JP7304161B2 - Insulating resin composition, insulating resin cured body, laminate and circuit board - Google Patents

Insulating resin composition, insulating resin cured body, laminate and circuit board Download PDF

Info

Publication number
JP7304161B2
JP7304161B2 JP2019009477A JP2019009477A JP7304161B2 JP 7304161 B2 JP7304161 B2 JP 7304161B2 JP 2019009477 A JP2019009477 A JP 2019009477A JP 2019009477 A JP2019009477 A JP 2019009477A JP 7304161 B2 JP7304161 B2 JP 7304161B2
Authority
JP
Japan
Prior art keywords
insulating resin
amine
mass
inorganic filler
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019009477A
Other languages
Japanese (ja)
Other versions
JP2020117619A (en
Inventor
裕紀 木元
良太 熊谷
克憲 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019009477A priority Critical patent/JP7304161B2/en
Publication of JP2020117619A publication Critical patent/JP2020117619A/en
Application granted granted Critical
Publication of JP7304161B2 publication Critical patent/JP7304161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Organic Insulating Materials (AREA)

Description

本発明は、金属ベース回路基板の製造に好適に用いられる絶縁性樹脂組成物及びその硬化体に関する。また、本発明は、絶縁性樹脂組成物を用いて形成された積層体及び回路基板に関する。 TECHNICAL FIELD The present invention relates to an insulating resin composition and a cured product thereof that are suitable for use in the production of metal-based circuit boards. The present invention also relates to a laminate and a circuit board formed using the insulating resin composition.

半導体素子をはじめとする電子・電気部品を搭載して混成集積回路を形成するための回路基板として、これまで様々な回路基板が実用化されている。回路基板は、基板材質に基づいて、樹脂回路基板、セラミックス回路基板、金属ベース回路基板等に分類されている。 2. Description of the Related Art Various circuit boards have been put into practical use as circuit boards for forming hybrid integrated circuits by mounting electronic/electrical parts such as semiconductor elements. Circuit boards are classified into resin circuit boards, ceramic circuit boards, metal-based circuit boards, and the like, based on the substrate material.

樹脂回路基板は、安価ではあるが基板の熱伝導性が低いので比較的小さな電力で利用される用途に制限される。セラミックス回路基板は、電気絶縁特性及び耐熱特性が高いというセラミックスの特徴から、比較的大きな電力で利用される用途に適するが、高価であるという欠点を有している。一方、金属ベース回路基板は、両者の中間的な性質を有し、比較的大きな電力で利用される汎用的な用途、例えば、冷蔵庫用電源、家庭向け空調用電源、自動車用電源、高速鉄道用電源等の用途に好適である。 Although the resin circuit board is inexpensive, its low thermal conductivity limits it to applications requiring relatively low power. A ceramic circuit board is suitable for use with a relatively large amount of electric power because of its high electrical insulation and heat resistance properties, but has the disadvantage of being expensive. On the other hand, metal-based circuit boards have intermediate properties between the two, and are used for general-purpose applications that require relatively large amounts of power, such as power supplies for refrigerators, power supplies for home air conditioners, power supplies for automobiles, and high-speed trains. It is suitable for applications such as power supplies.

例えば、特許文献1には、特定のエポキシ樹脂、硬化剤及び無機充填材を必須成分とする回路基板用組成物を用いて、応力緩和性、耐熱性、耐湿性及び放熱性に優れる回路基板を得る方法が開示されている。 For example, in Patent Document 1, a circuit board having excellent stress relaxation properties, heat resistance, moisture resistance, and heat dissipation properties is manufactured using a circuit board composition containing a specific epoxy resin, a curing agent, and an inorganic filler as essential components. A method for obtaining is disclosed.

特開2008-266535号公報JP 2008-266535 A

近年、プラグインハイブリッド自動車、電気自動車等の普及により、自動車用の急速充電器の需要が高まっている。こうした充電器用途に使用される回路基板は、従来の自動車用回路基板よりも高い電圧で利用されることから、より高い耐湿接着性、耐湿絶縁性が要求され、且つ、従来の自動車用回路基板と同等以上の熱伝導率、耐ヒートサイクル性も要求される。 In recent years, with the spread of plug-in hybrid vehicles, electric vehicles, etc., the demand for quick chargers for vehicles is increasing. Circuit boards used for such charger applications are used at higher voltages than conventional automotive circuit boards, so higher moisture-resistant adhesiveness and moisture-resistant insulation are required, and conventional automotive circuit boards Thermal conductivity and heat cycle resistance equal to or higher than

回路基板の耐ヒートサイクル性を向上させる方法として、絶縁層を低弾性率化して熱応力を緩和することで、半田クラックの進行を抑制する方法が挙げられる。しかし、絶縁層を低弾性率化した場合、高温高湿度かつ直流電圧印加の条件下で、金属箔-絶縁層間の接着強度が低下しやすく、金属箔の膨れの原因となるおそれがある。 As a method for improving the heat cycle resistance of a circuit board, there is a method of suppressing the progression of solder cracks by reducing the elastic modulus of the insulating layer to relax the thermal stress. However, when the elastic modulus of the insulating layer is reduced, the adhesive strength between the metal foil and the insulating layer tends to decrease under the conditions of high temperature, high humidity and DC voltage application, which may cause swelling of the metal foil.

本発明は、高温高湿環境下での優れた接着性及び絶縁性と低弾性率とを両立した絶縁層を形成可能な絶縁性樹脂組成物及びその硬化体を提供することを目的とする。また、本発明は、上記絶縁性樹脂組成物の硬化体で構成された絶縁層を備え、耐湿絶縁性、熱伝導性及び耐ヒートサイクル性に優れた回路基板を提供することを目的とする。 An object of the present invention is to provide an insulating resin composition capable of forming an insulating layer having both excellent adhesion and insulating properties in a high-temperature and high-humidity environment and a low elastic modulus, and a cured product thereof. Another object of the present invention is to provide a circuit board having an insulating layer made of a cured product of the insulating resin composition and having excellent moisture resistance insulation, thermal conductivity and heat cycle resistance.

本発明は、以下に示す態様を含む。
(1)エポキシ樹脂と、アミン系硬化剤と、無機充填材と、1分子中に1個以上の水酸基を有するリン酸エステル化合物とを含有し、
前記アミン系硬化剤が、
アミン当量が300以下の第一のアミン系硬化剤と、
アミン当量が800以上の第二のアミン系硬化剤と、
を含有する、絶縁性樹脂組成物。
(2)前記第一のアミン系硬化剤及び前記第二のアミン系硬化剤からなる群より選択される少なくとも一種が、ポリエーテル鎖を有する、(1)に記載の絶縁性樹脂組成物。
(3)前記リン酸エステル化合物の含有量が、前記エポキシ樹脂、前記アミン系硬化剤及び前記無機充填材の合計100質量部に対して、0.05~0.4質量部である、(1)又は(2)に記載の絶縁性樹脂組成物。
(4)前記無機充填材が、酸化アルミニウム、シリカ、窒化ケイ素及び窒化ホウ素からなる群より選択される少なくとも一種を含有する、(1)~(3)のいずれかに記載の絶縁性樹脂組成物。
(5)前記無機充填材の最大粒子径が200μm以下であり、前記無機充填材の含有量が、前記エポキシ樹脂、前記アミン系硬化剤及び前記無機充填材の合計100質量部に対して、45~95質量部である、(1)~(4)のいずれかに記載の絶縁性樹脂組成物。
(6)前記リン酸エステル化合物が、ポリエーテル鎖を有する、(1)~(5)のいずれかに記載の絶縁性樹脂組成物。
(7)前記リン酸エステル化合物が、オキシカルボニル基を有する、(1)~(6)のいずれかに記載の絶縁性樹脂組成物。
(8)(1)~(7)のいずれかに記載の絶縁性樹脂組成物の硬化体である、絶縁性樹脂硬化体。
(9)85℃における貯蔵弾性率が500MPa以下である、(8)に記載の絶縁性樹脂硬化体。
(10)金属板と、
前記金属板上に配置された(8)又は(9)に記載の絶縁性樹脂硬化体と、
前記絶縁性樹脂硬化体上に配置された金属箔と、
を備える、積層体。
(11)金属板と、
前記金属板上に配置された(8)又は(9)に記載の絶縁性樹脂硬化体と、
前記絶縁性樹脂硬化体上に配置された回路部と、
を備える、回路基板。
(12)85℃85%RHの環境下で回路部-金属板間に直流500Vの電圧を1000時間印加し続けた後の、85℃85%RHにおける回路部-金属板間の体積抵抗率が、1.0×10Ω・cm以上である、(10)に記載の回路基板。
The present invention includes aspects shown below.
(1) containing an epoxy resin, an amine-based curing agent, an inorganic filler, and a phosphate ester compound having one or more hydroxyl groups in one molecule;
The amine-based curing agent is
a first amine-based curing agent having an amine equivalent of 300 or less;
a second amine-based curing agent having an amine equivalent of 800 or more;
An insulating resin composition containing
(2) The insulating resin composition according to (1), wherein at least one selected from the group consisting of the first amine-based curing agent and the second amine-based curing agent has a polyether chain.
(3) The content of the phosphate ester compound is 0.05 to 0.4 parts by mass with respect to a total of 100 parts by mass of the epoxy resin, the amine curing agent and the inorganic filler, (1 ) or the insulating resin composition according to (2).
(4) The insulating resin composition according to any one of (1) to (3), wherein the inorganic filler contains at least one selected from the group consisting of aluminum oxide, silica, silicon nitride and boron nitride. .
(5) The maximum particle size of the inorganic filler is 200 µm or less, and the content of the inorganic filler is 45 parts by mass with respect to the total of 100 parts by mass of the epoxy resin, the amine curing agent, and the inorganic filler. The insulating resin composition according to any one of (1) to (4), which is to 95 parts by mass.
(6) The insulating resin composition according to any one of (1) to (5), wherein the phosphate ester compound has a polyether chain.
(7) The insulating resin composition according to any one of (1) to (6), wherein the phosphate ester compound has an oxycarbonyl group.
(8) A cured insulating resin, which is a cured product of the insulating resin composition according to any one of (1) to (7).
(9) The insulating resin cured product according to (8), which has a storage elastic modulus of 500 MPa or less at 85°C.
(10) a metal plate;
The insulating resin cured body according to (8) or (9) arranged on the metal plate;
a metal foil disposed on the insulating resin cured body;
A laminate.
(11) a metal plate;
The insulating resin cured body according to (8) or (9) arranged on the metal plate;
a circuit portion disposed on the insulating resin cured body;
A circuit board.
(12) After applying a voltage of 500 V DC between the circuit part and the metal plate for 1000 hours in an environment of 85 ° C. and 85% RH, the volume resistivity between the circuit part and the metal plate at 85 ° C. and 85% RH is , 1.0×10 9 Ω·cm or more, the circuit board according to (10).

本発明によれば、高温高湿環境下での優れた接着性及び絶縁性と低弾性率とを両立した絶縁層を形成可能な絶縁性樹脂組成物及びその硬化体が提供される。また、本発明によれば、上記絶縁性樹脂組成物の硬化体で構成された絶縁層を備え、耐湿絶縁性、熱伝導性及び耐ヒートサイクル性に優れた回路基板が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, an insulating resin composition capable of forming an insulating layer having both excellent adhesiveness and insulating properties in a high-temperature and high-humidity environment and a low elastic modulus and a cured product thereof are provided. Further, according to the present invention, there is provided a circuit board having an insulating layer made of a cured product of the insulating resin composition and having excellent moisture resistance insulation, thermal conductivity and heat cycle resistance.

積層体の一実施形態を示す断面図である。It is a sectional view showing one embodiment of a layered product. 回路基板の一実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of a circuit board; FIG.

以下、本発明の好適な実施形態について詳細に説明する。 Preferred embodiments of the present invention are described in detail below.

(絶縁性樹脂組成物)
本実施形態に係る絶縁性樹脂組成物は、エポキシ樹脂と、アミン系硬化剤と、無機充填材と、1分子中に1個以上の水酸基を有するリン酸エステル化合物と、を含有する。また、本実施形態に係る絶縁性樹脂組成物は、アミン系硬化剤として、アミン当量が300以下の第一のアミン系硬化剤と、アミン当量が800以上の第二のアミン系硬化剤と、を含有する。
(Insulating resin composition)
The insulating resin composition according to this embodiment contains an epoxy resin, an amine curing agent, an inorganic filler, and a phosphate ester compound having one or more hydroxyl groups in one molecule. Further, the insulating resin composition according to the present embodiment includes, as amine curing agents, a first amine curing agent having an amine equivalent of 300 or less, a second amine curing agent having an amine equivalent of 800 or more, contains

上記絶縁性樹脂組成物では、アミン当量の異なる2種のアミン系硬化剤を併用することで、硬化時にエポキシ樹脂の架橋構造が発達し、且つ、水酸基を有するリン酸エステル化合物を用いることで、樹脂成分と無機充填材との分散性及び密着性が向上するため、高温高湿環境下での優れた接着性及び絶縁性と低弾性率とを両立した硬化体を形成できる。 In the insulating resin composition, by using two amine-based curing agents having different amine equivalents together, a crosslinked structure of the epoxy resin develops during curing, and by using a phosphate ester compound having a hydroxyl group, Since the dispersibility and adhesion between the resin component and the inorganic filler are improved, it is possible to form a cured product having both excellent adhesion and insulation properties in a high-temperature and high-humidity environment and a low elastic modulus.

エポキシ樹脂は、アミン系硬化剤によって硬化して接着作用を発現するものであればよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA/F型エポキシ樹脂等の二官能エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリスフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;グリシジルアミン型エポキシ樹脂;イソシアヌル酸トリグリシジル等の複素環含有エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等の脂環式エポキシ樹脂等が挙げられる。 Any epoxy resin may be used as long as it is cured with an amine-based curing agent and exhibits an adhesive action. Examples of epoxy resins include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol A/F type epoxy resin; novolac type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin. polyfunctional epoxy resins such as trisphenolmethane-type epoxy resins; glycidylamine-type epoxy resins; heterocyclic-containing epoxy resins such as triglycidyl isocyanurate; A cyclic epoxy resin and the like can be mentioned.

エポキシ樹脂としては、上記のうち、二官能エポキシ樹脂及び脂環式エポキシ樹脂を好適に用いることができる。これらのエポキシ樹脂を用いることで、回路基板の耐ヒートサイクル性がより向上する傾向がある。本実施形態に係る絶縁性樹脂組成物は、二官能エポキシ樹脂及び脂環式エポキシ樹脂のうち少なくとも一方を含有していてよく、二官能エポキシ樹脂及び脂環式エポキシ樹脂の両方を含有していてもよい。 Among the above epoxy resins, bifunctional epoxy resins and alicyclic epoxy resins can be preferably used. The use of these epoxy resins tends to further improve the heat cycle resistance of the circuit board. The insulating resin composition according to the present embodiment may contain at least one of a bifunctional epoxy resin and an alicyclic epoxy resin, and contains both the bifunctional epoxy resin and the alicyclic epoxy resin. good too.

絶縁性樹脂組成物が二官能エポキシ樹脂及び脂環式エポキシ樹脂を含有する場合、二官能エポキシ樹脂の含有量Aに対する脂環式エポキシ樹脂の含有量Aの比(A/A、質量比)は、例えば1.5以上であってよく、好ましくは2.0以上、より好ましくは2.5以上である。これにより、回路基板の耐ヒートサイクル性が一層向上する傾向がある。また、上記比(A/A、質量比)は、例えば8.0以下であってよく、好ましくは6.0以下、より好ましくは4.0以下である。これにより、硬化体の絶縁性及び接着性が一層向上する傾向がある。 When the insulating resin composition contains a bifunctional epoxy resin and an alicyclic epoxy resin, the ratio of the content A2 of the alicyclic epoxy resin to the content A1 of the bifunctional epoxy resin ( A2 / A1 , mass ratio) may be, for example, 1.5 or more, preferably 2.0 or more, more preferably 2.5 or more. This tends to further improve the heat cycle resistance of the circuit board. Also, the ratio (A 2 /A 1 , mass ratio) may be, for example, 8.0 or less, preferably 6.0 or less, and more preferably 4.0 or less. This tends to further improve the insulation and adhesiveness of the cured product.

アミン系硬化剤は、アミノ基を有し、エポキシ樹脂を硬化可能な硬化剤であればよい。アミン系硬化剤としては、例えば、芳香族アミン系硬化剤、脂肪族アミン系硬化剤、ジシアンジアミド等が挙げられる。 The amine-based curing agent may be any curing agent having an amino group and capable of curing an epoxy resin. Examples of amine-based curing agents include aromatic amine-based curing agents, aliphatic amine-based curing agents, and dicyandiamide.

アミン系硬化剤としては、回路基板の耐ヒートサイクル性がより向上する観点から、脂肪族アミン系硬化剤が好ましい。 As the amine-based curing agent, an aliphatic amine-based curing agent is preferable from the viewpoint of further improving the heat cycle resistance of the circuit board.

アミン系硬化剤は、アミン当量が300以下の第一のアミン系硬化剤と、アミン当量が800以上の第二のアミン系硬化剤とを含む。 The amine curing agent includes a first amine curing agent having an amine equivalent of 300 or less and a second amine curing agent having an amine equivalent of 800 or more.

アミン系硬化剤は、ポリエーテル鎖を有するアミン系硬化剤を含むことが好ましく、第一のアミン系硬化剤及び第二のアミン系硬化剤のうち少なくとも一種がポリエーテル鎖を有していることがより好ましく、第一のアミン系硬化剤及び第二のアミン系硬化剤の両方がポリエーテル鎖を有していることが更に好ましい。ポリエーテル鎖を有するアミン系硬化剤はエポキシ樹脂との相溶性に優れるため、このようなアミン系硬化剤を用いることで、接着性及び耐熱性に一層優れる硬化体が得られやすくなる。ポリエーテル鎖は、ポリオキシアルキレン鎖であることが好ましく、エチレン基及びプロピレン基からなる群より選択されるアルキレン基を有するポリオキシアルキレン鎖であることがより好ましい。 The amine-based curing agent preferably contains an amine-based curing agent having a polyether chain, and at least one of the first amine-based curing agent and the second amine-based curing agent has a polyether chain. is more preferred, and it is even more preferred that both the first amine curing agent and the second amine curing agent have polyether chains. Since an amine-based curing agent having a polyether chain has excellent compatibility with an epoxy resin, the use of such an amine-based curing agent makes it easier to obtain a cured product with even better adhesion and heat resistance. The polyether chain is preferably a polyoxyalkylene chain, more preferably a polyoxyalkylene chain having an alkylene group selected from the group consisting of ethylene group and propylene group.

第一のアミン系硬化剤及び第二のアミン系硬化剤は、いずれも脂肪族アミン系硬化剤であることが好ましい。 Both the first amine curing agent and the second amine curing agent are preferably aliphatic amine curing agents.

第一のアミン系硬化剤及び第二のアミン系硬化剤は、いずれも1分子中に2個のアミノ基を有する硬化剤であることが好ましい。 Both the first amine-based curing agent and the second amine-based curing agent are preferably curing agents having two amino groups in one molecule.

絶縁性樹脂組成中の第一のアミン系硬化剤の含有量Bに対する第二のアミン系硬化剤の含有量Bの比(B/B、質量比)は、例えば0.2以上であってよく、好ましくは0.25以上、より好ましくは0.3以上である。これにより、回路基板の耐ヒートサイクル性がより向上する傾向がある。また、上記比(B/B、質量比)は、例えば2.0以下であってよく、好ましくは1.5以下、より好ましくは1.0以下である。これにより、硬化体の絶縁性、接着性及び耐熱性が一層向上する傾向がある。 The ratio of the content B2 of the second amine curing agent to the content B1 of the first amine curing agent in the insulating resin composition ( B2 / B1 , mass ratio) is, for example, 0.2 or more. and is preferably 0.25 or more, more preferably 0.3 or more. This tends to further improve the heat cycle resistance of the circuit board. The ratio (B 2 /B 1 , mass ratio) may be, for example, 2.0 or less, preferably 1.5 or less, and more preferably 1.0 or less. This tends to further improve the insulation, adhesiveness and heat resistance of the cured product.

絶縁性樹脂組成物において、エポキシ樹脂のエポキシ当量に対する、アミン系硬化剤の活性水素当量の比は、例えば0.3~2.0であってよく、0.5~1.25であることが好ましく、0.6~1.0であることがより好ましい。 In the insulating resin composition, the ratio of the active hydrogen equivalent of the amine curing agent to the epoxy equivalent of the epoxy resin may be, for example, 0.3 to 2.0, and may be 0.5 to 1.25. It is preferably from 0.6 to 1.0.

無機充填材は特に限定されず、絶縁性及び熱伝導性が求められる用途に用いられる公知の無機充填材を特に制限無く用いることができる。 The inorganic filler is not particularly limited, and known inorganic fillers used for applications requiring insulation and thermal conductivity can be used without particular limitations.

無機充填材としては、例えば、酸化アルミニウム、シリカ、窒化アルミニウム、窒化ケイ素、窒化ホウ素等から構成される無機充填材が挙げられる。 Examples of inorganic fillers include inorganic fillers composed of aluminum oxide, silica, aluminum nitride, silicon nitride, boron nitride, and the like.

無機充填材は、無機材料の加水分解に起因する耐湿絶縁性の低下が抑制される観点から、酸化アルミニウム、シリカ、窒化ケイ素及び窒化ホウ素からなる群より選択される無機材料を主成分とすることが好ましい。無機充填材中の当該無機材料の含有量は、無機充填材の合計量を基準として、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。 The inorganic filler is mainly composed of an inorganic material selected from the group consisting of aluminum oxide, silica, silicon nitride and boron nitride from the viewpoint of suppressing deterioration of moisture resistance insulation due to hydrolysis of the inorganic material. is preferred. The content of the inorganic material in the inorganic filler is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more, based on the total amount of the inorganic filler.

なお、例えば、無機充填材が窒化アルミニウムを多量に含む場合、高温高湿環境下で窒化アルミニウムの加水分解が生じ、絶縁性が低下する場合がある。このため、無機充填材中の窒化アルミニウムの含有量は、無機充填材の合計量を基準として、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。上述のように、酸化アルミニウム、シリカ、窒化ケイ素及び窒化ホウ素からなる群より選択される無機材料を主成分とすることで、このような加水分解に起因する絶縁性の低下は顕著に抑制される。 For example, when the inorganic filler contains a large amount of aluminum nitride, hydrolysis of the aluminum nitride may occur in a high-temperature and high-humidity environment, resulting in a decrease in insulating properties. Therefore, the content of aluminum nitride in the inorganic filler is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less, based on the total amount of the inorganic filler. As described above, by using an inorganic material selected from the group consisting of aluminum oxide, silica, silicon nitride, and boron nitride as a main component, such deterioration in insulation due to hydrolysis is significantly suppressed. .

無機充填材の形状は特に限定されず、粒子状、鱗片状、多角形状等であってよく、粒子状であることが好ましい。 The shape of the inorganic filler is not particularly limited, and may be particulate, scale-like, polygonal, etc., and is preferably particulate.

無機充填材の最大粒子径は、例えば250μm以下であってよく、好ましくは200μm以下、より好ましくは150μm以下である。これにより、硬化体の絶縁性がより向上する傾向がある。また、無機充填材の最小粒子径は特に限定されないが、熱伝導率がより向上する観点からは、例えば0.05μm以上であってよく、好ましくは0.1μm以上である。なお、本明細書中、無機充填材の最大粒子径及び最小粒子径は、体積基準の粒度分布におけるd90径及びd10径を示し、これらはレーザー回折式粒度分布測定装置で測定される。 The maximum particle size of the inorganic filler may be, for example, 250 μm or less, preferably 200 μm or less, more preferably 150 μm or less. This tends to further improve the insulating properties of the cured body. Although the minimum particle size of the inorganic filler is not particularly limited, it may be, for example, 0.05 μm or more, preferably 0.1 μm or more, from the viewpoint of further improving thermal conductivity. In this specification, the maximum particle size and minimum particle size of the inorganic filler indicate the d90 size and d10 size in the volume-based particle size distribution, which are measured with a laser diffraction particle size distribution analyzer.

無機充填材は、平均粒子径の異なる2種以上の無機充填材を含有していてよい。例えば、無機充填材は、平均粒子径が25μm以上の第一の無機充填材と、平均粒子径が4μm以下の第二の無機充填材とを含有していてよい。このような無機充填材によれば、第一の無機充填材の隙間に第二の無機充填材が充填されることで、充填密度が増し、硬化体の熱伝導率が一層向上する。なお、本明細書中、無機充填材の平均粒子径は、体積基準の粒度分布におけるd50径を示す。体積基準の粒度分布は、レーザー回折式粒度分布測定装置で測定される。 The inorganic filler may contain two or more inorganic fillers having different average particle sizes. For example, the inorganic filler may contain a first inorganic filler with an average particle size of 25 μm or more and a second inorganic filler with an average particle size of 4 μm or less. With such an inorganic filler, filling the gaps between the first inorganic fillers with the second inorganic filler increases the filling density and further improves the thermal conductivity of the cured body. In this specification, the average particle size of the inorganic filler indicates the d50 size in the volume-based particle size distribution. The volume-based particle size distribution is measured with a laser diffraction particle size distribution analyzer.

第一の無機充填材の平均粒子径は、好ましくは30μm以上、より好ましくは40μm以上である。また、第一の無機充填材の平均粒子径は、例えば200μm以下であってよく、好ましくは150μm以下である。このような平均粒子径であると上述の効果がより顕著に奏される。 The average particle size of the first inorganic filler is preferably 30 µm or more, more preferably 40 µm or more. Also, the average particle size of the first inorganic filler may be, for example, 200 μm or less, preferably 150 μm or less. With such an average particle size, the above-mentioned effects are exhibited more remarkably.

第二の無機充填材の平均粒子径は、好ましくは3.5μm以下、より好ましくは3μm以下である。また、第二の無機充填材の平均粒子径は、例えば0.05μm以上であってよく、好ましくは0.1μm以上である。これにより上述の効果がより顕著に奏される。 The average particle size of the second inorganic filler is preferably 3.5 μm or less, more preferably 3 μm or less. Also, the average particle size of the second inorganic filler may be, for example, 0.05 μm or more, preferably 0.1 μm or more. As a result, the above-described effects are exhibited more remarkably.

絶縁性樹脂組成物中の無機充填材の含有量は、エポキシ樹脂、アミン系硬化剤及び無機充填材の合計100質量部に対して、45質量部以上であることが好ましく、55質量部以上であることがより好ましい。これにより、硬化体の耐湿接着性及び熱伝導率がより向上する傾向がある。また、絶縁性樹脂組成物中の無機充填材の含有量は、エポキシ樹脂、アミン系硬化剤及び無機充填材の合計100質量部に対して、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。これにより、高温高湿環境下での接着性及び絶縁性がより向上した硬化体が得られやすくなり、回路基板の耐ヒートサイクル性がより向上する傾向がある。 The content of the inorganic filler in the insulating resin composition is preferably 45 parts by mass or more, and 55 parts by mass or more, with respect to the total of 100 parts by mass of the epoxy resin, the amine-based curing agent, and the inorganic filler. It is more preferable to have This tends to further improve the moisture-resistant adhesion and thermal conductivity of the cured product. In addition, the content of the inorganic filler in the insulating resin composition is preferably 95% by mass or less with respect to the total 100 parts by mass of the epoxy resin, the amine-based curing agent and the inorganic filler, and 90% by mass. The following are more preferable. As a result, it becomes easier to obtain a cured product with improved adhesiveness and insulation in a high-temperature and high-humidity environment, and the heat cycle resistance of the circuit board tends to be further improved.

リン酸エステル化合物は、1分子中に1個以上の水酸基を有している。本実施形態において、リン酸エステル化合物は、分子中の水酸基の存在によって、樹脂成分と無機充填材との分散性及び密着性を向上させ、耐湿接着性を向上させる効果を有していると考えられる。また、上記のリン酸エステル化合物は、高温高湿度かつ直流電圧印加の条件下で発生するOHラジカルをトラップすることで、絶縁層の酸化劣化に起因する耐湿絶縁性の低下を抑制する効果も有していると考えられる。 A phosphate ester compound has one or more hydroxyl groups in one molecule. In the present embodiment, the phosphate ester compound is considered to have the effect of improving the dispersibility and adhesion between the resin component and the inorganic filler and improving the moisture-resistant adhesion due to the presence of hydroxyl groups in the molecule. be done. In addition, the above phosphate ester compound traps OH radicals generated under conditions of high temperature, high humidity, and application of a direct current voltage, thereby suppressing a decrease in moisture resistance insulation due to oxidative deterioration of the insulating layer. it seems to do.

リン酸エステル化合物が有する水酸基の数は、一分子中に1~2個であることがより好ましく、一分子中に2個であることが更に好ましい。 The number of hydroxyl groups possessed by the phosphate ester compound is more preferably 1 to 2 per molecule, more preferably 2 per molecule.

リン酸エステル化合物は、リン原子に直接結合した水酸基を有することが好ましい。また、リン酸エステル化合物は、リン原子に直接結合した水酸基を2個有することがより好ましい。 The phosphate ester compound preferably has a hydroxyl group directly bonded to the phosphorus atom. Moreover, it is more preferable that the phosphate ester compound has two hydroxyl groups directly bonded to the phosphorus atom.

リン酸エステル化合物は、エポキシ樹脂及びアミン系硬化剤との相溶性に優れる点、並びに、無機充填材と樹脂成分との密着性がより向上する観点から、ポリエーテル鎖を含有することが好ましい。ポリエーテル鎖は、ポリオキシアルキレン鎖であることが好ましく、エチレン基及びプロピレン基からなる群より選択されるアルキレン基を有するポリオキシアルキレン鎖であることがより好ましい。 The phosphate ester compound preferably contains a polyether chain from the viewpoint of excellent compatibility with the epoxy resin and the amine-based curing agent, and from the viewpoint of further improving the adhesion between the inorganic filler and the resin component. The polyether chain is preferably a polyoxyalkylene chain, more preferably a polyoxyalkylene chain having an alkylene group selected from the group consisting of ethylene group and propylene group.

リン酸エステル化合物は、エポキシ樹脂及びアミン系硬化剤との相溶性に優れる点、並びに、無機充填材と樹脂成分との密着性がより向上する観点から、オキシカルボニル基を含有することが好ましい。 The phosphate ester compound preferably contains an oxycarbonyl group from the viewpoint of excellent compatibility with the epoxy resin and the amine-based curing agent, and from the viewpoint of further improving the adhesion between the inorganic filler and the resin component.

リン酸エステル化合物の数平均分子量は、200以上であることが好ましく、400以上であることがより好ましい。また、リン酸エステル化合物の数平均分子量は、2000以下であることが好ましく、1000以下であることがより好ましい。リン酸エステル化合物の数平均分子量は、サイズ排除クロマトグラフィー(GPC)で測定される値を示す。 The number average molecular weight of the phosphate compound is preferably 200 or more, more preferably 400 or more. Also, the number average molecular weight of the phosphate ester compound is preferably 2000 or less, more preferably 1000 or less. The number average molecular weight of the phosphate ester compound is the value measured by size exclusion chromatography (GPC).

リン酸エステル化合物は、例えば、下記式(1)で表される化合物であってよい。 The phosphate ester compound may be, for example, a compound represented by the following formula (1).

Figure 0007304161000001
Figure 0007304161000001

式(1)中、Rは、ポリエーテル鎖を有する一価の基を示す。Rは、ポリエステル鎖を更に有していてもよい。 In formula (1), R represents a monovalent group having a polyether chain. R may further have a polyester chain.

絶縁性樹脂組成物中のリン酸エステル化合物の含有量は、エポキシ樹脂、アミン系硬化剤及び無機充填材の合計100質量部に対して、0.05質量部以上であることが好ましく、0.1質量部以上であることがより好ましい。これにより、リン酸エステル化合物による上述の効果がより顕著に奏される。また、絶縁性樹脂組成物中のリン酸エステル化合物の含有量は、エポキシ樹脂、アミン系硬化剤及び無機充填材の合計100質量部に対して、0.4質量部以下であることが好ましく、0.3質量部以下であることがより好ましい。これにより、リン酸エステル化合物自身の吸湿・加水分解に起因する耐湿絶縁性及び耐湿接着性の低下が抑制され、回路部材の耐ヒートサイクル性がより向上する傾向がある。 The content of the phosphate ester compound in the insulating resin composition is preferably 0.05 parts by mass or more with respect to a total of 100 parts by mass of the epoxy resin, the amine curing agent and the inorganic filler. It is more preferably 1 part by mass or more. As a result, the above-described effects of the phosphate ester compound are exhibited more remarkably. Further, the content of the phosphate ester compound in the insulating resin composition is preferably 0.4 parts by mass or less with respect to a total of 100 parts by mass of the epoxy resin, the amine-based curing agent and the inorganic filler. It is more preferably 0.3 parts by mass or less. As a result, deterioration in moisture-resistant insulating properties and moisture-resistant adhesiveness due to moisture absorption and hydrolysis of the phosphate ester compound itself is suppressed, and the heat cycle resistance of the circuit member tends to be further improved.

絶縁性樹脂組成物は、上記以外の他の成分を更に含有していてよい。絶縁性樹脂組成物は、例えば、必要に応じて、カップリング剤等の表面改質剤、レベリング剤、消泡剤、湿潤剤、安定化剤、硬化促進剤等を更に含有していてよい。 The insulating resin composition may further contain other components than those mentioned above. The insulating resin composition may further contain, for example, a surface modifier such as a coupling agent, a leveling agent, an antifoaming agent, a wetting agent, a stabilizer, a curing accelerator, and the like, if necessary.

(絶縁性樹脂硬化体)
本実施形態に係る絶縁性樹脂硬化体は、上述の絶縁性樹脂組成物の硬化体である。絶縁性樹脂硬化体は、高温高湿環境下での優れた接着性及び絶縁性と低弾性率とを両立した絶縁層を形成できる。
(Insulating resin cured body)
The insulating resin cured product according to this embodiment is a cured product of the insulating resin composition described above. The insulating resin cured product can form an insulating layer having both excellent adhesiveness and insulating properties in a high-temperature and high-humidity environment and a low elastic modulus.

絶縁性樹脂硬化体の85℃における貯蔵弾性率は、500MPa以下であることが好ましく、250MPa以下であることがより好ましく、150MPa以下であることが更に好ましい。このような絶縁性樹脂硬化体によれば、耐ヒートサイクル性に一層優れた回路基板が実現できる。 The storage elastic modulus of the cured insulating resin at 85° C. is preferably 500 MPa or less, more preferably 250 MPa or less, and even more preferably 150 MPa or less. According to such an insulating resin cured body, a circuit board having even better heat cycle resistance can be realized.

絶縁性樹脂硬化体の製造方法は特に限定されない。例えば、絶縁性樹脂硬化体は、絶縁性樹脂組成物を熱処理して硬化させることで製造することができる。熱処理は、1段階で行ってよく、2段階で行ってもよい。熱処理を2段階で行うことで、絶縁性樹脂組成物の半硬化体を経由して、絶縁性樹脂硬化体を形成できる。 The method for producing the insulating resin cured product is not particularly limited. For example, the insulating resin cured body can be produced by heat-treating and curing an insulating resin composition. The heat treatment may be performed in one step or in two steps. By performing the heat treatment in two steps, the insulating resin cured product can be formed via the semi-cured product of the insulating resin composition.

熱処理を1段階で行う場合、熱処理の温度は、例えば150~250℃であってよく、好ましくは160~240℃であり、熱処理の時間は、例えば2~15時間であってよく、好ましくは2.5~10時間である。 When the heat treatment is performed in one step, the heat treatment temperature may be, for example, 150 to 250° C., preferably 160 to 240° C., and the heat treatment time may be, for example, 2 to 15 hours, preferably 2 hours. .5 to 10 hours.

熱処理を2段階で行う場合、1段階目の熱処理の温度は、例えば60~130℃であってよく、好ましくは65~100℃であり、熱処理の時間は、例えば0.3~8時間であってよく、好ましくは0.5~5時間である。また、2段階目の熱処理の温度は、例えば150~250℃であってよく、好ましくは160~240℃であり、熱処理の時間は、例えば2~15時間であってよく、好ましくは2.5~10時間である。 When the heat treatment is performed in two stages, the temperature of the heat treatment in the first stage may be, for example, 60 to 130° C., preferably 65 to 100° C., and the heat treatment time is, for example, 0.3 to 8 hours. , preferably 0.5 to 5 hours. The temperature of the heat treatment in the second stage may be, for example, 150 to 250° C., preferably 160 to 240° C., and the heat treatment time may be, for example, 2 to 15 hours, preferably 2.5. ~10 hours.

絶縁性樹脂組成物又はその半硬化体を所定の形状に維持しつつ熱処理を行うことで、所定の形状を有する絶縁性樹脂硬化体を得ることができる。例えば、金属板上に絶縁性樹脂組成物を塗布し、必要に応じて金属箔を積層し、硬化させることで、金属板上に層状の絶縁性樹脂硬化体を形成することができる。 By performing heat treatment while maintaining the insulating resin composition or its semi-cured body in a predetermined shape, it is possible to obtain a cured insulating resin body having a predetermined shape. For example, a layered insulating resin cured product can be formed on a metal plate by applying the insulating resin composition onto a metal plate, laminating a metal foil as necessary, and curing the composition.

(積層体)
本実施形態に係る積層体は、金属板と、金属板上に配置された絶縁性樹脂硬化体と、絶縁性樹脂硬化体上に配置された金属箔と、を備える。本実施形態に係る積層体は、金属板と金属箔とが絶縁性樹脂硬化体によって隔離されていてよく、絶縁性樹脂硬化体が絶縁層として機能していてよい。
(Laminate)
A laminate according to the present embodiment includes a metal plate, an insulating resin cured body placed on the metal plate, and a metal foil placed on the insulating resin cured body. In the laminate according to this embodiment, the metal plate and the metal foil may be separated by the insulating resin cured body, and the insulating resin cured body may function as an insulating layer.

金属板を構成する金属材料は特に制限されず、例えば、アルミニウム、アルミニウム合金、銅、銅合金、鉄、ステンレス等が挙げられる。金属板は、一種の金属材料から構成されていてよく、二種以上の金属材料から構成されていてもよい。また、金属板は、単層構造であってよく、多層構造であってもよい。 Metal materials constituting the metal plate are not particularly limited, and examples thereof include aluminum, aluminum alloys, copper, copper alloys, iron, stainless steel, and the like. The metal plate may be composed of one kind of metal material, or may be composed of two or more kinds of metal materials. Moreover, the metal plate may have a single-layer structure or a multi-layer structure.

金属板の厚みは特に制限されず、回路基板の作成に好適となる観点からは、例えば0.5~3.0mmであってよい。 The thickness of the metal plate is not particularly limited, and may be, for example, 0.5 to 3.0 mm from the viewpoint of being suitable for manufacturing a circuit board.

金蔵箔を構成する金属材料は特に制限されず、例えば、銅、アルミニウム、ニッケル等が挙げられる。金属箔は、一種の金属材料から構成されていてよく、二種以上の金属材料から構成されていてもよい。また、金属箔は、単層構造であってよく、多層構造であってもよい。 Metal materials constituting the gold foil are not particularly limited, and examples thereof include copper, aluminum, and nickel. The metal foil may be composed of one kind of metal material, or may be composed of two or more kinds of metal materials. Moreover, the metal foil may have a single-layer structure or a multi-layer structure.

金属箔の厚みは特に制限されず、回路基板の作成に好適となる観点からは、例えば5μm~1mmであってよい。 The thickness of the metal foil is not particularly limited, and may be, for example, 5 μm to 1 mm from the viewpoint of being suitable for making a circuit board.

絶縁性樹脂硬化体の厚みは特に制限されず、回路基板の作成に好適となる観点からは、例えば50μm~300μmであってよい。 The thickness of the insulating resin cured body is not particularly limited, and may be, for example, 50 μm to 300 μm from the viewpoint of being suitable for making a circuit board.

積層体は、85℃における金属箔の90度剥離強度が2N/cm以上であることが好ましく、5N/cm以上であることがより好ましい。このような積層体は、高温高湿度かつ直流電圧印加の条件下でも金属箔と絶縁性樹脂硬化体との接着が十分に維持されやすいため、当該積層体によれば、耐ヒートサイクル性に優れた回路基板が得られる。当該剥離強度は、JIS C2110に記載の方法で測定される。 The laminate preferably has a 90-degree peel strength of the metal foil at 85° C. of 2 N/cm or more, more preferably 5 N/cm or more. Such a laminate easily maintains sufficient adhesion between the metal foil and the cured insulating resin even under conditions of high temperature, high humidity, and direct current voltage application, so that the laminate has excellent heat cycle resistance. A printed circuit board is obtained. The peel strength is measured by the method described in JIS C2110.

積層体の製造方法は特に限定されない。例えば、積層体は、金属板上に絶縁性樹脂組成物を塗布し、硬化又は半硬化させる工程と、硬化又は半硬化させた絶縁性樹脂組成物(すなわち、絶縁性樹脂硬化体又は半硬化体)上に金属箔を接合する工程と、を含む方法によって製造できる。当該方法は、絶縁性樹脂組成物の半硬化体を硬化させる工程を更に含んでいてもよい。金属箔の接合は、例えばロールラミネート法、積層プレス法等の方法で行ってよい。 A method for manufacturing the laminate is not particularly limited. For example, the laminate is formed by applying an insulating resin composition on a metal plate and curing or semi-curing it, and then curing or semi-curing the cured or semi-cured insulating resin composition (that is, insulating resin cured or semi-cured body ) bonding a metal foil thereon. The method may further include a step of curing the semi-cured insulating resin composition. The joining of the metal foils may be performed by, for example, a roll lamination method, lamination press method, or the like.

また、積層体は、金属箔上に絶縁性樹脂組成物を塗布し、硬化又は半硬化させる工程と、硬化又は半硬化させた絶縁性樹脂組成物(すなわち、絶縁性樹脂硬化体又は半硬化体)上に金属板を接合する工程と、を含む方法によっても製造できる。当該方法は、絶縁性樹脂組成物の半硬化体を硬化させる工程を更に含んでいてもよい。 In addition, the laminated body is obtained by applying an insulating resin composition on a metal foil and curing or semi-curing it, and curing or semi-curing the insulating resin composition (that is, insulating resin cured body or semi-cured body ) bonding a metal plate thereon. The method may further include a step of curing the semi-cured insulating resin composition.

図1は、積層体の好適な一実施形態を示す断面図である。図1に示す積層体10は、金属板1と、金属箔3と、金属板1及び金属箔3の間に介在する絶縁性樹脂硬化体から構成される絶縁層2とを備えている。積層体10の金属箔3を所定のパターンに加工することで、回路基板を容易に形成することができる。 FIG. 1 is a cross-sectional view showing a preferred embodiment of the laminate. A laminate 10 shown in FIG. 1 includes a metal plate 1 , a metal foil 3 , and an insulating layer 2 interposed between the metal plate 1 and the metal foil 3 and made of a cured insulating resin. A circuit board can be easily formed by processing the metal foil 3 of the laminate 10 into a predetermined pattern.

(回路基板)
本実施形態に係る回路基板は、金属板と、金属板上に配置された絶縁性樹脂硬化体と、絶縁性樹脂硬化体上に配置された回路部と、を備える。本実施形態に係る回路基板は、金属板と回路部とが絶縁性樹脂硬化体によって隔離されていてよく、絶縁性樹脂硬化体が絶縁層として機能していてよい。
(circuit board)
A circuit board according to the present embodiment includes a metal plate, an insulating resin cured body placed on the metal plate, and a circuit portion placed on the insulating resin cured body. In the circuit board according to the present embodiment, the metal plate and the circuit portion may be separated by the insulating resin cured body, and the insulating resin cured body may function as an insulating layer.

金属板は、上述の積層体における金属板と同じものが例示できる。 The metal plate can be exemplified by the same metal plate as in the laminate described above.

回路部は、金属材料から構成されていてよい。回路部を構成する金属材料としては、上述の金属箔を構成する金属材料と同じものが例示できる。回路部は、上述の金属箔を所定パターンに加工したものであってよい。 The circuit section may be made of a metal material. As the metal material forming the circuit section, the same metal material as the metal material forming the metal foil described above can be exemplified. The circuit portion may be formed by processing the metal foil described above into a predetermined pattern.

回路部の厚みは特に制限されず、耐熱性及び加工性の観点からは、例えば5μm~1mmであってよい。 The thickness of the circuit portion is not particularly limited, and may be, for example, 5 μm to 1 mm from the viewpoint of heat resistance and workability.

絶縁性樹脂硬化体の厚みは特に制限されず、熱伝導率及び絶縁性の観点からは、例えば50μm~300μmであってよい。 The thickness of the insulating resin cured body is not particularly limited, and may be, for example, 50 μm to 300 μm from the viewpoint of thermal conductivity and insulation.

回路基板は、85℃85%RHの環境下で回路部-金属板間に直流500Vの電圧を1000時間印加し続けた後の、85℃85%RHにおける回路部-金属板間の体積抵抗率が、1.0×10Ω・cm以上であることが好ましく、5.0×10Ω・cm以上であることがより好ましい。このような回路基板は、耐湿絶縁性に特に優れた回路基板ということができる。 After continuously applying a voltage of DC 500 V between the circuit part and the metal plate for 1000 hours in an environment of 85 ° C. and 85% RH, the circuit board measured the volume resistivity between the circuit part and the metal plate at 85 ° C. and 85% RH. is preferably 1.0×10 9 Ω·cm or more, more preferably 5.0×10 9 Ω·cm or more. Such a circuit board can be said to be a circuit board particularly excellent in moisture resistance insulation.

回路基板の製造方法は特に限定されない。例えば、回路基板は、上述の積層体の金属箔を所定のパターンに加工する工程を含む方法によって製造できる。金属箔の加工(エッチング)の方法は特に限定されず、従来公知の方法を適用すればよい。 A method for manufacturing the circuit board is not particularly limited. For example, a circuit board can be manufactured by a method including a step of processing the metal foil of the laminate into a predetermined pattern. A method for processing (etching) the metal foil is not particularly limited, and a conventionally known method may be applied.

図2は、回路基板の好適な一実施形態を示す断面図である。図2に示す回路基板20は、金属板1と、回路部4と、金属板1及び回路部4の間に介在する絶縁性樹脂硬化体から構成される絶縁層2とを備えている。回路基板20は、例えば、積層体10の金属箔3を回路部4に加工したものであってよい。 FIG. 2 is a cross-sectional view of a preferred embodiment of a circuit board. A circuit board 20 shown in FIG. 2 includes a metal plate 1 , a circuit portion 4 , and an insulating layer 2 interposed between the metal plate 1 and the circuit portion 4 and made of a cured insulating resin. The circuit board 20 may be formed by processing the metal foil 3 of the laminate 10 into the circuit portion 4, for example.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.

<実施例1>
(リン酸エステル化合物の合成)
メトキシプロパノール90g及び水酸化カリウム0.3gをオートクレーブに仕込み、窒素置換後100℃に昇温し、攪拌しつつプロピレンオキサイド1914gを3時間にわたり、圧入した。その後30分間、90~100℃で攪拌し、冷却後、燐酸水で中和、脱水、ろ過し、ポリプロピレングリコールモノメチルエーテルを得た。
<Example 1>
(Synthesis of phosphate ester compound)
An autoclave was charged with 90 g of methoxypropanol and 0.3 g of potassium hydroxide, and after the autoclave was purged with nitrogen, the temperature was raised to 100° C., and 1914 g of propylene oxide was pressurized over 3 hours while stirring. After that, the mixture was stirred at 90 to 100° C. for 30 minutes, cooled, neutralized with phosphoric acid water, dehydrated and filtered to obtain polypropylene glycol monomethyl ether.

ポリプロピレングリコールモノメチルエーテル400g、コハク酸無水物100g及びテトラメチルアンモニウムクロリド2gをオートクレーブに仕込み、窒素置換後100℃に昇温し、攪拌しつつプロピレンオキサイド58gを圧入した。100℃で2時間攪拌し558gの油状物を得た。 An autoclave was charged with 400 g of polypropylene glycol monomethyl ether, 100 g of succinic anhydride, and 2 g of tetramethylammonium chloride. After stirring at 100° C. for 2 hours, 558 g of oil was obtained.

上記油状物558gに水1.8gを加え、50℃に保ちながら五酸化リン14gを少量ずつ30分程度かけて加えた。その後、同温度で約1時間攪拌し、リン原子に結合した水酸基を2つ有し、かつ、ポリエーテル鎖を有するリン酸エステル化合物(P-1)を得た。
得られたリン酸エステルの数平均分子量をサイズ排除クロマトグラフィーで測定したところ、510であった。
1.8 g of water was added to 558 g of the above oil, and 14 g of phosphorus pentoxide was added little by little over about 30 minutes while maintaining the temperature at 50°C. Then, the mixture was stirred at the same temperature for about 1 hour to obtain a phosphate ester compound (P-1) having two hydroxyl groups bonded to phosphorus atoms and a polyether chain.
The number average molecular weight of the obtained phosphate ester was determined to be 510 by size exclusion chromatography.

(絶縁性樹脂組成物の調製)
ビスフェノールA/F型エポキシ樹脂(三菱化学社製、「YD-6020」)2.2質量部に、ビスフェノールA型水添エポキシ樹脂(新日鉄住金化学社製、「YX-8000」)6.7質量部、脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)2.4質量部、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)1.6質量部、アルミナ(デンカ社製「DAS45」、最大粒子径70μm、平均粒子径45μm)30.5質量部、アルミナ(デンカ社製「DAS10」、最大粒子径21μm、平均粒子径10μm)30.5質量部、アルミナ(住友化学社製「AA2」、最大粒子径5μm、平均粒子径2μm)26.1質量部、リン酸エステル化合物(P-1)0.2質量部を加えた。遊星式撹拌機(シンキー社「あわとり練太郎AR-310」、回転数2000rpm)にて混練し、絶縁性樹脂組成物を作製した。
(Preparation of insulating resin composition)
Bisphenol A/F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, "YD-6020") 2.2 parts by mass, bisphenol A type hydrogenated epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., "YX-8000") 6.7 mass parts, aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent weight 200) 2.4 parts by weight, aliphatic amine (manufactured by Huntsman, "D-2000", amine equivalent weight 1040) 1.6 parts by weight, Alumina (“DAS45” manufactured by Denka Co., Ltd., maximum particle size 70 μm, average particle size 45 μm) 30.5 parts by mass, alumina (“DAS10” manufactured by Denka Co., Ltd., maximum particle size 21 μm, average particle size 10 μm) 30.5 parts by mass, 26.1 parts by mass of alumina (“AA2” manufactured by Sumitomo Chemical Co., Ltd., maximum particle size: 5 μm, average particle size: 2 μm) and 0.2 parts by mass of phosphate compound (P-1) were added. The mixture was kneaded with a planetary stirrer ("Thinky Mixer AR-310", rotation speed 2000 rpm) to prepare an insulating resin composition.

(回路基板の製造)
厚さ1.5mmのアルミニウム板(天野アルミニウム社製、「A1050 1.5mm厚さ」)上に、絶縁性樹脂組成物を塗布し、120℃で15分間乾燥してBステージ(半硬化)状態とした。なお、絶縁性樹脂組成物の塗布量は、硬化後の絶縁層の厚さが100μmとなるように調整した。
(Manufacture of circuit boards)
An insulating resin composition is applied to an aluminum plate with a thickness of 1.5 mm (manufactured by Amano Aluminum Co., Ltd., "A1050 1.5 mm thickness") and dried at 120 ° C. for 15 minutes to obtain a B stage (semi-cured) state. and The amount of the insulating resin composition applied was adjusted so that the thickness of the insulating layer after curing was 100 μm.

その後、厚さ70μmの銅箔(古河電工社製、「電解銅箔 70μm厚さ」)を、絶縁性樹脂組成物の半硬化体の上に置き、熱プレス法にて、積層状態のまま180℃で6時間熱処理して半硬化体を硬化させ、積層体を得た。 After that, a 70 μm thick copper foil (manufactured by Furukawa Electric Co., Ltd., “Electrolytic copper foil 70 μm thick”) is placed on the semi-cured body of the insulating resin composition, and a heat press method is performed to 180 mm in the laminated state. C. for 6 hours to cure the semi-cured body to obtain a laminate.

次いで、所定の位置をエッチングレジストでマスクした後、硫酸-過酸化水素混合溶液をエッチング液として銅箔をエッチングした。エッチングレジストを除去し、洗浄乾燥することで、銅箔による回路部を有する回路基板を得た。 Next, after masking a predetermined position with an etching resist, the copper foil was etched using a mixed solution of sulfuric acid and hydrogen peroxide as an etchant. By removing the etching resist, washing and drying, a circuit board having a circuit portion made of copper foil was obtained.

<実施例2>
リン酸エステル化合物(P-1)の添加量を0.06質量部に変更したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 2>
An insulating resin composition and a circuit board were obtained in the same manner as in Example 1, except that the amount of the phosphate ester compound (P-1) added was changed to 0.06 parts by mass.

<実施例3>
リン酸エステル化合物(P-1)の添加量を0.38質量部に変更したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 3>
An insulating resin composition and a circuit board were obtained in the same manner as in Example 1, except that the amount of the phosphate ester compound (P-1) added was changed to 0.38 parts by mass.

<実施例4>
無機充填材として、窒化アルミ(デンカ社製、最大粒子径70μm(デンカ社製、最大粒子径70μm、平均粒子径45μm)39.2質量部、アルミナ(デンカ社製「DAS10」、最大粒子径21μm、平均粒子径10μm)21.8質量部、及び、アルミナ(住友化学社製「AA2」、最大粒子径5μm、平均粒子径2μm)26.1質量部を添加したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 4>
As an inorganic filler, aluminum nitride (Denka, maximum particle size 70 μm (Denka, maximum particle size 70 μm, average particle size 45 μm) 39.2 parts by mass, alumina (Denka “DAS10”, maximum particle size 21 μm , average particle diameter 10 μm) 21.8 parts by mass, and alumina (“AA2” manufactured by Sumitomo Chemical Co., Ltd., maximum particle diameter 5 μm, average particle diameter 2 μm) 26.1 parts by weight were added. Similarly, an insulating resin composition and a circuit board were obtained.

<実施例5>
無機充填材として、アルミナ(デンカ社製「DAW20」、最大粒子径32μm、平均粒子径20μm)30.5質量部、アルミナ(デンカ社製「DAS10」、最大粒子径21μm、平均粒子径10μm)30.5質量部、及び、アルミナ(住友化学社製「AA2」、最大粒子径5μm、平均粒子径2μm)26.1質量部を添加したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 5>
As an inorganic filler, alumina (“DAW20” manufactured by Denka Co., Ltd., maximum particle size 32 μm, average particle size 20 μm) 30.5 parts by mass, alumina (“DAS10” manufactured by Denka Co., Ltd., maximum particle size 21 μm, average particle size 10 μm) 30 .5 parts by mass and 26.1 parts by mass of alumina (“AA2” manufactured by Sumitomo Chemical Co., Ltd., maximum particle size 5 μm, average particle size 2 μm) were added in the same manner as in Example 1, insulating resin A composition and a circuit board were obtained.

<実施例6>
無機充填材として、アルミナ(デンカ社製「DAW70」、最大粒子径113μm、平均粒子径70μm)30.5質量部、アルミナ(デンカ社製「DAS10」、最大粒子径21μm、平均粒子径10μm)30.5質量部、及び、アルミナ(住友化学社製「AA2」、最大粒子径5μm、平均粒子径2μm)26.1質量部を添加したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 6>
As an inorganic filler, alumina (“DAW70” manufactured by Denka, maximum particle size 113 μm, average particle size 70 μm) 30.5 parts by mass, alumina (“DAS10” manufactured by Denka, maximum particle size 21 μm, average particle size 10 μm) 30 .5 parts by mass and 26.1 parts by mass of alumina (“AA2” manufactured by Sumitomo Chemical Co., Ltd., maximum particle size 5 μm, average particle size 2 μm) were added in the same manner as in Example 1, insulating resin A composition and a circuit board were obtained.

<実施例7>
ビスフェノールA/F型エポキシ樹脂(三菱化学社製、「YD-6020」)の添加量を9.0質量部、ビスフェノールA型水添エポキシ樹脂(新日鉄住金化学社製、「YX-8000」)の添加量を27.0質量部、脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)の添加量を9.5質量部、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)の添加量を6.3質量部に変更した。また、無機充填材として、窒化ホウ素(デンカ社製「XGP」、最大粒子径90μm、平均粒子径30μm)48.2質量部を添加した。上記以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 7>
The amount of bisphenol A/F type epoxy resin ("YD-6020" manufactured by Mitsubishi Chemical Corporation) added is 9.0 parts by mass, and the amount of bisphenol A type hydrogenated epoxy resin ("YX-8000" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) is added. Addition amount of 27.0 parts by mass, aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200) addition amount of 9.5 parts by mass, aliphatic amine (manufactured by Huntsman, "D-2000" , amine equivalent 1040) was changed to 6.3 parts by mass. Further, 48.2 parts by mass of boron nitride (“XGP” manufactured by Denka Co., Ltd., maximum particle size 90 μm, average particle size 30 μm) was added as an inorganic filler. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1 except for the above.

<実施例8>
ビスフェノールA/F型エポキシ樹脂(三菱化学社製、「YD-6020」)の添加量を1.2質量部、ビスフェノールA型水添エポキシ樹脂(新日鉄住金化学社製、「YX-8000」)の添加量を3.6質量部、脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)の添加量を1.3質量部、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)の添加量を0.8質量部、アルミナ(デンカ社製「DAS45」、最大粒子径70μm、平均粒子径45μm)の添加量を32.6質量部、アルミナ(デンカ社製「DAS10」、最大粒子径21μm、平均粒子径10μm)の添加量を32.6質量部、アルミナ(住友化学社製「AA2」、最大粒子径5μm、平均粒子径2μm)を27.9質量部に変更した。上記以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 8>
The amount of bisphenol A/F type epoxy resin ("YD-6020" manufactured by Mitsubishi Chemical Corporation) added is 1.2 parts by mass, and the amount of bisphenol A type hydrogenated epoxy resin ("YX-8000" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) is added. Addition amount of 3.6 parts by mass, aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200) addition amount of 1.3 parts by mass, aliphatic amine (manufactured by Huntsman, "D-2000" , amine equivalent 1040) added amount of 0.8 parts by mass, alumina (Denka "DAS45", maximum particle size 70 μm, average particle size 45 μm) added amount of 32.6 parts by mass, alumina (Denka " DAS10”, maximum particle size 21 μm, average particle size 10 μm) added amount to 32.6 parts by mass, alumina (Sumitomo Chemical Co., Ltd. “AA2”, maximum particle size 5 μm, average particle size 2 μm) to 27.9 parts by mass changed. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1 except for the above.

<実施例9>
脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)の添加量を3.2質量部、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)の添加量を0.8質量部に変更した。上記以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 9>
Addition amount of aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200) is 3.2 parts by mass, and addition amount of aliphatic amine (manufactured by Huntsman, "D-2000", amine equivalent 1040) is It was changed to 0.8 parts by mass. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1 except for the above.

<実施例10>
ビスフェノールA/F型エポキシ樹脂(三菱化学社製、「YD-6020」)の添加量を1.3質量部、ビスフェノールA型水添エポキシ樹脂(新日鉄住金化学社製、「YX-8000」)の添加量を7.6質量部、脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)の添加量を2.4質量部、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)の添加量を1.6質量部に変更した。上記以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Example 10>
The amount of bisphenol A/F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, "YD-6020") is 1.3 parts by mass, and the amount of bisphenol A type hydrogenated epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., "YX-8000") is added. Addition amount of 7.6 parts by mass, aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200) addition amount of 2.4 parts by mass, aliphatic amine (manufactured by Huntsman, "D-2000" , amine equivalent 1040) was changed to 1.6 parts by mass. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1 except for the above.

<比較例1>
リン酸エステル化合物(P-1)を添加しなかったこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Comparative Example 1>
An insulating resin composition and a circuit board were obtained in the same manner as in Example 1, except that the phosphate ester compound (P-1) was not added.

<比較例2>
リン酸エステル化合物(P-1)に代えて、分子中に水酸基を有しないリン酸エステル化合物(城北化学工業社製、「JC-224」)0.2質量部を添加したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Comparative Example 2>
Instead of the phosphate ester compound (P-1), except that 0.2 parts by mass of a phosphate ester compound having no hydroxyl group in the molecule (manufactured by Johoku Chemical Industry Co., Ltd., "JC-224") was added. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1.

<比較例3>
脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)の添加量を4.0質量部に変更し、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)を添加しなかったこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Comparative Example 3>
The addition amount of the aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent weight 200) was changed to 4.0 parts by mass, and the aliphatic amine (manufactured by Huntsman, "D-2000", amine equivalent weight 1040) was added. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1, except that they were not added.

<比較例4>
脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)を添加せず、脂肪族アミン(Huntsman社製、「D-2000」、アミン当量1040)の添加量を4.0質量部に変更したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Comparative Example 4>
Aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200) was not added, and the amount of aliphatic amine (manufactured by Huntsman, "D-2000", amine equivalent 1040) was added to 4.0 parts by mass. An insulating resin composition and a circuit board were obtained in the same manner as in Example 1, except for changing to .

<比較例5>
脂肪族アミン(Huntsman社製、「D-400」、アミン当量200)に変えて、脂肪族アミン(Huntsman社製、「ED-900」、アミン当量450)を2.4質量部添加したこと以外は、実施例1と同様にして、絶縁性樹脂組成物及び回路基板を得た。
<Comparative Example 5>
Instead of the aliphatic amine (manufactured by Huntsman, "D-400", amine equivalent 200), 2.4 parts by mass of an aliphatic amine (manufactured by Huntsman, "ED-900", amine equivalent 450) was added. obtained an insulating resin composition and a circuit board in the same manner as in Example 1.

実施例及び比較例の絶縁性樹脂組成物の配合を表1に示す。なお、実施例及び比較例で用いた無機充填材の最大粒子径及び平均粒子径は、以下の方法で求めた。 Table 1 shows the formulations of the insulating resin compositions of Examples and Comparative Examples. The maximum particle size and average particle size of the inorganic fillers used in Examples and Comparative Examples were obtained by the following methods.

[無機充填材の測定]
島津製作所社製「レーザー回折式粒度分布測定装置SALD-200」を用いて測定を行った。具体的には、ガラスビーカーに50ccの純水と5gの無機充填材を添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。無機充填材の分散液をスポイドで装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。吸光度が安定になった時点で測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。最大粒子径はd90、平均粒子径はd50とした。
[Measurement of inorganic filler]
Measurement was performed using a “laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. Specifically, 50 cc of pure water and 5 g of an inorganic filler were added to a glass beaker, stirred with a spatula, and then dispersed with an ultrasonic cleaner for 10 minutes. The inorganic filler dispersion was added drop by drop to the sampler section of the apparatus using a dropper, and the absorbance was allowed to stabilize until it became measurable. Measurement was performed when the absorbance became stable. In the laser diffraction particle size distribution analyzer, the particle size distribution was calculated from the light intensity distribution data of the diffracted/scattered light by the particles detected by the sensor. The maximum particle size was d90, and the average particle size was d50.

[リン酸エステル化合物の測定]
リン酸エステル化合物(P-1)の数平均分子量は、東ソー社製サイズ排除クロマトグラフィーを用いて測定を行った。移動相としてテトラヒドロフランを使用し、流量1.0ml/minの条件で、RI検出器(屈折法)にて、ポリスチレン換算した値を使用した。
[Measurement of Phosphate Ester Compound]
The number average molecular weight of the phosphate ester compound (P-1) was measured using size exclusion chromatography manufactured by Tosoh Corporation. Tetrahydrofuran was used as the mobile phase, and the value converted to polystyrene was used with an RI detector (refractive method) under the conditions of a flow rate of 1.0 ml/min.

実施例及び比較例で得られた絶縁性樹脂組成物、及び、実施例1で得られた回路基板は、以下の方法で評価した。結果を表2に示す。 The insulating resin compositions obtained in Examples and Comparative Examples and the circuit board obtained in Example 1 were evaluated by the following methods. Table 2 shows the results.

[絶縁性樹脂硬化体の貯蔵弾性率の測定]
TA instrument社製「RSA-III」を用いて測定を行った。具体的には、絶縁性樹脂組成物を、硬化後の厚さが200μmとなるようにPETフィルム上に塗布し、180℃6時間の加熱により硬化させて、絶縁性樹脂硬化体を作製した。作製した絶縁性樹脂硬化体を幅4mm、長さ5cmに加工することで、測定試料を得た。得られた試料を用い、測定周波数を1Hzとし、-50℃から昇温速度7℃/分で150℃まで昇温して、貯蔵弾性率を測定した。測定結果から、85℃における貯蔵弾性率を求めた。
[Measurement of Storage Elastic Modulus of Cured Insulating Resin]
The measurement was performed using TA Instruments'"RSA-III". Specifically, the insulating resin composition was applied onto a PET film so that the thickness after curing was 200 μm, and cured by heating at 180° C. for 6 hours to produce a cured insulating resin. A measurement sample was obtained by processing the prepared insulating resin cured body into a width of 4 mm and a length of 5 cm. Using the obtained sample, the measurement frequency was set to 1 Hz, and the temperature was raised from -50°C to 150°C at a heating rate of 7°C/min to measure the storage modulus. From the measurement results, the storage modulus at 85°C was obtained.

[絶縁性樹脂硬化体の熱伝導率の測定]
熱伝導率は、熱拡散率、比重及び比熱から算出した。具体的には、まず、熱伝導率は、絶縁性樹脂硬化体を幅10mm×長さ10mm×厚み1mmに加工した測定サンプルを用い、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製LFA447NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で、室温から300℃まで昇温させて求めた。
[Measurement of Thermal Conductivity of Cured Insulating Resin]
Thermal conductivity was calculated from thermal diffusivity, specific gravity and specific heat. Specifically, first, the thermal conductivity was obtained by a laser flash method using a measurement sample obtained by processing an insulating resin cured body to have a width of 10 mm, a length of 10 mm, and a thickness of 1 mm. A xenon flash analyzer (LFA447NanoFlash manufactured by NETZSCH) was used as a measuring device. The specific gravity was determined using the Archimedes method. The specific heat was determined by raising the temperature from room temperature to 300°C at a heating rate of 10°C/min in a nitrogen atmosphere using a differential scanning calorimeter ("Q2000" manufactured by TA Instruments).

[耐湿絶縁性の評価]
実施例及び比較例で得られた積層体について、銅箔をエッチングして直径20mmの円電極を作製し、測定試料とした。次いで、85℃85%RHの条件下で、円電極-金属板間に直流500Vの電圧を1000時間印加した。電圧印加後の測定試料について、85℃85%RHにおける、円電極-金属板間の体積抵抗率を測定した。この測定は、絶縁劣化システム(楠本化成社製「SIR13」)を用いて行った。
[Evaluation of moisture resistance insulation]
For the laminates obtained in Examples and Comparative Examples, copper foils were etched to prepare circular electrodes with a diameter of 20 mm, which were used as measurement samples. Then, under the conditions of 85° C. and 85% RH, a DC voltage of 500 V was applied between the circular electrode and the metal plate for 1000 hours. After voltage application, the volume resistivity between the circular electrode and the metal plate was measured at 85° C. and 85% RH. This measurement was performed using an insulation deterioration system (“SIR13” manufactured by Kusumoto Kasei Co., Ltd.).

[耐湿接着性の評価]
実施例及び比較例で得られた積層体について、銅箔をエッチングして直径20mmの円電極を作製し、測定試料とした。次いで、85℃85%RHの条件下で、円電極-金属板間に直流500Vの電圧を1000時間印加した。電圧印加開始から500時間後までに、電極部に膨れが生じていた場合をC、500~1000時間後に電極部に膨れが生じた場合をB、1000時間後でも電極部に膨れが生じていなかった場合をAとして評価した。膨れの有無は目視にて確認した。
[Evaluation of moisture resistant adhesion]
For the laminates obtained in Examples and Comparative Examples, copper foils were etched to prepare circular electrodes with a diameter of 20 mm, which were used as measurement samples. Then, under the conditions of 85° C. and 85% RH, a DC voltage of 500 V was applied between the circular electrode and the metal plate for 1000 hours. C is when the electrode part is swollen by 500 hours after the start of voltage application, B is when the electrode part is swollen after 500 to 1000 hours, and the electrode part is not swollen even after 1000 hours. The case was evaluated as A. The presence or absence of swelling was visually confirmed.

[耐ヒートサイクル性の評価]
実施例及び比較例で得られた積層体について、銅箔をエッチングして電極を作製し、測定試料とした。回路基板の電極間にチップサイズ2.0mm×1.25mmのチップ抵抗を半田付けし、-40℃15分~+150℃15分を1サイクルとして2000回のヒートサイクル試験をJIS-C-0025温度変化試験方法に準じて行った。チップ抵抗の総数は各実施例及び比較例毎に20個とした。試験後、顕微鏡で半田部分のクラックの有無を観察した。半田部分のクラック発生が10%以上あった場合をC、半田クラックの発生が10%未満の場合をAとして評価した。
[Evaluation of heat cycle resistance]
Electrodes were produced by etching the copper foils of the laminates obtained in Examples and Comparative Examples, and used as measurement samples. A chip resistor with a chip size of 2.0 mm x 1.25 mm is soldered between the electrodes of the circuit board, and a cycle of -40°C for 15 minutes to +150°C for 15 minutes is applied to 2000 heat cycle tests at JIS-C-0025 temperature. It was carried out according to the change test method. The total number of chip resistors was 20 for each example and comparative example. After the test, the presence or absence of cracks in the solder portion was observed under a microscope. C was evaluated when 10% or more of cracks occurred in the solder portion, and A was evaluated when less than 10% of solder cracks occurred.

Figure 0007304161000002
Figure 0007304161000002

Figure 0007304161000003
Figure 0007304161000003

表2に示すとおり、実施例では、低い弾性率と高い熱伝導率とを両立した絶縁層を形成でき、耐湿絶縁性、耐湿接着性及び耐ヒートサイクル性に優れる回路基板が得られることが確認された。 As shown in Table 2, in Examples, it was confirmed that an insulating layer having both a low elastic modulus and a high thermal conductivity can be formed, and a circuit board having excellent moisture-resistant insulation, moisture-resistant adhesion, and heat cycle resistance can be obtained. was done.

本発明によれば、高温高湿環境下での優れた接着性及び絶縁性と低弾性率とを両立した絶縁層を形成できる。そして本発明によれば、上記絶縁層を備え、耐湿絶縁性、熱伝導性及び耐ヒートサイクル性に優れた回路基板が得られる。このため、本発明は、耐ヒートサイクル性、耐湿絶縁性、放熱性等が求められる分野(例えば、車載充填器用回路基板等)に好適に利用することができる。 According to the present invention, it is possible to form an insulating layer having both excellent adhesiveness and insulating properties in a high-temperature and high-humidity environment and a low elastic modulus. According to the present invention, a circuit board having the insulating layer and having excellent moisture resistance insulation, thermal conductivity, and heat cycle resistance can be obtained. Therefore, the present invention can be suitably used in fields where heat cycle resistance, moisture resistance insulation, heat dissipation, etc. are required (for example, circuit substrates for vehicle-mounted chargers, etc.).

1…金属板、2…絶縁層、3…金属箔、4…回路部、10…積層体、20…回路基板。 DESCRIPTION OF SYMBOLS 1... Metal plate, 2... Insulating layer, 3... Metal foil, 4... Circuit part, 10... Laminated body, 20... Circuit board.

Claims (11)

エポキシ樹脂と、アミン系硬化剤と、無機充填材と、1分子中に1個以上の水酸基を有するリン酸エステル化合物とを含有し、
前記エポキシ樹脂が、
ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びビスフェノールA/F型エポキシ樹脂からなる群より選択される二官能エポキシ樹脂と、
水添ビスフェノールA型エポキシ樹脂及び水添ビスフェノールF型エポキシ樹脂からなる群より選択される脂環式エポキシ樹脂と、
を含有し、
前記アミン系硬化剤が、
アミン当量が300以下の第一のアミン系硬化剤と、
アミン当量が800以上の第二のアミン系硬化剤と、
を含有し、
前記無機充填材が、酸化アルミニウム、シリカ、窒化ケイ素及び窒化ホウ素からなる群より選択される無機材料を含有し、
前記無機充填材中の前記無機材料の含有量が、前記無機充填材の合計量を基準として、80質量%以上であり、
前記二官能エポキシ樹脂の含有量A に対する前記脂環式エポキシ樹脂の含有量A の比(A /A 、質量比)が、1.5以上8.0以下である、絶縁性樹脂組成物。
containing an epoxy resin, an amine-based curing agent, an inorganic filler, and a phosphate ester compound having one or more hydroxyl groups in one molecule,
The epoxy resin is
a bifunctional epoxy resin selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins and bisphenol A/F type epoxy resins;
an alicyclic epoxy resin selected from the group consisting of hydrogenated bisphenol A type epoxy resins and hydrogenated bisphenol F type epoxy resins;
contains
The amine-based curing agent is
a first amine-based curing agent having an amine equivalent of 300 or less;
a second amine-based curing agent having an amine equivalent of 800 or more;
contains
the inorganic filler contains an inorganic material selected from the group consisting of aluminum oxide, silica, silicon nitride and boron nitride;
The content of the inorganic material in the inorganic filler is 80% by mass or more based on the total amount of the inorganic filler,
The insulating resin, wherein the ratio of the content A2 of the alicyclic epoxy resin to the content A1 of the bifunctional epoxy resin (A2 / A1 , mass ratio) is 1.5 or more and 8.0 or less. Composition.
前記第一のアミン系硬化剤及び前記第二のアミン系硬化剤からなる群より選択される少なくとも一種が、ポリエーテル鎖を有する、請求項1に記載の絶縁性樹脂組成物。 2. The insulating resin composition according to claim 1, wherein at least one selected from the group consisting of said first amine-based curing agent and said second amine-based curing agent has a polyether chain. 前記リン酸エステル化合物の含有量が、前記エポキシ樹脂、前記アミン系硬化剤及び前記無機充填材の合計100質量部に対して、0.05~0.4質量部である、請求項1又は2に記載の絶縁性樹脂組成物。 Claim 1 or 2, wherein the content of the phosphate ester compound is 0.05 to 0.4 parts by mass with respect to a total of 100 parts by mass of the epoxy resin, the amine curing agent and the inorganic filler. The insulating resin composition according to . 前記無機充填材の最大粒子径が200μm以下であり、
前記無機充填材の含有量が、前記エポキシ樹脂、前記アミン系硬化剤及び前記無機充填材の合計100質量部に対して、45~95質量部である、請求項1~のいずれか一項に記載の絶縁性樹脂組成物。
The maximum particle size of the inorganic filler is 200 μm or less,
The content of the inorganic filler is 45 to 95 parts by mass with respect to a total of 100 parts by mass of the epoxy resin, the amine curing agent and the inorganic filler, any one of claims 1 to 3 . The insulating resin composition according to .
前記リン酸エステル化合物が、ポリエーテル鎖を有する、請求項1~のいずれか一項に記載の絶縁性樹脂組成物。 The insulating resin composition according to any one of claims 1 to 4 , wherein the phosphate ester compound has a polyether chain. 前記リン酸エステル化合物が、オキシカルボニル基を有する、請求項1~のいずれか一項に記載の絶縁性樹脂組成物。 The insulating resin composition according to any one of claims 1 to 5 , wherein the phosphate ester compound has an oxycarbonyl group. 請求項1~のいずれか一項に記載の絶縁性樹脂組成物の硬化体である、絶縁性樹脂硬化体。 An insulating resin cured product, which is a cured product of the insulating resin composition according to any one of claims 1 to 6 . 85℃における貯蔵弾性率が500MPa以下である、請求項に記載の絶縁性樹脂硬化体。 The insulating resin cured product according to claim 7 , which has a storage elastic modulus at 85°C of 500 MPa or less. 金属板と、
前記金属板上に配置された請求項7又は8に記載の絶縁性樹脂硬化体と、
前記絶縁性樹脂硬化体上に配置された金属箔と、
を備える、積層体。
a metal plate;
The insulating resin cured body according to claim 7 or 8 arranged on the metal plate;
a metal foil disposed on the insulating resin cured body;
A laminate.
金属板と、
前記金属板上に配置された請求項7又は8に記載の絶縁性樹脂硬化体と、
前記絶縁性樹脂硬化体上に配置された回路部と、
を備える、回路基板。
a metal plate;
The insulating resin cured body according to claim 7 or 8 arranged on the metal plate;
a circuit portion disposed on the insulating resin cured body;
A circuit board.
85℃85%RHの環境下で回路部-金属板間に直流500Vの電圧を1000時間印加し続けた後の、85℃85%RHにおける回路部-金属板間の体積抵抗率が、1.0×10Ω・cm以上である、請求項10に記載の回路基板。 The volume resistivity between the circuit part and the metal plate at 85°C and 85% RH after continuously applying a DC voltage of 500V between the circuit part and the metal plate for 1000 hours in an environment of 85°C and 85% RH was 1. 11. The circuit board according to claim 10 , which is 0×10 9 Ω·cm or more.
JP2019009477A 2019-01-23 2019-01-23 Insulating resin composition, insulating resin cured body, laminate and circuit board Active JP7304161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019009477A JP7304161B2 (en) 2019-01-23 2019-01-23 Insulating resin composition, insulating resin cured body, laminate and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009477A JP7304161B2 (en) 2019-01-23 2019-01-23 Insulating resin composition, insulating resin cured body, laminate and circuit board

Publications (2)

Publication Number Publication Date
JP2020117619A JP2020117619A (en) 2020-08-06
JP7304161B2 true JP7304161B2 (en) 2023-07-06

Family

ID=71890001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009477A Active JP7304161B2 (en) 2019-01-23 2019-01-23 Insulating resin composition, insulating resin cured body, laminate and circuit board

Country Status (1)

Country Link
JP (1) JP7304161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090630A1 (en) * 2019-11-08 2021-05-14
CN114364738A (en) * 2019-11-08 2022-04-15 电化株式会社 Insulating resin composition, insulating resin cured product, laminate, and circuit board
JP2021112874A (en) * 2020-01-20 2021-08-05 利昌工業株式会社 Metal base copper-clad laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012653A (en) 2000-07-03 2002-01-15 Denki Kagaku Kogyo Kk Curable resin composition and metal-base circuit board using the same
JP2002114836A (en) 2000-10-10 2002-04-16 Denki Kagaku Kogyo Kk Curable resin composition and metal base circuit board using the same
JP2004075817A (en) 2002-08-15 2004-03-11 Denki Kagaku Kogyo Kk Resin composition for circuit board and metal-based circuit board obtained using the same
JP2010050180A (en) 2008-08-20 2010-03-04 Denki Kagaku Kogyo Kk Circuit board and electronic-component mounting board
WO2013147086A1 (en) 2012-03-30 2013-10-03 株式会社トクヤマ Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181424B2 (en) * 1993-02-25 2001-07-03 ソマール株式会社 Liquid epoxy resin composition for casting
US5891367A (en) * 1998-02-23 1999-04-06 General Motors Corporation Conductive epoxy adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012653A (en) 2000-07-03 2002-01-15 Denki Kagaku Kogyo Kk Curable resin composition and metal-base circuit board using the same
JP2002114836A (en) 2000-10-10 2002-04-16 Denki Kagaku Kogyo Kk Curable resin composition and metal base circuit board using the same
JP2004075817A (en) 2002-08-15 2004-03-11 Denki Kagaku Kogyo Kk Resin composition for circuit board and metal-based circuit board obtained using the same
JP2010050180A (en) 2008-08-20 2010-03-04 Denki Kagaku Kogyo Kk Circuit board and electronic-component mounting board
WO2013147086A1 (en) 2012-03-30 2013-10-03 株式会社トクヤマ Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate

Also Published As

Publication number Publication date
JP2020117619A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP5738274B2 (en) Heat-resistant adhesive
JP7304161B2 (en) Insulating resin composition, insulating resin cured body, laminate and circuit board
KR101635659B1 (en) Adhesive composition, adhesive sheet, circuit board and semiconductor device both produced using these, and processes for producing these
CN112789317A (en) Resin composition, film with substrate, metal/resin laminate, and semiconductor device
JP6854505B2 (en) Resin composition, thermosetting film using it
JP5038007B2 (en) Composition, metal-based circuit board using the composition
EP2832792A1 (en) Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate
WO2005078034A1 (en) Conductive adhesive
EP2871918A1 (en) Laminate for circuit boards, metal-based circuit board, and power module
JP2008280436A (en) Adhesive sheet for fixation for use in electrical parts and method of fixing electrical parts
JPWO2018173945A1 (en) Resin composition for circuit board and metal-based circuit board using the same
JP5643536B2 (en) Thermally conductive adhesive resin composition, laminate comprising the same, and semiconductor device
JP7565686B2 (en) Conductive Paste
JP7566756B2 (en) Insulating resin composition, cured insulating resin body, laminate and circuit board
JP6132400B2 (en) Conductive material
JP2023153031A (en) Insulation sheet, laminate, semiconductor device
WO2021090629A1 (en) Insulating resin composition, insulating resin cured article, laminate, and circuit board
WO2019189811A1 (en) Thermosetting resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and semiconductor package
JP5092050B1 (en) Laminated body
JP6765215B2 (en) Resin composition for circuit board and metal base circuit board using it
WO2021090630A1 (en) Insulating resin composition, insulating resin cured body, layered body, and circuit base board
JP2005281509A (en) Curable resin composition and metal-based circuit substrate by using the same
JP6021150B2 (en) Low temperature resistant resin composition and superconducting wire using the same
JP2004315653A (en) Resin composition and its use
JP2005076023A (en) Adhesive with low elastic coefficient and laminate using the same, heat sink with adhesive, metal foil with adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7304161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150