JP5038007B2 - Composition, metal-based circuit board using the composition - Google Patents

Composition, metal-based circuit board using the composition Download PDF

Info

Publication number
JP5038007B2
JP5038007B2 JP2007107866A JP2007107866A JP5038007B2 JP 5038007 B2 JP5038007 B2 JP 5038007B2 JP 2007107866 A JP2007107866 A JP 2007107866A JP 2007107866 A JP2007107866 A JP 2007107866A JP 5038007 B2 JP5038007 B2 JP 5038007B2
Authority
JP
Japan
Prior art keywords
insulating layer
composition
circuit board
metal
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107866A
Other languages
Japanese (ja)
Other versions
JP2008266378A (en
Inventor
建治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007107866A priority Critical patent/JP5038007B2/en
Publication of JP2008266378A publication Critical patent/JP2008266378A/en
Application granted granted Critical
Publication of JP5038007B2 publication Critical patent/JP5038007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、混成集積用の回路基板に適用される組成物に関する。また、本発明は前記組成物を用いた回路用基板、金属ベース回路基板、金属ベース多層回路基板に関する。 The present invention relates to a composition applied to a circuit board for hybrid integration. The present invention also relates to a circuit board, a metal base circuit board, and a metal base multilayer circuit board using the composition.

金属板上に無機フィラーを充填した樹脂からなる絶縁層を介して回路が形成されている金属ベース回路基板が公知であり、その絶縁層として、樹脂中に球状の無機フィラーを高充填し、接着力を充分に保持し、しかも硬化後には高熱伝導率を達成する組成物が知られている(特許文献1)。
特開平2−286768号公報
A metal base circuit board in which a circuit is formed via an insulating layer made of a resin filled with an inorganic filler on a metal plate is well known, and as the insulating layer, a spherical inorganic filler is highly filled in the resin and bonded. A composition that retains sufficient force and achieves high thermal conductivity after curing is known (Patent Document 1).
JP-A-2-286768

球状の無機フィラーは、例えば球状シリカ、球状アルミナ等が知られているが、火炎溶融等の特殊な製造方法により提供されているものであるから、得られる基板、回路基板等の特性は良いものの、価格的に高価とならざるを得ないという欠点を有している。このため、入手容易な破砕品の無機フィラーを用いて、接着力が強く、硬化後には熱伝導率が高く、電気絶縁性に優れる硬化体を提供できる組成物の探索が産業界に於いて重要視されている。 The spherical inorganic filler is known, for example, spherical silica, spherical alumina, etc., but since it is provided by a special manufacturing method such as flame melting, the characteristics of the obtained substrate, circuit board, etc. are good. However, it has the disadvantage of being expensive in price. For this reason, it is important in the industry to search for a composition that can provide a cured product with strong adhesive strength, high thermal conductivity after curing, and excellent electrical insulation, using easily crushed inorganic fillers. Is being viewed.

即ち、本発明の目的は、破砕品の無機フィラーを用い、金属板や金属箔との接着性に優れ、硬化後には高熱伝導性を発揮し、その結果として、信頼性の高い混成集積回路を提供できる基板を提供することにある。 That is, an object of the present invention is to use a crushed inorganic filler, have excellent adhesion to a metal plate or a metal foil, exhibit high thermal conductivity after curing, and as a result, provide a highly reliable hybrid integrated circuit. It is to provide a substrate that can be provided.

本発明は、エポキシ樹脂と前記エポキシ樹脂の硬化剤と無機フィラーとを含む組成物であって、(a)エポキシ樹脂がエポキシ当量300以下のビスフェノールA型エポキシ樹脂、(b)硬化剤が平均分子量1,500以下のフェノールノボラック樹脂、(c)無機フィラーがαクリストバライトであって、最大粒径が100μm以下で、且つ平均粒子径が5〜50μmである粗粉と、粒子径2.0μm以下の粒子を70体積%以上含有し、且つ平均粒子径が0.2〜1.5μmである微粉からなることを特徴とする組成物である。 The present invention is a composition comprising an epoxy resin, a curing agent for the epoxy resin, and an inorganic filler, wherein (a) the epoxy resin has a bisphenol A type epoxy resin having an epoxy equivalent of 300 or less, and (b) the curing agent has an average molecular weight. 1,500 or less phenol novolac resin, (c) the inorganic filler is α cristobalite, the maximum particle size is 100 μm or less, the average particle size is 5 to 50 μm, and the particle size is 2.0 μm or less. It is a composition comprising fine particles having a particle content of 70% by volume or more and an average particle diameter of 0.2 to 1.5 μm .

また、本発明は、金属板上に、前記の組成物からなる絶縁層を設け、前記絶縁層上に金属箔を設けてなることを特徴とする回路用基板であり、金属板上に、前記の組成物からなる絶縁層を設け、前記絶縁層上に金属箔を設け、前記金属箔を加工して回路を形成してなることを特徴とする金属ベース回路基板である。 Further , the present invention is a circuit board characterized in that an insulating layer comprising the above composition is provided on a metal plate, and a metal foil is provided on the insulating layer. A metal base circuit board comprising an insulating layer made of the composition, a metal foil provided on the insulating layer, and a circuit formed by processing the metal foil.

加えて、本発明は、金属板上に、前記の組成物からなる第1の絶縁層を設け、前記第1の絶縁層上に回路基板を設けるとともに、前記第1の絶縁層上に更に前記の組成物からなる第2の絶縁層を設け、前記第2の絶縁層上に高発熱性電子部品を設けてなることを特徴とする金属ベース多層回路基板であり、好ましくは、第1の絶縁層と第2の絶縁層との間に金属層を設けたことを特徴とする前記の金属ベース多層回路基板であり、更に好ましくは、第2の絶縁層の厚さが50μm以上200μm以下であることを特徴とする前記の金属ベース多層回路基板である。 In addition, the present invention provides a first insulating layer made of the above-described composition on a metal plate, a circuit board on the first insulating layer, and further on the first insulating layer. A metal-based multilayer circuit board, characterized in that a second insulating layer made of the above composition is provided, and a highly exothermic electronic component is provided on the second insulating layer, preferably the first insulating layer A metal base multilayer circuit board, wherein a metal layer is provided between the first insulating layer and the second insulating layer, and more preferably, the thickness of the second insulating layer is not less than 50 μm and not more than 200 μm. The metal-based multilayer circuit board as described above.

本発明の組成物は、エポキシ樹脂と特定のエポキシ樹脂硬化剤を選定し、しかも特定粒度分布で特定組成の無機フィラーを選択しているので、アルミニウム、銅、或いは前記合金等からなる金属板や金属箔との接着性が良く、しかも高熱伝導性の樹脂硬化体を与えることができ、電気部品や電子部品の電気絶縁性で熱放散性に富む部品、特に混成集積回路用の基板や回路基板、特に金属ベース回路基板や金属ベース多層回路基板に用いて好適である。 In the composition of the present invention, an epoxy resin and a specific epoxy resin curing agent are selected, and since an inorganic filler having a specific composition with a specific particle size distribution is selected, a metal plate made of aluminum, copper, or the above alloy or the like Good adhesion to metal foil and high thermal conductivity resin hardened body, electrical parts and parts with high heat dissipation, especially for hybrid integrated circuits and circuit boards In particular, it is suitable for use in metal base circuit boards and metal base multilayer circuit boards.

本発明の樹脂硬化体は、金属との接着に富み、しかも電気絶縁性と熱伝導率に優れ、好ましい実施態様に於いては、1.5〜3.0W/mKもの高い熱伝導率を示すので、混成集積回路用の基板、回路基板、特に金属ベース回路基板や金属ベース多層回路基板を初めとするいろいろな電気部品、電子部品の放熱用材料として好適である。 The cured resin of the present invention is rich in adhesion to metal, and is excellent in electrical insulation and thermal conductivity. In a preferred embodiment, it exhibits a thermal conductivity as high as 1.5 to 3.0 W / mK. Therefore, it is suitable as a material for heat radiation of various electric parts and electronic parts including hybrid integrated circuit boards, circuit boards, particularly metal base circuit boards and metal base multilayer circuit boards.

本発明の基板、更に本発明の金属ベース回路基板、金属ベース多層回路基板は、前記組成物を用いているので、その樹脂硬化体の特徴を示して、電気絶縁性と熱伝導性に優れるので、これを用いて信頼性の高い混成集積回路を容易に得ることができる。 Since the substrate of the present invention, further the metal base circuit board and the metal base multilayer circuit board of the present invention uses the above composition, the characteristics of the resin cured body are shown, and the electrical insulation and thermal conductivity are excellent. By using this, a highly reliable hybrid integrated circuit can be easily obtained.

本発明ではエポキシ樹脂を用いる。エポキシ樹脂としては、公知のエポキシ樹脂、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等を用いることができるが、このうちビスフェノールA型エポキシ樹脂が、電気絶縁性、熱伝導率が共に高く、耐熱性の高い樹脂硬化体が得られることから好ましく選択される。 In the present invention, an epoxy resin is used. As the epoxy resin, known epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, etc. can be used. Among these, bisphenol A type epoxy resin is electrically insulating. These are preferably selected because a cured resin body having high thermal conductivity and high heat resistance can be obtained.

前記ビスフェノールA型エポキシ樹脂を含むエポキシ樹脂について、エポキシ当量300以下であることが一層好ましい。エポキシ当量が300以下であれば、高分子タイプになるときに見られる架橋密度の低下によるTgの低下、従って耐熱性の低下を引き起こすことが防止されるからである。また、分子量が大きくなると、液状から固形状となり、無機フィラーを硬化性樹脂中にブレンドすることが困難になり、均一な樹脂組成物が得られなくなるという問題をも避けることができる。 The epoxy resin containing the bisphenol A type epoxy resin is more preferably 300 or less in epoxy equivalent. This is because if the epoxy equivalent is 300 or less, it is possible to prevent a decrease in Tg due to a decrease in crosslink density, which is observed when the polymer type is obtained, and hence a decrease in heat resistance. Further, when the molecular weight is increased, the liquid state becomes a solid state, and it becomes difficult to blend the inorganic filler into the curable resin, and the problem that a uniform resin composition cannot be obtained can be avoided.

前記ビスフェノールA型エポキシ樹脂を含むエポキシ樹脂について、加水分解性塩素濃度が600ppm以下であることが好ましい。加水分解性塩素濃度が600ppm以下であれば、混成集積回路基板として充分な耐湿性を示すことができる。 The epoxy resin containing the bisphenol A type epoxy resin preferably has a hydrolyzable chlorine concentration of 600 ppm or less. When the hydrolyzable chlorine concentration is 600 ppm or less, sufficient moisture resistance as a hybrid integrated circuit substrate can be exhibited.

本発明では、前記エポキシ樹脂の硬化剤として、フェノールノボラック樹脂が好ましく使用される。フェノールノボラック樹脂は、平均分子量1500以下であることが好ましい。平均分子量が1500以下であれば、軟化点が高温であるために無機フィラーを硬化性樹脂中にブレンドすることが困難になるという問題を避けることができる。 In the present invention, a phenol novolac resin is preferably used as the curing agent for the epoxy resin. The phenol novolac resin preferably has an average molecular weight of 1500 or less. If the average molecular weight is 1500 or less, the problem that it becomes difficult to blend the inorganic filler into the curable resin because the softening point is high can be avoided.

フェノールノボラック樹脂は、加水分解性塩素濃度が10ppm以下であることが好ましい。加水分解性塩素濃度が10ppm以下であれば、混成集積回路基板として充分な耐湿性を確保できる。 The phenol novolac resin preferably has a hydrolyzable chlorine concentration of 10 ppm or less. When the hydrolyzable chlorine concentration is 10 ppm or less, sufficient moisture resistance as a hybrid integrated circuit board can be secured.

本発明では、無機フィラーとしては特定粒度分布で特定組成のものを採用する。即ち、無機フィラーが、最大粒径が100μm以下であり、且つ粒子径1〜12μmのものを50体積%以上含有し、しかもαクリストバライトを含有するものを選択する。これにより本願発明の効果が達成できる。 In the present invention, an inorganic filler having a specific particle size distribution and a specific composition is employed. That is, an inorganic filler having a maximum particle size of 100 μm or less, a particle size of 1 to 12 μm containing 50% by volume or more, and containing α-cristobalite is selected. Thereby, the effect of the present invention can be achieved.

更に、本発明において、(a)最大粒子径が100μm以下で且つ粒子径1〜12μmのものを50体積%以上含有し平均粒子径が5〜50μmである粗粉と、(b)粒子径2.0μm以下のものを70体積%以上含有し平均粒子径が0.2〜1.5μmである微粉とからなる混合粉を用いることが好ましい。前記の特定な粒度分布を有する粗粉と微粉とを混合使用する時、粗粉と微粉との両方が球状粒子からなる無機フィラーを用いることなく、本発明の目的を達成することができる。尚、(a)と(b)との配合割合については、両者を適宜配合して、粒子の50体積%以上が1〜12μmの範囲になればどのような範囲であっても構わないが、本発明者の検討結果によれば、(a)と(b)との合計量100質量%に対して、(a)が70〜80質量%であることが好ましい。 Furthermore, in the present invention, (a) coarse powder having a maximum particle size of 100 μm or less and a particle size of 1 to 12 μm containing 50% by volume or more and an average particle size of 5 to 50 μm; and (b) a particle size of 2 It is preferable to use a mixed powder comprising 70% by volume or more of 0.0 μm or less and a fine powder having an average particle diameter of 0.2 to 1.5 μm. When the coarse powder and the fine powder having the specific particle size distribution are mixed and used, the object of the present invention can be achieved without using an inorganic filler in which the coarse powder and the fine powder are both spherical particles. In addition, about the mixture ratio of (a) and (b), both may be mix | blended suitably, as long as 50 volume% or more of particle | grains become the range of 1-12 micrometers, what kind of range may be sufficient, According to the results of studies by the present inventors, it is preferable that (a) is 70 to 80% by mass with respect to 100% by mass of the total amount of (a) and (b).

本発明において、無機フィラーとしては、αクリストバライトを含有していれば良く、他に酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化マグネシウム、窒化アルミニウム、窒化珪素、窒化ホウ素等電気絶縁性で樹脂よりも熱伝導性に優れるものならば、いずれのものでも使用できる。本発明では、粗粉としてシリカの一結晶系であるαクリストバライトを選択することが好ましい。αクリストバライトは、誘電率(25℃、1MHz)が4.0以下であり、本発明の組成物とその硬化体を高周波で用いる電気、電子部品の放熱材料に用いる場合に、電気絶縁性が確保しやすいからである。 In the present invention, the inorganic filler only needs to contain α-cristobalite. Besides, it is an electrically insulating resin such as aluminum oxide (alumina), silicon oxide (silica), magnesium oxide, aluminum nitride, silicon nitride, boron nitride. Any material can be used as long as it has a higher thermal conductivity than that. In the present invention, it is preferable to select α cristobalite which is a single crystal system of silica as the coarse powder. α-Cristobalite has a dielectric constant (25 ° C., 1 MHz) of 4.0 or less, and electrical insulation is ensured when the composition of the present invention and its cured product are used as a heat radiation material for electric and electronic parts at high frequencies. Because it is easy to do.

また、αクリストバライトについては、その電気伝導度が50μS/cm以下であること、ClやNaといったイオン性不純物量が20ppm以下であることが、混成集積回路用の基板として充分な耐湿性を確保し易くなるので一層好ましい。 In addition, α cristobalite has an electric conductivity of 50 μS / cm or less, and an ionic impurity amount of 20 ppm or less such as Cl and Na + has sufficient moisture resistance as a substrate for a hybrid integrated circuit. Since it becomes easy to ensure, it is more preferable.

無機フィラーの微粉としては、粗粉がαクリストバライトを既に含有しているならば、前記無機フィラーの破砕品を使用できる。しかし、前記αクリストバライトの微粉を用いれば、αクリストバライトの有する特徴を反映して、低誘電率で、高電気絶縁性で、高熱伝導性の樹脂硬化体が得られるので、粗粉にαクリストバライトを含有させる必要性はなくなる。一方、粗粉がαクリストバライトを含有する場合には、微粉にα石英、や溶融石英等のシリカやアルミナを使用することができる。α石英やアルミナの場合には高熱伝導の硬化体が得られるので好ましい。また、球状粒子からなるもの、例えば球状シリカ、球状アルミナ等を使用すれば、樹脂組成物の流動性が高まるので、より無機フィラーの充填量を上げることができ、その結果高電気絶縁性で高熱伝導率の樹脂硬化体を得ることができるのでやはり好ましい。 As the fine powder of the inorganic filler, if the coarse powder already contains α cristobalite, a crushed product of the inorganic filler can be used. However, if the fine powder of α cristobalite is used, a cured resin having a low dielectric constant, high electrical insulation and high thermal conductivity is obtained reflecting the characteristics of α cristobalite, so α cristobalite is added to the coarse powder. There is no need for inclusion. On the other hand, when the coarse powder contains α cristobalite, silica or alumina such as α quartz or fused quartz can be used for the fine powder. In the case of α-quartz or alumina, a highly heat-conductive cured body is obtained, which is preferable. Also, if spherical particles such as spherical silica and spherical alumina are used, the fluidity of the resin composition is increased, so that the filling amount of the inorganic filler can be increased, resulting in high electrical insulation and high heat. It is also preferable because a cured resin having conductivity can be obtained.

無機フィラーの配合割合としては、エポキシ樹脂25〜50質量%、無機フィラーの粗粉が34〜70質量%、無機フィラーの微粉が3〜24質量%であることが好ましい。前記配合範囲内とすれば、均質で気孔の混入を防止でき、しかも無機フィラーが高充填されて、熱伝導性と電気絶縁性が共に良好な樹脂硬化体が安定して得られるので、これを用いて作製した基板や回路基板、更に混成集積回路が高い信頼性を有するものとなる。 The blending ratio of the inorganic filler is preferably 25 to 50% by mass of the epoxy resin, 34 to 70% by mass of the coarse powder of the inorganic filler, and 3 to 24% by mass of the fine powder of the inorganic filler. If it is within the above blending range, it is homogeneous and can prevent pores from being mixed and highly filled with an inorganic filler, so that a cured resin body having both good thermal conductivity and electrical insulation can be stably obtained. A substrate, a circuit substrate, and a hybrid integrated circuit which are manufactured by using them have high reliability.

本発明の組成物は、公知の方法で得ることができるが、次に示す方法が、樹脂組成物中に気泡が巻き込まれるのを防止し、安定して、金属との接着性に優れ、高電気絶縁性で熱伝導性に優れる樹脂硬化体を得ることができることから、好ましい。 The composition of the present invention can be obtained by a known method, but the method shown below prevents bubbles from being entrained in the resin composition, is stable, has excellent adhesion to metal, and has a high It is preferable because a cured resin body that is electrically insulating and excellent in thermal conductivity can be obtained.

即ち、エポキシ樹脂とエポキシ樹脂の硬化剤とを混合し、その後、硬化する前に、無機フィラーを配合し混合する。ここで用いる混合機については、万能混合攪拌機、遊星式攪拌脱泡装置、加圧ニーダー等の従来公知の混合機を用いれば良く、また、混合条件についても適宜選択すれば良く、格別な条件を設定すべき理由はない。 That is, an epoxy resin and an epoxy resin curing agent are mixed, and then an inorganic filler is blended and mixed before curing. About the mixer used here, it is sufficient to use a conventionally known mixer such as a universal mixing stirrer, a planetary stirring deaerator, a pressure kneader, and the mixing conditions may be appropriately selected. There is no reason to set it.

本発明の組成物の樹脂硬化体は高電気絶縁性であると共に高熱伝導性を有し、更にアルミニウム、銅、それらの合金等の金属との接着性にも優れる特徴を有するので、いろいろな電気部品や電子部品の絶縁材料として利用できるが、特に混成集積回路用の基板、回路基板の絶縁層として好適である。また、好ましい実施態様に於いては、1.5〜3.0W/mKもの高い熱伝導率を有する。 The cured resin body of the composition of the present invention has high electrical insulation and high thermal conductivity, and also has excellent adhesive properties with metals such as aluminum, copper, and alloys thereof. Although it can be used as an insulating material for components and electronic components, it is particularly suitable as a substrate for hybrid integrated circuits and an insulating layer for circuit substrates. In a preferred embodiment, it has a thermal conductivity as high as 1.5 to 3.0 W / mK.

本発明は、金属板上に、前記の組成物からなる絶縁層を設け、前記絶縁層上に金属箔を設けてなることを特徴とする回路用基板である。ここで、通常、金属板として、0.1〜4.0mmの厚みを有する、アルミニウム、銅、鉄、前記金属の合金、又は前記金属の複合板が用いることができるし、金属箔として、アルミニウム、銅、又はこれらの合金等からなる金属箔が通常選択される。当該回路用基板は、次に示す金属ベース回路基板、金属ベース多層回路基板等の基板として用いられ、前記組成物の硬化体の有する特徴を反映して、電気絶縁性と熱放散性に優れ信頼性の高い回路基板を容易に提供することができる。尚、絶縁層の厚みについては50〜200μmが好ましい。 The present invention is a circuit board characterized in that an insulating layer made of the above composition is provided on a metal plate, and a metal foil is provided on the insulating layer. Here, aluminum, copper, iron, an alloy of the metal, or a composite plate of the metal having a thickness of 0.1 to 4.0 mm can be usually used as the metal plate, and aluminum can be used as the metal foil. A metal foil made of copper, copper, or an alloy thereof is usually selected. The circuit board is used as a substrate such as the following metal base circuit board and metal base multilayer circuit board, and reflects the characteristics of the cured product of the composition, and has excellent electrical insulation and heat dissipation properties. A highly functional circuit board can be easily provided. In addition, about the thickness of an insulating layer, 50-200 micrometers is preferable.

また、本発明の金属ベース回路基板は、前記基板の金属箔よりエッチング等の従来公知の方法で加工して回路を形成することで得ることができ、絶縁層が前記組成物からなるので、信頼性が高い特徴を有している。 Further, the metal base circuit board of the present invention can be obtained by forming a circuit by processing the metal foil of the board by a conventionally known method such as etching, and the insulating layer is made of the composition. It has high characteristics.

本発明の金属ベース多層回路基板は、金属板上に設けられた前記組成物からなる第1の絶縁層上に、回路基板を設けると共に、第2の絶縁層を形成して高発熱性電子部品を設けてなる特定な構造を有するので、高発熱性電子部品からの熱放散が助長され、当該高発熱性部品を制御する電子部品を前記回路基板に搭載することができるので、信頼性高く高発熱性電子部品を稼働させることができる特徴がある。尚、前記回路基板としては、他の金属ベース回路基板であっても、ガラスファイバー入りエポキシ樹脂を基材とする、いわゆるガラエポ基板であっても良いし、またポリイミド樹脂等の樹脂からなる樹脂基板であっても構わない。 A metal-based multilayer circuit board according to the present invention is a highly heat-generating electronic component in which a circuit board is provided on a first insulating layer made of the composition provided on a metal plate, and a second insulating layer is formed. Since the heat dissipation from the highly heat-generating electronic component is promoted and the electronic component for controlling the heat-generating component can be mounted on the circuit board, the reliability is high. There is a feature that heat-generating electronic components can be operated. The circuit board may be another metal-based circuit board, a so-called glass epoxy board based on an epoxy resin containing glass fiber, or a resin board made of a resin such as polyimide resin. It does not matter.

また、本発明に於いて、前記第1の絶縁層と第2の絶縁層との間に金属層を設けることができる。この構造を採用するときに、回路基板のシールド効果を増強することができるし、また高発熱性電子部品からの放熱を助長することもできるので、好ましい。尚、本発明に於いて、第1の絶縁層の厚さは50〜200μmが好ましく、第2の絶縁層の厚さが50μm以上200μm以下であることが好ましい。 In the present invention, a metal layer can be provided between the first insulating layer and the second insulating layer. When this structure is adopted, the shielding effect of the circuit board can be enhanced, and heat radiation from the highly exothermic electronic component can be promoted, which is preferable. In the present invention, the thickness of the first insulating layer is preferably 50 to 200 μm, and the thickness of the second insulating layer is preferably 50 μm or more and 200 μm or less.

本発明の基板、金属ベース回路基板、金属ベース多層回路基板は、金属板上に前記組成物からなる絶縁層を有しているので、前記組成物或いはその硬化体の特性を反映して、耐電圧特性に優れ、また熱放散性にも優れる特徴を有するので混成集積回路に用いて好適である。更に、好ましい実施態様では、無機フィラーの粗粉と微粉のいずれもがαクリストバライトからなるので、誘電容量が小さく、高周波を使用する混成集積回路用の基板として好適である。 Since the substrate, metal base circuit board, and metal base multilayer circuit board of the present invention have an insulating layer made of the composition on a metal plate, the characteristics of the composition or a cured product thereof are reflected. Since it has excellent voltage characteristics and heat dissipation characteristics, it is suitable for use in hybrid integrated circuits. Furthermore, in a preferred embodiment, since both inorganic filler coarse powder and fine powder are made of α-cristobalite, the dielectric capacitance is small, and it is suitable as a substrate for a hybrid integrated circuit using a high frequency.

(実施例1)
無機フィラーの粗粉としてαクリストバライト(東海工業社製、「XPF6」;最大粒径が96μmで、5〜50μmの粒子を60体積%含有し、平均粒子径が6μm)55質量部と、無機フィラーの微粉としてαクリストバライト(東海工業社製、「XPF6」を自然沈降現象を利用した湿式の水簸分級方法で分級したもの:2.0μm以下が70体積%で、平均粒子径が1.0μm)14質量部とを混合して、原料無機フィラーとした。
Example 1
Α cristobalite (“XPF6” manufactured by Tokai Kogyo Co., Ltd .; maximum particle size of 96 μm, containing 60 % by volume of particles of 5 to 50 μm, average particle size of 6 μm) as inorganic filler coarse powder, 55 parts by mass, inorganic filler Α cristobalite (made by Tokai Kogyo Co., Ltd., “XPF6” classified by wet elutriation classification method using natural sedimentation phenomenon: 2.0 μm or less is 70 % by volume and average particle size is 1.0 μm) 14 parts by mass was mixed to obtain a raw material inorganic filler.

ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「EP828」)20質量部、フェノールノボラック樹脂(大日本インキ化学工業社製、「TD−2131」)を9質量部、シランカップリング剤(日本ユニカー社製、「A−187」)1質量部を配合して、温度90℃で混練機により混練しながら、前記原料無機フィラーを混合して、回路基板用の組成物(a)を作製した。 20 parts by mass of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, “EP828”), 9 parts by mass of phenol novolac resin (manufactured by Dainippon Ink and Chemicals, “TD-2131”), silane coupling agent (Nihon Unicar) 1 part by mass of “A-187” manufactured by the company was blended, and the raw material inorganic filler was mixed while kneading with a kneader at a temperature of 90 ° C. to prepare a composition (a) for a circuit board.

前記組成物(a)100質量部に対して、硬化促進剤としてイミダゾール系硬化促進剤(四国化成社製、「TBZ」)を0.05質量部加え、組成物(b)を得た。 0.05 parts by mass of an imidazole curing accelerator (manufactured by Shikoku Kasei Co., Ltd., “TBZ”) was added as a curing accelerator to 100 parts by mass of the composition (a) to obtain a composition (b).

組成物(b)を150℃で1時間、更に180℃で2時間加熱して硬化物を得て、この硬化物について、レーザーフラッシュ法での熱伝導率を測定したところ、1.7W/mKであった。この結果を表1に示した。 The composition (b) was heated at 150 ° C. for 1 hour and further at 180 ° C. for 2 hours to obtain a cured product. The thermal conductivity of this cured product was measured by a laser flash method to find 1.7 W / mK. Met. The results are shown in Table 1.

Figure 0005038007
Figure 0005038007

厚み1.5mmのアルミニウム板上に、前記組成物(b)を、硬化後の厚みが80μmとなるように塗布し、100℃0.1時間加熱して半硬化状態にした後、組成物(b)上に厚さ210μmの銅箔を積層し、更に180℃2時間加熱して硬化を完了させ、混成集積回路用の基板を作製した。 The composition (b) was applied onto an aluminum plate having a thickness of 1.5 mm so that the thickness after curing was 80 μm and heated to 100 ° C. for 0.1 hour to be in a semi-cured state. b) A copper foil having a thickness of 210 μm was laminated thereon and further heated at 180 ° C. for 2 hours to complete the curing, thereby producing a substrate for a hybrid integrated circuit.

得られた混成集積回路用の基板について、後述する通りに、各種の特性を調べ、その結果を表2に示した。 With respect to the obtained substrate for a hybrid integrated circuit, various characteristics were examined as described later, and the results are shown in Table 2.

Figure 0005038007
Figure 0005038007

<密着性>
混成集積回路基板について、銅箔をエッチングで除去した後、2cm×10cmに切断し、90度の角度にアルミニウム面側に折り曲げた。その際に、アルミと絶縁層に剥がれが生じない物を良好、剥がれが生じた物を不良とした。
<Adhesion>
For the hybrid integrated circuit board, the copper foil was removed by etching, then cut to 2 cm × 10 cm, and bent to the aluminum surface side at an angle of 90 degrees. In that case, the thing which did not peel in an aluminum and an insulating layer was made into the favorable thing, and the thing in which peeling occurred was made into a defect.

<流動性>
組成物(b)について、B型粘度計にて粘度を測定し、室温(25℃)の粘度が200,000cpsを超えるものを不良、200,000cps以下のものを良好とした。
<Fluidity>
Regarding the composition (b), the viscosity was measured with a B-type viscometer, and those having a room temperature (25 ° C.) viscosity exceeding 200,000 cps were determined to be poor and those having a viscosity of 200,000 cps or less were determined to be good.

<耐電圧>
混成集積回路用の基板の銅箔の周囲をエッチングし、直径20mmの円形部分を残し試料とした。温度121℃、湿度100%RH、2気圧、96時間の条件下に暴露した前後の耐電圧について、試験片を絶縁油中に浸漬し、室温で交流電圧を銅箔とアルミニウム板間に印加させ、JISC2110に基づき測定した。測定器には、菊水電子工業社製、「TOS−8700」を用いた。
<Withstand voltage>
The periphery of the copper foil of the substrate for the hybrid integrated circuit was etched, and a circular portion having a diameter of 20 mm was left as a sample. For the withstand voltage before and after exposure under conditions of a temperature of 121 ° C., a humidity of 100% RH, 2 atm, and 96 hours, the test piece was immersed in insulating oil, and an AC voltage was applied between the copper foil and the aluminum plate at room temperature. , Measured based on JISC2110. “TOS-8700” manufactured by Kikusui Electronics Co., Ltd. was used as the measuring instrument.

<引き剥がし強度>
混成集積回路用の基板から幅10mmの銅箔を残すように加工して試料とした。銅箔と基板を90度の角度とし、50mm/minの引っ張り速度で剥離した。その他の条件はJISC6481に基づいた。測定機としてはテンシロン(東洋ボールドウィン社製、「U−1160」)を用いた。
<Stripping strength>
A sample was processed by leaving a copper foil having a width of 10 mm from the substrate for the hybrid integrated circuit. Copper foil and a board | substrate were made into the angle of 90 degree | times, and it peeled with the pulling speed of 50 mm / min. Other conditions were based on JISC6481. Tensilon (Toyo Baldwin, “U-1160”) was used as a measuring machine.

<誘電損失>
混成集積回路用の基板の銅箔の周囲をエッチングし、直径20mmの円形部分を残し試料とした。測定は、温度25℃、周波数1MHzの条件下にて、JISC6481に基づき実施した。測定器には、LCRメータ(横河・ヒューレット・パッカード社製、「HP4284」)を用いた。
<Dielectric loss>
The periphery of the copper foil of the substrate for the hybrid integrated circuit was etched, and a circular portion having a diameter of 20 mm was left as a sample. The measurement was performed based on JISC6481 under conditions of a temperature of 25 ° C. and a frequency of 1 MHz. An LCR meter (manufactured by Yokogawa, Hewlett-Packard Company, “HP4284”) was used as the measuring instrument.

<比誘電率>
先ず、静電容量(X;単位、F)を上記誘電損失と同条件にてJISC6481に基づき測定した。比誘電率(E)は、静電容量(X;単位、F)と絶縁層の厚み(Y;単位、m)と電極板の面積(Z;単位、m)と真空の誘電率(8.85×10−12;単位、F/m)から、
E=X×Y/(8.85×10−12×Z)
の式を用いて、算出した。
<Relative permittivity>
First, electrostatic capacity (X; unit, F) was measured based on JISC6481 under the same conditions as the dielectric loss. The relative dielectric constant (E) is the capacitance (X; unit, F), the thickness of the insulating layer (Y; unit, m), the area of the electrode plate (Z; unit, m 2 ), and the dielectric constant (8 .85 × 10 −12 ; units, F / m)
E = X × Y / (8.85 × 10 −12 × Z)
This was calculated using the following formula.

<耐熱性>
試料を200℃に設定した恒温器(エスペック社製、「PHH−201」)に500hr放置した後、木片上で冷却する処理を行い、処理後の試験片を絶縁油中に浸漬し、室温で交流電圧を銅箔とアルミニウム板間に印加させ、絶縁破壊する電圧を測定した。
<Heat resistance>
The sample was left in a thermostat set to 200 ° C. (“PHH-201”, manufactured by Espec Corp.) for 500 hours, then cooled on a piece of wood, and the treated test piece was immersed in insulating oil at room temperature. An alternating voltage was applied between the copper foil and the aluminum plate, and the voltage at which dielectric breakdown occurred was measured.

<厚銅箔信頼性>
銅箔の厚みが210μmを超えるような混成集積回路基板の評価として実施した。260℃に設定された半田浴に2分間浮かべた後、木片上で冷却する処理を行い、処理後の試験片を絶縁油中に浸漬し、室温で交流電圧を銅箔とアルミニウム板間に印加させ、絶縁破壊する電圧を測定する。また、処理後の試験片の断面観察(走査型電子顕微鏡)を行い、銅箔と絶縁層界面部における絶縁層割れの発生有無を評価した。
<Thick copper foil reliability>
The evaluation was carried out as an evaluation of a hybrid integrated circuit board in which the thickness of the copper foil exceeded 210 μm. After floating in a solder bath set at 260 ° C for 2 minutes, the piece is cooled on a piece of wood, the treated piece is immersed in insulating oil, and an AC voltage is applied between the copper foil and the aluminum plate at room temperature. And measure the breakdown voltage. Moreover, the cross-section observation (scanning electron microscope) of the test piece after a process was performed, and the presence or absence of the generation | occurrence | production of the insulating layer crack in a copper foil and an insulating layer interface part was evaluated.

<熱抵抗値>
測定用試料としては、混成集積回路用の基板を3×4cmに切断し、10×15mmの銅箔を残した。銅箔上にTO−220型トランジスターを半田付けし、水冷した放熱フィン上に放熱グリースを介して固定した。トランジスターに通電し、トランジスターを発熱させ、トランジスター表面と金属基裏面の温度差を測定し、熱抵抗値を測定し、放熱グリースの熱抵抗値を補正する事により、求める試験片の熱抵抗値(A;単位、K/W)を測定した。
<Thermal resistance value>
As a measurement sample, a substrate for a hybrid integrated circuit was cut into 3 × 4 cm, leaving a 10 × 15 mm copper foil. A TO-220 type transistor was soldered on the copper foil, and fixed to the water-cooled heat radiation fin via heat radiation grease. By energizing the transistor, causing the transistor to generate heat, measuring the temperature difference between the transistor surface and the back of the metal base, measuring the thermal resistance value, and correcting the thermal resistance value of the heat dissipating grease, A: Unit, K / W) was measured.

<熱伝導率>
熱伝導率(H;単位、W/mK)は、前記の熱抵抗値(A;単位、K/W)と、試片の絶縁層の厚み(B;単位、m)及びトランジスター実装面積(C;単位、m)から、
X=B/(A×C)
の式を用いて、算出した。
<Thermal conductivity>
The thermal conductivity (H; unit, W / mK) is the thermal resistance value (A; unit, K / W), the thickness of the insulating layer of the specimen (B; unit, m), and the transistor mounting area (C From the unit m 2 )
X = B / (A × C)
This was calculated using the following formula.

<加工性>
混成集積回路基板をパンチにて穴あけを行い、10,000ショット後のパンチの磨耗量を測定した。
<Processability>
The hybrid integrated circuit board was punched with a punch, and the amount of wear of the punch after 10,000 shots was measured.

<沿面放電耐圧>
測定用試料として、混成集積回路基板の沿面から2mm距離に直線の銅回路を形成した。室温で交流電圧を銅箔回路とアルミニウム板間に印加し、沿面放電の発生電圧を測定した。
<Creep discharge withstand voltage>
As a measurement sample, a straight copper circuit was formed at a distance of 2 mm from the creeping surface of the hybrid integrated circuit board. An AC voltage was applied between the copper foil circuit and the aluminum plate at room temperature, and the voltage generated by creeping discharge was measured.

<電力損失>
静電容量(X;単位、F)を上記誘電損失と同条件にてJISC6481に基づき測定した。電力損失(G)は、静電容量(X;単位、F)とデバイスの動作周波数(H;400kHz)と動作電圧(I;220V)から、
G=(X×I×H)/2
の式を用いて、算出した。
<Power loss>
Capacitance (X; unit, F) was measured based on JISC6481 under the same conditions as the dielectric loss. Power loss (G) is calculated from capacitance (X; unit, F), device operating frequency (H; 400 kHz) and operating voltage (I; 220 V).
G = (X × I 2 × H) / 2
This was calculated using the following formula.

(実施例2〜4、参考例1〜3
無機フィラーの粗粉、微粉の種類と配合量とを表1に示す通りに変えたこと以外は実施例1と同様の方法で組成物及び樹脂硬化体、更に基板、金属ベース回路基板、混成集積回路を作製し、評価した。この結果を表1、表2に示した。
(Examples 2 to 4, Reference Examples 1 to 3 )
The composition and the cured resin body, substrate, metal base circuit board, and hybrid integration were obtained in the same manner as in Example 1 except that the types and blending amounts of the inorganic filler coarse powder and fine powder were changed as shown in Table 1. A circuit was fabricated and evaluated. The results are shown in Tables 1 and 2.

(比較例1〜5)
硬化剤、粗粉、微粉の種類とこれらの配合量を変えたこと以外は実施例1と同様の操作で組成物及び樹脂硬化体、更に基板、回路基板、混成集積回路を作製し、評価した。この結果を表3、表4に示す。
(Comparative Examples 1-5)
A composition and a cured resin body, a substrate, a circuit board, and a hybrid integrated circuit were prepared and evaluated in the same manner as in Example 1 except that the types of curing agent, coarse powder, and fine powder and the blending amounts thereof were changed. . The results are shown in Tables 3 and 4.

Figure 0005038007
Figure 0005038007

Figure 0005038007
Figure 0005038007

(実施例
厚み1.5mmのアルミニウム板上に、実施例1の組成物(b)を、硬化後の第1の絶縁層厚みが150μmとなるように塗布し、100℃0.1時間加熱して半硬化状態にした後、前記組成物(b)上に厚さ35μmの銅箔を積層し、更に180℃2時間加熱して硬化を完了させた。得られた回路基板上に更に前記組成物(b)を硬化後の絶縁層厚みが50μmとなるように塗布し、100℃0.1時間加熱して半硬化状態にした後、組成物(b)上に厚さ210μmの銅箔を積層し、更に180℃2時間加熱して硬化を完了させ、混成集積回路用の金属ベース多層回路基板を作製し、多層回路基板本体、並びに多層回路基板の外層の評価を実施した。この結果を表5、表6、表7に示した。
(Example 5 )
On the aluminum plate having a thickness of 1.5 mm, the composition (b) of Example 1 was applied so that the thickness of the first insulating layer after curing was 150 μm, and heated at 100 ° C. for 0.1 hour to be semi-cured. After making it into a state, a copper foil having a thickness of 35 μm was laminated on the composition (b) and further heated at 180 ° C. for 2 hours to complete the curing. The composition (b) is further applied onto the obtained circuit board so that the insulating layer thickness after curing is 50 μm, heated to 100 ° C. for 0.1 hour to be in a semi-cured state, and then the composition (b ) A copper foil having a thickness of 210 μm is laminated thereon, and further cured by heating at 180 ° C. for 2 hours to produce a metal-based multilayer circuit board for a hybrid integrated circuit . The outer layer was evaluated. The results are shown in Table 5, Table 6, and Table 7.

(実施例
第2の絶縁層厚みを200μmに変えたこと以外は実施例と同様の方法で金属ベース多層回路基板を作製し、多層回路基板本体、並びに多層回路基板の外層の評価を実施した。この結果を表5、表6、表7に示した。
(Example 6 )
A metal-based multilayer circuit board was produced in the same manner as in Example 5 except that the thickness of the second insulating layer was changed to 200 μm, and the multilayer circuit board body and the outer layers of the multilayer circuit board were evaluated. The results are shown in Table 5, Table 6, and Table 7.

(比較例6〜7)
硬化剤、粗粉、微粉の種類とこれらの配合量を変えたこと以外は実施例と同様の操作で組成物及び樹脂硬化体、更に基板、回路基板、混成集積回路を作製し、多層回路基板本体、並びに多層回路基板の外層の評価を実施した。この結果を表5、表6、表7に示す。
(Comparative Examples 6-7)
A composition and a cured resin body, a substrate, a circuit board, and a hybrid integrated circuit were produced in the same manner as in Example 5 except that the types of hardener, coarse powder, fine powder and the blending amounts thereof were changed, and a multilayer circuit was produced. The board body and the outer layer of the multilayer circuit board were evaluated. The results are shown in Table 5, Table 6, and Table 7.

Figure 0005038007
Figure 0005038007

Figure 0005038007
Figure 0005038007

Figure 0005038007
Figure 0005038007

Claims (6)

「エポキシ樹脂と前記エポキシ樹脂の硬化剤と無機フィラーとを含む組成物であって、(a)エポキシ樹脂がエポキシ当量300以下のビスフェノールA型エポキシ樹脂、(b)硬化剤が平均分子量1,500以下のフェノールノボラック樹脂、(c)無機フィラーがαクリストバライトであって、最大粒径が100μm以下で、且つ平均粒子径が5〜50μmである粗粉と、粒子径2.0μm以下の粒子を70体積%以上含有し、且つ平均粒子径が0.2〜1.5μmである微粉からなることを特徴とする組成物。 “A composition comprising an epoxy resin, a curing agent for the epoxy resin, and an inorganic filler, wherein (a) the epoxy resin is a bisphenol A type epoxy resin having an epoxy equivalent of 300 or less, and (b) the average molecular weight is 1,500. The following phenol novolac resin, (c) the inorganic filler is α cristobalite, the maximum particle size is 100 μm or less, and the average particle size is 5 to 50 μm. A composition comprising a fine powder which is contained by volume% or more and has an average particle diameter of 0.2 to 1.5 μm . 金属板上に、請求項に記載の組成物からなる絶縁層を設け、前記絶縁層上に金属箔を設けてなることを特徴とする回路用基板。 An insulating layer made of the composition according to claim 1 is provided on a metal plate, and a metal foil is provided on the insulating layer. 金属板上に、請求項に記載の組成物からなる絶縁層を設け、前記絶縁層上に金属箔を設け、前記金属箔を加工して回路を形成してなることを特徴とする金属ベース回路基板。 A metal base comprising an insulating layer made of the composition according to claim 1 provided on a metal plate, a metal foil provided on the insulating layer, and a circuit formed by processing the metal foil. Circuit board. 金属板上に、請求項に記載の組成物からなる第1の絶縁層を設け、前記第1の絶縁層上に回路基板を設けるとともに、前記第1の絶縁層上に更に請求項記載の組成物からなる第2の絶縁層を設け、前記第2の絶縁層上に高発熱性電子部品を設けてなることを特徴とする金属ベース多層回路基板。 On a metal plate, a first insulating layer comprising the composition of claim 1 provided, provided with a circuit board on the first insulating layer, further according to claim 1, wherein said first insulating layer A metal-based multilayer circuit board comprising a second insulating layer made of the above composition and a high heat generating electronic component provided on the second insulating layer. 第1の絶縁層と第2の絶縁層との間に金属層を設けたことを特徴とする請求項記載の金属ベース多層回路基板。 The metal-based multilayer circuit board according to claim 4 , wherein a metal layer is provided between the first insulating layer and the second insulating layer. 第2の絶縁層の厚さが50μm以上200μm以下であることを特徴とする請求項又は請求項記載の金属ベース多層回路基板。
Metal base multilayer circuit board according to claim 4 or claim 5, wherein the thickness of the second insulating layer is equal to or is 50μm or more 200μm or less.
JP2007107866A 2007-04-17 2007-04-17 Composition, metal-based circuit board using the composition Expired - Fee Related JP5038007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107866A JP5038007B2 (en) 2007-04-17 2007-04-17 Composition, metal-based circuit board using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107866A JP5038007B2 (en) 2007-04-17 2007-04-17 Composition, metal-based circuit board using the composition

Publications (2)

Publication Number Publication Date
JP2008266378A JP2008266378A (en) 2008-11-06
JP5038007B2 true JP5038007B2 (en) 2012-10-03

Family

ID=40046330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107866A Expired - Fee Related JP5038007B2 (en) 2007-04-17 2007-04-17 Composition, metal-based circuit board using the composition

Country Status (1)

Country Link
JP (1) JP5038007B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282209B (en) * 2009-01-16 2013-12-11 电气化学工业株式会社 Rubber-modified thermoplastic resin composition, injection molded article comprising the same, and washing machine lid using the same
EP2626205A1 (en) * 2010-10-06 2013-08-14 Hitachi Chemical Co., Ltd. Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
KR101957532B1 (en) 2010-12-01 2019-03-12 도레이 카부시키가이샤 Adhesive composition, adhesive sheet, and semiconductor device using the adhesive composition or the adhesive sheet
CN103459149B (en) * 2011-03-28 2015-08-26 日立化成株式会社 Multi-layer resinous, resin sheet laminated body, multi-layer resinous solidfied material and manufacture method thereof, multi-layer resinous and semiconductor device with metal forming
CN103917605A (en) * 2011-11-02 2014-07-09 日立化成株式会社 Resin composition, and resin sheet, prepreg, laminate, metal substrate and printed circuit board using same
JP6422215B2 (en) * 2013-01-16 2018-11-14 ソマール株式会社 Liquid epoxy resin composition and adhesive using the same
WO2014115637A1 (en) 2013-01-22 2014-07-31 東レ株式会社 Adhesive composition and adhesive sheet, and cured material and semiconductor device using same
JP6583278B2 (en) * 2014-09-24 2019-10-02 住友ベークライト株式会社 Semiconductor sealing resin composition, semiconductor device and structure
CN109563343B (en) 2016-08-08 2021-03-23 东丽株式会社 Resin composition, sheet using same, laminate, power semiconductor device, plasma processing apparatus, and method for manufacturing semiconductor
CN114502658A (en) * 2019-10-29 2022-05-13 日铁化学材料株式会社 Resin composition, resin film, laminate, coverlay film, resin-containing copper foil, metal-clad laminate, and circuit board
JP7398277B2 (en) * 2019-12-27 2023-12-14 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP7410716B2 (en) * 2019-12-27 2024-01-10 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP7446814B2 (en) * 2019-12-27 2024-03-11 日鉄ケミカル&マテリアル株式会社 Resin compositions, resin films, and metal-clad laminates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164754A (en) * 1984-09-05 1986-04-03 Nippon Steel Corp Inorganic filler-containing resin composition
JPS6164755A (en) * 1984-09-05 1986-04-03 Nippon Steel Corp Inorganic filler-containing resin composition
JPH0733429B2 (en) * 1990-04-04 1995-04-12 東レ株式会社 Epoxy resin composition
JP3800277B2 (en) * 1998-04-16 2006-07-26 株式会社龍森 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001172472A (en) * 1999-12-22 2001-06-26 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor apparatus

Also Published As

Publication number Publication date
JP2008266378A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5038007B2 (en) Composition, metal-based circuit board using the composition
JP5192812B2 (en) Resin composition and circuit board for hybrid integration using the same
JP5330910B2 (en) Resin composition and use thereof
CA2807751C (en) Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP2012219251A (en) Prepreg for heat- and pressure-molding, and laminated board
KR101612596B1 (en) Laminate and method for producing component for power semiconductor modules
JP6508384B2 (en) Thermal conductive sheet and semiconductor device
JP2020117619A (en) Insulating resin composition, insulating resin cured product, laminate, and circuit board
JP3006617B2 (en) Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP6726481B2 (en) Circuit board and electronic component mounting board
JP2013094988A (en) Laminate
JP2008101062A (en) Resin composition, prepreg, laminated plate and semiconductor device
JP2002080559A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminate using the prepreg
JP2019178300A (en) Resin composition, resin sheet, core material, and heat radiation substrate
JP7566917B2 (en) Insulating resin composition, cured insulating resin body, laminate and circuit board
JP6061904B2 (en) Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same
JPH08204301A (en) Metallic base circuit board and module using it
TW202124575A (en) Insulating resin composition, insulating resin cured article, laminate, and circuit board
CN111019298A (en) Resin composition and high-heat-resistant metal-based copper-clad plate
JP2008004838A (en) Heat-conductive, electrically insulating circuit board
JP2009164540A (en) Metal-base circuit board and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5038007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees