JP4187062B2 - Metal base circuit board - Google Patents

Metal base circuit board Download PDF

Info

Publication number
JP4187062B2
JP4187062B2 JP2000253561A JP2000253561A JP4187062B2 JP 4187062 B2 JP4187062 B2 JP 4187062B2 JP 2000253561 A JP2000253561 A JP 2000253561A JP 2000253561 A JP2000253561 A JP 2000253561A JP 4187062 B2 JP4187062 B2 JP 4187062B2
Authority
JP
Japan
Prior art keywords
circuit board
metal base
rubber particles
base circuit
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000253561A
Other languages
Japanese (ja)
Other versions
JP2002076549A (en
Inventor
芳彦 岡島
弘 村田
和男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000253561A priority Critical patent/JP4187062B2/en
Publication of JP2002076549A publication Critical patent/JP2002076549A/en
Application granted granted Critical
Publication of JP4187062B2 publication Critical patent/JP4187062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、応力緩和性に優れ、しかも絶縁信頼性及び放熱性に優れた金属ベ−ス回路基板に関する。
【0002】
【従来の技術】
従来より、金属板上に無機フィラ−を充填したエポキシ樹脂等からなる絶縁層を設け、その上に導電回路を配設した金属ベース回路基板が、熱放散性に優れることから高発熱性電子部品を実装する回路基板として用いられている。
【0003】
一方、車載用電子機器について、その小型化、省スペ−ス化と共に電子機器をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きいなど過酷な環境であり、また、放熱面積の大きな基板が必要とされる。このような用途に対して、放熱性に優れる前記金属ベ−ス回路基板が注目されている。
【0004】
従来の金属ベ−ス回路基板は、熱放散性や経済的な理由からアルミニウム板を用いることが多いが、実使用下で加熱/冷却が繰り返されると、前記アルミニウム板と電子部品、特にチップ部品との熱膨張率の差に起因して大きな熱応力が発生し、部品を固定している半田部分或いはその近傍にクラックが発生するなど電気的信頼性が低下するという問題点がある。このような点を改良するためには、絶縁接着層を熱伝導性が高く、低弾性率にして、さらに高レベルの耐熱性、耐湿性を有することが必要である。このような目的のために、たとえば特開平10−242606号公報には反応性アクリルゴムで低弾性率化した組成物が開示されているが、耐湿性は未だ十分ではない。
【0005】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みてなされたものであり、温度上昇/温度降下を繰り返し受けても半田或いはその近傍でクラック発生等の異常を生じにくく、かつ耐熱性、耐湿性及び放熱性に優れる金属ベ−ス回路基板を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、金属板の少なくとも一主面に絶縁性の接着層を介して導電性金属箔が張り合わせてなる金属ベース回路基板であって、前記絶縁接着層がエポキシ樹脂を主体とする樹脂、硬化剤化合物、ゴム粒子及び無機充填剤を含み、該ゴム粒子の煮沸抽出水の電気伝導度が200μS/cm以下であることを特徴とする金属ベース回路基板である。 また、ゴム粒子はエポキシ変性されていることが好ましく、平均粒径は5〜20μmであることが好ましく、ゴム粒子がシリコーンゴム粒子である場合は粒子中の未反応ポリシロキサンが精製されていることが好ましい。更に、本発明の金属ベース回路基板の絶縁接着層の貯蔵弾性率は300Kで15000MPa以下であることが好ましい。
【0007】
【発明の実施の形態】
本発明で使用される絶縁接着層は、エポキシ樹脂を主体とする樹脂、硬化剤化合物、ゴム粒子及び無機充填剤を組み合わせることにより、応力緩和性、電気絶縁性、放熱性、耐熱性、耐湿性に優れた硬化物を提供することができる。エポキシ樹脂は、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等が用いられる。耐湿性の点から、ナトリウムや塩素等のイオン性の不純物が少ないものを用いることが好ましい。また、エポキシ樹脂を主体に他の樹脂として、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂やフェノキシ樹脂等の高分子量樹脂を、応力緩和性、電気絶縁性、耐熱性、耐湿性のバランスを考慮すると、他の樹脂の配合量はエポキシ樹脂との合計量に対して30質量%以下であることが好ましい。
【0008】
硬化剤は特に限定しないが、電気絶縁性、耐湿性の点から、芳香族アミンやフェノールノボラック樹脂等が好ましい。芳香族アミン系硬化剤としては、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、メタフェニレンジアミン等が使用できる。
【0009】
ゴム粒子はシリコーンゴム、NBRやアクリルゴム等の粒子状のものを用いる。応力緩和性の点からゴムのTgは0℃以下が好ましい。なかでもシリコーンゴムが、Tgが最も低く低温領域における貯蔵弾性率を下げる効果が大きいことや耐熱性・耐湿性に優れるため好ましい。ゴム粒子の一般的な製法は、原料モノマーまたはオリゴマーを界面活性剤水溶液中に乳化分散させて、触媒の存在下で加熱して重合または反応させ、最終的にスプレー乾燥により得られる。シリコーンゴムの場合の製法例としては、たとえば、1分子中にケイ素原子結合ヒドロキシル基を少なくとも2個有するオルガノポリシロキサンと1分子中にケイ素原子結合水素を少なくとも2個有するオルガノハイドロジェンポリシロキサンとを白金またはスズ系の硬化触媒の存在下で脱水素反応させて得られる。粒子状のシリコーンゴムは、上記未硬化の液状組成物を界面活性剤を用いて水の中に分散させ、その分散液を高温の気体中に噴霧して硬化・乾燥させることによって得られる。上記のような方法により得られたゴム粒子の表面には界面活性剤が残存しており、必要により表面を洗浄して、煮沸抽出水の電気伝導度が200μS/cm以下にすることにより、耐湿絶縁性が向上する。ゴム粒子はその表面がエポキシ変性されている方が絶縁層と導電性金属箔との接着性に優れるので好ましい。エポキシ変性は、シリコーンゴムの場合は、前記ケイ素原子結合ヒドロキシ基を少なくとも2個有するオルガノポリシロキサンの一部を、たとえばγーグリシドキシプロピルトリメトキシシランのようなエポキシ基を有するシラン化合物に置き換えて反応させることにより得られ、NBRやアクリルゴム等の場合は、グリシジルメタクリレートのようなエポキシ基を有するモノマーを共重合して得られる。また、ゴム粒子の粒子径は界面活性剤の種類や量、噴霧条件等により調節することができるが、平均粒子径が5〜20μmの時が絶縁接着層と導電性金属箔との接着性に優れる。また、シリコーンゴム粒子の場合は反応後も通常2〜4質量%の未反応ポリシロキサンが残存しており、トルエン等のポリシロキサンを溶解する有機溶剤で洗浄するこにより、粒子内部に存在する未反応ポリシロキサンも容易に精製でき、絶縁接着層と導電性金属箔の接着性が向上する。更に、通常の界面活性剤はトルエン等の有機溶剤に可溶なので、表面に残存する界面活性剤も同時に洗浄できるので耐湿絶縁性も向上させることができる。
【0010】
無機充填剤は、電気絶縁性が良好で、しかも高熱伝導率のものが用いられ、このようなものとして酸化アルミニウム、窒化アルミニウム、窒化珪素、窒化ホウ素、シリカ等があり、単独系でも混合系でも用いることができる。これらのうち、酸化アルミニウムは粒子形状が球状で高充填可能なものが安価に、容易に入手できるという理由で好ましい。無機充填剤は予めエポキシシラン、アミノシラン等のシランカップリング剤で表面処理するか、絶縁接着剤中にシランカップリング剤を配合することにより、導電性金属箔との接着性を向上させることができる。
【0011】
本発明の絶縁接着層の硬化後の貯蔵弾性率は、300Kで15000MPa以下であることが好ましい。15000MPa以上だと、応力緩和性に劣る。貯蔵弾性率が低すぎると外力が加わった時に変形して絶縁信頼性が損なわれる可能性があるので、300Kで100MPa以上あることが好ましい。
【0012】
絶縁接着層の厚みは、応力緩和性、放熱性、絶縁信頼性、生産性等を考慮して決められるが、通常は50〜150μm程度である。
【0013】
導体回路となる導電性金属箔としては、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウムのいずれか、これらの金属を2種類以上含む合金、或いは前記金属又は合金を使用したクラッド箔等を用いることができる。尚、前記箔の製造方法は電解法でも圧延法で作製したものでもよく、箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁接着層との接着性の点から導体回路の絶縁接着層に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。
【0014】
本発明に用いられる金属板は、アルミニウム、鉄、銅およびそれらの合金、もしくはこれらのクラッド材等からなり、その厚みは特に規定するものではないが、熱放散性に富みしかも経済的であることから、厚み0.5〜5.0mmのアルミニウムが一般的に選択される。
【0015】
尚、本発明の金属ベース回路基板の製造方法に関しては、硬化性樹脂組成物に適宜分散剤、消泡剤やレベリング剤等の添加剤を添加した絶縁材料を金属板及び/又は金属箔上に塗布し、金属箔又は金属板を張り合わせた後に十分に硬化させ、その後金属箔より回路形成する方法、或いは予め絶縁材料からなるシ−トを作製しておき、前記シートを介して金属板と金属箔を張り合わせ回路形成する方法、或いは前記方法に於いて金属箔に変えて予め回路形成されている導体回路を直接に用いる方法等の従来公知の方法で得ることができる。
【0016】
以下、実施例に基づき、本発明を更に詳細に説明する。特に断らない限り、部、%はそれぞれ質量部、質量%を表す。
【0017】
【実施例】
(シリコーンゴム粒子の製造)
〔製造例1〕分子鎖両末端がヒドロキシル基で封鎖された粘度80mPa・secのジメチルポリシロキサン(水酸基含有量1.3%)100部、粘度10mPa・secの両末端ジメチルハイドロジェンシロキシ基封鎖のメチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量1.5%)10部、及びジブチル錫ジラウレート0.5部の混合物を速やかにスタチックミキサーで均一に混合した。次に、これをコロイドミルに移し替え、同時にドデシルベンゼンスルホン酸ソーダの20%水溶液5部とイオン交換水600部を加えて、1400回転/分、間隔0.1mm条件下でミルし、シリコーン組成物の水分散液を得た。この分散液をスプレーを使用して温度300℃の空気中に吐出量3L/Hrで噴霧し、噴霧状態で硬化を完結させシリコーンゴム粒子を得た。このシリコーンゴム粒子10部を200部のイオン交換水に分散・撹拌させ、固液分離する操作を3回繰り返し、表面の界面活性剤を洗浄除去した。最後にウェットケーキをイオン交換水にコロイドミルで再分散させ、スプレー乾燥して精製シリコーンゴム粒子を得た。
【0018】
〔製造例2〕
製造例1で分子鎖両末端がヒドロキシル基で封鎖された粘度80mPa・secのジメチルポリシロキサン(水酸基含有量1.3%)を95部にし、γーグリシドキシトリメトキシシランを5部使用した以外は、製造例1と同様にしてエポキシ変性の精製シリコーンゴム粒子を得た。
【0019】
〔製造例3〕
製造例1でシリコーン組成物の水分散液を作る際の界面活性剤を、ポリオキシエチレンノニルフェニルエーテル(HLB15)1部に変え、精製操作はおこなわない以外は、製造例1と同様にしてシリコーンゴム粒子を得た。
【0020】
〔製造例4〕
製造例2でシリコーン組成物の水分散液を作る際の界面活性剤を、ポリオキシエチレンノニルフェニルエーテル(HLB15)1部に変えた。精製はシリコーンゴム10部に対してトルエン200部加え、室温で60分撹拌した後、濾過する操作を3回繰り返した。3回目の濾液をエバポレーターで濃縮し、もはや抽出物がないことを確認した。その後ウェットケーキをもみほぐしながら80℃で1時間熱風乾燥して、界面活性剤と未反応ポリシロキサンの両方を精製したシリコーンゴム粒子を得た。
【0021】
〔製造例5〕
製造例1でイオン交換水による洗浄回数を1回にした以外は、製造例1と同様にしてシリコーンゴム粒子を得た。
【0022】
(金属ベース回路基板の製造)
〔実施例1〕エポキシ樹脂としてビスフェノールF型エポキシ樹脂(エピコート807、油化シェルエポキシ株式会社製)100部、製造例1で製造した精製シリコーンゴム粒子60部、シランカップリング剤としてγ−グリシドキシプロピルメチルジエトキシシラン(AZ−6165:日本ユニカー株式会社製)5部、無機フィラーとして平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製)500部を、万能混合攪拌機で混合し、更に三本ロールで混練りした。これに硬化剤としてジアミノジフェニルメタンを27部添加して絶縁接着剤を作成した。上記混合物を厚さ2.0mmのアルミニウム板上に硬化後の絶縁接着層の厚みが100μmになるように塗布し、Bステージ状態に予備硬化させ、ラミネーターで厚さ70μmの電解銅箔を張り合わせ、その後80℃×2hrs+150℃×3hrsアフターキュアを行い絶縁接着層付き銅箔基板を作製し、更に、銅箔をエッチングしてパッド部を有する所望の回路を形成して、金属ベース回路基板とした。また、前記樹脂組成物を80℃×2hrs+150℃×3hrs硬化させて、厚さ約100μm幅約3mm長さ約50mmの硬化体の試験片を別途作製し、貯蔵弾性率の測定に供した。
【0023】
〔実施例2〜4〕
実施例1でシリコーンゴム粒子をそれぞれ製造例2〜4のものに変更した以外は、実施例1と同様にして金属ベース回路基板を作成した。
【0024】
〔比較例1〕
実施例1でシリコーンゴムを製造例5のものに変更した以外は、実施例1と同様にして金属ベース回路基板を作成した。
【0025】
〔比較例2〕
実施例1でシリコーンゴム粒子を抜いた以外は、実施例1と同様にして金属ベース回路基板を作成した。
【0026】
(シリコーンゴムの特性評価)
製造例1〜5で製造したシリコーンゴム粒子の特性について、電気伝導度と平均粒子径について評価し、その結果を表1に示した。電気伝導度はシリコーンゴム粒子10gを蒸留水40g(蒸留水の電気伝導度1〜2μS/cm)の中に分散させ煮沸させながら30分撹拌した後冷却し、その抽出水の電気伝導度を測定した。平均粒子径は貯蔵弾性率測定用の硬化体試験片の断面を走査型電子顕微鏡で観察した結果から平均値を求めた。
【0027】
(貯蔵弾性率の測定)
上記のそれぞれの硬化体については、動的粘弾性測定器(レオメトリックス社製;RSA2)を用い、周波数11Hz、昇温速度10℃/分の条件下、−50℃〜+150℃の温度範囲で貯蔵弾性率を測定した。表1に300Kでの貯蔵弾性率測定結果を示した。
【0028】
(金属基板の特性評価)
金属ベ−ス基板について銅箔ピール強度、耐電圧および絶縁抵抗(表面抵抗)と、金属ベース回路基板についてヒ−トサイクル試験を次に示す条件で測定し、その測定結果も表1に示した。
【0029】
<銅箔ピール強度の測定>
作製後1週間経過した金属ベース基板について、テンシロン(オリエンテック社製;型式UCT−1T)を用い、1cm幅で90°の方向に室温で50mm/分の速度で剥離した時の強度を求めた。
【0030】
<耐電圧の測定>
温度121℃、相対湿度100%、気圧2026hPaのプレッシャークッカーテスターにて96時間処理後と処理前の試験片を絶縁油中に浸漬し、室温で銅箔とアルミニウム板間に交流電圧を印加し、絶縁破壊する電圧を測定した。初期印加電圧は0.5kVであり、各電圧で30秒間保持した後、0.5kVずつ段階的に昇圧する方法で電圧を印加した。
【0031】
<ヒ−トサイクル試験方法>
パッド間にチップサイズ2.0mm×1.25mmのチップ抵抗を半田付けし、−40℃7分〜+125℃7分を1サイクルとして500回のヒートサイクル試験を行なった後、顕微鏡で半田部分のクラックの有無を観察した。半田部分のクラックの発生が10%以上あるものは不良とし、半田クラックの発生が10%未満のものを良好と判定した。
【0032】
【表1】

Figure 0004187062
【0033】
【発明の効果】
本発明によって、放熱性、チップ部品の実装信頼性に優れるとともに、耐湿性、耐熱性、絶縁信頼性にも優れる金属ベース回路基板を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-based circuit board that has excellent stress relaxation properties and excellent insulation reliability and heat dissipation.
[0002]
[Prior art]
Conventionally, a metal base circuit board in which an insulating layer made of an epoxy resin or the like filled with an inorganic filler is provided on a metal plate and a conductive circuit is provided thereon has excellent heat dissipation, so that a highly heat-generating electronic component Is used as a circuit board for mounting.
[0003]
On the other hand, with respect to in-vehicle electronic devices, it is desired to install the electronic devices in the engine room together with downsizing and space saving. The engine room has a severe environment such as a high temperature and a large temperature change, and a substrate having a large heat radiation area is required. For such applications, the metal-based circuit board that is excellent in heat dissipation has attracted attention.
[0004]
Conventional metal-based circuit boards often use aluminum plates for heat dissipation and economical reasons. However, when heating / cooling is repeated under actual use, the aluminum plates and electronic components, particularly chip components, are used. A large thermal stress is generated due to the difference in thermal expansion coefficient with respect to the solder, and there is a problem that the electrical reliability is lowered, for example, a crack is generated in the solder portion or the vicinity where the component is fixed. In order to improve such a point, it is necessary that the insulating adhesive layer has high thermal conductivity, a low elastic modulus, and further has high levels of heat resistance and moisture resistance. For this purpose, for example, JP-A-10-242606 discloses a composition having a low elastic modulus with a reactive acrylic rubber, but its moisture resistance is still insufficient.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and even when subjected to repeated temperature rise / temperature drop, it is difficult to cause abnormalities such as cracks in the solder or in the vicinity thereof, and has heat resistance, moisture resistance and heat dissipation. The object is to provide an excellent metal-based circuit board.
[0006]
[Means for Solving the Problems]
The present invention is a metal base circuit board in which a conductive metal foil is bonded to at least one main surface of a metal plate via an insulating adhesive layer, and the insulating adhesive layer is a resin mainly composed of an epoxy resin, cured A metal-based circuit board comprising an agent compound, rubber particles and an inorganic filler, wherein the rubber particles have an electric conductivity of boiling extraction water of 200 μS / cm or less. The rubber particles are preferably epoxy-modified, and the average particle size is preferably 5 to 20 μm. When the rubber particles are silicone rubber particles, the unreacted polysiloxane in the particles is purified. Is preferred. Further, the storage elastic modulus of the insulating adhesive layer of the metal base circuit board of the present invention is preferably 15000 MPa or less at 300K.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The insulating adhesive layer used in the present invention is a combination of a resin mainly composed of an epoxy resin, a curing agent compound, rubber particles, and an inorganic filler, thereby reducing stress relaxation, electrical insulation, heat dissipation, heat resistance, and moisture resistance. It is possible to provide a cured product excellent in. As the epoxy resin, bisphenol F type epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, or the like is used. From the viewpoint of moisture resistance, it is preferable to use a material having few ionic impurities such as sodium and chlorine. In addition, thermosetting resins such as phenolic resins and polyimide resins, and high molecular weight resins such as phenoxy resins are used as other resins, mainly epoxy resins, considering the balance of stress relaxation, electrical insulation, heat resistance, and moisture resistance. Then, it is preferable that the compounding quantity of other resin is 30 mass% or less with respect to the total amount with an epoxy resin.
[0008]
The curing agent is not particularly limited, but aromatic amines, phenol novolac resins, and the like are preferable from the viewpoint of electrical insulation and moisture resistance. As the aromatic amine curing agent, diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylenediamine and the like can be used.
[0009]
As the rubber particles, particles such as silicone rubber, NBR and acrylic rubber are used. From the viewpoint of stress relaxation, the Tg of the rubber is preferably 0 ° C. or less. Among these, silicone rubber is preferable because it has the lowest Tg and has a large effect of lowering the storage elastic modulus in a low temperature region and is excellent in heat resistance and moisture resistance. A general method for producing rubber particles is obtained by emulsifying and dispersing a raw material monomer or oligomer in an aqueous surfactant solution and heating or polymerizing or reacting in the presence of a catalyst, and finally by spray drying. Examples of the production method in the case of silicone rubber include, for example, an organopolysiloxane having at least two silicon atom-bonded hydroxyl groups in one molecule and an organohydrogenpolysiloxane having at least two silicon atom-bonded hydrogens in one molecule. It can be obtained by dehydrogenation reaction in the presence of a platinum or tin-based curing catalyst. The particulate silicone rubber can be obtained by dispersing the above-mentioned uncured liquid composition in water using a surfactant, spraying the dispersion liquid in a high-temperature gas, and curing and drying. Surfactant remains on the surface of the rubber particles obtained by the method as described above. If necessary, the surface is washed, and the electric conductivity of the boiled extracted water is adjusted to 200 μS / cm or less. Insulation improves. The surface of the rubber particles is preferably epoxy-modified because the adhesion between the insulating layer and the conductive metal foil is excellent. In the case of silicone rubber, a part of the organopolysiloxane having at least two silicon-bonded hydroxy groups is replaced with a silane compound having an epoxy group such as γ-glycidoxypropyltrimethoxysilane. In the case of NBR, acrylic rubber or the like, it is obtained by copolymerizing a monomer having an epoxy group such as glycidyl methacrylate. The particle size of the rubber particles can be adjusted by the type and amount of the surfactant, the spraying conditions, etc., but the adhesion between the insulating adhesive layer and the conductive metal foil is when the average particle size is 5 to 20 μm. Excellent. In the case of silicone rubber particles, 2 to 4% by mass of unreacted polysiloxane usually remains after the reaction. By washing with an organic solvent that dissolves polysiloxane such as toluene, unreacted polysiloxane is present. The reactive polysiloxane can also be easily purified, and the adhesion between the insulating adhesive layer and the conductive metal foil is improved. Furthermore, since a normal surfactant is soluble in an organic solvent such as toluene, the surfactant remaining on the surface can be cleaned at the same time, so that the moisture resistance insulation can be improved.
[0010]
Inorganic fillers having good electrical insulation and high thermal conductivity are used, such as aluminum oxide, aluminum nitride, silicon nitride, boron nitride, silica, etc., whether single or mixed Can be used. Of these, aluminum oxide is preferable because it can be easily obtained at a low cost because it has a spherical particle shape and can be highly filled. The inorganic filler can be surface-treated with a silane coupling agent such as epoxy silane or aminosilane in advance, or the adhesiveness with the conductive metal foil can be improved by blending the silane coupling agent into the insulating adhesive. .
[0011]
The storage elastic modulus of the insulating adhesive layer of the present invention after curing is preferably 15000 MPa or less at 300K. When it is 15000 MPa or more, the stress relaxation property is inferior. If the storage elastic modulus is too low, it may be deformed when an external force is applied and the insulation reliability may be impaired. Therefore, the storage modulus is preferably 100 MPa or more at 300K.
[0012]
The thickness of the insulating adhesive layer is determined in consideration of stress relaxation, heat dissipation, insulation reliability, productivity, etc., but is usually about 50 to 150 μm.
[0013]
As the conductive metal foil to be a conductor circuit, any one of copper, aluminum, nickel, iron, tin, silver, titanium, an alloy containing two or more of these metals, or a clad foil using the metal or alloy, etc. Can be used. The foil may be produced by an electrolytic method or a rolling method, and the foil may be plated with a metal such as Ni plating, Ni-Au plating, or solder plating. From the viewpoint of adhesion to the layer, the surface of the conductor circuit on the side in contact with the insulating adhesive layer is more preferably roughened in advance by etching, plating or the like.
[0014]
The metal plate used in the present invention is made of aluminum, iron, copper and alloys thereof, or cladding materials thereof, and the thickness thereof is not particularly specified, but is rich in heat dissipation and economical. Therefore, aluminum having a thickness of 0.5 to 5.0 mm is generally selected.
[0015]
In addition, regarding the manufacturing method of the metal base circuit board of this invention, the insulating material which added additives, such as a dispersing agent, an antifoamer, and a leveling agent, to the curable resin composition suitably on a metal plate and / or metal foil. After applying and bonding metal foil or metal plate, they are fully cured, and then a circuit is formed from the metal foil, or a sheet made of an insulating material is prepared in advance, and the metal plate and the metal are interposed through the sheet. It can be obtained by a conventionally known method such as a method of forming a laminated circuit of foils, or a method of directly using a conductor circuit formed in advance in place of the metal foil in the above method.
[0016]
Hereinafter, based on an Example, this invention is demonstrated still in detail. Unless otherwise specified, parts and% represent parts by mass and% by mass, respectively.
[0017]
【Example】
(Manufacture of silicone rubber particles)
[Production Example 1] 100 parts of dimethylpolysiloxane having a viscosity of 80 mPa · sec (hydroxyl content: 1.3%) blocked at both ends of a molecular chain with hydroxyl groups and dimethylhydrogensiloxy group blocked at both ends of a viscosity of 10 mPa · sec A mixture of 10 parts of methyl hydrogen polysiloxane (content of silicon atom-bonded hydrogen atoms 1.5%) and 0.5 part of dibutyltin dilaurate was quickly and uniformly mixed with a static mixer. Next, this was transferred to a colloid mill, and at the same time, 5 parts of a 20% aqueous solution of sodium dodecylbenzenesulfonate and 600 parts of ion-exchanged water were added and milled under the conditions of 1400 rpm and an interval of 0.1 mm to obtain a silicone composition. An aqueous dispersion of the product was obtained. This dispersion was sprayed at a discharge amount of 3 L / Hr into air at a temperature of 300 ° C. using a spray, and curing was completed in a sprayed state to obtain silicone rubber particles. The operation of dispersing and stirring 10 parts of the silicone rubber particles in 200 parts of ion-exchanged water and solid-liquid separation was repeated 3 times, and the surfactant on the surface was washed and removed. Finally, the wet cake was redispersed in ion-exchanged water with a colloid mill and spray-dried to obtain purified silicone rubber particles.
[0018]
[Production Example 2]
In Production Example 1, except that 95 parts of dimethylpolysiloxane having a viscosity of 80 mPa · sec and having both ends blocked with hydroxyl groups (hydroxyl content: 1.3%) and 5 parts of γ-glycidoxytrimethoxysilane were used. Produced epoxy-modified purified silicone rubber particles in the same manner as in Production Example 1.
[0019]
[Production Example 3]
The surfactant used in preparing the aqueous dispersion of the silicone composition in Production Example 1 was changed to 1 part of polyoxyethylene nonylphenyl ether (HLB15), and the purification operation was not performed. Rubber particles were obtained.
[0020]
[Production Example 4]
In Production Example 2, the surfactant used in preparing the aqueous dispersion of the silicone composition was changed to 1 part of polyoxyethylene nonylphenyl ether (HLB15). For purification, 200 parts of toluene was added to 10 parts of silicone rubber, and the mixture was stirred at room temperature for 60 minutes and then filtered three times. The third filtrate was concentrated with an evaporator, and it was confirmed that there was no extract. Thereafter, the wet cake was loosened and dried with hot air at 80 ° C. for 1 hour to obtain silicone rubber particles in which both the surfactant and the unreacted polysiloxane were purified.
[0021]
[Production Example 5]
Silicone rubber particles were obtained in the same manner as in Production Example 1 except that the number of washings with ion-exchanged water was 1 in Production Example 1.
[0022]
(Manufacture of metal base circuit boards)
[Example 1] 100 parts of bisphenol F type epoxy resin (Epicoat 807, manufactured by Yuka Shell Epoxy Co., Ltd.) as an epoxy resin, 60 parts of purified silicone rubber particles produced in Production Example 1, and γ-glycid as a silane coupling agent 5 parts of xylpropylmethyldiethoxysilane (AZ-6165: manufactured by Nihon Unicar Co., Ltd.) and 500 parts of alumina (AS-50: manufactured by Showa Denko Co., Ltd.) having an average particle size of 5 μm as an inorganic filler were mixed with a universal mixing stirrer. Further, the mixture was kneaded with three rolls. An insulating adhesive was prepared by adding 27 parts of diaminodiphenylmethane as a curing agent. The mixture was applied onto an aluminum plate having a thickness of 2.0 mm so that the thickness of the insulating adhesive layer after curing was 100 μm, pre-cured to a B stage state, and an electrolytic copper foil having a thickness of 70 μm was laminated with a laminator, Thereafter, 80 ° C. × 2 hrs + 150 ° C. × 3 hrs after-curing was performed to produce a copper foil substrate with an insulating adhesive layer, and the copper foil was etched to form a desired circuit having a pad portion to obtain a metal base circuit substrate. Further, the resin composition was cured at 80 ° C. × 2 hrs + 150 ° C. × 3 hrs, and a test piece of a cured body having a thickness of about 100 μm, a width of about 3 mm, and a length of about 50 mm was separately prepared and subjected to storage elastic modulus measurement.
[0023]
[Examples 2 to 4]
A metal base circuit board was prepared in the same manner as in Example 1 except that the silicone rubber particles in Example 1 were changed to those in Production Examples 2 to 4, respectively.
[0024]
[Comparative Example 1]
A metal base circuit board was prepared in the same manner as in Example 1 except that the silicone rubber was changed to that in Production Example 5 in Example 1.
[0025]
[Comparative Example 2]
A metal base circuit board was prepared in the same manner as in Example 1 except that the silicone rubber particles were removed in Example 1.
[0026]
(Characteristic evaluation of silicone rubber)
The properties of the silicone rubber particles produced in Production Examples 1 to 5 were evaluated for electrical conductivity and average particle diameter, and the results are shown in Table 1. The electrical conductivity is 10 g of silicone rubber particles dispersed in 40 g of distilled water (electrical conductivity of distilled water 1 to 2 μS / cm), stirred for 30 minutes while being boiled, cooled, and the electrical conductivity of the extracted water was measured. did. The average particle diameter was determined from the result of observing the cross section of a cured specimen for storage modulus measurement with a scanning electron microscope.
[0027]
(Measurement of storage modulus)
About each said hardening body, using a dynamic viscoelasticity measuring device (Rheometrics company make; RSA2), in the temperature range of -50 degreeC-+150 degreeC on the conditions of frequency 11Hz and temperature increase rate 10 degree-C / min. The storage modulus was measured. Table 1 shows the storage elastic modulus measurement results at 300K.
[0028]
(Characteristic evaluation of metal substrates)
The copper foil peel strength, withstand voltage and insulation resistance (surface resistance) for the metal base substrate and the heat cycle test for the metal base circuit substrate were measured under the following conditions. The measurement results are also shown in Table 1. .
[0029]
<Measurement of copper foil peel strength>
About the metal base board which passed for one week after preparation, the strength when peeling at a rate of 50 mm / min at room temperature in the direction of 90 ° with 1 cm width using Tensilon (Orientec Co., Ltd .; model UCT-1T) was obtained. .
[0030]
<Measurement of withstand voltage>
The test piece after treatment for 96 hours in a pressure cooker tester at a temperature of 121 ° C., a relative humidity of 100%, and an atmospheric pressure of 2026 hPa is immersed in insulating oil, and an AC voltage is applied between the copper foil and the aluminum plate at room temperature. The breakdown voltage was measured. The initial applied voltage was 0.5 kV, and after holding at each voltage for 30 seconds, the voltage was applied by a method in which the voltage was increased stepwise by 0.5 kV.
[0031]
<Heat cycle test method>
Solder a chip resistor with a chip size of 2.0 mm x 1.25 mm between the pads and perform 500 heat cycle tests with -40 ° C 7 minutes to + 125 ° C 7 minutes as one cycle. The presence or absence of cracks was observed. Those having a crack occurrence of 10% or more in the solder portion were judged as defective, and those having a solder crack occurrence of less than 10% were judged good.
[0032]
[Table 1]
Figure 0004187062
[0033]
【The invention's effect】
According to the present invention, it is possible to provide a metal base circuit board that is excellent in heat dissipation, chip component mounting reliability, and also excellent in moisture resistance, heat resistance, and insulation reliability.

Claims (5)

金属板の少なくとも一主面に絶縁性の接着層を介して導電性金属箔が張り合わせてなる金属ベース回路基板において、前記絶縁接着層がエポキシ樹脂を主体とする樹脂、硬化剤化合物、シリコーンゴム粒子及び無機充填剤を含み、該シリコーンゴム粒子の煮沸抽出水の電気伝導度が200μS/cm以下であることを特徴とする金属ベース回路基板。In a metal base circuit board in which a conductive metal foil is bonded to at least one main surface of a metal plate via an insulating adhesive layer, the insulating adhesive layer is a resin mainly composed of an epoxy resin, a curing agent compound, and silicone rubber particles. And a metal base circuit board comprising an inorganic filler, wherein the electric conductivity of the boiling extracted water of the silicone rubber particles is 200 μS / cm or less. シリコーンゴム粒子がエポキシ変性されていることを特徴とする請求項1記載の金属ベース回路基板。 2. The metal base circuit board according to claim 1, wherein the silicone rubber particles are epoxy-modified. シリコーンゴム粒子の平均粒径が5〜20μmであることを特徴とする請求項1または請求項2記載の金属ベース回路基板。The metal base circuit board according to claim 1 or 2, wherein the silicone rubber particles have an average particle diameter of 5 to 20 µm. シリコーンゴム粒子中の未反応ポリシロキサンが精製されていることを特徴とする請求項1〜3記載の金属ベース回路基板。 4. The metal base circuit board according to claim 1, wherein unreacted polysiloxane in the silicone rubber particles is purified. 絶縁接着層の貯蔵弾性率が300Kで15000MPa以下であることを特徴とする請求項1〜4記載の金属ベース回路基板。5. The metal base circuit board according to claim 1, wherein the storage elastic modulus of the insulating adhesive layer is 15000 MPa or less at 300K.
JP2000253561A 2000-08-24 2000-08-24 Metal base circuit board Expired - Fee Related JP4187062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253561A JP4187062B2 (en) 2000-08-24 2000-08-24 Metal base circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253561A JP4187062B2 (en) 2000-08-24 2000-08-24 Metal base circuit board

Publications (2)

Publication Number Publication Date
JP2002076549A JP2002076549A (en) 2002-03-15
JP4187062B2 true JP4187062B2 (en) 2008-11-26

Family

ID=18742636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253561A Expired - Fee Related JP4187062B2 (en) 2000-08-24 2000-08-24 Metal base circuit board

Country Status (1)

Country Link
JP (1) JP4187062B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI259567B (en) * 2003-12-16 2006-08-01 Fuji Polymer Ind Thermally conductive composite sheet
JP4595665B2 (en) * 2005-05-13 2010-12-08 富士電機システムズ株式会社 Wiring board manufacturing method
KR102158938B1 (en) * 2019-09-18 2020-09-23 (주) 매그나텍 Epoxy resin composition and heat dissipation circuit board using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202616A (en) * 1987-02-18 1988-08-22 Matsushita Electric Works Ltd Epoxy resin molding material
JPS6399221A (en) * 1987-08-20 1988-04-30 Sumitomo Bakelite Co Ltd Production of epoxy resin composition for sealing semiconductor
CA2066497A1 (en) * 1991-05-01 1992-11-02 Michael K. Gallagher Epoxy molding composition for surface mount applications
JP3561106B2 (en) * 1995-11-30 2004-09-02 東レ・ダウコーニング・シリコーン株式会社 Composite cured silicone powder and method for producing the same
JP3607430B2 (en) * 1996-08-28 2005-01-05 東レ・ダウコーニング・シリコーン株式会社   Method for producing powdered silicone cured product
JP3209132B2 (en) * 1997-02-27 2001-09-17 日立化成工業株式会社 Metal base substrate
JPH118450A (en) * 1997-06-16 1999-01-12 Denki Kagaku Kogyo Kk Metal base circuit board

Also Published As

Publication number Publication date
JP2002076549A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US8044330B2 (en) Electrically conductive adhesive
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP3209132B2 (en) Metal base substrate
JP4890063B2 (en) Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JP7026674B2 (en) Resin composition for circuit boards and metal-based circuit boards using them
JP2002012653A (en) Curable resin composition and metal-base circuit board using the same
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JP4966915B2 (en) Thermally conductive sheet, thermal conductive sheet laminate and method for producing the same
JP5441954B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP4536240B2 (en) Curable resin composition and metal base circuit board using the same
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP2007150224A (en) Metal base circuit board
JP4187062B2 (en) Metal base circuit board
JP3991268B2 (en) Film adhesive for connecting circuit members and semiconductor device using the same
JP2001323249A (en) Adhesive for circuit connection
JP3620751B2 (en) Anisotropic conductive film
JP5485222B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP4914284B2 (en) Circuit board composition and circuit board using the same
JP2003129017A (en) Conductive adhesive film and semiconductor device using the same
JPH1117075A (en) Semiconductor device
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JPH1187866A (en) Metal base circuit board
JP2003147287A (en) Adhesive film for connecting circuit
JPH118450A (en) Metal base circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees