JP3250793B2 - Conductive resin paste and semiconductor device using the same - Google Patents

Conductive resin paste and semiconductor device using the same

Info

Publication number
JP3250793B2
JP3250793B2 JP25583997A JP25583997A JP3250793B2 JP 3250793 B2 JP3250793 B2 JP 3250793B2 JP 25583997 A JP25583997 A JP 25583997A JP 25583997 A JP25583997 A JP 25583997A JP 3250793 B2 JP3250793 B2 JP 3250793B2
Authority
JP
Japan
Prior art keywords
resin
conductive resin
resin paste
silver powder
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25583997A
Other languages
Japanese (ja)
Other versions
JPH1192736A (en
Inventor
竜一 村山
奉広 鍵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP25583997A priority Critical patent/JP3250793B2/en
Publication of JPH1192736A publication Critical patent/JPH1192736A/en
Application granted granted Critical
Publication of JP3250793B2 publication Critical patent/JP3250793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はIC,LSI等の半
導体素子を金属フレーム等の基板に接着させる半導体素
子接着用樹脂ペースト及びこれを用いた半導体装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element bonding resin paste for bonding a semiconductor element such as an IC or LSI to a substrate such as a metal frame, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】半導体装置の組立において、半導体素子
を金属フレームに接着させる工程、いわゆるダイボンデ
ィング工程において用いられる接合方式は、これまで金
−シリコン共晶に始まり、半田、樹脂ペーストと推移し
てきた。現在では主にIC,LSIの組立においては導
電性樹脂ペーストを、トランジスタ、ダイオードなどの
ディスクリートにおいては通常半田を使用している。
2. Description of the Related Art In the process of assembling a semiconductor device, a bonding method used in a process of bonding a semiconductor element to a metal frame, that is, a so-called die bonding process has been changed from a gold-silicon eutectic to a solder and a resin paste. . At present, conductive resin paste is mainly used for assembling ICs and LSIs, and usually solder is used for discretes such as transistors and diodes.

【0003】IC、LSI等の半導体装置においてはそ
の半導体素子の面積が大きいことから半田に対してより
低応力性が高い樹脂ペーストを使用する方法が行われて
いる。この樹脂ペーストはエポキシ樹脂中にフレーク状
の銀粉が分散されている。しかし導電性樹脂ペーストを
用いる方法では近年の半導体装置において半導体素子と
金属フレームの間の導電性に関する要求は低くなってき
ている。なぜならば近年の半導体装置では半導体素子や
半導体装置のデザインの進歩に伴い、アースを取るため
に半導体素子の裏面から金属フレームに電気を流す構造
が必ずしも必要ちされていない。また導電性樹脂ペース
トを通して電気を流すにしてもIC,LSIでは電流が
2〜3mA程度の微弱な電流である。この程度の電流で
は樹脂中に金属粉が分散している従来の導電性樹脂ペー
ストでも充分に対応が可能である。
[0003] In semiconductor devices such as ICs and LSIs, a method of using a resin paste having a lower stress property to solder has been used because the area of the semiconductor element is large. In this resin paste, flake silver powder is dispersed in an epoxy resin. However, in a method using a conductive resin paste, a requirement for conductivity between a semiconductor element and a metal frame in a semiconductor device in recent years has been reduced. This is because, in recent years, a structure in which electricity flows from the back surface of the semiconductor element to the metal frame is not always required for grounding with the progress of semiconductor element and semiconductor device design in recent years. Even if electricity is passed through the conductive resin paste, the current is a very small current of about 2 to 3 mA in ICs and LSIs. With such a current, a conventional conductive resin paste in which metal powder is dispersed in a resin can sufficiently cope.

【0004】導電性樹脂ペースト対し半田は導電性や接
着性に優れ、価格も安価である。この半田を主に使用し
ているダイオード、トランジスタ等のディスクリートで
はその製品の構造上半導体素子と金属フレームの間で電
気を流す必要がある。
[0004] Solder to conductive resin paste has excellent conductivity and adhesiveness, and is inexpensive. In the case of discrete components such as diodes and transistors that mainly use this solder, it is necessary to flow electricity between the semiconductor element and the metal frame due to the structure of the product.

【0005】ところが近年の環境問題から半田に使用し
ている鉛を使わない方向に各半導体メーカーが動いてお
り、更に半田を使用する際には必要なフラックスの洗浄
工程が減らすことによるコスト削減の意味からIC,L
SIに使用している導電性樹脂ペーストをディスクリー
ト用に開発しているが、半導体装置に流れる電流が2〜
3A程度の大電流が流れる製品もあり、従来の導電性樹
脂ペーストでは満足する導電性を得ることができなかっ
た。この点に関しては金属皮膜を施したフィラー(例え
ばカーボン、シリカ、ガラスビーズ、ポリマー、その他
無機フィラー)を配合することにより、大電流をが流れ
る半導体製品においても満足な導電性を得ることは可能
であった。
However, due to recent environmental problems, each semiconductor maker is moving in a direction in which lead used in solder is not used, and furthermore, when solder is used, cost reduction is required by reducing a necessary flux cleaning step. IC, L from the meaning
Although the conductive resin paste used for SI has been developed for discrete use, the current flowing through the semiconductor device is 2 to 2.
In some products, a large current of about 3 A flows, and satisfactory conductivity cannot be obtained with the conventional conductive resin paste. In this regard, it is possible to obtain satisfactory conductivity even in a semiconductor product through which a large current flows by blending a filler coated with a metal film (for example, carbon, silica, glass beads, a polymer, and other inorganic fillers). there were.

【0006】しかし大電流を流す半導体製品ではこの電
流により、多量の熱を発生し、この発熱が生じることで
導電性樹脂ペーストの温度が高くなる。その場合熱抵抗
により電流が流れにくくなり、半導体製品としての信頼
性を低下させるという結果を招いている。従ってこの様
な導電性には優れるが、熱放散性に劣る導電性樹脂ペー
ストを使用する場合には充分な冷却機構を持った半導体
製品でなければならなかったが、コストアップにつなが
り実用的ではなかった。
However, in a semiconductor product that flows a large current, a large amount of heat is generated by this current, and the heat generated causes the temperature of the conductive resin paste to increase. In this case, the current becomes difficult to flow due to the thermal resistance, and the reliability of the semiconductor product is reduced. Therefore, when using a conductive resin paste that is excellent in such conductivity but inferior in heat dissipation, it must be a semiconductor product with a sufficient cooling mechanism, but it increases the cost and is not practical. Did not.

【0007】また導電性樹脂ペーストを用いて上記の半
導体製品を製造する場合、オーブンを使用したバッチ方
式においては熱伝導性、電導性を満足するものはある
が、本来半田を用いた製造方式では半導体素子の接着に
有する時間が熱盤上で約5〜15秒であることから従来
の導電性樹脂ペーストでは硬化時にボイドが発生するこ
とで熱伝導性、電導性が著しく低下し、満足する特性を
実現するのが困難であった。
In the case of manufacturing the above-mentioned semiconductor product using a conductive resin paste, some of the batch methods using an oven satisfy the thermal conductivity and conductivity, but the manufacturing method using solder originally requires a batch method. Since the time required for bonding the semiconductor element is about 5 to 15 seconds on a hot plate, the conventional conductive resin paste generates voids during curing, so that thermal conductivity and electrical conductivity are remarkably reduced. Was difficult to achieve.

【0008】[0008]

【発明が解決しようとする課題】本発明は導電性に優
れ、更に熱放散性にも優れる導電性樹脂ペースト及びこ
れを用いた半導体装置を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive resin paste excellent in conductivity and heat dissipation, and a semiconductor device using the same.

【0009】[0009]

【課題を解決するための手段】本発明は、(A)平均粒
径が5〜60μmのニッケル粉、(B)平均粒径が0.
5〜15μmの球状銀粉、(C)一般式(1)又は
(2)で示されるアクリル樹脂またはメタアクリル樹脂
が全樹脂成分中0.1〜50重量%である樹脂成分、並
びに(D)有機過酸化物を必須成分として、該成分中に
ニッケル粉(A)が10〜90重量%、銀粉(B)が5
〜85重量%含まれており、尚かつ(A)+(B)が7
5〜97重量%であることを特徴とする導電性樹脂ペー
スト及び上記の導電性樹脂ペーストを用いて製造された
半導体装置である。
According to the present invention, there are provided (A) a nickel powder having an average particle size of 5 to 60 μm, and (B) an nickel powder having an average particle size of 0.
(C) a resin component in which the acrylic resin or methacrylic resin represented by the general formula (1) or (2) is 0.1 to 50% by weight of the total resin component, and (D) an organic resin. Peroxide is an essential component, and nickel powder (A) is 10 to 90% by weight and silver powder (B) is 5% in the component.
8585% by weight, and (A) + (B) is 7
A conductive resin paste characterized by being 5 to 97% by weight and a semiconductor device manufactured using the conductive resin paste.

【0010】[0010]

【化1】 Embedded image

【0011】[0011]

【化2】 Embedded image

【0012】本発明の様な半導体用導電性樹脂ペースト
は導電性を付与するために通常フィラーに銀粉を用いる
が、本発明では銀粉だけではなくニッケル粉が必須であ
る。銀粉にニッケル粉を併用した理由はより導電性、熱
放散性を向上させる場合、当然金属の比率を上昇させる
のが常套手段である。しかし銀粉のみでこの様な高充填
の導電性樹脂ペーストを作製しようとすると作製時に使
用する三本ロールにおけるロールの回転による機械的な
力で銀粉がつぶれてしまい、結果として銀粉が造粒して
しまうため十分に分散されず、導電性、熱放散性、作業
性を著しく低下させてしまう。そこで銀粉にくらべ機械
的に強いニッケル粉を添加することにより銀粉のつぶれ
を防ぐものである。しかしつぶれやすい銀粉の粒径がニ
ッケル粉の粒径より大きいとロールによりつぶれる可能
性が大きい。そこで本発明では銀粉の粒径はニッケル粉
の粒径よりも小さいものが好ましい。一方、ニッケル粉
だけで導電性を得ようとすると半導体製品での信頼性試
験における吸湿によりニッケル表面に酸化膜的な絶縁層
が生じるため抵抗が大きくなる。従ってニッケルより化
学的な銀を併用し、導電性を維持することが本発明のポ
イントである。
In the conductive resin paste for semiconductors according to the present invention, silver powder is usually used as a filler for imparting conductivity. In the present invention, not only silver powder but also nickel powder is essential. The reason why nickel powder is used in combination with silver powder is that it is customary to increase the proportion of metal when improving conductivity and heat dissipation. However, when attempting to produce such a highly-filled conductive resin paste using only silver powder, the silver powder is crushed by mechanical force due to the rotation of the three rolls used in the production, and as a result, the silver powder is granulated. Therefore, they are not sufficiently dispersed and the conductivity, heat dissipation, and workability are significantly reduced. Therefore, the addition of nickel powder which is mechanically stronger than silver powder prevents the silver powder from being crushed. However, if the particle size of the silver powder that is easily crushed is larger than the particle size of the nickel powder, the possibility of crushing by the roll is large. Therefore, in the present invention, the particle size of the silver powder is preferably smaller than the particle size of the nickel powder. On the other hand, if an attempt is made to obtain conductivity only with nickel powder, the resistance increases because an insulating film-like insulating layer is formed on the nickel surface due to moisture absorption in a reliability test of a semiconductor product. Therefore, the point of the present invention is to maintain the conductivity by using chemical silver in combination with nickel.

【0013】本発明ではニッケル粉と銀粉の併せた量が
80〜97重量%で無ければならない。ニッケル粉と銀
粉を併せた量が80重量%より少ないと導電性と熱放散
性に劣る。また97重量%より多いと粘度が高くなり過
ぎ塗布作業性が著しく低下する。球状ニッケル粉が10
〜90重量%、銀粉が5〜85重量%であるのが望まし
い。球状ニッケル粉が10重量%を下回ると銀粉の造粒
が激しく分散性が著しく低下するため導電性が低下す
る。球状ニッケル粉が90重量%を越えると吸水後の導
電性が低下するので好ましくない。
In the present invention, the combined amount of nickel powder and silver powder must be 80 to 97% by weight. If the combined amount of the nickel powder and the silver powder is less than 80% by weight, the conductivity and the heat dissipation are poor. On the other hand, if it is more than 97% by weight, the viscosity becomes too high and the coating workability is remarkably reduced. 10 spherical nickel powder
It is desirable that the silver powder be 5 to 90% by weight and the silver powder be 5 to 85% by weight. If the content of the spherical nickel powder is less than 10% by weight, the silver powder is excessively granulated and the dispersibility is remarkably reduced. If the spherical nickel powder exceeds 90% by weight, the conductivity after absorbing water is undesirably reduced.

【0014】本発明で用いるニッケル粉は球状が望まし
い。本発明の様に高充填にする場合、粒子の形状は球状
の方が比表面積が小さくタップ密度が小さいためより多
くの粒子を充填することができるので好ましい。ニッケ
ル粉の平均粒径は5〜60μmが望ましい。粒径がこれ
より小さいと粘度が高くなり金属粉の高充填化は困難に
なる。またこれより大きいと塗布した場合のペースト厚
みが大きくなるため導電性が劣る。
The nickel powder used in the present invention is preferably spherical. In the case of high filling as in the present invention, spherical particles are preferable because more particles can be filled because the specific surface area is small and the tap density is small. The average particle size of the nickel powder is preferably 5 to 60 μm. If the particle size is smaller than this, the viscosity increases and it becomes difficult to highly fill the metal powder. On the other hand, if it is larger than this, the thickness of the paste when applied becomes large, resulting in poor conductivity.

【0015】本発明に用いる銀粉の平均粒径は0.5〜
15μmが望ましい。形状は球状の方がより高充填化が
可能ではあるが、本発明の様な比較的粒径の大きい球状
ニッケル粉を添加により粘度が低下するためフレーク状
の銀粉であっても良好な作業性が得られるため特に限定
するものではない。平均粒径が0.5μmより小さいと
球状ニッケル粉の添加でもロール混練が不可能、もしく
は混練が可能な場合でも粘度が高過ぎてディスペンスは
おろかスクリーン印刷による塗布も出来ない高い粘度に
なってしまう。逆に平均粒径が15μmより大きい粒径
を使用すると粒度分布が非常に狭くなり、流動性が低下
するため、塗れ広がり性が著しく低下するので好ましく
ない。また本発明において上記範囲内であれば、銅、金
等の他の金属粉を混合しても構わない。
The silver powder used in the present invention has an average particle size of 0.5 to 0.5.
15 μm is desirable. Spherical shape allows higher filling, but the addition of spherical nickel powder having a relatively large particle size as in the present invention lowers the viscosity. Is not particularly limited because it is obtained. If the average particle size is smaller than 0.5 μm, roll kneading is impossible even with the addition of spherical nickel powder, or even if kneading is possible, the viscosity is too high and the dispensing becomes too viscous, not to mention coating by screen printing. . Conversely, if the average particle size is larger than 15 μm, the particle size distribution becomes extremely narrow, and the fluidity is reduced, so that the spreadability is remarkably reduced. In the present invention, other metal powders such as copper and gold may be mixed within the above range.

【0016】本発明に用いる一般式(1)または、
(2)で示されるアクリル樹脂または、メタクリル樹脂
は、ラジカル重合をするアクリル基またはメタクリル基
を有しており、また一方にはグリシジル基を有してい
る。その結果、通常アクリル樹脂だけでの重合はエポキ
シに比べ、重合速度は速いものの硬化収縮が大きく、エ
ポキシの様に硬化反応により金属やシリコンに対する接
着に有効な水酸基を生じないことから接着性が乏しく、
本発明の様な半導体素子接着用の導電性樹脂ペーストに
は不向きとされてきた。しかし(1)あるいは(2)の
様な樹脂を用いるとアクリル樹脂中にグリシジル基を有
することから従来のエポキシの様にグリシジル基の硬化
反応により水酸基を生じることでアクリル樹脂あるいは
メタクリル樹脂の最大の欠点であった接着性を向上さ
せ、またエポキシのみの樹脂系に比べ短時間で接着でき
る導電性樹脂ペーストを得ることができる。また通常の
液状エポキシ樹脂を使用している導電性樹脂ペーストで
は粘度を調整するために使用するより低粘度の液状エポ
キシ樹脂や有機溶剤が硬化時に揮発し、硬化物中にボイ
ドを発生させて熱伝導性、電導性を低下させるが、本発
明の導電性樹脂ペーストは反応機構がラジカル重合であ
ることから、より低粘度のアクリル樹脂あるいはメタク
リル樹脂を使用しても重合反応が速いため揮発しにく
く、結果としてボイドが極めて少ない硬化物を得られ
る。熱盤で硬化した場合、従来のエポキシ系の導電性樹
脂ペーストに比べ満足する熱伝導性、電導性を得ること
ができる。
The general formula (1) used in the present invention or
The acrylic resin or methacrylic resin represented by (2) has an acryl or methacryl group that undergoes radical polymerization, and one of them has a glycidyl group. As a result, polymerization with acrylic resin alone has a higher polymerization rate than epoxy, but has a large curing shrinkage, and has poor adhesion because it does not generate a hydroxyl group effective for adhesion to metal or silicon by a curing reaction like epoxy. ,
It has not been suitable for a conductive resin paste for bonding a semiconductor element as in the present invention. However, when a resin such as (1) or (2) is used, since a glycidyl group is contained in the acrylic resin, a hydroxyl group is generated by a curing reaction of the glycidyl group as in a conventional epoxy resin. It is possible to obtain a conductive resin paste that can improve the adhesiveness, which has been a drawback, and can be bonded in a short time as compared with a resin system containing only epoxy. In the case of conductive resin paste using ordinary liquid epoxy resin, the liquid epoxy resin or organic solvent with lower viscosity than used to adjust the viscosity volatilizes during curing, generating voids in the cured product and causing heat. Although the conductivity and the conductivity are reduced, the conductive resin paste of the present invention hardly volatilizes because the reaction mechanism is radical polymerization, and the polymerization reaction is fast even when a lower-viscosity acrylic resin or methacrylic resin is used. As a result, a cured product having extremely few voids can be obtained. When cured with a hot platen, satisfactory thermal conductivity and conductivity can be obtained as compared with the conventional epoxy-based conductive resin paste.

【0017】また他のアクリル樹脂あるいはメタクリル
樹脂、エポキシ樹脂等とも上記の範囲内であれば併用す
ることは可能である。アクリル樹脂としては例えばΒ−
アクリロイルオキシエチルハイドロジェンサクシネー
ト、ラウリルアクリレート等のモノアクリレート等のモ
ノアクリレートあるいはメタクリレート、エチレングリ
コールアクリレート、1.、3−ブタジエングレコール
アクリレート、2、2−ビス{4−(アクリロキシ・ジ
エトキシ)フェニル}プロパン等のジアクリレートある
いはジメタクリレート等があり、またエポキシ樹脂とし
てはエピビス型エポキシ、2、6−ジグリシジルナフタ
レン等がある。
Further, other acrylic resins, methacrylic resins, epoxy resins and the like can be used together within the above range. As acrylic resin, for example,
Monoacrylate or methacrylate such as monoacrylate such as acryloyloxyethyl hydrogen succinate and lauryl acrylate, ethylene glycol acrylate, , 3-butadiene glycol acrylate, and diacrylates or dimethacrylates such as 2,2-bis {4- (acryloxydiethoxy) phenyl} propane, etc., and the epoxy resin is an epibis epoxy, 2,6-diglycidyl. Naphthalene and the like.

【0018】本発明に用いられる有機過酸化物としては
特に限定されるものではない。例えば1、1、3、3―
テトラメチルーブチルパーオキシー2―エチルヘキサネ
ート、t―ブチルパーオキシー2―エチルヘキサネー
ト、t−ヘキシルパーオキシー2―エトルヘキサネー
ト、1、1―ビス(t−ブチルパーオキシ)―3、3、
5―トリメチルシクロヘキサン、1、1―ビス(t−ヘ
キシルパーオキシ)―3、3、5―トリメチルシクロヘ
キサン、ビス(4―t−ブチルシクロヘキシル)パ―オ
キシジカーボネート等が挙げられる。これら過酸化物は
単独あるいは二種類以上を混合して用いることができ
る。さらに樹脂の保存性を向上するために各種重合禁止
剤を予め添加しておいてもかまわない。
The organic peroxide used in the present invention is not particularly limited. For example, 1,1,3,3-
Tetramethyl-butylperoxy-2-ethylhexanate, t-butylperoxy-2-ethylhexanate, t-hexylperoxy-2-etholhexanate, 1,1-bis (t-butylperoxy) -3,3 ,
5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, bis (4-t-butylcyclohexyl) peroxydicarbonate, and the like. These peroxides can be used alone or in combination of two or more. Further, various polymerization inhibitors may be added in advance to improve the storage stability of the resin.

【0019】更に本発明の樹脂組成物には必要に応じて
他の樹脂、各種シランカップリング剤、顔料、消泡剤な
どの添加剤を用いることができる。本発明の製造方法は
例えば各成分を予備混練した後、三本ロールを用いて混
練し、ペーストを得て真空下脱泡することなどがある。
Further, additives such as other resins, various silane coupling agents, pigments and defoamers can be used in the resin composition of the present invention, if necessary. The production method of the present invention includes, for example, preliminarily kneading each component, kneading using a three-roll mill, obtaining a paste, and defoaming under vacuum.

【0020】[0020]

【実施例】以下に本発明を実施例で具体的に説明する。 実施例1〜14 ビスフェノールFーモノアクリレートエステル(一般式
(1)、R1、R2=-H;以下アクリル樹脂1)またそのメタ
クリレート(一般式(2)、R1、R2=-H;メタクリル樹脂
1)、ビスフェノールA―モノアクリレートエステル
(一般式(1)、R1、R2=-CH3;アクリル樹脂2)、ラウ
リルアクリレート(以下アクリル樹脂3)あるいはその
メタクリレート(以下メタクリル樹脂2)、重合開始剤
としてビス(4―t−ブチルシクロヘキシル)パーオキ
シジカーボネート(以下TCP)、ビスフェノールAと
エピクロルヒドリンとの反応により得られるジグリシジ
ルエーテル(エポキシ当量180で常温で液状、以下エ
ポキシ樹脂)、エポキシ樹脂の硬化剤として、2−フェ
ニル−4−メチルイミダゾール(以下2P4MZ)、更
に平均粒径6、28、58μmの球状ニッケル粉及び平
均粒径1、13μmの球状銀粉と平均粒径13μmのフ
レーク銀粉を表1及び表2に示す割合で配合し、3本ロ
ールで混練して導電性樹脂ペーストを得た。この導電性
樹脂ペーストを真空チャンバーにて2mmHgで30分
脱泡後、以下に示す方法により各種性能を評価した。評
価結果を表1及び表2に示す。
The present invention will be specifically described below with reference to examples. Examples 1 to 14 Bisphenol F-monoacrylate ester (general formula
(1), R 1 , R 2 = -H; hereinafter acrylic resin 1) or its methacrylate (general formula (2), R 1 , R 2 = -H; methacrylic resin 1), bisphenol A-monoacrylate ester (general Formula (1), R 1 , R 2 = —CH 3 ; acrylic resin 2), lauryl acrylate (hereinafter acrylic resin 3) or its methacrylate (hereinafter methacrylic resin 2), bis (4-t-butylcyclohexyl) as a polymerization initiator ) Peroxydicarbonate (hereinafter referred to as TCP), diglycidyl ether obtained by reacting bisphenol A with epichlorohydrin (liquid at room temperature with an epoxy equivalent of 180, hereinafter referred to as epoxy resin), and 2-phenyl-4- as a curing agent for epoxy resin Methyl imidazole (hereinafter referred to as 2P4MZ), and spherical nickel powder having an average particle size of 6, 28, and 58 μm and spheres having an average particle size of 1, 13 μm Flakes silver powder having an average particle size of 13μm in proportions shown in Table 1 and Table 2 and silver powder, to obtain a conductive resin paste by kneading through three rolls. After defoaming the conductive resin paste in a vacuum chamber at 2 mmHg for 30 minutes, various performances were evaluated by the following methods. The evaluation results are shown in Tables 1 and 2.

【0021】粘度:E型粘度計(3°コーン)を用い、
25℃、2.5rpmでの測定値。 体積抵抗率:スライドガラス上にペーストを幅4mm、
厚み30μmに塗布し、150℃熱盤上で30秒間硬化
した後の硬化物の体積抵抗率を測定した。 垂直体積抵抗率:銅フレーム上にペーストをペースト塗
布し、2X2mmの銅板を150℃熱盤上で30秒間硬
化した後の銅板表面と銅フレームの間の電圧を求め、そ
こから硬化物の垂直体積抵抗率を算出した。 250℃熱時接着強度:2mm角のシリコンチップをペ
ーストを用いて銅フレームにマウントし150℃熱盤上
で30秒間硬化した。硬化後、プッシュプルゲージを用
い250℃での熱時ダイシェア強度を測定した。 拡がり性:銅フレームにペーストを塗布し、室温に1時
間放置してシリコンチップをマウントした時にチップの
端までペーストが広がるか評価した。 総合評価:粘度、体積抵抗率及び熱時接着強度の全てを
良好なものを○、1つでも不満足なものを×とした。
Viscosity: Using an E-type viscometer (3 ° cone),
Measured at 25 ° C. and 2.5 rpm. Volume resistivity: paste 4 mm wide on a glass slide,
The coating was applied to a thickness of 30 μm and cured on a hot plate at 150 ° C. for 30 seconds, and the volume resistivity of the cured product was measured. Vertical volume resistivity: Paste is applied on a copper frame, and a 2 × 2 mm copper plate is cured on a hot plate at 150 ° C. for 30 seconds. Then, the voltage between the copper plate surface and the copper frame is determined, and the vertical volume of the cured product is obtained therefrom. The resistivity was calculated. 250 ° C. hot adhesive strength: A 2 mm square silicon chip was mounted on a copper frame using a paste and cured on a 150 ° C. hot plate for 30 seconds. After curing, the die shear strength at 250 ° C. under heat was measured using a push-pull gauge. Spreadability: The paste was applied to a copper frame and left at room temperature for 1 hour to evaluate whether the paste spread to the edge of the chip when the silicon chip was mounted. Overall evaluation: Good for all of the viscosity, volume resistivity, and adhesive strength under heat was rated as Good, and even one that was unsatisfactory was rated as Poor.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1〜10 表3及び表4に示す配合割合で実施例と全く同様にして
導電性樹脂ペーストを作製した。比較例1は、アクリル
樹脂2が全樹脂成分中50重量%を越えたため、硬化に
おいて充分な接着強度を得られなかった。比較例2は、
アクリル樹脂1、2及びメタクリル樹脂1を使用しない
ため、硬化において充分な接着強度を得られなかった。
比較例3、4は、アクリル樹脂1、2が全樹脂成分中5
0重量%を越えたため、拡がり性が悪く、また満足な接
着強度を得られなかった。比較例5は、ニッケル粉のみ
の場合、銀粉がニッケル粉同士の接触を補助しないため
体積抵抗率が低下した。比較例6は、銀粉のみであった
場合、ロール混練時に銀粉がつぶれ粘度が高くなった。
比較例7は、銀粉を球状のものを使用するかわりにフレ
ーク状のものを使用した場合、粘度が高くなり塗布作業
性、拡がり性が悪化した。比較例8は、ニッケル粉の平
均粒径が5μmを下回ったため、粘度が高く作業性が著
しく低下した。比較例9は、ニッケル粉の平均粒径が6
0μmを越えたため、粘度が低く良好な作業性は得るこ
とはできるが、粘度が低いためフィラーが沈降し易く電
導性が低い結果となった。比較例10は、エポキシのみ
を樹脂として用いた場合、アクリル樹脂を用いた場合よ
り硬化速度が遅いため、充分な接着強度、電導性を得る
ことはできなかった。
Comparative Examples 1 to 10 Conductive resin pastes were prepared in exactly the same manner as in the examples with the mixing ratios shown in Tables 3 and 4. In Comparative Example 1, since the acrylic resin 2 exceeded 50% by weight of the total resin components, sufficient adhesive strength could not be obtained in curing. Comparative Example 2
Since acrylic resins 1 and 2 and methacrylic resin 1 were not used, sufficient adhesive strength could not be obtained in curing.
In Comparative Examples 3 and 4, the acrylic resins 1 and 2 contained 5% of all resin components.
Since it exceeded 0% by weight, spreadability was poor and satisfactory adhesive strength could not be obtained. In Comparative Example 5, when only the nickel powder was used, the silver powder did not assist the contact between the nickel powders, so that the volume resistivity was lowered. In Comparative Example 6, when only silver powder was used, the silver powder was crushed at the time of roll kneading and the viscosity was high.
In Comparative Example 7, when a flake-shaped silver powder was used instead of a spherical silver powder, the viscosity was increased and the coating workability and spreadability were deteriorated. In Comparative Example 8, since the average particle size of the nickel powder was less than 5 μm, the viscosity was high and the workability was significantly reduced. In Comparative Example 9, the average particle size of the nickel powder was 6
Since the thickness exceeds 0 μm, good workability can be obtained with a low viscosity, but the low viscosity results in easy sedimentation of the filler and low conductivity. In Comparative Example 10, when only epoxy was used as the resin, the curing speed was slower than when acrylic resin was used, so that sufficient adhesive strength and electrical conductivity could not be obtained.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】本発明の導電性樹脂ペーストは半導体素
子と金属フレーム間の導電性が良好で、尚かつダイボン
ディング時のペーストの濡れ拡がり性が良好で、更にナ
トリウム、塩素などのイオン性不純物が少なく銅、42
合金等の金属フレーム、セラミック基板、ガラスエポキ
シ等の有機基板へのIC、LSI等の半導体素子の接着
に用いることができる。
The conductive resin paste of the present invention has good conductivity between the semiconductor element and the metal frame, has good wet spreadability of the paste during die bonding, and further has ionic impurities such as sodium and chlorine. Less copper, 42
It can be used for bonding semiconductor elements such as ICs and LSIs to metal frames such as alloys, ceramic substrates, and organic substrates such as glass epoxy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C09J 9/02 C09J 9/02 133/14 133/14 163/10 163/10 H01L 21/52 H01L 21/52 E (56)参考文献 特開 平11−92626(JP,A) 特開 平11−92625(JP,A) 特開 平7−126489(JP,A) 特開 昭61−296077(JP,A) 特開 平8−287724(JP,A) 特開 昭60−170658(JP,A) 特開 平6−295617(JP,A) 特開 昭58−179643(JP,A) 特開 平2−272071(JP,A) 特開 平4−7369(JP,A) 特開 平6−139818(JP,A) 特開 平9−35530(JP,A) 特開 平4−196007(JP,A) 特開 平10−338844(JP,A) 特開 平10−338843(JP,A) 特開 平10−338841(JP,A) 特開 平10−168412(JP,A) 特開 平10−8006(JP,A) 特開 平1−221481(JP,A) 特表 平7−508555(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 1/20 - 1/24 C08G 59/00 - 59/72 C08K 3/00 - 13/08 C08L 33/00 - 101/10 C09J 9/00 - 201/10 H01L 21/52 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C09J 9/02 C09J 9/02 133/14 133/14 163/10 163/10 H01L 21/52 H01L 21/52 E (56) References JP-A-11-92626 (JP, A) JP-A-11-92625 (JP, A) JP-A-7-126489 (JP, A) JP-A-61-296077 (JP, A) JP-A-8 JP-A-287724 (JP, A) JP-A-60-170658 (JP, A) JP-A-6-295617 (JP, A) JP-A-58-179643 (JP, A) JP-A-2-272071 (JP, A) JP-A-4-7369 (JP, A) JP-A-6-139818 (JP, A) JP-A-9-35530 (JP, A) JP-A-4-196007 (JP, A) JP-A-10- 338844 (JP, A) JP-A-10-338843 (JP, A) JP-A-10-338841 (JP, A) JP-A-10-168412 (JP, A) Flat 10-8006 (JP, A) JP flat 1-221481 (JP, A) JP-T flat 7-508555 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) H01B 1 / 20-1/24 C08G 59/00-59/72 C08K 3/00-13/08 C08L 33/00-101/10 C09J 9/00-201/10 H01L 21/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)平均粒径が5〜60μmのニッケル
粉、(B)平均粒径が0.5〜15μmの球状銀粉、
(C)一般式(1)又は(2)で示されるアクリル樹脂
またはメタアクリル樹脂が全樹脂成分中0.1〜50重
量%である樹脂成分、並びに(D)有機過酸化物を必須
成分として、該成分中にニッケル粉(A)が10〜90
重量%、銀粉(B)が5〜85重量%含まれており、尚
かつ(A)+(B)が75〜97重量%であることを特
徴とする導電性樹脂ペースト。
(A) nickel powder having an average particle size of 5 to 60 μm, (B) spherical silver powder having an average particle size of 0.5 to 15 μm,
(C) a resin component in which the acrylic resin or methacrylic resin represented by the general formula (1) or (2) is 0.1 to 50% by weight of all resin components, and (D) an organic peroxide as essential components. , Nickel powder (A) in the component is 10 to 90;
A conductive resin paste containing 5 to 85% by weight of silver powder (B) and 75 to 97% by weight of (A) + (B).
【請求項2】 請求項1記載の導電性樹脂ペーストを用
いた半導体装置。 【化1】 【化2】
2. A semiconductor device using the conductive resin paste according to claim 1. Embedded image Embedded image
JP25583997A 1997-09-22 1997-09-22 Conductive resin paste and semiconductor device using the same Expired - Fee Related JP3250793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25583997A JP3250793B2 (en) 1997-09-22 1997-09-22 Conductive resin paste and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25583997A JP3250793B2 (en) 1997-09-22 1997-09-22 Conductive resin paste and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH1192736A JPH1192736A (en) 1999-04-06
JP3250793B2 true JP3250793B2 (en) 2002-01-28

Family

ID=17284317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25583997A Expired - Fee Related JP3250793B2 (en) 1997-09-22 1997-09-22 Conductive resin paste and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3250793B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093855A (en) * 2000-09-18 2002-03-29 Toshiba Corp Semiconductor device
DE102010044329A1 (en) * 2010-09-03 2012-03-08 Heraeus Materials Technology Gmbh & Co. Kg Contacting agent and method for contacting electrical components
JP2018522982A (en) * 2015-07-14 2018-08-16 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Monomer and oligomer resins for one drop fill sealant applications

Also Published As

Publication number Publication date
JPH1192736A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
TWI232467B (en) Paste for circuit connection, anisotropic conductive paste and uses thereof
JP3254626B2 (en) Conductive resin paste and semiconductor device using the same
JP3747995B2 (en) Conductive resin paste and semiconductor device using the same
JP2003221573A (en) Adhesive material and semiconductor device using the same
JP2983816B2 (en) Conductive resin paste
JP3189988B2 (en) Insulating resin paste
JP4174088B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JP2022069401A (en) Pasty composition, high thermal conductivity material, and semiconductor device
JP3469432B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JP2006302834A (en) Die bonding paste
JP3446730B2 (en) Epoxy resin composition and semiconductor device
JP3313267B2 (en) Conductive resin paste
JP3254625B2 (en) Conductive resin paste and semiconductor device using the same
JP3526183B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JP3250793B2 (en) Conductive resin paste and semiconductor device using the same
JPH0511365B2 (en)
JP2003129017A (en) Conductive adhesive film and semiconductor device using the same
JP2974902B2 (en) Conductive resin paste
JPH10340624A (en) Conductive resin paste and semiconductor device manufactured by using this
JP3418515B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JP4100737B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JP3759383B2 (en) Conductive resin paste and semiconductor device
JPH10237409A (en) Electrically conductive resin paste and semiconductor device manufactured using the same
JPH10121012A (en) Conductive resin paste and semiconductor device prepared using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees