JP3006617B2 - Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit - Google Patents

Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit

Info

Publication number
JP3006617B2
JP3006617B2 JP1107283A JP10728389A JP3006617B2 JP 3006617 B2 JP3006617 B2 JP 3006617B2 JP 1107283 A JP1107283 A JP 1107283A JP 10728389 A JP10728389 A JP 10728389A JP 3006617 B2 JP3006617 B2 JP 3006617B2
Authority
JP
Japan
Prior art keywords
integrated circuit
hybrid integrated
circuit board
particle diameter
adhesive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1107283A
Other languages
Japanese (ja)
Other versions
JPH02286768A (en
Inventor
誠 福田
和男 加藤
新一郎 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1107283A priority Critical patent/JP3006617B2/en
Publication of JPH02286768A publication Critical patent/JPH02286768A/en
Application granted granted Critical
Publication of JP3006617B2 publication Critical patent/JP3006617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特定の無機フイラーが高充填でき、熱伝導
率が高く、金属基板との密着性に富んだ回路基板用絶縁
接着剤組成物及びその用途に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an insulating adhesive composition for a circuit board, which can be filled with a specific inorganic filler at a high level, has a high thermal conductivity, and has a high adhesion to a metal substrate. And its uses.

(従来の技術) 従来からアルミニウム、鉄、鉄−ニツケル合金などの
金属基板上に無機フイラーを充填したエポキシ樹脂系の
接着剤を100μm前後の厚さで塗布し、その上に金属箔
を接着した回路基板は知られていた(特開昭56−62388
号公報、特開昭58−15290号公報)。
(Prior art) Conventionally, an epoxy resin-based adhesive filled with an inorganic filler was applied to a metal substrate of aluminum, iron, iron-nickel alloy, or the like at a thickness of about 100 μm, and a metal foil was bonded thereon. Circuit boards are known (JP-A-56-62388).
JP-A-58-15290).

しかしこれらの回路基板では、絶縁層として使用して
いる接着剤の熱伝導率が低いため、熱伝導性の良い金属
基板本来の特性を生かすことができず、満足のいく放熱
性を得ることができない欠点があつた。この対策として
この接着剤の厚みを数十μmと薄くすることにより熱伝
導性を良くする試みも見られるが、逆に基板として用い
る場合には絶縁層の耐電圧信頼性が悪くなるという重大
な欠点があつた。
However, in these circuit boards, the thermal conductivity of the adhesive used as the insulating layer is low, so the original characteristics of a metal substrate with good heat conductivity cannot be used, and satisfactory heat dissipation can be obtained. There was a disadvantage that I could not do. As a countermeasure, attempts have been made to improve the thermal conductivity by reducing the thickness of this adhesive to several tens of μm, but conversely, when used as a substrate, the withstand voltage reliability of the insulating layer deteriorates. There were drawbacks.

このため樹脂に無機フイラーをさらに高充填し、その
接着剤の熱伝導性を向上させる方法が一般にとられてい
るが、無機フイラーを高充填すると接着剤の粘度が上昇
し、塗工性が悪くなり気泡を巻込む様になるため、かえ
つて熱伝導性や絶縁特性が落ちてしまうという問題があ
つた。
For this reason, a method of further increasing the thermal conductivity of the adhesive by further filling the resin with an inorganic filler is generally used.However, when the filler is highly filled with an inorganic filler, the viscosity of the adhesive increases, and the coatability is poor. However, since air bubbles are involved, there is a problem that heat conductivity and insulation properties are reduced.

(発明が解決するための課題) 本発明はかかる欠点を解決するものであり、回路基板
用絶縁接着剤組成物として従来どおりの接着力を保持し
つつ、熱伝導性の良い無機フイラーを高充填した接着剤
組成物を開発し、さらにこれを使用して熱伝導性の高い
混成集積回路基板及び混成集積回路を完成するに至つ
た。
(Problems to be Solved by the Invention) The present invention solves such a drawback, and highly fills an inorganic filler having good thermal conductivity while maintaining a conventional adhesive force as an insulating adhesive composition for a circuit board. The developed adhesive composition has been used, and the use of the same has led to the completion of a hybrid integrated circuit substrate and a hybrid integrated circuit having high thermal conductivity.

(課題を解決するための手段) すなわち本発明は、耐熱性樹脂10〜40容量%と、最大
粒径が100μm以下の球状の粗粒粒子として粒子径5〜5
0μmを50重量%以上含有し、しかも平均粒子径が5〜5
0μmである無機フイラー42〜63容量%及び球状微粒子
として粒子径1.5μm以下が70重量%以上、粒子径0.2μ
m以上が70重量%以上で、しかも平均粒子径が0.2〜1.5
μmである無機フイラー18〜27容量%とを主成分として
なり、しかも硬化後の熱伝導率が6.4〜20×10-3cal/cm
・sec・degである回路基板用絶縁接着剤組成物と該絶縁
接着剤組成物を用いた高熱伝導性混成集積回路基板及び
高熱伝導性混成集積回路を特徴とするものである。
(Means for Solving the Problems) That is, the present invention provides a heat-resistant resin of 10 to 40% by volume and a spherical coarse particle having a maximum particle diameter of 100 μm or less, having a particle diameter of 5 to 5%.
0 μm or more by weight and the average particle size is 5-5
0-μm inorganic filler 42-63% by volume and spherical fine particles having a particle diameter of 1.5 μm or less are 70% by weight or more and a particle diameter of 0.2 μm
m or more is 70% by weight or more, and the average particle diameter is 0.2 to 1.5.
The main component is 18 to 27% by volume of an inorganic filler of μm, and the thermal conductivity after curing is 6.4 to 20 × 10 -3 cal / cm.
The present invention is characterized by an insulating adhesive composition for circuit boards having a sec · deg, a high thermal conductive hybrid integrated circuit board and a high thermal conductive hybrid integrated circuit using the insulating adhesive composition.

本発明の接着剤組成物に用いる耐熱樹脂としては、例
えばエポキシ樹脂、シリコーン樹脂、ポリアミド樹脂、
アクリル樹脂等がある。そして耐熱樹脂の割合は、10〜
40容量%であり、10容量%未満では接着剤組成物の粘度
が上昇して作業性が落ち、40容量%を超えると絶縁層と
しての熱伝導性が低下して好ましくない。
As the heat-resistant resin used in the adhesive composition of the present invention, for example, epoxy resin, silicone resin, polyamide resin,
There are acrylic resins and the like. And the ratio of heat resistant resin is 10 ~
It is 40% by volume, and if it is less than 10% by volume, the viscosity of the adhesive composition increases and the workability decreases. If it exceeds 40% by volume, the thermal conductivity of the insulating layer is undesirably reduced.

また本発明の接着剤組成物に用いる無機フイラーとし
ては、例えば酸化アルミニウム(アルミナ)、酸化ケイ
素、酸化マグネシウム等の酸化物セラミツクス、窒化ア
ルミニウム、窒化ケイ素、窒化ホウ素等の窒化物セラミ
ツクス及び炭化物セラミツクス等がある。そして無機フ
イラーの割合は、最大粒子径が100μm以下の球状の粗
粒単一粒子として粒子径5〜50μmを50重量%以上含有
し、しかも平均粒子径が5〜50μmである無機フイラー
42〜63容量%及び球状微粒子として粒子径1.5μm以下
が70重量%以上、粒子径0.2μm以上が70重量%以上
で、しかも平均粒子径が0.2〜1.5μmある無機フイラー
18〜27容量%であり、この範囲以外では樹脂組成物粘度
の上昇、熱伝導率の低下があり好ましくない。また前記
の球状の粗粒単一粒子としては、たとえばアルミナでは
特開昭62−191420号公報に記載されているようなカツテ
イングエツジを有しない球状コランダムアルミナ粒子が
好ましい。
Examples of the inorganic filler used in the adhesive composition of the present invention include oxide ceramics such as aluminum oxide (alumina), silicon oxide, and magnesium oxide; nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride; and carbide ceramics. There is. The ratio of the inorganic filler is such that the inorganic filler contains 50% by weight or more of 5 to 50 μm in particle diameter as spherical coarse single particles having a maximum particle diameter of 100 μm or less, and has an average particle diameter of 5 to 50 μm.
Inorganic filler with 42 to 63% by volume and 70% by weight or more as a spherical fine particle having a particle diameter of 1.5 µm or less, 70% by weight or more with a particle diameter of 0.2 µm or more, and an average particle diameter of 0.2 to 1.5 µm
When the content is outside this range, the viscosity of the resin composition increases and the thermal conductivity decreases, which is not preferable. As the above-mentioned single spherical coarse particles, for example, alumina is preferably spherical corundum alumina particles having no cutting edge as described in JP-A-62-191420.

また無機フイラーは、全量100とした場合に粒子径の
異なる球状の粗粒粒子と球状微粒子との比で粗粒単一粒
子が60〜90容量%になる配合が接着剤組成物への高充填
配合として好ましく、この範囲以外では高充填できても
熱伝導性が悪くなる。球状の粗粒単一粒子としては、最
大粗粒が100μm以上で、粒子径5〜50μmを50重量%
以上含有し、しかも平均粒子径5〜50μmであり、この
範囲以外では熱伝導率が低下して好ましくない。この粗
粒の最大粒子径が100μmを超えると、一般に金属基板
を用いた混成集積回路基板の絶縁層の厚みが100μm前
後のため、耐電圧不良や、基板の外観不良が生じ好まし
くない。また球状微粒子としては粒子径1.5μm以下が7
0重量%以上、粒子径0.2μm以上が70重量%以上でしか
も平均粒子径が0.2〜1.5μmであり、この範囲以外では
充填性が低下し、熱伝導性が悪くなる。接着剤組成物の
粘度を低くするためにはこの球状微粉の粒度分布がシヤ
ープなほど良い。
In addition, when the total amount of inorganic filler is 100, the ratio of spherical coarse particles and spherical fine particles having different particle diameters is 60 to 90% by volume in the ratio of spherical coarse particles. It is preferable as a compounding ratio. Outside this range, even if the filling is high, the thermal conductivity is poor. As a single spherical coarse particle, the maximum coarse particle is 100 μm or more, and the particle diameter of 5 to 50 μm is 50% by weight.
The content is above, and the average particle diameter is 5 to 50 μm. Outside this range, the thermal conductivity is unfavorably reduced. If the maximum particle diameter of the coarse particles exceeds 100 μm, the thickness of the insulating layer of the hybrid integrated circuit board using the metal substrate is generally around 100 μm, which results in poor withstand voltage and poor appearance of the substrate. In addition, spherical fine particles having a particle diameter of 1.5 μm or less
The content is 0% by weight or more, the particle size of 0.2 μm or more is 70% by weight or more, and the average particle size is 0.2 to 1.5 μm. In order to lower the viscosity of the adhesive composition, the sharper the particle size distribution of the spherical fine powder, the better.

さらに本発明の接着剤組成物は、硬化後の熱伝導率が
6.4〜20×10-3cal/cm・sec・degである。
Further, the adhesive composition of the present invention has a thermal conductivity after curing.
It is 6.4 to 20 × 10 −3 cal / cm · sec · deg.

本発明の接着剤組成物には必要に応じてシラン系カツ
プリング剤、チタネート系カツプリング剤、安定剤、硬
化促進剤等も用いることができる。
In the adhesive composition of the present invention, a silane-based coupling agent, a titanate-based coupling agent, a stabilizer, a curing accelerator, and the like can be used as necessary.

本発明者らは本発明による特定された無機フイラーを
用いた無機フイラー高充填接着剤の製造において、驚く
べきことに、従来、無機フイラー高充填接着剤の製造に
おいて用いられている、熟練が必要で手間のかかる高シ
エア下でのロール混練作業なしに、一般に用いられてい
る混練機のみで容易に短時間に混練できることを見出し
た。
The present inventors have found that in the production of an inorganic filler high-filled adhesive using the specified inorganic filler according to the present invention, surprisingly, the skilled artisans conventionally used in the production of inorganic filler highly-filled adhesives are required. It has been found that kneading can be easily performed in a short time only with a commonly used kneading machine without the need for labor-intensive kneading of rolls under high shear.

また本発明による混成集積回路基板は、無機フイラー
を従来以上に充填しているため、回路形成した基板をプ
レスにより分割する時に金型が著しく摩耗することが懸
念されたが、球状の形をした無機フイラーのため、金型
摩耗も少なく十分に実用に耐えることがわかつた。
In addition, since the hybrid integrated circuit board according to the present invention is filled with an inorganic filler more than before, there was a concern that the mold would be significantly worn when the circuit-formed board was divided by pressing, but it was formed into a spherical shape. Because of the inorganic filler, it was found that there was little mold abrasion and it could withstand practical use.

次に第1図は、本発明の絶縁接着剤組成物2を介して
金属基板1と導電性金属箔層3からなる混成集積回路基
板の断面図である。金属基板1としては、アルミニウム
及びその合金、鉄、ケイ素鋼、ステンレス、銅/インバ
ー/銅クラツド材、銅/モリブデン/銅等のクラツド材
である。また導電性金属箔層3としては、銅箔、銅−ア
ルミニウムクラツド箔、銅−ニツケル−アルミニウムク
ラツド箔等である。また第2図は、前記の回路基板を用
いて実装した混成集積回路の1断面図を示すものであ
り、導電性金属箔層3をエツチングして形成した回路に
は、パワートランジスタ4、チツプ抵抗5、チツプコン
デンサー6、外部リード7が半田付により搭載されてい
る。
Next, FIG. 1 is a cross-sectional view of a hybrid integrated circuit substrate including a metal substrate 1 and a conductive metal foil layer 3 via an insulating adhesive composition 2 of the present invention. The metal substrate 1 is a clad material such as aluminum and its alloys, iron, silicon steel, stainless steel, copper / invar / copper clad material, and copper / molybdenum / copper. The conductive metal foil layer 3 is a copper foil, a copper-aluminum clad foil, a copper-nickel-aluminum clad foil, or the like. FIG. 2 is a cross-sectional view of a hybrid integrated circuit mounted using the circuit board. The circuit formed by etching the conductive metal foil layer 3 includes a power transistor 4 and a chip resistor. 5, a chip capacitor 6, and an external lead 7 are mounted by soldering.

(実施例) 以下実施例により本発明を更に詳細に説明する。(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例1) まず最大粒径75μm以下で5〜50μmを50重量%以上
含有し、平均粒子径17μmからなる酸化アルミニウム
(以下アルミナという)球状粗粒単一粒子70重量%と、
1.5μm以下が90重量%、0.2μm以上が90重量%で平均
粒子0.7μmからなるアルミナ球状微粒子30重量%とを
混合した無機フイラーを作成した。次にこの無機フイラ
ーとビスフエノールA型液状エポキシ樹脂とを第1表に
示す割合とし、シランカツプリング剤1重量部(無機フ
イラー100重量部に対して)を添加して加熱温度50℃で
混練機により混練し、回路基板用絶縁接着剤組成物を作
成した。尚、混練中は経時的に無機フイラーの分散状態
をツブゲージ法によりチエツクした。その結果ツブゲー
ジ法で無機フイラーが100μm以下の粒径になるまでに
要した時間は1.5時間であつた。得られた各絶縁接着剤
組成物の熱伝導率を第1表に示す。
(Example 1) First, aluminum oxide (hereinafter referred to as alumina) spherical coarse single particles 70% by weight containing 50% by weight or more of 5 to 50 μm in a maximum particle diameter of 75 μm or less and having an average particle diameter of 17 μm;
An inorganic filler was prepared by mixing 90% by weight of 1.5 μm or less, 90% by weight of 0.2 μm or more and 30% by weight of alumina spherical fine particles having an average particle size of 0.7 μm. Next, the inorganic filler and the bisphenol A type liquid epoxy resin were added in the ratio shown in Table 1, 1 part by weight of a silane coupling agent (based on 100 parts by weight of the inorganic filler) was added and kneaded at a heating temperature of 50 ° C. The mixture was kneaded by a machine to prepare an insulating adhesive composition for a circuit board. During the kneading, the dispersed state of the inorganic filler was checked with time by a tube gauge method. As a result, the time required for the inorganic filler to have a particle size of 100 μm or less by the tub gauge method was 1.5 hours. Table 1 shows the thermal conductivity of each of the obtained insulating adhesive compositions.

(実施例2) アルミナ球状粗粒単一粒子は実施例1と同じものを70
重量%用い、アルミナ球状微粒子は、1.5μm以下が70
重量%、0.2μm以上が70重量%で平均粒子径が第2表
に示すものを30重量%として混合した無機フイラーを作
成した。次に該混合無機フイラーにビスフエノールA型
液状エポキシ樹脂を実施例1と同様な操作を行ない混合
し、最大充填できる絶縁接着剤組成物比を調べた。各絶
縁接着剤組成物の熱伝導率を第2表に示す。
(Example 2) The same spherical alumina coarse single particles as those of Example 1 were used.
% Alumina particles of 1.5 μm or less
An inorganic filler was prepared by mixing 70% by weight, 0.2% or more and 70% by weight and having an average particle diameter shown in Table 2 at 30% by weight. Next, a bisphenol A type liquid epoxy resin was mixed with the mixed inorganic filler by performing the same operation as in Example 1, and the ratio of the insulating adhesive composition capable of being filled to the maximum was examined. Table 2 shows the thermal conductivity of each insulating adhesive composition.

(比較例) ビスフエノールA型液状エポキシ樹脂と実施例1の球
状粗粒単一粒子と最大粒子径が75μm以下で平均粒子径
が12μmのアルミナ破砕粉末、最大粒子径が75μm以下
で平均粒子径が22μmの板状粉末及び最大粒径が75μm
以下で平均粒子径22μmの球状造粒粉末を第3表に示す
割合とした以外は、実施例1と同様な操作を行ない絶縁
接着剤組成物を得た。各絶縁接着剤組成物の熱伝導率と
分散に要した時間を第3表に示す。
(Comparative Example) Bisphenol A type liquid epoxy resin, spherical coarse single particle of Example 1, alumina crushed powder having a maximum particle diameter of 75 μm or less and an average particle diameter of 12 μm, and an average particle diameter of a maximum particle diameter of 75 μm or less Is 22μm plate-like powder and maximum particle size is 75μm
An insulating adhesive composition was obtained in the same manner as in Example 1 except that the spherical granulated powder having an average particle diameter of 22 μm was changed to the ratio shown in Table 3 below. Table 3 shows the thermal conductivity of each insulating adhesive composition and the time required for dispersion.

(実施例3) 実施例1の混合無機フイラーの充填率80容量%の絶縁
接着剤組成物にアミン系硬化剤を2重量部加え、80℃、
1時間+150℃、2時間硬化させて硬化物を得、レーザ
ーフラツシユ法でこの硬化物の熱伝導率を測定した。そ
の結果硬化物の熱伝導率は14×10-3cal/cm・sec・degで
あつた。
(Example 3) 2 parts by weight of an amine-based curing agent was added to the insulating adhesive composition having a filling rate of 80% by volume of the mixed inorganic filler of Example 1, and the mixture was heated at 80 ° C.
After curing for 1 hour at + 150 ° C. for 2 hours, a cured product was obtained, and the thermal conductivity of the cured product was measured by a laser flash method. As a result, the thermal conductivity of the cured product was 14 × 10 −3 cal / cm · sec · deg.

(実施例4) 実施例3と同じ配合で得た絶縁接着剤組成物を、厚み
1.5mmのアルミニウム板上に100μm厚に塗布し、加熱し
て半硬化状態にした後、これに35μm厚の銅箔を張り合
わせ、高熱伝導性混成集積回路基板を作成した。この基
板の初期特性と長期信頼性テスト結果を表4に示す。
(Example 4) The insulating adhesive composition obtained with the same composition as in Example 3
It was applied on a 1.5 mm aluminum plate to a thickness of 100 μm and heated to a semi-cured state, and then a 35 μm-thick copper foil was adhered to this to produce a highly thermally conductive hybrid integrated circuit board. Table 4 shows the initial characteristics and long-term reliability test results of this substrate.

これらの結果よりこの基板は混成集積回路基板として
十分な耐熱性と耐湿性を有していることがわかる。
These results show that this substrate has sufficient heat resistance and moisture resistance as a hybrid integrated circuit substrate.

(実施例5) 実施例4で得た基板を3×4cmに切断し、エツチング
して10×10mmの銅箔パターンを形成した。この銅箔上に
TO−220型トランジスターを半田付し、水冷した放熱フ
イン上に放熱グリースを介して固定した。トランジスタ
ーに実際に通電し、発熱させることにより熱抵抗値を測
定し、放熱グリースの熱抵抗値を補正することにより0.
24℃/W/cm2の値を得た。
Example 5 The substrate obtained in Example 4 was cut into 3 × 4 cm and etched to form a copper foil pattern of 10 × 10 mm. On this copper foil
A TO-220 type transistor was soldered and fixed on a water-cooled heat dissipation fin via heat dissipation grease. Actually energize the transistor and generate heat to measure the thermal resistance value and correct the thermal resistance value of the heat radiation grease to 0.
A value of 24 ° C./W/cm 2 was obtained.

(比較例) 粉砕アルミナを55容量%含んだ絶縁接着剤を用いた他
は実施例4と同様にして混成集積回路基板を作成した。
次に実施例5と同様にしてこの基板の熱抵抗値を測定し
たところ、0.50℃/W/cm2であつた。
Comparative Example A hybrid integrated circuit board was prepared in the same manner as in Example 4 except that an insulating adhesive containing 55% by volume of pulverized alumina was used.
Next, when the thermal resistance of this substrate was measured in the same manner as in Example 5, it was 0.50 ° C./W/cm 2 .

(発明の効果) 以上のとおり本発明は、特定された二種類の無機フイ
ラーを特定された比率で用いることにより、容易に無機
フイラーを高充填できるため、高熱伝導率の回路基板用
絶縁接着剤組成物を得ることができ、しかもその用途と
して熱放散性が良好なため高密度実装用混成集積回路基
板及び高密度に実装されな混成集積回路を作成できる効
果を有するものである。
(Effects of the Invention) As described above, the present invention can easily fill an inorganic filler with a high ratio by using two types of specified inorganic fillers at a specified ratio. Therefore, the insulating adhesive for a circuit board having a high thermal conductivity. Since the composition can be obtained and the heat dissipation property is good as the application, the composition has an effect that a hybrid integrated circuit board for high-density mounting and a hybrid integrated circuit not densely mounted can be produced.

【図面の簡単な説明】 第1図は本発明の高熱伝導性混成集積回路基板の側面断
面図であり、第2図は、その混成集積回路の側面断面図
を表わす。 符号 1……金属基板、5……チツプ抵抗 2……接着剤組成物、6……チツプコンデンサー 3……導電性金属箔層、7……外部リード線 4……パワートランジスタ、8……半田層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view of a high thermal conductive hybrid integrated circuit board of the present invention, and FIG. 2 is a side sectional view of the hybrid integrated circuit. Reference numeral 1: metal substrate, 5: chip resistance 2 ... adhesive composition, 6 ... chip capacitor 3 ... conductive metal foil layer, 7 ... external lead wire 4 ... power transistor, 8 ... solder layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−69661(JP,A) 特開 昭62−191420(JP,A) 特開 昭61−256921(JP,A) 特開 昭56−62388(JP,A) 特公 昭46−34502(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C09D 1/02 C09J 1/02 C04B 37/02 C04B 41/87 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-69661 (JP, A) JP-A-62-191420 (JP, A) JP-A-61-256921 (JP, A) JP-A-56-191 62388 (JP, A) JP 4634502 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C09D 1/02 C09J 1/02 C04B 37/02 C04B 41/87

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐熱性樹脂10〜40容量%と、最大粒子径が
100μm以下の球状の粗粒でかつ単一粒子として粒子径
5〜50μmを50重量%以上含有し、しかも平均粒子径が
5〜50μmである無機フィラー42〜63容量%及び球状微
粒子として粒子径1.5μm以下が70重量%以上、粒子径
0.2μm以上が70重量%以上で、しかも平均粒子径が0.2
〜1.5μmである無機フィラー18〜27容量%とを主成分
としてなり、しかも硬化後の熱伝導率が6.4〜20×10-3c
al/cm・sec・degであることを特徴とする回路基板用絶
縁接着剤組成物。
1. A heat-resistant resin having a maximum particle size of 10 to 40% by volume.
Spherical coarse particles having a particle diameter of 100 μm or less and containing 50% by weight or more of a particle diameter of 5 to 50 μm as a single particle, and having an average particle diameter of 5 to 50 μm, 42 to 63% by volume of an inorganic filler, and spherical particles having a particle diameter of 1.5 μm or less is 70% by weight or more, particle size
0.2 μm or more is 70% by weight or more, and the average particle diameter is 0.2
The main component is 18 to 27% by volume of an inorganic filler of 1.5 to 1.5 μm, and the thermal conductivity after curing is 6.4 to 20 × 10 -3 c
al / cm · sec · deg, an insulating adhesive composition for circuit boards.
【請求項2】無機フィラーが酸化アルミニウムであるこ
とを特徴とする請求項(1)記載の回路基板用絶縁接着
剤組成物。
2. The insulating adhesive composition for a circuit board according to claim 1, wherein the inorganic filler is aluminum oxide.
【請求項3】請求項(1)記載の接着剤組成物を介して
金属基板と金属箔層とを積層してなる混成集積回路基
板。
3. A hybrid integrated circuit board obtained by laminating a metal substrate and a metal foil layer via the adhesive composition according to claim (1).
【請求項4】請求項(3)記載の混成集積回路基板に電
子部品を搭載してなる混成集積回路。
4. A hybrid integrated circuit comprising an electronic component mounted on the hybrid integrated circuit board according to claim 3.
JP1107283A 1989-04-28 1989-04-28 Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit Expired - Lifetime JP3006617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107283A JP3006617B2 (en) 1989-04-28 1989-04-28 Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107283A JP3006617B2 (en) 1989-04-28 1989-04-28 Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JPH02286768A JPH02286768A (en) 1990-11-26
JP3006617B2 true JP3006617B2 (en) 2000-02-07

Family

ID=14455155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107283A Expired - Lifetime JP3006617B2 (en) 1989-04-28 1989-04-28 Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JP3006617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344240A1 (en) * 2021-04-23 2022-10-27 Microsoft Technology Licensing, Llc Multilayer superconducting structures for cryogenic electronics

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576362A (en) * 1992-04-20 1996-11-19 Denki Kagaku Kogyo Kabushiki Kaisha Insulating material and a circuit substrate in use thereof
US6175084B1 (en) * 1995-04-12 2001-01-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate having a heat conductive adhesive layer
JP4511245B2 (en) * 2004-05-28 2010-07-28 三洋電機株式会社 Circuit equipment
ATE502979T1 (en) * 2005-09-05 2011-04-15 Denki Kagaku Kogyo Kk RESIN COMPOSITION AND INTEGRATED HYBRID CIRCUIT BOARD THEREOF
JP2008016775A (en) * 2006-07-10 2008-01-24 Denki Kagaku Kogyo Kk Circuit board, and hybrid integrated circuit
JP4709795B2 (en) * 2007-03-16 2011-06-22 株式会社東芝 High thermal conductivity material
JP2011181824A (en) * 2010-03-03 2011-09-15 Hitachi Automotive Systems Ltd Power semiconductor device and ac power generator for vehicle
JP2012102301A (en) * 2010-11-13 2012-05-31 Nitto Denko Corp Bubble-containing thermally conductive resin composition layer, method for manufacturing the same, and pressure-sensitive adhesive tape or sheet using the same
US9554464B2 (en) * 2012-08-02 2017-01-24 Waseda University Metal-base printed circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662388A (en) * 1979-10-26 1981-05-28 Tokyo Shibaura Electric Co Hybrid integrated circuit board
JPH0674350B2 (en) * 1987-09-10 1994-09-21 昭和電工株式会社 High thermal conductivity rubber / plastic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344240A1 (en) * 2021-04-23 2022-10-27 Microsoft Technology Licensing, Llc Multilayer superconducting structures for cryogenic electronics

Also Published As

Publication number Publication date
JPH02286768A (en) 1990-11-26

Similar Documents

Publication Publication Date Title
JP5038007B2 (en) Composition, metal-based circuit board using the composition
JP5192812B2 (en) Resin composition and circuit board for hybrid integration using the same
JP6022061B2 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP5208060B2 (en) Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP5774472B2 (en) Thermally reinforced electrical insulating adhesive paste
JP3006617B2 (en) Insulating adhesive composition for circuit board, hybrid integrated circuit board, and hybrid integrated circuit
JPH07126489A (en) Electrically conductive resin paste
JP3469432B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JPH03188180A (en) Conductive film adhesive, method for adhesion, semiconductor device, and preparation of semiconductor device
JP6726481B2 (en) Circuit board and electronic component mounting board
JP2974902B2 (en) Conductive resin paste
JP2005281509A (en) Curable resin composition and metal-based circuit substrate by using the same
JPH0676474B2 (en) Insulating resin paste for semiconductors
JPH0681813B2 (en) Insulation paste
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JP3255814B2 (en) Metal-based circuit board and module using the same
JP3259968B2 (en) Semiconductor device manufacturing method
JP3283455B2 (en) Thermal conductive paste
JP2787842B2 (en) Conductive resin paste for semiconductors
JPS62179570A (en) Diamond paste
JP3250793B2 (en) Conductive resin paste and semiconductor device using the same
JPH10340624A (en) Conductive resin paste and semiconductor device manufactured by using this
JP3759383B2 (en) Conductive resin paste and semiconductor device
JP2798565B2 (en) Conductive resin paste for semiconductors
JP2996548B2 (en) Heat dissipation composite board

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10