JP6061904B2 - Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same - Google Patents

Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same Download PDF

Info

Publication number
JP6061904B2
JP6061904B2 JP2014189664A JP2014189664A JP6061904B2 JP 6061904 B2 JP6061904 B2 JP 6061904B2 JP 2014189664 A JP2014189664 A JP 2014189664A JP 2014189664 A JP2014189664 A JP 2014189664A JP 6061904 B2 JP6061904 B2 JP 6061904B2
Authority
JP
Japan
Prior art keywords
insulating resin
epoxy resin
resin composition
volume
bisallylnadiimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189664A
Other languages
Japanese (ja)
Other versions
JP2016060822A (en
Inventor
建治 宮田
建治 宮田
紗央 本間
紗央 本間
裕紀 木元
裕紀 木元
和幸 五十嵐
和幸 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2014189664A priority Critical patent/JP6061904B2/en
Publication of JP2016060822A publication Critical patent/JP2016060822A/en
Application granted granted Critical
Publication of JP6061904B2 publication Critical patent/JP6061904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁性樹脂組成物、その硬化体及びそれを用いた混成集積回路に関する。 The present invention relates to an insulating resin composition, a cured product thereof, and a hybrid integrated circuit using the same.

従来、小型化や実装時の省力化などを可能にする表面実装を実現するために、各種の回路基板が用いられており、これらの回路基板に各種の表面実装電子部品を搭載した混成集積回路が用いられている。特に、高発熱性電子部品を実装する回路基板として、金属板上に無機充填材を充填したエポキシ樹脂等からなる絶縁層を設け、該絶縁層上に回路を設けた混成集積回路が用いられている。 Conventionally, various circuit boards have been used to realize surface mounting that enables miniaturization and labor saving during mounting, and hybrid integrated circuits in which various surface mount electronic components are mounted on these circuit boards. Is used. In particular, a hybrid integrated circuit in which an insulating layer made of an epoxy resin or the like filled with an inorganic filler is provided on a metal plate and a circuit is provided on the insulating layer is used as a circuit board for mounting a highly exothermic electronic component. Yes.

しかし、近年、混成集積回路の小型化が要求され、高密度実装化および高性能化が要求され、更には、混成集積回路の小型化、ハイパワー化により、狭いスペースの中で、混成集積回路から発生した熱を如何に放熱するかが問題となっている。 However, in recent years, there has been a demand for downsizing of hybrid integrated circuits, high density mounting and high performance have been demanded, and further, hybrid integrated circuits in a narrow space due to downsizing and high power of hybrid integrated circuits. The problem is how to dissipate the heat generated from the heat.

そこで、特許文献1には、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、無機フィラーが必須成分とする絶縁接着フィルムが開示されている。しかし、本方法では、樹脂が何れも固形、もしくは高粘度であるため、無機フィラーの高充填化が難しく、高熱伝導化が課題であった。 Therefore, Patent Document 1 discloses an insulating adhesive film containing polyimide resin, epoxy resin, phenol resin, and inorganic filler as essential components. However, in this method, since all the resins are solid or have a high viscosity, it is difficult to increase the filling of the inorganic filler, and it has been a problem to increase the thermal conductivity.

特許文献2には、有機溶剤可溶性ポリイミド樹脂、エポキシ樹脂、無機フィラーを必須成分とする樹脂組成物の発明が開示されている。しかし、本方法では、ブレンドする樹脂の硬化物性が近い為、大きな熱伝導率が得られないとの課題があった。また、ポリイミド樹脂を用いた樹脂組成物は、回路箔に対する接着性に乏しく、且つ高温での加熱硬化を必要とし、その際に逆反応(逆Diels−Alder反応)による揮発成分が生じる課題が有った。さらに、耐熱性を高めるためのエポキシ樹脂を用いる場合、殆どが室温で固形であることから高温させる必要があり、絶縁強度や、ピール強度が低下する課題があった。 Patent Document 2 discloses an invention of a resin composition containing an organic solvent-soluble polyimide resin, an epoxy resin, and an inorganic filler as essential components. However, in this method, there is a problem that a large thermal conductivity cannot be obtained due to the close cured properties of the resin to be blended. In addition, a resin composition using a polyimide resin has poor adhesion to a circuit foil, and requires heat curing at a high temperature. In this case, there is a problem that a volatile component due to a reverse reaction (reverse Diels-Alder reaction) occurs. It was. Furthermore, when using the epoxy resin for improving heat resistance, since it is almost solid at room temperature, it is necessary to make it high temperature, and there existed a subject that insulation strength and peel strength fell.

特開2004−319823号公報JP 2004-319823 A 特開2008−94870号公報JP 2008-94870 A

本発明は、上記問題と実状に鑑み、硬化時の耐熱性、熱電導性、耐電圧特性および接着性に優れた絶縁性樹脂組成物を提供することを目的とする。さらに、この絶縁性樹脂組成物を用いて製造される、混成集積回路基板、混成集積回路を提供することを目的とする。 An object of this invention is to provide the insulating resin composition excellent in the heat resistance at the time of hardening, thermoconductivity, a withstand voltage characteristic, and adhesiveness in view of the said problem and the actual condition. Furthermore, it aims at providing the hybrid integrated circuit board and hybrid integrated circuit which are manufactured using this insulating resin composition.

上記課題を解決する本発明は、下記より構成される。
(1)(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)化1で示されるビスアリルナジイミドと、(D)無機フィラーを含有する絶縁性樹脂組成物であって、
(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤と(C)ビスアリルナジイミドの添加量の和に対し、(C)ビスアリルナジイミドが15〜64質量%であり、
(A)エポキシ樹脂と(C)ビスアリルナジイミドの反応ピーク温度の差が85〜205℃であり、
(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤の混合物に対する、(C)ビスアリルナジイミドの100℃、ずり速度0.1s−1における粘度比が15〜270であり、
(D)無機フィラーが平均粒子径の異なる2種類以上の無機フィラーであり、
(D)無機フィラーが(D−1)平均粒子径が5〜50μmの粗粉と、(D−2)平均粒子径が0.2〜1.5μmの1種類以上の微粉を含有し、
(D−1)粗粉の最大粒子径が100μm以下で、且つ粒子径1〜20μmの粒子を粗粉中に50体積%以上含有し、
(D−2)微粉の2.0μm以下の粒子が微粉中に70体積%以上であり、
さらに、絶縁性樹脂組成物中の(D−1)粗粉の体積分率が35〜70体積%、(D−2)微粉の体積分率が5〜25体積%である、絶縁性樹脂組成物。

Figure 0006061904

化1で表される構造単位において、Rは4,4’−ジフェニルメチル基、メタ−キシリル基およびヘキサメチレン基から選択される1種を示す。
)(D−1)粗粉が窒化アルミである、請求項に記載の絶縁性樹脂組成物。
)(D−2)微粉が、窒化アルミ、窒化ケイ素および酸化アルミニウムから選択される1種以上である、請求項1または2に記載の絶縁性樹脂組成物。
)請求項1〜のいずれか一項に記載の絶縁性樹脂組成物を硬化させてなる絶縁性樹脂硬化体。
)熱伝導率が1.5〜8W/mKである、請求項に記載の絶縁性樹脂硬化体。
)金属基板上に、請求項またはに記載の絶縁性樹脂硬化体を介して金属箔を配置した、混成集積回路用の基板。
)請求項に記載の金属箔を加工して回路を形成した、混成集積回路基板。
)請求項に記載の混成集積回路基板に電子部品を搭載した、混成集積回路。
The present invention for solving the above-described problems is constituted as follows.
(1) An insulating resin composition containing (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a bisallylnadiimide represented by Chemical Formula 1, and (D) an inorganic filler,
(A) epoxy resin, (B) epoxy resin curing agent, and (C) bisallylnadiimide is 15 to 64% by mass with respect to the sum of addition amounts of bisallylnadiimide,
The difference in the reaction peak temperature between (A) the epoxy resin and (C) bisallylnadiimide is 85 to 205 ° C,
The viscosity ratio of (C) bisallyl nadiimide at 100 ° C. and shear rate of 0.1 s −1 to the mixture of (A) epoxy resin and (B) epoxy resin curing agent is 15 to 270,
(D) The inorganic filler is two or more types of inorganic fillers having different average particle diameters ,
(D) The inorganic filler contains (D-1) coarse powder having an average particle diameter of 5 to 50 μm, and (D-2) one or more fine powders having an average particle diameter of 0.2 to 1.5 μm,
(D-1) The maximum particle diameter of the coarse powder is 100 μm or less, and particles having a particle diameter of 1 to 20 μm are contained in the coarse powder by 50% by volume or more,
(D-2) The particle | grains of 2.0 micrometers or less of a fine powder are 70 volume% or more in a fine powder,
Furthermore, (D-1) the volume fraction of the coarse powder in the insulating resin composition is 35 to 70% by volume, and (D-2) the volume fraction of the fine powder is 5 to 25% by volume. object.
Figure 0006061904

In the structural unit represented by Chemical Formula 1, R represents one selected from a 4,4′-diphenylmethyl group, a meta-xylyl group, and a hexamethylene group.
( 2 ) The insulating resin composition according to claim 1 , wherein the coarse powder (D-1) is aluminum nitride.
( 3 ) The insulating resin composition according to claim 1 or 2 , wherein the fine powder (D-2) is at least one selected from aluminum nitride, silicon nitride, and aluminum oxide.
( 4 ) An insulating resin cured body obtained by curing the insulating resin composition according to any one of claims 1 to 3 .
( 5 ) The cured insulating resin body according to claim 4 , wherein the thermal conductivity is 1.5 to 8 W / mK.
( 6 ) The board | substrate for hybrid integrated circuits which has arrange | positioned metal foil through the insulating resin hardening body of Claim 4 or 5 on the metal board | substrate.
( 7 ) A hybrid integrated circuit board in which a circuit is formed by processing the metal foil according to claim 6 .
( 8 ) A hybrid integrated circuit comprising electronic components mounted on the hybrid integrated circuit board according to claim 7 .

本発明では、(A)エポキシ樹脂と(C)ビスアリルナジイミドの反応ピーク温度の差、(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤の混合物に対する(C)ビスアリルナジイミドの粘度比が特定範囲にあり、かつ平均粒子径の異なる2種類以上の無機フィラーを用いることで、絶縁性樹脂組成物中の無機フィラーを高充填できることを見出し、熱伝導性および耐電圧特性を両立することができた。また、硬化時の耐熱性に優れるため硬化過程で熱分解した揮発分による絶縁性の低下を低減することができる。さらに、金属箔との接着性が良好であるため、本絶縁性樹脂組成物を用いた混成集積回路は長期耐久性に優れる。 In the present invention, the difference in reaction peak temperature between (A) epoxy resin and (C) bisallyl nadiimide, the viscosity ratio of (C) bisallyl nadiimide to the mixture of (A) epoxy resin and (B) epoxy resin curing agent Found that the inorganic filler in the insulating resin composition can be highly filled by using two or more kinds of inorganic fillers having a specific range and different average particle diameters, and achieving both thermal conductivity and withstand voltage characteristics I was able to. Moreover, since it is excellent in heat resistance at the time of curing, it is possible to reduce a decrease in insulation due to volatile components thermally decomposed during the curing process. Furthermore, since the adhesiveness with the metal foil is good, the hybrid integrated circuit using the present insulating resin composition is excellent in long-term durability.

<絶縁性樹脂組成物>
本発明の絶縁性樹脂組成物は、(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)化1で示されるビスアリルナジイミド樹脂と、(D)無機フィラーを含有する絶縁性樹脂組成物であって、(A)エポキシ樹脂と(C)ビスアリルナジイミドの反応ピーク温度の差が85〜205℃であり、(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤の混合物に対する、(C)ビスアリルナジイミドの100℃、ずり速度0.1s−1における粘度比が15〜270であり、(D)無機フィラーが平均粒子径の異なる2種類以上の無機フィラーである、絶縁性樹脂組成物である。

Figure 0006061904


化1で表される構造単位において、Rは4,4’−ジフェニルメチル基、メタ−キシリル基およびヘキサメチレン基から選択される1種を示す。 <Insulating resin composition>
The insulating resin composition of the present invention comprises (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a bisallylnadiimide resin represented by Chemical Formula 1, and (D) an inorganic filler. The difference in reaction peak temperature between (A) epoxy resin and (C) bisallylnadiimide is 85 to 205 ° C., and (A) epoxy resin and (B) epoxy resin curing agent mixture In contrast, (C) the viscosity ratio of bisallylnadiimide at 100 ° C. and a shear rate of 0.1 s −1 is 15 to 270, and (D) the inorganic filler is two or more types of inorganic fillers having different average particle diameters. It is an insulating resin composition.
Figure 0006061904


In the structural unit represented by Chemical Formula 1, R represents one selected from a 4,4′-diphenylmethyl group, a meta-xylyl group, and a hexamethylene group.

(A)エポキシ樹脂
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂(クレゾールのボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等)、環式脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。これらの中では、密着性および耐熱性に優れる、ビスフェノールA又はF型エポキシ樹脂が好ましい。
(A) Epoxy resin As epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional epoxy resin (cresol borac epoxy resin, dicyclopentadiene type epoxy resin, etc.), cyclic aliphatic epoxy resin, Examples thereof include glycidyl ester type epoxy resins and glycidyl amine type epoxy resins. Among these, bisphenol A or F type epoxy resin, which is excellent in adhesion and heat resistance, is preferable.

(B)硬化剤
エポキシ樹脂は硬化剤と反応させることで、硬化することができる。硬化剤としてはフェノール系樹脂、酸無水物系樹脂、芳香族アミン系樹脂、ジシアンジアミノからなる群から選ばれる1種類以上を用いることができる。これらの中では、基板を作製した際のピール強度および耐電圧の点で、芳香族アミンが好ましい。
(B) Curing agent The epoxy resin can be cured by reacting with a curing agent. As the curing agent, one or more selected from the group consisting of phenolic resins, acid anhydride resins, aromatic amine resins, and dicyandiamino can be used. Among these, aromatic amines are preferable in terms of peel strength and withstand voltage when the substrate is produced.

エポキシ樹脂に対する硬化剤の添加量は、エポキシ樹脂のエポキシ当量1に対して、硬化剤の活性水素当量(又は酸無水物当量)が0.01〜1.25になるように配合することが好ましい。 The addition amount of the curing agent to the epoxy resin is preferably blended so that the active hydrogen equivalent (or acid anhydride equivalent) of the curing agent is 0.01 to 1.25 with respect to the epoxy equivalent 1 of the epoxy resin. .

(C)ビスアリルナジイミド
ビスアリルナジイミドは、化1に示す構造単位においてRは、4,4’−ジフェニルメチル基、メタ−キシリル基およびヘキサメチレン基から選択される1種を示である。これらの中では、Rはエポキシ樹脂との相溶性が良好な、化2に示す4,4’−ジフェニルメチル基であることが好ましい。

Figure 0006061904


Figure 0006061904

(C) Bisallylnadiimide Bisallylnadiimide is a structural unit represented by Chemical Formula 1, wherein R is one selected from 4,4′-diphenylmethyl group, meta-xylyl group and hexamethylene group. . Among these, R is preferably a 4,4′-diphenylmethyl group shown in Chemical Formula 2 having good compatibility with the epoxy resin.
Figure 0006061904


Figure 0006061904

ビスアリルナジイミドは、分子中のアリル基およびノルボルネン骨格の二重結合の付加反応で進行し、三次元架橋構造を形成する。絶縁樹脂組成物中のビスアリルナジイミドは、エポキシ樹脂、エポキシ樹脂硬化剤、ビスアリルナジイミドの添加量の和に対し、15〜75質量%であることが好ましく、25〜64質量%であることがより好ましい。ビスアリルナジイミドの添加量が15質量%未満であると熱伝導性が低下する場合があり、75質量%を超えると加熱時の質量減少量が増加する場合がある。 Bisallyl nadiimide proceeds by an addition reaction of an allyl group in a molecule and a double bond of a norbornene skeleton to form a three-dimensional crosslinked structure. The bisallylnadiimide in the insulating resin composition is preferably 15 to 75% by mass, and preferably 25 to 64% by mass with respect to the sum of the addition amount of the epoxy resin, the epoxy resin curing agent and bisallylnadiimide. It is more preferable. If the addition amount of bisallylnadiimide is less than 15% by mass, the thermal conductivity may decrease, and if it exceeds 75% by mass, the mass decrease during heating may increase.

エポキシ樹脂とビスアリルナジイミドの反応ピークの温度差は、85〜205℃であり、115〜155℃であることがより好ましい。反応ピークの温度差が85℃未満の場合、熱伝導性が低下する場合がある。また、205℃を超えると、熱伝導性が低下する場合がある。なお、反応ピーク温度は、窒素雰囲気下、10℃/分で昇温した際の、示差走査熱量計(DSC)のピーク温度により求めることができる。 The temperature difference between the reaction peaks of the epoxy resin and bisallylnadiimide is 85 to 205 ° C, and more preferably 115 to 155 ° C. When the temperature difference between the reaction peaks is less than 85 ° C., the thermal conductivity may decrease. Moreover, when it exceeds 205 degreeC, thermal conductivity may fall. In addition, reaction peak temperature can be calculated | required from the peak temperature of a differential scanning calorimeter (DSC) when it heats up at 10 degree-C / min in nitrogen atmosphere.

エポキシ樹脂とエポキシ樹脂硬化剤の混合物に対する、ビスアリルナジイミドの100℃、ずり速度0.1s−1における粘度比は15〜270であり、100〜267であることがより好ましい。粘度比が15未満の場合、熱伝導性が低下する場合がある。また、270を超えると銅箔と樹脂の接合強度(ピール強度)が低下する場合がある。なお、ずり速度は動的粘弾性測定装置により求めることができる。 The viscosity ratio of bisallylnadiimide at 100 ° C. and a shear rate of 0.1 s −1 to the mixture of the epoxy resin and the epoxy resin curing agent is 15 to 270, and more preferably 100 to 267. If the viscosity ratio is less than 15, the thermal conductivity may decrease. If it exceeds 270, the bonding strength (peel strength) between the copper foil and the resin may decrease. The shear rate can be obtained by a dynamic viscoelasticity measuring device.

(D)無機フィラー
本発明の無機フィラーは平均粒子径の異なる2種類以上の無機フィラーを使用する。無機フィラーとしては、電気絶縁性に優れかつ熱伝導率の高いものが用いられ、例えば酸化アルミ、シリカ、窒化アルミ、窒化ケイ素、窒化ホウ素等が挙げられる。これらの中では、熱伝導性の点で、窒化アルミ、窒化ケイ素、酸化アルミが好ましい。
(D) Inorganic filler The inorganic filler of the present invention uses two or more kinds of inorganic fillers having different average particle diameters. As the inorganic filler, those having excellent electrical insulation and high thermal conductivity are used, and examples thereof include aluminum oxide, silica, aluminum nitride, silicon nitride, and boron nitride. Among these, aluminum nitride, silicon nitride, and aluminum oxide are preferable from the viewpoint of thermal conductivity.

無機フィラーは、(D−1)平均粒子径が5〜50μm、より好ましくは10〜20μmの粗粉と、(D−2)平均粒子径が0.2〜1.5μm、より好ましくは0.5〜1.0μmの1種類以上の微粉を含有するのが好ましい。粗粉の平均粒子径が5μm未満の場合は、熱伝導性が低下する場合があり、平均粒子径が50μmを超えると、絶縁性が低下する場合がある。また、微粉の平均粒子径が0.2μm未満の場合は、絶縁性が低下する場合があり、1.5μmを超えると、絶縁性が低下する場合がある。無機フィラーとしては、粗粉が窒化アルミで、微粉が窒化アルミ、窒化ケイ素および酸化アルミニウムから選択される1種以上であることが好ましい。 The inorganic filler has (D-1) a coarse powder having an average particle diameter of 5 to 50 μm, more preferably 10 to 20 μm, and (D-2) an average particle diameter of 0.2 to 1.5 μm, more preferably 0.8. It is preferable to contain one or more fine powders of 5 to 1.0 μm. When the average particle diameter of the coarse powder is less than 5 μm, the thermal conductivity may decrease, and when the average particle diameter exceeds 50 μm, the insulation may decrease. In addition, when the average particle size of the fine powder is less than 0.2 μm, the insulating property may be lowered, and when it exceeds 1.5 μm, the insulating property may be lowered. As the inorganic filler, it is preferable that the coarse powder is aluminum nitride and the fine powder is at least one selected from aluminum nitride, silicon nitride and aluminum oxide.

粗粉の最大粒子径は100μm以下で、かつ粒子径1〜20μmの粒子を粗粉中に50体積%以上含有することが好ましい。また、微粉の2.0μm以下の粒子が微粉中に70体積%以上であることが好ましい。
粗粉の最大粒子径が100μm以上であると絶縁性が低下する場合があり、微粉の2.0μm以下の粒子が70体積%未満であると、絶縁性が低下する場合がある。
It is preferable that the maximum particle diameter of the coarse powder is 100 μm or less, and particles having a particle diameter of 1 to 20 μm are contained in the coarse powder by 50% by volume or more. Moreover, it is preferable that the particle | grains of 2.0 micrometers or less of a fine powder are 70 volume% or more in a fine powder.
When the maximum particle diameter of the coarse powder is 100 μm or more, the insulation may be lowered, and when the particles of 2.0 μm or less of the fine powder are less than 70% by volume, the insulation may be lowered.

絶縁性樹脂組成物中の粗粉と微粉の体積分率は、粗粉が35〜70体積%、より好ましくは粗粉が35〜60体積%、微粉が5〜25体積%、より好ましくは微粉が10〜20体積%であることが好ましい。粗粉が35体積%未満であると、熱伝導性が低下する場合があり、70体積%を超えると絶縁性が低下する場合がある。また、微粉が5体積%未満であると、熱伝導性が低下する場合があり、25体積%を超えると絶縁性が低下する場合がある。 The volume fraction of the coarse powder and fine powder in the insulating resin composition is 35 to 70% by volume of coarse powder, more preferably 35 to 60% by volume of coarse powder, and 5 to 25% by volume of fine powder, more preferably fine powder. Is preferably 10 to 20% by volume. If the coarse powder is less than 35% by volume, the thermal conductivity may decrease, and if it exceeds 70% by volume, the insulation may decrease. Further, if the fine powder is less than 5% by volume, the thermal conductivity may be lowered, and if it exceeds 25% by volume, the insulating property may be lowered.

<絶縁性樹脂組成物の硬化>
絶縁性樹脂組成物は、無機フィラーを除いた(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)ビスアリルナジイミドの総和に対し、400℃に加熱した際の質量減少率が3質量%以下であることが好ましい。3質量%を超えると揮発成分が絶縁層内部の欠陥となり、絶縁性の低下を引き起こす場合がある。なお、質量減少率は、TG−DTA(示差熱天秤)により、試料を室温から400℃まで窒素雰囲気下で加熱したときの質量減少率を意味する。
<Curing of insulating resin composition>
The insulating resin composition has a mass reduction rate when heated to 400 ° C. with respect to the sum of (A) epoxy resin, (B) epoxy resin curing agent, and (C) bisallylnadiimide excluding inorganic filler. Is preferably 3% by mass or less. If it exceeds 3% by mass, the volatile component may become a defect inside the insulating layer and cause a decrease in insulation. The mass reduction rate means a mass reduction rate when the sample is heated from room temperature to 400 ° C. in a nitrogen atmosphere by TG-DTA (differential thermobalance).

絶縁性樹脂組成物は、厚さ0.1〜5mmの金属基板上に塗布し、回路を形成する金属箔と重ね合わせた後、150〜240℃で5〜8時間加熱し硬化体を得ることができる。塗布は、ダイコーター、コンマコーター、ロールコーター、バーコーター、グラビヤコーター、カーテンコーター、ドクターブレードコーター、スプレーコーターおよびスクリーン印刷等の方法を使用し塗布することができる。または、金属基板上に絶縁性樹脂組成物を塗布した後に加熱により半硬化させた後、絶縁性樹脂組成物の表面に金属箔とラミネートまたは熱プレスする方法が採用できる。さらには、絶縁性接着剤組成物をシート状に半硬化後、金属基板と金属箔を貼り合わせて硬化体を得ることもできる。 The insulating resin composition is applied onto a metal substrate having a thickness of 0.1 to 5 mm, superimposed on a metal foil that forms a circuit, and then heated at 150 to 240 ° C. for 5 to 8 hours to obtain a cured body. Can do. The coating can be performed using a method such as a die coater, comma coater, roll coater, bar coater, gravure coater, curtain coater, doctor blade coater, spray coater, and screen printing. Or after apply | coating an insulating resin composition on a metal substrate and making it harden | cure by heating, the method of laminating or hot-pressing a metal foil on the surface of an insulating resin composition is employable. Furthermore, after semi-curing the insulating adhesive composition into a sheet shape, a metal substrate and a metal foil can be bonded together to obtain a cured body.

硬化体の厚みは20〜150μmであることが好ましく、40〜125μmであることがより好ましい。厚みを20μm以上とすることで、耐電圧特性が良好となり、150μm以下とすることで、熱抵抗が低くなる。金属基板としてはアルミニウム、鉄、銅およびこれらの合金、もしくはこれらのクラッド材が熱伝導性の点で好ましい。また、金属箔としては、銅、アルミニウム、ニッケル、鉄、スズ、金、銀、モリブデン、チタニウム、ステンレス等が使用できる。 The thickness of the cured body is preferably 20 to 150 μm, and more preferably 40 to 125 μm. By setting the thickness to 20 μm or more, the withstand voltage characteristics are improved, and by setting the thickness to 150 μm or less, the thermal resistance is lowered. As the metal substrate, aluminum, iron, copper and alloys thereof, or a clad material thereof is preferable in terms of thermal conductivity. As the metal foil, copper, aluminum, nickel, iron, tin, gold, silver, molybdenum, titanium, stainless steel, or the like can be used.

<回路の形成>
絶縁性接着剤組成物を用いて貼り合わせた金属箔上に、エッチングにより回路を形成する。具体的には、まず、スクリーン印刷法又は写真現像法により、金属箔上にエッチングレジストを形成し、金属箔の表面の所定の位置をマスクする。その状態で、金属箔の一部を、塩化第二鉄エッチング液、塩化第二銅エッチング、過酸化水素/硫酸エッチング液、アルカリエッチャント等で腐食溶解した後、エッチングレジストを剥離する。これにより回路が形成される。
<Circuit formation>
A circuit is formed by etching on the metal foil bonded using the insulating adhesive composition. Specifically, first, an etching resist is formed on the metal foil by screen printing or photographic development, and a predetermined position on the surface of the metal foil is masked. In this state, a part of the metal foil is corroded and dissolved with a ferric chloride etchant, cupric chloride etchant, hydrogen peroxide / sulfuric acid etchant, alkali etchant, etc., and then the etching resist is peeled off. As a result, a circuit is formed.

<混成集積回路の作製>
回路面に半導体素子や抵抗チップなどの電子部品を実装するには、所望の位置にハンダ等を用いて電子部品を接合すればよい。
<Production of hybrid integrated circuit>
In order to mount an electronic component such as a semiconductor element or a resistor chip on the circuit surface, the electronic component may be bonded to a desired position using solder or the like.

以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this.

<絶縁性樹脂組成物の製造>
参考例1)
絶縁性樹脂組成物の製造には以下の原料を用いた。
(A)エポキシ樹脂:ビスフェノールA型液状エポキシ樹脂、DIC社製、「EPICLON 850CRP」
(B)エポキシ樹脂硬化剤:芳香族アミン、日本合成化工社製、「H−48B」
(C)ビスアリルナジイミド:丸善石油化学社製、「BANI−M」(化1のRが4,4’−ジフェニルメチル基である)
(D)無機フィラー粗粉:窒化アルミ(電気化学工業社製、平均粒子径16μm、最大粒子径70μm、1〜20μmの粒子含有量65体積%)
(D)無機フィラー微粉:窒化ケイ素(電気化学工業社製、平均粒子径1.0μm、2.0μm以下の粒子含有量94体積%)
(D)無機フィラー微粉:酸化アルミ(住友化学社製、「AA05」、平均粒子径0.5μm、2.0μm以下の粒子含有量99体積%)
(その他)シランカップリング剤(東レ・ダウコーニング社製、「z−6040」)
<Manufacture of insulating resin composition>
( Reference Example 1)
The following raw materials were used for the production of the insulating resin composition.
(A) Epoxy resin: bisphenol A type liquid epoxy resin, manufactured by DIC, “EPICLON 850CRP”
(B) Epoxy resin curing agent: aromatic amine, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., “H-48B”
(C) Bisallylnadiimide: “BANI-M” manufactured by Maruzen Petrochemical Co., Ltd. (R in Chemical Formula 1 is 4,4′-diphenylmethyl group)
(D) Coarse inorganic filler powder: aluminum nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 16 μm, maximum particle size 70 μm, particle content 65% by volume of 1-20 μm)
(D) Fine inorganic filler powder: silicon nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 1.0 μm, particle content 94 μ% or less of 2.0 μm or less)
(D) Inorganic filler fine powder: Aluminum oxide (manufactured by Sumitomo Chemical Co., Ltd., “AA05”, average particle size 0.5 μm, content of particles of 2.0 μm or less 99% by volume)
(Others) Silane coupling agent (Toray Dow Corning, “z-6040”)

ビスフェノールA型液状エポキシ樹脂19質量部に、芳香族アミン6質量部、ビスアリルナジイミド75質量部、シランカプリング剤1.0質量部を加えた。次に絶縁性樹脂組成物中の添加量がそれぞれ54体積%、8体積%、12体積%となるよう、窒化アルミ、窒化ケイ素および酸化アルミニウムを加え、遊星式撹拌機(シンキー社「あわとり練太郎AR−250」、回転数2000rpm)にて混練し、絶縁性樹脂組成物を作製した。 To 19 parts by mass of bisphenol A type liquid epoxy resin, 6 parts by mass of aromatic amine, 75 parts by mass of bisallylnadiimide, and 1.0 part by mass of silane coupling agent were added. Next, aluminum nitride, silicon nitride, and aluminum oxide were added so that the addition amounts in the insulating resin composition would be 54% by volume, 8% by volume, and 12% by volume, respectively, and a planetary stirrer (Sinky Corp. Taro AR-250 ", rotation speed 2000 rpm) to prepare an insulating resin composition.

参考例1で用いた原料および得られた絶縁性樹脂組成物を、以下の方法で評価した。結果を表3に示す。
[平均粒子径および粒度分布]
無機フィラーの平均粒子径は、島津製作所製「レーザー回折式粒度分布測定装置SALD−200」を用いて測定を行った。試料は、ガラスビーカーに50ccの純水と無機フィラーを5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。分散処理を行った無機フィラーの分散積をスポイドで装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待った。吸光度が安定になった時点で測定を行った。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算した。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を乗じて、相対粒子量の合計(100%)で割って求めた。平均粒子径は粒子の平均直径を示す。
The raw materials used in Reference Example 1 and the obtained insulating resin composition were evaluated by the following methods. The results are shown in Table 3.
[Average particle size and particle size distribution]
The average particle diameter of the inorganic filler was measured using “Laser diffraction particle size distribution analyzer SALD-200” manufactured by Shimadzu Corporation. As a sample, 5 g of 50 cc pure water and an inorganic filler were added to a glass beaker, stirred using a spatula, and then subjected to dispersion treatment for 10 minutes with an ultrasonic cleaner. The dispersion product of the inorganic filler that had been subjected to the dispersion treatment was added drop by drop to the sampler part of the apparatus with a dropper, and it was waited until the absorbance became measurable. Measurements were taken when the absorbance was stable. In the laser diffraction particle size distribution analyzer, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size was determined by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter indicates the average diameter of the particles.

[粘度比]
ビスフェノールA型液状エポキシ樹脂19質量部と芳香族アミン6質量部を、ホモミキサーにて1分間混合した。得られた試料を、レオメーター(日本シイベルヘグナー社製「MCR−301」)を用い下記条件にて粘度を測定した。
プレート形状:円形平板25mmφ
試料厚み:0.1mm
ノーマルフォーカス:ON
温度:100±1℃
剪断速度:0.1S−1
ビスアリルナジイミド単体についても、温度:100±1℃、剪断速度:0.1S−1での粘度測定を実施し、エポキシ樹脂と、エポキシ樹脂硬化剤の混合物に対する、ビスアリルナジイミドの粘度比を求めた。
[Viscosity ratio]
19 parts by mass of a bisphenol A type liquid epoxy resin and 6 parts by mass of an aromatic amine were mixed with a homomixer for 1 minute. The viscosity of the obtained sample was measured under the following conditions using a rheometer ("MCR-301" manufactured by Nippon Shibel Hegner).
Plate shape: Circular flat plate 25mmφ
Sample thickness: 0.1 mm
Normal focus: ON
Temperature: 100 ± 1 ° C
Shear rate: 0.1S -1
The viscosity ratio of bisallylnadiimide with respect to the mixture of the epoxy resin and the epoxy resin curing agent was also measured for the bisallylnadiimide alone by measuring the viscosity at a temperature of 100 ± 1 ° C. and a shear rate of 0.1S- 1. Asked.

[反応ピーク温度]
ビスフェノールA型液状エポキシ樹脂19質量部と芳香族アミン6質量部を、ホモミキサーにて1分間混合した。得られた試料を、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温〜400℃まで昇温させ、得られた曲線のピークトップ温度を反応ピーク温度とした。
ビスアリルナジイミド単体についても、窒素雰囲気下、昇温速度10℃/分にて室温〜400℃まで昇温し、反応ピーク温度を求めた。
[Reaction peak temperature]
19 parts by mass of a bisphenol A type liquid epoxy resin and 6 parts by mass of an aromatic amine were mixed with a homomixer for 1 minute. The obtained sample was heated from room temperature to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere using a differential scanning calorimeter (manufactured by T.A. Instruments, “Q2000”). The peak top temperature of the obtained curve was taken as the reaction peak temperature.
Also for bisallylnadiimide alone, the temperature was raised from room temperature to 400 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and the reaction peak temperature was determined.

[質量減少率]
ビスフェノールA型液状エポキシ樹脂19質量部、芳香族アミン6質量部およびビスアリルナジイミド(BANI−M)を、ホモミキサーにて1分間混合した。得られた試料を、示差熱天秤(ティー・エイ・インスツルメント社製、「Q5000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温〜400℃まで昇温させ、室温に対する400℃における質量減少率を測定した。
[Mass reduction rate]
19 parts by mass of a bisphenol A type liquid epoxy resin, 6 parts by mass of an aromatic amine, and bisallylnadiimide (BANI-M) were mixed with a homomixer for 1 minute. The obtained sample was heated from room temperature to 400 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen atmosphere using a differential thermal balance (“Q5000” manufactured by TA Instruments Inc.). The mass reduction rate at 400 ° C. was measured.

[熱伝導率]
熱伝導率は、得られた絶縁性樹脂組成物の硬化体を作成し、熱拡散率、比重、比熱を全て乗じて算出した。熱拡散率は、試料を幅10mm×10mm×厚み1mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製LFA447 NanoFlash)を用いた。比重はアルキメデス法を用いて求めた。比熱は、示差走査熱量計(ティー・エイ・インスツルメント社製、「Q2000」)を用い、窒素雰囲気下、昇温速度10℃/分で室温〜400℃まで昇温させて求めた。結果を表3に示す。
[Thermal conductivity]
The thermal conductivity was calculated by preparing a cured product of the obtained insulating resin composition and multiplying all of the thermal diffusivity, specific gravity, and specific heat. The thermal diffusivity was determined by a laser flash method after processing the sample into a width of 10 mm × 10 mm × thickness of 1 mm. The measuring device used was a xenon flash analyzer (LFA447 NanoFlash manufactured by NETZSCH). Specific gravity was determined using the Archimedes method. The specific heat was obtained by using a differential scanning calorimeter (“Q Instruments”, “Q2000”) and raising the temperature from room temperature to 400 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. The results are shown in Table 3.

[ピール強度]
2枚の厚さ0.6mmの銅箔を、厚さ0.1mmの絶縁性樹脂組成物で接着し硬化体を作製した。硬化条件は、200℃で8時間とした。接着した銅箔を10mm×100mmに切り出し、JIS C 6481に規定された方法に従い、23±2℃、相対湿度50%の条件で銅箔と絶縁性樹脂組成物とのピール強度を測定した。なお、測定は5回繰り返し、その算術平均値をピール強度とした。
[Peel strength]
Two copper foils having a thickness of 0.6 mm were bonded with an insulating resin composition having a thickness of 0.1 mm to prepare a cured body. The curing condition was 200 ° C. for 8 hours. The bonded copper foil was cut into a size of 10 mm × 100 mm, and the peel strength between the copper foil and the insulating resin composition was measured under the conditions of 23 ± 2 ° C. and relative humidity 50% according to the method defined in JIS C 6481. The measurement was repeated 5 times, and the arithmetic average value was defined as the peel strength.

[耐電圧]
絶縁性樹脂組成物を用い、厚さ35μmの銅箔と厚さ1.5mmのAl板を接着し金属ベース基板を得た。さらに銅箔の所定の位置をエッチングレジストでマスキングした後、エッチングレジストを除去して金属ベース回路基板を形成した。得られた金属ベース回路基板を用い、JIS C 2110に規定された方法に従い、耐電圧を測定した。
[Withstand voltage]
Using the insulating resin composition, a 35 μm thick copper foil and a 1.5 mm thick Al plate were bonded to obtain a metal base substrate. Further, a predetermined position of the copper foil was masked with an etching resist, and then the etching resist was removed to form a metal base circuit board. Using the obtained metal base circuit board, the withstand voltage was measured according to the method prescribed | regulated to JISC2110.

(実施例2〜5)
ビスフェノールA型液状エポキシ樹脂、芳香族アミンおよびビスアリルナジイミドの配合量を表1に示す通りに変更した以外は、実施例1と同様に絶縁性樹脂組成物を作製した。
(Examples 2 to 5)
An insulating resin composition was prepared in the same manner as in Example 1 except that the blending amounts of bisphenol A type liquid epoxy resin, aromatic amine and bisallyl nadiimide were changed as shown in Table 1.

(実施例6)
微粉として窒化ケイ素20体積%を絶縁性樹脂組成物に配合した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 6)
An insulating resin composition was prepared in the same manner as in Example 3 except that 20% by volume of silicon nitride was added to the insulating resin composition as a fine powder.

(実施例7)
微粉として酸化アルミ20体積%を絶縁性樹脂組成物に配合した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 7)
An insulating resin composition was prepared in the same manner as in Example 3 except that 20% by volume of aluminum oxide was added to the insulating resin composition as a fine powder.

(実施例8)
微粉として窒化アルミ(トクヤマ社製、「トクヤマH」、平均粒子径1.0μm、2.0μm以下の粒子含有量90体積%)20体積%を絶縁性樹脂組成物に配合した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 8)
Example except that 20% by volume of aluminum nitride (Tokuyama H, manufactured by Tokuyama Corporation, average particle size 1.0 μm, content of particles having a particle size of 2.0 μm or less 90% by volume) 20% by volume as a fine powder was added to the insulating resin composition. An insulating resin composition was prepared in the same manner as in Example 3.

(実施例9)
絶縁性樹脂組成物中の粗粉として窒化アルミ36.1体積%、微粉として窒化ケイ素5.3体積%、酸化アルミ8.6体積%へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
Example 9
Insulating resin in the same manner as in Example 3 except that aluminum powder was changed to 36.1% by volume as the coarse powder in the insulating resin composition, silicon nitride was changed to 5.3% by volume, and aluminum oxide was 8.6% by volume. A composition was prepared.

(実施例10)
絶縁性樹脂組成物中の粗粉として窒化アルミ57.7体積%、微粉として窒化ケイ素8.5体積%、酸化アルミ13.8体積%へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 10)
Insulating resin in the same manner as in Example 3 except that aluminum nitride is 57.7% by volume as the coarse powder in the insulating resin composition, silicon nitride is 8.5% by volume, and aluminum oxide is 13.8% by volume as the fine powder. A composition was prepared.

(実施例11)
絶縁性樹脂組成物中のビスアリルナジイミドを、丸善石油化学社製、「BANI−X」(化1に示すRの構造がメタ−キシリル基である)へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 11)
Example 3 except that the bisallyl nadiimide in the insulating resin composition was changed to “BANI-X” (the structure of R shown in Chemical Formula 1 is a meta-xylyl group) manufactured by Maruzen Petrochemical Co., Ltd. Similarly, an insulating resin composition was produced.

(実施例12)
絶縁性樹脂組成物中のエポキシ樹脂を53質量%、エポキシ樹脂硬化剤として、イミダゾール系硬化剤:四国化成社製、「2E4MZ」4質量%へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 12)
Insulating properties are the same as in Example 3 except that the epoxy resin in the insulating resin composition is 53% by mass and the epoxy resin curing agent is changed to 4% by mass of imidazole-based curing agent: “2E4MZ” manufactured by Shikoku Kasei Co., Ltd. A resin composition was prepared.

(実施例13)
絶縁性樹脂組成物中のエポキシ樹脂を38質量%、エポキシ樹脂硬化剤として、フェノールノボラック系硬化剤:DIC社製、「TD−2131」19質量%へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Example 13)
Example 3 except that the epoxy resin in the insulating resin composition was 38% by mass, and the epoxy resin curing agent was changed to 19% by mass of a phenol novolac curing agent: “DIC-2131” manufactured by DIC Corporation. An insulating resin composition was prepared.

(比較例1)
絶縁性樹脂組成物中のエポキシ樹脂硬化剤として、フェノールノボラック系硬化剤21質量%へ、ビスアリルナジイミドを「BANI−X」へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Comparative Example 1)
As the epoxy resin curing agent in the insulating resin composition, the insulating resin composition was the same as in Example 3, except that the phenol novolac curing agent was changed to 21% by mass and bisallyldiimide was changed to “BANI-X”. Was made.

(比較例2)
絶縁性樹脂組成物中のエポキシ樹脂を38質量%、エポキシ樹脂硬化剤として、脂肪族アミン:三井化学ファイン社製、「D400」19質量%へ変更した以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Comparative Example 2)
Insulating properties are the same as in Example 3 except that the epoxy resin in the insulating resin composition is 38% by mass and the epoxy resin curing agent is changed to aliphatic amine: 19% by mass made by Mitsui Chemical Fine Co., Ltd., “D400”. A resin composition was prepared.

(比較例3)
ビスアリルナジイミドを使用せず、樹脂成分としてエポキシ樹脂75質量%、芳香族アミン25質量%とした以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Comparative Example 3)
An insulating resin composition was prepared in the same manner as in Example 3, except that bisallylnadiimide was not used and the resin component was 75% by mass of epoxy resin and 25% by mass of aromatic amine.

(比較例4)
エポキシ樹脂、および硬化剤を使用せず、樹脂成分としてビスアリルナジイミドのみを用いた以外は、実施例3と同様に絶縁性樹脂組成物を作製した。
(Comparative Example 4)
An insulating resin composition was prepared in the same manner as in Example 3 except that the epoxy resin and the curing agent were not used and only bisallylnadiimide was used as the resin component.

(比較例5)
微粉を使用しなかった以外は、実施例3と同様に絶縁性樹脂組成物を作製した。なお、微粉を使用しなかった分は、粗粉を増量し、実施例3の無機フィラー量と同じ74体積%にそろえた。
(Comparative Example 5)
An insulating resin composition was prepared in the same manner as in Example 3 except that no fine powder was used. In addition, the part which did not use a fine powder increased the amount of a coarse powder, and aligned with the same 74 volume% as the amount of the inorganic filler of Example 3.

(比較例6)
粗粉を使用しなかった以外は、実施例3と同様に絶縁性樹脂組成物を作製した。なお、粗粉を使用しなかった分は、微粉を増量し、実施例3の無機フィラー量と同じ74体積%にそろえた。
(Comparative Example 6)
An insulating resin composition was prepared in the same manner as in Example 3 except that coarse powder was not used. In addition, the part which did not use a coarse powder increased the fine powder, and was equal to 74 volume% same as the amount of the inorganic filler of Example 3.

Figure 0006061904
Figure 0006061904

Figure 0006061904
Figure 0006061904

Figure 0006061904
Figure 0006061904

Figure 0006061904
Figure 0006061904

表3および表4の結果から、本発明の絶縁性樹脂組成物は加熱時の質量減少が低いことが示される。また、
表1〜表4の結果から、実施例の絶縁性樹脂組成物を用いた硬化体は、熱伝導性およびピール強度に優れることが分かった。さらに、実施例の絶縁性樹脂組成物により作製した金属ベース回路基板は、耐電圧特性に優れることが分かった。
From the results of Table 3 and Table 4, it is shown that the insulating resin composition of the present invention has a low mass loss upon heating. Also,
From the results of Tables 1 to 4, it was found that the cured bodies using the insulating resin compositions of the examples were excellent in thermal conductivity and peel strength. Furthermore, it turned out that the metal base circuit board produced with the insulating resin composition of the Example is excellent in a withstand voltage characteristic.

以上の結果は、実施例で用いた金属ベース回路基板の他、混成集積回路に関しても同様であった。
The above results were the same for the hybrid integrated circuit in addition to the metal base circuit board used in the example.

Claims (8)

(A)エポキシ樹脂と、(B)エポキシ樹脂硬化剤と、(C)化1で示されるビスアリルナジイミドと、(D)無機フィラーを含有する絶縁性樹脂組成物であって、
(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤と(C)ビスアリルナジイミドの添加量の和に対し、(C)ビスアリルナジイミドが15〜64質量%であり、
(A)エポキシ樹脂と(C)ビスアリルナジイミドの反応ピーク温度の差が85〜205℃であり、
(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤の混合物に対する、(C)ビスアリルナジイミドの100℃、ずり速度0.1s−1における粘度比が15〜270であり、
(D)無機フィラーが平均粒子径の異なる2種類以上の無機フィラーであり、
(D)無機フィラーが(D−1)平均粒子径が5〜50μmの粗粉と、(D−2)平均粒子径が0.2〜1.5μmの1種類以上の微粉を含有し、
(D−1)粗粉の最大粒子径が100μm以下で、且つ粒子径1〜20μmの粒子を粗粉中に50体積%以上含有し、
(D−2)微粉の2.0μm以下の粒子が微粉中に70体積%以上であり、
さらに、絶縁性樹脂組成物中の(D−1)粗粉の体積分率が35〜70体積%、(D−2)微粉の体積分率が5〜25体積%である、絶縁性樹脂組成物。
Figure 0006061904

化1で表される構造単位において、Rは4,4’−ジフェニルメチル基、メタ−キシリル基およびヘキサメチレン基から選択される1種を示す。
An insulating resin composition containing (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a bisallylnadiimide represented by Chemical Formula 1, and (D) an inorganic filler,
(A) epoxy resin, (B) epoxy resin curing agent, and (C) bisallylnadiimide is 15 to 64% by mass with respect to the sum of addition amounts of bisallylnadiimide,
The difference in the reaction peak temperature between (A) the epoxy resin and (C) bisallylnadiimide is 85 to 205 ° C,
The viscosity ratio of (C) bisallyl nadiimide at 100 ° C. and shear rate of 0.1 s −1 to the mixture of (A) epoxy resin and (B) epoxy resin curing agent is 15 to 270,
(D) The inorganic filler is two or more types of inorganic fillers having different average particle diameters ,
(D) The inorganic filler contains (D-1) coarse powder having an average particle diameter of 5 to 50 μm, and (D-2) one or more fine powders having an average particle diameter of 0.2 to 1.5 μm,
(D-1) The maximum particle diameter of the coarse powder is 100 μm or less, and particles having a particle diameter of 1 to 20 μm are contained in the coarse powder by 50% by volume or more,
(D-2) The particle | grains of 2.0 micrometers or less of a fine powder are 70 volume% or more in a fine powder,
Furthermore, (D-1) the volume fraction of the coarse powder in the insulating resin composition is 35 to 70% by volume, and (D-2) the volume fraction of the fine powder is 5 to 25% by volume. object.
Figure 0006061904

In the structural unit represented by Chemical Formula 1, R represents one selected from a 4,4′-diphenylmethyl group, a meta-xylyl group, and a hexamethylene group.
(D−1)粗粉が窒化アルミである、請求項に記載の絶縁性樹脂組成物。 (D-1) The insulating resin composition according to claim 1 , wherein the coarse powder is aluminum nitride. (D−2)微粉が、窒化アルミ、窒化ケイ素および酸化アルミニウムから選択される1種以上である、請求項1または2に記載の絶縁性樹脂組成物。 (D-2) The insulating resin composition according to claim 1 or 2 , wherein the fine powder is at least one selected from aluminum nitride, silicon nitride, and aluminum oxide. 請求項1〜のいずれか一項に記載の絶縁性樹脂組成物を硬化させてなる絶縁性樹脂硬化体。 The insulating resin hardening body which hardens the insulating resin composition as described in any one of Claims 1-3 . 熱伝導率が1.5〜8W/mKである、請求項に記載の絶縁性樹脂硬化体。 The cured insulating resin body according to claim 4 , wherein the thermal conductivity is 1.5 to 8 W / mK. 金属基板上に、請求項またはに記載の絶縁性樹脂硬化体を介して金属箔を配置した、混成集積回路用の基板。 A substrate for a hybrid integrated circuit, wherein a metal foil is disposed on a metal substrate through the insulating resin cured body according to claim 4 or 5 . 請求項に記載の金属箔を加工して回路を形成した、混成集積回路基板。 A hybrid integrated circuit board in which a circuit is formed by processing the metal foil according to claim 6 . 請求項に記載の混成集積回路基板に電子部品を搭載した、混成集積回路。
A hybrid integrated circuit comprising electronic components mounted on the hybrid integrated circuit board according to claim 7 .
JP2014189664A 2014-09-18 2014-09-18 Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same Active JP6061904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189664A JP6061904B2 (en) 2014-09-18 2014-09-18 Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189664A JP6061904B2 (en) 2014-09-18 2014-09-18 Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same

Publications (2)

Publication Number Publication Date
JP2016060822A JP2016060822A (en) 2016-04-25
JP6061904B2 true JP6061904B2 (en) 2017-01-18

Family

ID=55796991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189664A Active JP6061904B2 (en) 2014-09-18 2014-09-18 Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same

Country Status (1)

Country Link
JP (1) JP6061904B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468996B2 (en) * 1995-08-01 2003-11-25 株式会社東芝 Epoxy resin composition and resin-encapsulated semiconductor device
JP2005082626A (en) * 2003-09-04 2005-03-31 Kyocera Chemical Corp Heat-resistant resin composition
JP4922220B2 (en) * 2007-12-14 2012-04-25 積水化学工業株式会社 Insulating sheet and laminated structure
JP2011241279A (en) * 2010-05-17 2011-12-01 Shin Kobe Electric Mach Co Ltd Epoxy resin composition and prepreg, laminated board, and wiring board

Also Published As

Publication number Publication date
JP2016060822A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP5192812B2 (en) Resin composition and circuit board for hybrid integration using the same
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP5038007B2 (en) Composition, metal-based circuit board using the composition
JP6418348B1 (en) Composite material
JP6594799B2 (en) Thermally conductive adhesive composition, thermal conductive adhesive sheet and method for producing laminate
JP6570259B2 (en) Resin composition, insulating film, and semiconductor device
TWI701316B (en) Conductive adhesive composition
JP5114112B2 (en) Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate
JP2013098217A (en) Method for manufacturing component for power semiconductor module
JP5622267B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP5739917B2 (en) Liquid epoxy resin composition and adhesive using the same
JP3006617B2 (en) Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit
JP6061904B2 (en) Insulating resin composition, cured product thereof, and hybrid integrated circuit using the same
JPH0722441A (en) Die bonding material
JP3923687B2 (en) Bonding agent for mounting electronic components and mounting method of electronic components using the same
JPWO2015107990A1 (en) Adhesive composition, adhesive film having the same, substrate with adhesive composition, semiconductor device, and manufacturing method thereof
JP2009246026A (en) Paste-like adhesive, and method of manufacturing substrate incorporating electronic components using the same
JP2016155953A (en) Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same
JP6316610B2 (en) Hybrid integrated circuit board manufacturing method and hybrid integrated circuit board using the same
JP6423603B2 (en) Insulating film and semiconductor device
JP2014049494A (en) Thermosetting resin sheet for electronic component sealing, resin-sealed semiconductor device, and manufacturing method of resin-sealed semiconductor device
JP6838939B2 (en) Insulating resin composition for metal base plate circuit board and its manufacturing method, its insulating resin cured product, and metal base plate circuit board using it
JP4958569B2 (en) Thermally conductive resin composition, thermal conductive sheet and power module
JP5637069B2 (en) Adhesive sheet
JP2017122159A (en) Adhesive film and method for producing the same, and adhesive composition used in the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6061904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250