include γ-mercaptopropyltrimethoxysilane (Nihon Unica A-189). ) Etc. are exemplified. What is necessary is just to add about 1 mass percent of an inorganic filler as usage-amount. In preparing the curable resin composition of the present invention, the silane coupling agent may be previously treated with an inorganic filler, or may be added when blending and mixing the curable resin composition. .
[0016]
The inorganic filler used in the present invention has good electrical insulation and high thermal conductivity, such as aluminum oxide, aluminum nitride, silicon nitride, boron nitride, silica (silicon oxide) and the like. Yes, either a single system or a mixed system can be used. Of these, aluminum oxide is preferable because it can be easily obtained at a low cost because it has a spherical particle shape and can be highly filled. The amount used is about 40 to 90% by volume of the total composition.
[0017]
In this invention, it is preferable that the storage elastic modulus after hardening of curable resin composition is 15000 Mpa or less at 300K. When it is 15000 MPa or more, it becomes difficult to obtain a metal base circuit board having excellent stress relaxation properties, and the object of the present invention may not be achieved. On the other hand, if the storage elastic modulus is too small, it may be deformed when an external force is applied and the insulation reliability may be impaired. Therefore, it is preferably 100 MPa or more at 300K.
[0018]
When the resin composition of the present invention is applied to a metal base circuit board, the thickness of the insulating layer formed by curing the resin composition takes into account stress relaxation, heat dissipation, insulation reliability, productivity, etc. Usually, it is about 50 to 150 μm.
[0019]
The material of the circuit of the metal base circuit board is copper, aluminum, nickel, iron, tin, silver, titanium, an alloy containing two or more of these metals, or a clad foil using the metal or alloy. be able to. The foil may be produced by an electrolytic method or a rolling method. The foil may be plated with a metal such as Ni plating, Ni-Au plating, or solder plating. From the viewpoint of adhesiveness, the surface on the side in contact with the insulating layer of the circuit is more preferably roughened in advance by etching, plating or the like.
[0020]
The metal plate used for the metal base circuit board of the present invention is made of aluminum, iron, copper and alloys thereof, or clad materials thereof, and the thickness thereof is not particularly specified. However, since it is rich in heat dissipation and economical, 0.5 to 5.0 mm of aluminum is preferably selected.
[0021]
In addition, regarding the manufacturing method of the metal base circuit board of this invention, the material which added additives, such as an antifoamer and a leveling agent, to the said curable resin composition suitably is apply | coated on a metal plate and / or conductor foil. Then, after the conductor foil or the metal plate is stacked, it is sufficiently cured, and then a circuit is formed from the conductor foil, or a sheet made of an insulating material is prepared in advance, and the metal plate and the conductor foil are bonded via the sheet. It can be obtained by a conventionally known method such as a method of forming a laminated circuit, or a method of directly using a conductor circuit formed in advance in place of the conductor foil in the above method.
[0022]
Hereinafter, based on an Example, this invention is demonstrated still in detail.
[0023]
【Example】
[Example 1] Bisphenol F type epoxy resin (Epicoat 807: Epoxy equivalent = 173, manufactured by Yuka Shell Epoxy Co., Ltd.) 100 parts by mass as an epoxy resin, silane coupling agent, γ-ureidopropyltriethoxysilane (A-1160) : Nihon Unicar Co., Ltd.) 5 parts by mass, 500 parts by mass of alumina (AS-50: Showa Denko Co., Ltd.) having an average particle size of 5 μm as an inorganic filler are mixed with a universal mixing stirrer, and polyoxy as a curing agent. 25 parts by mass of propyleneamine (Jephamine T-403: manufactured by Texaco Chemical Co., Ltd.) and 20 parts by mass of polyoxypropyleneamine (Jephamine D2000: manufactured by Texaco Chemical Co., Ltd.) were blended and mixed.
[0024]
The mixture is applied onto an aluminum plate having a thickness of 2.0 mm so that the thickness of the insulating layer after curing is 100 μm, pre-cured to a B stage state, and an electrolytic copper foil having a thickness of 70 μm is pasted with a laminator, After curing at 80 ° C. × 2 hours + 150 ° C. × 3 hours, a copper foil substrate with an insulating layer was prepared, and further, a desired circuit having a pad portion was formed by etching the copper foil to obtain a metal base circuit substrate. . Further, the resin composition is cured at 80 ° C. × 2 hours + 150 ° C. × 3 hours to separately prepare a test piece of a cured product having a thickness of about 100 μm, a width of about 3 mm, and a length of about 50 mm, and used for measurement of storage elastic modulus. did.
[0025]
About said hardened | cured material, storage elasticity is used in the temperature range of -50 degreeC-+150 degreeC on the conditions of frequency 11Hz and temperature increase rate 10 degree-C / min using a dynamic viscoelasticity measuring device (Rheometrics company make; RSA2). The rate was measured. Table 1 shows the measurement results of the storage modulus at 300K. Moreover, withstand voltage and copper foil peel strength measurement were performed on the metal base substrate, and a heat cycle test was performed on the metal base circuit substrate under the following conditions. The measurement results are also shown in Table 1.
[0026]
<Method of measuring withstand voltage> The test piece after treatment for 96 hours in a pressure cooker tester at a temperature of 121 ° C., a relative humidity of 100%, and an atmospheric pressure of 2026 HPa is immersed in insulating oil, and between the copper foil and the aluminum plate at room temperature. An AC voltage was applied, and the voltage at which dielectric breakdown occurred was measured. The initial applied voltage was 0.5 kV, and each voltage was held for 30 seconds, and then applied by a method in which the voltage was increased stepwise by 0.5 kV.
[0027]
<Insulation Resistance Measuring Method> The applied voltage was measured at 100 VDC and between the metal plate and the circuit using an R8340 model manufactured by Advantest Corporation. 1 GΩ or more was determined to be good.
[0028]
<Method for measuring copper foil peel strength> Tensilon (manufactured by Orientec Co., Ltd .; model UCT-1T) was used, and the strength when peeled at a rate of 50 mm / min at room temperature in the direction of 90 ° with a width of 1 cm was determined.
[0029]
<Heat cycle test method> A chip resistor having a chip size of 2.0 mm x 1.25 mm is soldered between pads, and a heat cycle test is performed 500 times with one cycle of -40 ° C 7 minutes to + 125 ° C 7 minutes. Thereafter, the presence or absence of cracks in the solder portion was observed with a microscope. Those having a crack occurrence of 10% or more in the solder portion were judged as defective, and those having a solder crack occurrence of less than 10% were judged good.
[0030]
[0031]
[ Comparative Example 1 ] Tests were conducted in the same manner as in Example 1 except that γ-mercaptopropylmethoxysilane (A-189: manufactured by Nihon Unicar Co., Ltd.) was changed to 5 parts by mass as the silane coupling agent.
[0032]
[ Comparative Example 2 ] Agent as silane coupling, 2.5 parts by mass of γ-ureidopropyltriethoxysilane (A-1160: manufactured by Nihon Unicar Co., Ltd.), and γ mercaptopropylmethoxysilane (A-189: Nihon Unicar Co., Ltd.) The product was tested in the same manner as in Example 1 except that 2.5 parts by mass was used.
[0033]
Comparative Example 3 As silane coupling agents, 4 parts by mass of γ-ureidopropyltriethoxysilane (A-1160: manufactured by Nihon Unicar Co., Ltd.) and γ mercaptopropylmethoxysilane (A-189: manufactured by Nihon Unicar Co., Ltd.) Was tested in the same manner as in Example 1 except that 1 part by mass was used.
[0034]
[ Comparative Example 4 ] As a silane coupling agent, 1 part by mass of γ-ureidopropyltriethoxysilane (A-1160: manufactured by Nihon Unicar Co., Ltd.) and γ mercaptopropylmethoxysilane (A-189: manufactured by Nihon Unicar Co., Ltd.) The test was conducted in the same manner as in Example 1 except that 4 parts by mass was used.
[0035]
[Comparative Example 5 ] Tests were conducted in the same manner as in Example 1 except that 5 parts by mass of γ-glycidoxypropyltrimethoxysilane (A-187: manufactured by Nihon Unicar Co., Ltd.) was used as the silane coupling agent.
[0036]
As is clear from Table 1, the metal base circuit board of the comparative example has a low withstand voltage and insulation resistance after the PCT treatment, whereas the metal base circuit board of Example 1 has a low storage elastic modulus and a heat cycle. The test results were also good, and the withstand voltage and insulation resistance peel strength after PCT treatment were also good.
[0037]
【The invention's effect】
The curable resin composition of the present invention is characterized by excellent stress relaxation properties and excellent insulation reliability, and a metal-based circuit board using the same is severely subjected to actual use conditions. It has a feature that a highly reliable hybrid integrated circuit can be provided without causing cracks in the solder portion to which the chip is fixed even when the temperature changes.
[0038]
In addition, the curable resin composition of the present invention maintains an excellent point such as a conventional heat dissipating property and an excellent electric insulation property such as a withstand voltage by including an inorganic filler. However, since it has the characteristics that the stress relaxation property is improved, the metal base circuit board of the present invention using the same can be used in a severe environment such as an engine room of an automobile, It is very useful in industry.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000308707A JP4536240B2 (en) | 2000-10-10 | 2000-10-10 | Curable resin composition and metal base circuit board using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000308707A JP4536240B2 (en) | 2000-10-10 | 2000-10-10 | Curable resin composition and metal base circuit board using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002114836A JP2002114836A (en) | 2002-04-16 |
JP4536240B2 true JP4536240B2 (en) | 2010-09-01 |
Family
ID=18788973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000308707A Expired - Fee Related JP4536240B2 (en) | 2000-10-10 | 2000-10-10 | Curable resin composition and metal base circuit board using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4536240B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005039112A (en) * | 2003-07-17 | 2005-02-10 | Denki Kagaku Kogyo Kk | Metal base circuit substrate |
JP4595665B2 (en) * | 2005-05-13 | 2010-12-08 | 富士電機システムズ株式会社 | Wiring board manufacturing method |
JP4858359B2 (en) * | 2007-08-28 | 2012-01-18 | パナソニック電工株式会社 | Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same |
JP6134089B2 (en) * | 2011-02-22 | 2017-05-24 | 積水化学工業株式会社 | Insulating material and laminated structure |
JP5913884B2 (en) * | 2011-09-27 | 2016-04-27 | 積水化学工業株式会社 | Insulating material and laminated structure |
JP2014029926A (en) * | 2012-07-31 | 2014-02-13 | Sumitomo Bakelite Co Ltd | Method for manufacturing metal base circuit board |
CN105542128A (en) * | 2015-12-15 | 2016-05-04 | 广东广山新材料有限公司 | Curing agent for epoxy resin as well as preparation method and application thereof |
EP3181609A1 (en) * | 2015-12-18 | 2017-06-21 | General Electric Technology GmbH | A support for end windings of an electric machine |
MY193335A (en) | 2017-03-22 | 2022-10-05 | Denka Company Ltd | Resin composition for circuit board, and metal-base circuit board in which same is used |
JP7304161B2 (en) * | 2019-01-23 | 2023-07-06 | デンカ株式会社 | Insulating resin composition, insulating resin cured body, laminate and circuit board |
CN112300395B (en) * | 2020-11-02 | 2022-03-08 | 湖北新蓝天新材料股份有限公司 | Amino-copolymerized silane coupling agent, and preparation method and application thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62283120A (en) * | 1986-05-30 | 1987-12-09 | Kanegafuchi Chem Ind Co Ltd | Curable composition |
JP2651585B2 (en) * | 1988-02-08 | 1997-09-10 | 科学技術庁放射線医学総合研究所長 | Human soft tissue equivalent material |
CA1338243C (en) * | 1989-01-30 | 1996-04-09 | Steven Andrew Lohnes | Additive for two component epoxy resin compositions |
JP3181424B2 (en) * | 1993-02-25 | 2001-07-03 | ソマール株式会社 | Liquid epoxy resin composition for casting |
JP3465829B2 (en) * | 1994-05-26 | 2003-11-10 | 電気化学工業株式会社 | Insulating material composition and circuit board and module using the same |
DE59610415D1 (en) * | 1995-04-04 | 2003-06-12 | Vantico Ag | Curable epoxy resin mixture containing wollastonite |
JPH09165499A (en) * | 1995-12-14 | 1997-06-24 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing of semiconductor |
JPH1045877A (en) * | 1996-08-07 | 1998-02-17 | Sumitomo Bakelite Co Ltd | Liquid sealing material |
JPH10251377A (en) * | 1997-03-12 | 1998-09-22 | Hitachi Chem Co Ltd | Molding material for sealing and electronic part |
JPH1160697A (en) * | 1997-08-22 | 1999-03-02 | Nippon Kayaku Co Ltd | Epoxy resin composition and its cured material |
-
2000
- 2000-10-10 JP JP2000308707A patent/JP4536240B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002114836A (en) | 2002-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3209132B2 (en) | Metal base substrate | |
JP2002012653A (en) | Curable resin composition and metal-base circuit board using the same | |
US8044330B2 (en) | Electrically conductive adhesive | |
JP7026674B2 (en) | Resin composition for circuit boards and metal-based circuit boards using them | |
JP3559137B2 (en) | Heat conductive adhesive composition and heat conductive adhesive film using the composition | |
JP4536240B2 (en) | Curable resin composition and metal base circuit board using the same | |
JP2009194359A (en) | Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same | |
JPWO2007123003A1 (en) | Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method | |
JPH09298369A (en) | Multilayer wiring board and its manufacture | |
JP2013254921A (en) | Circuit board and electronic-component mounting board | |
JP4914284B2 (en) | Circuit board composition and circuit board using the same | |
JP2005281509A (en) | Curable resin composition and metal-based circuit substrate by using the same | |
JP6769586B1 (en) | Resin composition and metal-based copper-clad laminate | |
JP2008189815A (en) | Dispersant, filler, heat-conductive resin composition and heat-conductive sheet | |
JPH118450A (en) | Metal base circuit board | |
JPH1187866A (en) | Metal base circuit board | |
JP4187062B2 (en) | Metal base circuit board | |
JP2017152610A (en) | Circuit board and electronic component mounting board | |
JP2005076023A (en) | Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive | |
JP2004220916A (en) | Adhesive composition for circuit connection, and circuit terminal connection method and circuit terminal connection structure using the same | |
JPH11150345A (en) | Metal base circuit board | |
JP2011094147A (en) | Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive | |
JP6006539B2 (en) | Circuit board and electronic component mounting board | |
JPH09328671A (en) | Electroconductive adhesive and device loading electronic parts | |
JP4123544B2 (en) | Circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100615 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100616 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |