JP2009194359A - Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same - Google Patents

Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same Download PDF

Info

Publication number
JP2009194359A
JP2009194359A JP2008205702A JP2008205702A JP2009194359A JP 2009194359 A JP2009194359 A JP 2009194359A JP 2008205702 A JP2008205702 A JP 2008205702A JP 2008205702 A JP2008205702 A JP 2008205702A JP 2009194359 A JP2009194359 A JP 2009194359A
Authority
JP
Japan
Prior art keywords
circuit
adhesive layer
connection
electrode
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205702A
Other languages
Japanese (ja)
Inventor
Yukihisa Hirozawa
幸寿 廣澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008205702A priority Critical patent/JP2009194359A/en
Publication of JP2009194359A publication Critical patent/JP2009194359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive film for circuit connection, which is adaptable to high resolution, is excellent in long-term connection reliability, and has excellent workability. <P>SOLUTION: The adhesive film for circuit connection connects a first circuit member in which first circuit electrodes are formed on a main surface of a first substrate and a second circuit member in which second circuit electrodes are formed on a main surface of a second substrate in a condition where the first circuit electrodes and the second circuit electrodes are arranged in a face-to-face configuration, wherein the adhesive film for circuit connection comprises at least an electrically conductive adhesive layer containing electrically-conductive grains and an adhesive, a first insulating adhesive layer formed on a surface of the electrically conductive adhesive layer, and a second insulating adhesive layer formed on a surface opposite to the one on which the first insulating adhesive layer is formed of the electrically conductive adhesive layer, wherein the thickness of the electrically conductive adhesive layer is two times or less of the average grain diameter of the electrically conductive grains, and the storage modulus of the electrically conductive adhesive layer at 40°C is 0.1 to 1.5 GPa. A connection structure of the circuit members and a method of connecting the circuit members using the adhesive film for circuit connection are also disclosed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法に関し、より詳しくは、回路基板同士、又はICチップ等の電子部品と配線基板との接続等に用いられる回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法に関する。   The present invention relates to an adhesive film for circuit connection, a circuit member connection structure using the same, and a circuit member connection method, and more particularly to connection between circuit boards or electronic components such as IC chips and a wiring board. The present invention relates to an adhesive film for circuit connection used, a circuit member connection structure using the same, and a circuit member connection method.

回路基板同士、又はICチップ等の電子部品と回路基板とを電気的に接続する際には、接着剤に導電粒子を分散させた異方導電接着剤が用いられている。すなわち、この異方導電接着剤を、相対峙する回路部材の電極間に配置し、加熱及び加圧によって電極同士を接続することで、加圧方向に導電性を持たせると共に、隣接して形成されている電極同士には絶縁性を付与して、対向する電極間のみの電気的接続を行うことができる。こうした異方導電接着剤としては、例えば、エポキシ樹脂をベースとした回路接続用接着剤が提案されている(例えば、特許文献1参照)。   When electrically connecting circuit boards or an electronic component such as an IC chip and a circuit board, an anisotropic conductive adhesive in which conductive particles are dispersed in an adhesive is used. That is, this anisotropic conductive adhesive is disposed between the electrodes of the circuit members facing each other, and the electrodes are connected by heating and pressurization, thereby providing conductivity in the pressurization direction and forming adjacent to each other. Insulating properties can be imparted to the electrodes that are provided so that only the electrodes facing each other can be electrically connected. As such an anisotropic conductive adhesive, for example, an adhesive for circuit connection based on an epoxy resin has been proposed (see, for example, Patent Document 1).

上記の回路接続用接着剤を高分解能化、すなわち電極面積や隣接する電極間のスペースの微細化のための基本的な考え方は、導電粒子の粒径を隣接する電極間の絶縁部分よりも小さくすることで隣接する電極間における絶縁性を確保し、併せて導電粒子の含有量を粒子同士が接触しない程度とし、かつ電極上に確実に導電粒子を存在させることにより、対向する電極間の導電性を得ることである。   The basic idea for increasing the resolution of the above-mentioned adhesive for circuit connection, that is, miniaturization of the electrode area and the space between adjacent electrodes, is to make the particle size of the conductive particles smaller than the insulating part between the adjacent electrodes. By ensuring the insulation between adjacent electrodes, the content of the conductive particles is set so that the particles do not come into contact with each other, and the conductive particles are surely present on the electrodes, so that the conductivity between the opposing electrodes is It is to get sex.

しかしながら、上記従来の方法は、導電粒子の粒径を小さくすると、導電粒子の表面積の著しい増加により粒子が2次凝集を起こして連結し、隣接する電極間の絶縁性が保持できなくなり、長期接続信頼性が低下するという問題が生じやすい。   However, in the above conventional method, when the particle size of the conductive particles is reduced, the particles are secondary agglomerated due to a significant increase in the surface area of the conductive particles, and the insulation between the adjacent electrodes cannot be maintained. The problem that the reliability decreases is likely to occur.

また、導電粒子の含有量を減らすと、電極上の導電粒子の数も減少することから接触点数が不足し、対向する電極間での導通が十分に得られなり、長期接続信頼性が低下するという問題が生じやすい。このように、従来の方法では、長期接続信頼性を保ちながら回路接続用接着剤を高分解能化することは困難であった。   In addition, if the content of the conductive particles is reduced, the number of conductive particles on the electrode also decreases, so the number of contact points is insufficient, and sufficient conduction between the opposing electrodes is obtained, thereby reducing long-term connection reliability. The problem is likely to occur. Thus, with the conventional method, it has been difficult to increase the resolution of the adhesive for circuit connection while maintaining long-term connection reliability.

特に、近年の回路基板の著しい高分解能化により、電極上の導電粒子は、接続時の加熱加圧により接着剤と共に隣接する回路電極間に流出しやすい。そのため、隣接する電極間の絶縁性が低下すると共に、対向する電極間に存在する導電粒子の数(粒子捕捉数)が減少し、対向する電極間の導電性が低下してしまい、回路接続用接着剤の高分解能化の妨げとなっていた。   In particular, due to the remarkable increase in resolution of circuit boards in recent years, the conductive particles on the electrodes are likely to flow out between adjacent circuit electrodes together with the adhesive due to heating and pressurization at the time of connection. For this reason, the insulation between adjacent electrodes is reduced, the number of conductive particles (number of particles trapped) between the opposing electrodes is reduced, and the electrical conductivity between the opposing electrodes is reduced. This hindered high resolution of the adhesive.

こうした問題を改善するために、導電粒子含有層と絶縁性接着剤層とを分離した多層構造の接着フィルムとし、電極上における導電粒子の粒子捕捉数を高めることにより隣接する電極間への導電粒子の流出を抑制し高分解能化する方法が提案されている(例えば、特許文献2〜6参照)。   In order to improve such problems, an adhesive film having a multilayer structure in which the conductive particle-containing layer and the insulating adhesive layer are separated from each other and increasing the number of conductive particles trapped on the electrode to increase the number of conductive particles between adjacent electrodes. Has been proposed (see, for example, Patent Documents 2 to 6).

また、上記のように微細化した電極や回路の接続を可能とし、かつ接続信頼性に優れる回路接続用接着剤を実現するために、回路基板の面方向の必要な部分に導電粒子の密集状態を形成した回路接続用接着剤の提案もなされている(例えば、特許文献7参照)。
特開平03−16147号公報 特開平01−236588号公報 特開平02−18809号公報 特開平04−366630号公報 特開平08−279371号公報 国際公開2007/123003号パンフレット 特開2002−76607号公報
In addition, in order to realize an adhesive for circuit connection that enables connection of electrodes and circuits that have been miniaturized as described above and that is excellent in connection reliability, a dense state of conductive particles in a necessary portion in the surface direction of the circuit board There has also been proposed a circuit-connecting adhesive formed with (for example, see Patent Document 7).
Japanese Patent Laid-Open No. 03-16147 Japanese Patent Laid-Open No. 01-236588 Japanese Patent Laid-Open No. 02-18809 Japanese Patent Laid-Open No. 04-366630 Japanese Patent Laid-Open No. 08-279371 International Publication No. 2007/123003 JP 2002-76607 A

しかしながら、上記特許文献2に記載された方法では、一方の電極側における導電粒子密度が高くなり、近年の著しい高分解能化の要求には対応できなくなっている。また、一方の電極側における導電粒子密度が高くなることにより、電極と回路接続用接着剤との界面の接着力が低下し、界面剥離や接続信頼性の悪化が生じやすくなる。   However, with the method described in Patent Document 2, the density of the conductive particles on one electrode side is increased, and it is not possible to meet the recent demand for higher resolution. Moreover, when the conductive particle density on one electrode side is increased, the adhesive force at the interface between the electrode and the circuit connecting adhesive is reduced, and interface peeling and connection reliability are liable to occur.

また、上記特許文献3〜6に記載された回路接続用接着剤では、回路部材同士の接続時における電極上からの導電粒子の流出を抑制する方法が開示されているが、高分解能化や十分な長期接続信頼性を備えるためには未だ改善の余地がある。   In addition, in the adhesive for circuit connection described in Patent Documents 3 to 6, a method for suppressing the outflow of conductive particles from the electrodes at the time of connecting circuit members is disclosed. There is still room for improvement in order to provide long-term connection reliability.

更に、上記特許文献7に記載された回路接続用接着剤では、ドット状の微細電極間の接続が可能となるものの、接着剤の製法が面倒であると共に、電極間の接続を行う際に導電粒子の密集領域と電極との正確な位置合わせが必要であり、作業性に劣るという問題がある。   Furthermore, although the adhesive for circuit connection described in Patent Document 7 enables connection between the dot-shaped fine electrodes, the manufacturing method of the adhesive is troublesome, and it is electrically conductive when connecting the electrodes. There is a problem in that workability is inferior because precise alignment of the dense particle area and the electrode is necessary.

本発明は上記問題に鑑みてなされたものであり、高分解能化が可能であり、長期接続信頼性に優れると共に、作業性に優れた回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法を提供することを目的とするものである。   The present invention has been made in view of the above problems, and is capable of high resolution, has excellent long-term connection reliability, and has excellent workability, and a circuit member connection structure using the same And it aims at providing the connection method of a circuit member.

上記目的を達成するために、本発明は、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを、第一の回路電極及び第二の回路電極を対向配置された状態で接続するための回路接続用接着フィルムであって、導電粒子及び接着剤を含有する導電性接着剤層と、導電性接着剤の片面に形成された絶縁性の第一の絶縁性接着剤層と、導電性接着剤の第一の絶縁性接着剤層が形成された面とは反対側の面に形成された絶縁性の第二の絶縁性接着剤層と、を少なくとも含有し、導電粒子及び接着剤を含有する導電性接着剤層の厚みが導電粒径の2倍以下であり、かつ導電性接着剤層の40℃での貯蔵弾性率が0.1〜1.5GPaである回路接続用接着フィルムを提供する。   In order to achieve the above object, the present invention provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit on a main surface of a second substrate. An adhesive film for circuit connection for connecting a second circuit member on which an electrode is formed in a state where the first circuit electrode and the second circuit electrode are arranged to face each other, the conductive particles and the adhesive Conductive adhesive layer containing, insulating first insulating adhesive layer formed on one side of the conductive adhesive, and surface on which the first insulating adhesive layer of the conductive adhesive is formed An insulating second insulative adhesive layer formed on the surface opposite to the surface, and the thickness of the conductive adhesive layer containing the conductive particles and the adhesive is twice the conductive particle size And an adhesive film for circuit connection, wherein the storage elastic modulus at 40 ° C. of the conductive adhesive layer is 0.1 to 1.5 GPa To provide.

本発明に係る回路接続用接着フィルムでは、導電性接着剤層の厚みが導電粒子の平均粒径の2倍以下であり、かつ導電性接着剤層の40℃での貯蔵弾性率が0.1〜1.5GPaであることにより、対向する回路電極間において、十分な数の導電粒子を確実に捕捉することができ、微小な回路電極に対しても、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保することができる。そして、上記の導電性接着剤層の両面に絶縁性接着剤層を形成することにより、十分な導電性を維持しつつ、絶縁性接着剤層が隣接する回路電極間に配置され、対向する回路電極間の絶縁性を更に高めることができる。このため、本発明に係る回路接続用接着フィルムは、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性との両立が高度に達成されることとなり、高分解能化が可能であると共に、長期接続信頼性に優れるという効果が奏される。また、本発明に係る回路接続用接着フィルムは、導電粒子と電極との正確な位置合わせが容易なことから、回路部材同士の接続時の作業性にも優れている。   In the adhesive film for circuit connection according to the present invention, the thickness of the conductive adhesive layer is not more than twice the average particle size of the conductive particles, and the storage elastic modulus at 40 ° C. of the conductive adhesive layer is 0.1. By being -1.5 GPa, it is possible to reliably capture a sufficient number of conductive particles between opposing circuit electrodes, and even for minute circuit electrodes, insulation between adjacent circuit electrodes, Sufficient conductivity between the circuit electrodes facing each other can be ensured. Then, by forming an insulating adhesive layer on both sides of the above conductive adhesive layer, the insulating adhesive layer is disposed between adjacent circuit electrodes while maintaining sufficient conductivity, and the opposing circuit The insulation between the electrodes can be further enhanced. For this reason, the adhesive film for circuit connection according to the present invention achieves a high degree of compatibility between the insulation between the adjacent circuit electrodes and the conductivity between the opposing circuit electrodes, and can achieve high resolution. In addition, there is an effect that the long-term connection reliability is excellent. In addition, the adhesive film for circuit connection according to the present invention is excellent in workability at the time of connecting circuit members because accurate alignment between the conductive particles and the electrodes is easy.

また、回路接続用接着フィルムは、接着剤が熱又は光によって硬化する硬化性樹脂を含有し、導電性接着剤層がフィルム形成性高分子を更に含有し、第一の絶縁性接着剤層及び第二の絶縁性接着剤層の40℃での貯蔵弾性率がそれぞれ0.1GPa未満であり、第一の絶縁性接着剤層及び第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmであることが好ましい。上記のような構成にすることにより、導電性接着剤層のフィルム形成性を良好なものとすることができると共に、導電粒子を均一に分散した状態で保持することができる。そして、かかる回路接続用接着フィルムは、導電粒子と回路電極との正確な位置合わせが容易なことから作業性に優れ、接続部に気泡を含み難いことから長期接続信頼性に優れている。また、十分な数の導電粒子を確実に捕捉することができ、微小な回路電極に対しても、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを更に高めることができる。   Further, the adhesive film for circuit connection contains a curable resin in which the adhesive is cured by heat or light, the conductive adhesive layer further contains a film-forming polymer, the first insulating adhesive layer and The storage elastic modulus at 40 ° C. of each of the second insulating adhesive layers is less than 0.1 GPa, and at least one of the first insulating adhesive layer and the second insulating adhesive layer The thickness is preferably 0.1 to 5.0 μm. With the above configuration, the film forming property of the conductive adhesive layer can be improved, and the conductive particles can be held in a uniformly dispersed state. Such an adhesive film for circuit connection is excellent in workability because it is easy to accurately position the conductive particles and the circuit electrodes, and is excellent in long-term connection reliability because it is difficult for bubbles to be contained in the connection part. In addition, a sufficient number of conductive particles can be reliably captured, and the insulation between adjacent circuit electrodes and the conductivity between opposing circuit electrodes can be further improved even for a minute circuit electrode. it can.

また、導電性接着剤層は、示差走査熱分析において発熱量25〜130J/gを与えるものであり、かつ該発熱量に基づく硬化反応の反応率20〜100%を与えるものであることが好ましい。上記のようにすることにより、導電性接着剤層の貯蔵弾性率を容易に所望の範囲とすることができる。これにより、十分な数の導電粒子を確実に捕捉することができ、微小な回路電極に対しても、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを更に高めることができる。   Further, the conductive adhesive layer preferably gives a calorific value of 25 to 130 J / g in differential scanning calorimetry and gives a curing reaction rate of 20 to 100% based on the calorific value. . By doing as mentioned above, the storage elastic modulus of the conductive adhesive layer can be easily within a desired range. As a result, a sufficient number of conductive particles can be reliably captured, and even between minute circuit electrodes, the insulation between adjacent circuit electrodes and the conductivity between opposing circuit electrodes can be further improved. Can do.

また、本発明は、第一の基板の主面上に第一の回路電極が形成された第一の回材部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、第一の回路部材及び第二の回路部材の間に配置され、上記本発明に係る回路接続用接着フィルムの硬化物からなる回路接続部材と、を備え、回路接続部材によって、第一の回路電極と第二の回路電極とが対向配置された状態で電気的に接続されている、回路部材の接続構造を提供する。かかる回路部材の接続構造は、回路接続部材が本発明に係る回路接続用接着フィルムの硬化物からなることから、電極上からの導電粒子の流出が少なく、十分な数の導電粒子を確実に捕捉することができ、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保することができる。このため、高分解能化が可能であると共に、優れた長期接続信頼性を達成することができる。   In the present invention, the first circuit member in which the first circuit electrode is formed on the main surface of the first substrate and the second circuit electrode on the main surface of the second substrate are formed. A circuit connection member comprising: a second circuit member; and a circuit connection member disposed between the first circuit member and the second circuit member and made of a cured product of the adhesive film for circuit connection according to the present invention. Thus, a circuit member connection structure is provided in which the first circuit electrode and the second circuit electrode are electrically connected in a state of being opposed to each other. In such a circuit member connection structure, since the circuit connection member is made of a cured product of the adhesive film for circuit connection according to the present invention, there is little outflow of conductive particles from the electrode, and a sufficient number of conductive particles are reliably captured. It is possible to sufficiently ensure the insulation between the adjacent circuit electrodes and the conductivity between the opposing circuit electrodes. Therefore, high resolution can be achieved and excellent long-term connection reliability can be achieved.

また、上記回路部材の接続構造は、第一の回路電極及び第二の回路電極のうち少なくとも一方の回路電極高さが3.0μm以下であり、第一の絶縁性接着剤層及び第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmであり、回路電極の高さが3.0μm以下である回路電極側に、層の厚みが0.1〜5.0μmである絶縁性接着剤層が配置されていることが好ましい。かかる回路部材の接続構造は、微小な回路電極に対して、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを更に高めることができるので、近年の著しい高分解能化の要求を高水準で達成することができる。   Further, in the connection structure of the circuit member, at least one of the first circuit electrode and the second circuit electrode has a circuit electrode height of 3.0 μm or less, the first insulating adhesive layer and the second circuit electrode. The thickness of at least one of the insulating adhesive layers is 0.1 to 5.0 μm, and the thickness of the layer is 0.1 to 5.0 on the circuit electrode side where the height of the circuit electrode is 3.0 μm or less. It is preferable that the insulating adhesive layer which is 5.0 micrometers is arrange | positioned. Such a connection structure of circuit members can further increase the insulation between adjacent circuit electrodes and the conductivity between the opposing circuit electrodes with respect to a minute circuit electrode, and thus has achieved a remarkable increase in resolution in recent years. The requirements can be met at a high level.

また、本発明は、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、第一の回路部材及び第二の回路部材の間に配置され、上記本発明に係る回路接続用接着フィルムと、を第一の回路電極と第二の回路電極とが対向配置された状態で加熱及び加圧して、第一の回路電極と第二の回路電極とを電気的に接続する、回路部材の接続方法を提供する。かかる回路部材の接続方法によれば、本発明に係る回路接続用接着フィルムを用いることにより、電極上からの導電粒子の流出を抑制して十分な数の導電粒子を確実に捕捉することができ、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保することができる。このため、高分解能化が可能であると共に、長期接続信頼性に優れた回路部材の接続構造を形成することができる。   The present invention also provides a first circuit member in which a first circuit electrode is formed on a main surface of a first substrate, and a second circuit electrode in which a second circuit electrode is formed on a main surface of a second substrate. The second circuit member is disposed between the first circuit member and the second circuit member, and the first circuit electrode and the second circuit electrode face each other, the adhesive film for circuit connection according to the present invention. Provided is a circuit member connection method in which a first circuit electrode and a second circuit electrode are electrically connected by heating and pressurizing in the arranged state. According to such a circuit member connection method, by using the circuit connection adhesive film according to the present invention, it is possible to reliably capture a sufficient number of conductive particles by suppressing the outflow of the conductive particles from the electrode. Insulation between adjacent circuit electrodes and conductivity between opposing circuit electrodes can be sufficiently ensured. For this reason, it is possible to increase the resolution and form a circuit member connection structure with excellent long-term connection reliability.

更に、上記回路部材の接続方法は、第一の回路電極及び第二の回路電極のうち少なくとも一方の回路電極高さが3.0μm以下であり、第一の絶縁性接着剤層及び第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmであり、回路電極の高さが3.0μm以下である回路電極側に、層の厚みが0.1〜5.0μmである絶縁性接着剤層を配置して加熱及び加圧することにより、第一の回路電極と第二の回路電極とが電気的に接続されるように第一の回路部材と第二の回路部材とを接続することが好ましい。かかる回路部材の接続方法によれば、微小な回路電極に対して、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを更に高めることができるので、近年の著しい高分解能化の要求を高水準で達成することができる回路部材の接続構造を形成することができる。   Furthermore, the circuit member connection method is such that at least one of the first circuit electrode and the second circuit electrode has a height of 3.0 μm or less, the first insulating adhesive layer and the second circuit electrode. The thickness of at least one of the insulating adhesive layers is 0.1 to 5.0 μm, and the thickness of the layer is 0.1 to 5.0 on the circuit electrode side where the height of the circuit electrode is 3.0 μm or less. The first circuit member and the second circuit electrode are electrically connected to each other by arranging and heating and pressurizing the insulating adhesive layer having a thickness of 5.0 μm. It is preferable to connect the circuit member. According to such a method for connecting circuit members, the insulation between the adjacent circuit electrodes and the conductivity between the facing circuit electrodes can be further enhanced with respect to the minute circuit electrodes, and thus the remarkably high resolution in recent years. Therefore, it is possible to form a connection structure for circuit members that can achieve the demand for a high level of performance.

本発明によれば、対向する回路電極間において十分な数の導電粒子を確実に捕捉することができ、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保することができるため、高分解能化が可能であり、長期接続信頼性に優れると共に、導電粒子と回路電極との正確な位置合わせが容易なことから作業性に優れた回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法を提供することができる。   According to the present invention, it is possible to reliably capture a sufficient number of conductive particles between opposing circuit electrodes, and sufficiently ensure insulation between adjacent circuit electrodes and conductivity between opposing circuit electrodes. Therefore, it is possible to achieve high resolution, excellent long-term connection reliability, and easy alignment of the conductive particles and the circuit electrodes. It is possible to provide a circuit member connection structure and a circuit member connection method using the circuit board.

以下、図面を参照しながら発明を実施するための最良の形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また図面の寸法比率は図示の比率に限られるものではない。   The best mode for carrying out the invention will be described below in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本発明に係る回路接続用接着フィルム(異方導電性接着フィルム)の好適な一実施形態を示す模式断面図である。図1に示す回路接続用接着フィルム100は、導電粒子1及び接着剤2を含む導電性接着剤層3と、導電性接着剤層3の両面に形成された絶縁性の絶縁性接着剤層4,5(第一及び第二の絶縁性接着剤層)とを備える。なお、図1には図示していないが、回路接続用接着フィルム100の表面には、作業性向上やごみ付着防止のために、剥離可能な剥離性基材(支持フィルム)が存在していても良い。   FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of an adhesive film for circuit connection (anisotropic conductive adhesive film) according to the present invention. An adhesive film 100 for circuit connection shown in FIG. 1 includes a conductive adhesive layer 3 including conductive particles 1 and an adhesive 2, and an insulating insulating adhesive layer 4 formed on both surfaces of the conductive adhesive layer 3. , 5 (first and second insulating adhesive layers). Although not shown in FIG. 1, a peelable base material (support film) is present on the surface of the circuit connecting adhesive film 100 in order to improve workability and prevent dust adhesion. Also good.

以下、図1に示した回路接続用接着フィルム100を用い、その回路接続用接着フィルム100を構成する各層について詳細に説明する。   Hereinafter, the adhesive film 100 for circuit connection shown in FIG. 1 is used and each layer which comprises the adhesive film 100 for circuit connection is demonstrated in detail.

導電性接着剤層3は、上述のように導電粒子1と接着剤2とを含有してなる層であり、回路電極を有する回路部材同士の接続時に、対向する回路電極同士を結ぶ方向に導電性を示し、その対向する回路電極同士のみを電気的に接続することが可能な異方導電性を有する層である。   The conductive adhesive layer 3 is a layer containing the conductive particles 1 and the adhesive 2 as described above. When the circuit members having circuit electrodes are connected to each other, the conductive adhesive layer 3 is conductive in the direction connecting the opposing circuit electrodes. This is a layer having anisotropic conductivity and capable of electrically connecting only the facing circuit electrodes.

ここで、接着剤2は、熱や光により硬化する反応性樹脂(硬化性樹脂)を含むことが好ましい。硬化性樹脂としては、エポキシ樹脂と、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤との混合物、又は、ラジカル反応性樹脂と有機過酸化物との混合物等が用いられる。   Here, the adhesive 2 preferably contains a reactive resin (curable resin) that is cured by heat or light. As the curable resin, a mixture of epoxy resin and latent curing agent such as imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, or radical reactive resin And a mixture of organic peroxide and the like.

上記エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF、ビスフェノールAD等から誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックから誘導されるエポキシノボラック樹脂、ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独に又は2種以上を混合して用いることが可能である。   Examples of the epoxy resin include bisphenol type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, and the like, epoxy novolac resins derived from epichlorohydrin and phenol novolac and cresol novolac, and naphthalene having a skeleton containing a naphthalene ring. Various epoxy compounds having two or more glycidyl groups in one molecule such as epoxy resin, glycidylamine, glycidyl ether, biphenyl, and alicyclic can be used alone or in admixture of two or more. is there.

これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や加水分解性塩素等の含有量を300ppm以下に低減した高純度品を用いることが、エレクトロンマイグレーション防止の観点から好ましい。 For these epoxy resins, it is preferable to use a high-purity product in which the content of impurity ions (Na + , Cl −, etc.) and hydrolyzable chlorine is reduced to 300 ppm or less, from the viewpoint of preventing electron migration.

導電粒子1は、回路接続用接着フィルム100により接続するチップのバンプや基板電極等の高さばらつきを吸収し、異方導電性を積極的に付与する目的で、導電性接着剤層3に混入・分散されている。   The conductive particles 1 are mixed in the conductive adhesive layer 3 for the purpose of absorbing unevenness in the heights of the bumps and substrate electrodes of the chips connected by the circuit connecting adhesive film 100 and positively imparting anisotropic conductivity.・ Dispersed.

導電粒子1は、例えばAu、Ag、Ni、Cu、はんだ等の金属を含む導電性を有する粒子であり、ポリスチレン等の高分子からなる球状の核材の表面に、Au、Ag、Ni、Cu、はんだ等の金属からなる導電層を形成してなる粒子であることが好ましい。また、導電粒子1は、導電層の外周側にAu、はんだ等の表面層を更に形成してなるものであってもよい。   The conductive particles 1 are conductive particles containing a metal such as Au, Ag, Ni, Cu, and solder, for example. On the surface of a spherical core material made of a polymer such as polystyrene, Au, Ag, Ni, Cu The particles are preferably formed by forming a conductive layer made of a metal such as solder. The conductive particles 1 may be formed by further forming a surface layer such as Au or solder on the outer peripheral side of the conductive layer.

導電粒子1の平均粒径は、回路接続用接着フィルム100により接続する回路部材の電極の最小の間隔よりも小さいことが必要であり、かつ、回路電極の高さのばらつきがある場合、その高さのばらつきよりも大きいことが好ましい。導電粒子1の平均粒径は、1〜10μmであることが好ましく、2〜5μmであることがより好ましい。平均粒径が1μm未満であると、回路電極の高さのばらつきに対応できずに回路電極間の導電性が低下しやすい傾向があり、10μmを超えると、隣接する回路電極間の絶縁性が低下しやすい傾向がある。   The average particle diameter of the conductive particles 1 needs to be smaller than the minimum interval between the electrodes of the circuit members connected by the circuit connecting adhesive film 100, and when there is a variation in the height of the circuit electrodes, It is preferable that it is larger than the variation in thickness. The average particle diameter of the conductive particles 1 is preferably 1 to 10 μm, and more preferably 2 to 5 μm. If the average particle size is less than 1 μm, the electrical conductivity between the circuit electrodes tends to decrease without being able to cope with the variation in the height of the circuit electrodes, and if it exceeds 10 μm, the insulation between adjacent circuit electrodes is poor. It tends to decrease.

なお、本発明において「平均粒径」は以下のようにして測定される値を意味するものである。すなわち、任意に選択した導電粒子1の一次粒子を走査型電子顕微鏡(SEM、(株)日立製作所社製、商品名:S−800)で観察(倍率:5000倍)し、その最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の一次粒径とする。そして、任意に選択した導電粒子50個について上記のようにして一次粒径を測定し、その平均値を平均粒径とする。   In the present invention, “average particle diameter” means a value measured as follows. That is, the primary particles of arbitrarily selected conductive particles 1 were observed with a scanning electron microscope (SEM, manufactured by Hitachi, Ltd., trade name: S-800) (magnification: 5000 times), and the maximum diameter and the maximum diameter were observed. Measure the small diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the primary particle diameter of the particle. Then, the primary particle diameter is measured as described above for 50 arbitrarily selected conductive particles, and the average value is defined as the average particle diameter.

導電性接着剤層3は、回路部材同士が接続された状態において、厚みが導電粒子1の平均粒径の2倍以下であり、かつ40℃での弾性率が0.1〜1.5GPaの範囲内であることが必要とされる。導電性接着剤層3の厚みが、平均粒径の2倍以下であり、かつ40℃での貯蔵弾性率が0.1〜1.5GPaであると、接続時の加圧により導電粒子が接着剤と共に隣接する回路電極間に流出することを低減することができ、それによって十分な数の導電粒子を確実に捕捉することができ、微小な回路電極に対しても、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保することができる。なお、導電性接着剤層3の貯蔵弾性率は、例えば、粘弾性測定装置(レオメトリックス社製、商品名:RSAII、昇温速度:10℃/分、周波数:1Hz)で測定することができる。   The conductive adhesive layer 3 has a thickness of not more than twice the average particle diameter of the conductive particles 1 and a modulus of elasticity at 40 ° C. of 0.1 to 1.5 GPa when the circuit members are connected to each other. It is required to be within range. When the thickness of the conductive adhesive layer 3 is not more than twice the average particle diameter and the storage elastic modulus at 40 ° C. is 0.1 to 1.5 GPa, the conductive particles are bonded by pressurization at the time of connection. It is possible to reduce outflow between adjacent circuit electrodes together with the agent, and thereby, it is possible to reliably capture a sufficient number of conductive particles, and even between minute circuit electrodes, between adjacent circuit electrodes. Insulation and electrical conductivity between circuit electrodes facing each other can be sufficiently ensured. In addition, the storage elastic modulus of the conductive adhesive layer 3 can be measured by, for example, a viscoelasticity measuring device (manufactured by Rheometrics, trade name: RSAII, heating rate: 10 ° C./min, frequency: 1 Hz). .

導電性接着剤層3の厚みが平均粒径の2倍を超える、又は、導電性接着剤層3の40℃での貯蔵弾性率が0.1GPa未満であると、接続時の加圧により導電粒子が接着剤と共に隣接する回路電極間に流出する数が増え、それによって捕捉することができる導電粒子の数が十分でなくなる傾向にある。また、1.5GPaを超えると、対向する回路電極間の導電性を十分に確保できない傾向がある。   When the thickness of the conductive adhesive layer 3 exceeds twice the average particle diameter, or the storage elastic modulus at 40 ° C. of the conductive adhesive layer 3 is less than 0.1 GPa, the conductive adhesive layer 3 is electrically conductive by pressurization at the time of connection. There is a tendency for the number of particles to flow out between adjacent circuit electrodes with the adhesive, thereby reducing the number of conductive particles that can be captured. On the other hand, if it exceeds 1.5 GPa, there is a tendency that sufficient conductivity between the facing circuit electrodes cannot be ensured.

導電性接着剤層3は、DSCにおいて硬化反応に基づく発熱量25〜130J/gを与えるものであることが好ましい。この発熱量は、例えば、DSCとしてTA Instrument社製の商品名:DSC1000を用いて、昇温速度10℃/分で25℃〜200℃の温度範囲で測定することにより、以下のように算出される。   The conductive adhesive layer 3 preferably provides a calorific value of 25 to 130 J / g based on the curing reaction in DSC. This calorific value is calculated as follows, for example, by measuring in the temperature range of 25 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min using a product name: DSC1000 manufactured by TA Instrument as DSC. The

導電性接着剤層3の硬化反応は発熱反応であり、DSCを用いて一定の昇温速度で試料を昇温していくと、試料が反応し熱量が発生する。その発熱量をチャートに出力し、ベースライン(測定開始点を通り、温度軸(横軸)に略平行な直線)を基準として発熱曲線とベースラインとで囲まれた面積を求め、これを発熱量とする。発熱量が130J/gを超えると、接着剤の硬化収縮力及び貯蔵弾性率の増大等によって内部応力が増大し、回路同士を接続した際、回路基板が反り、接続信頼性の低下や電子部品の特性低下を引き起こす問題を生じる。また、発熱量が25J/gを下回ると、接着剤の硬化性が不充分であり、接着性及び接続信頼性の低下を引き起こすという問題を生じる。   The curing reaction of the conductive adhesive layer 3 is an exothermic reaction, and when the sample is heated at a constant temperature increase rate using DSC, the sample reacts to generate heat. The calorific value is output to a chart, and the area surrounded by the heat generation curve and the baseline is obtained based on the baseline (a straight line passing through the measurement start point and approximately parallel to the temperature axis (horizontal axis)). Amount. When the heating value exceeds 130 J / g, the internal stress increases due to an increase in the curing shrinkage force and storage elastic modulus of the adhesive, and when the circuits are connected to each other, the circuit boards warp, reducing the connection reliability and electronic components. This causes a problem that causes deterioration of characteristics. On the other hand, when the calorific value is less than 25 J / g, there is a problem that the curability of the adhesive is insufficient and the adhesiveness and connection reliability are lowered.

また、導電性接着剤層3は、DSCにおいて25〜130J/gとして与えられた上述の発熱量に基づいて硬化反応の反応率20〜100%を与えるもの、すなわち硬化反応の20〜100%が終了しているものであることが好ましい。この導電性接着剤層3の反応率は、例えば以下のように算出することができる。   In addition, the conductive adhesive layer 3 gives a reaction rate of 20 to 100% of the curing reaction based on the above-described calorific value given as 25 to 130 J / g in DSC, that is, 20 to 100% of the curing reaction. It is preferable that it is completed. The reaction rate of the conductive adhesive layer 3 can be calculated as follows, for example.

まず、導電性接着剤層3の発熱量をDSCを用いて求める。次に、導電性接着剤層3と同様の導電性接着剤層形成用塗布液を用いて硬化剤の活性温度以下の条件で熱風乾燥し作製した導電性接着剤層3iの発熱量をDSCを用いて求める。これらの発熱量から反応率は次式より求められる。
反応率=(導電性接着剤層3iの発熱量−導電性接着剤層3の発熱量)/導電性接着剤層3iの発熱量×100
First, the calorific value of the conductive adhesive layer 3 is obtained using DSC. Next, the calorific value of the conductive adhesive layer 3i produced by drying with hot air under the condition below the activation temperature of the curing agent using the same coating liquid for forming the conductive adhesive layer as that of the conductive adhesive layer 3 is calculated by DSC. Use to find. From these calorific values, the reaction rate can be obtained from the following equation.
Reaction rate = (heat generation amount of the conductive adhesive layer 3i−heat generation amount of the conductive adhesive layer 3) / heat generation amount of the conductive adhesive layer 3i × 100

導電性接着剤層3における導電粒子1の含有量は、導電性接着剤層3中の固形分の全体積を基準として、0.1〜40体積%であることが好ましく、0.2〜30体積%であることがより好ましい。この含有率が0.1体積%未満であると、対向する回路電極上の導電粒子の数が減少することから接触点数が不足し、回路電極間での導電性が低下しやすい傾向があり、40体積%を超えると、粒子表面積の著しい増加により導電粒子が2次凝集を起こして連結しやすく、隣接する回路電極間の絶縁性が低下しやすい傾向がある。   The content of the conductive particles 1 in the conductive adhesive layer 3 is preferably 0.1 to 40% by volume based on the total volume of the solid content in the conductive adhesive layer 3, and is preferably 0.2 to 30%. More preferably, it is volume%. If this content is less than 0.1% by volume, the number of conductive particles on the opposing circuit electrodes will decrease, so the number of contact points will be insufficient, and the conductivity between the circuit electrodes will tend to decrease, If it exceeds 40% by volume, the conductive particles tend to be agglomerated due to a significant increase in the surface area of the particles and easily connected, and the insulation between adjacent circuit electrodes tends to decrease.

回路接続用接着フィルム100を構成する絶縁性接着剤層4,5は、絶縁性を有する層である。絶縁性接着剤層4,5は、回路部材における隣接する回路電極間に配置された際に、その隣接する回路電極間の絶縁性を十分に確保する(好ましくは、隣接する回路電極間の絶縁抵抗値を1×10Ω以上とする)ことが可能なものであれば、その組成は特に制限はないが、例えば、上述の導電性接着剤層3から導電粒子1を除いた組成と同様の組成とすることができる。 The insulating adhesive layers 4 and 5 constituting the circuit connecting adhesive film 100 are insulating layers. When the insulating adhesive layers 4 and 5 are disposed between adjacent circuit electrodes in the circuit member, the insulating adhesive layers 4 and 5 sufficiently ensure insulation between the adjacent circuit electrodes (preferably, insulation between adjacent circuit electrodes). The composition is not particularly limited as long as the resistance value can be 1 × 10 8 Ω or more). For example, the composition is the same as that obtained by removing the conductive particles 1 from the conductive adhesive layer 3 described above. The composition can be

絶縁性接着剤層4,5のうちの少なくとも一方の厚みは、導電性接着剤層3を介して接続された状態において、0.1〜5.0μmであることが好ましく、1.0〜4.0μmであることがより好ましい。この厚みが0.1μm未満であると、回路部材における隣接する回路電極間に絶縁性接着剤層が流入する際に、その隣接する回路電極間の絶縁性を十分に確保できず、5.0μmを超えると、電極上からの導電粒子の流出が多くなり、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保できない。   The thickness of at least one of the insulating adhesive layers 4 and 5 is preferably 0.1 to 5.0 μm when connected through the conductive adhesive layer 3, and is preferably 1.0 to 4 μm. More preferably, it is 0.0 μm. When the thickness is less than 0.1 μm, when the insulating adhesive layer flows between adjacent circuit electrodes in the circuit member, sufficient insulation cannot be secured between the adjacent circuit electrodes. If it exceeds, the outflow of the conductive particles from the electrodes increases, and it is impossible to sufficiently secure the insulation between the adjacent circuit electrodes and the conductivity between the opposing circuit electrodes.

また、絶縁性接着剤層4,5のうちの少なくとも一方の厚みは、第一の基板の主面上に形成された第一の回路電極厚みと、第二の基板の主面上に形成された第二の回路電極厚みとの総和以下であることが好ましい。回路電極の厚みが第一の回路電極の厚みと第二の回路電極の厚みとの総和よりも大きいと、電極上からの導電粒子の流出が多くなり、隣接する電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保しにくくなる傾向がある。   The thickness of at least one of the insulating adhesive layers 4 and 5 is formed on the first circuit electrode thickness formed on the main surface of the first substrate and on the main surface of the second substrate. It is preferable that the total thickness is equal to or less than the total thickness of the second circuit electrode. If the thickness of the circuit electrode is larger than the sum of the thickness of the first circuit electrode and the thickness of the second circuit electrode, the amount of conductive particles flowing out from the electrode increases, and the insulation between adjacent electrodes and the opposite It tends to be difficult to ensure sufficient electrical conductivity between circuit electrodes.

また、回路接続用接着フィルム100において、絶縁性接着剤層4,5の40℃での貯蔵弾性率は、導電性接着剤層3よりも低いことが好ましく、0.1GPa未満であることがより好ましい。絶縁性接着剤層4,5の40℃での貯蔵弾性率が0.1GPa以上となると、電極上からの導電粒子の流出が多くなり、隣接する回路電極間の絶縁性と、対向する回路電極間の導電性とを十分に確保しにくくなる傾向がある。   Further, in the adhesive film for circuit connection 100, the storage elastic modulus of the insulating adhesive layers 4 and 5 at 40 ° C. is preferably lower than that of the conductive adhesive layer 3, and more preferably less than 0.1 GPa. preferable. When the storage elastic modulus at 40 ° C. of the insulating adhesive layers 4 and 5 is 0.1 GPa or more, the outflow of conductive particles from the electrodes increases, and the insulation between adjacent circuit electrodes and the opposing circuit electrodes There is a tendency that it is difficult to ensure sufficient electrical conductivity.

導電性接着剤層3及び絶縁性接着剤層4,5には、そのフィルム形成性をより良好なものとする観点から、フィルム形成性高分子を配合することもできる。フィルム形成性高分子としては、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂が挙げられる。これらのフィルム形成性高分子は、硬化性樹脂の硬化時の応力緩和に効果がある。特に、フィルム形成性高分子が、水酸基等の官能基を有する場合、接着性が向上するためより好ましい。   The conductive adhesive layer 3 and the insulating adhesive layers 4 and 5 may be blended with a film-forming polymer from the viewpoint of improving the film-forming property. Examples of the film-forming polymer include thermoplastic resins such as phenoxy resin, polyester resin, and polyamide resin. These film-forming polymers are effective for stress relaxation during curing of the curable resin. In particular, when the film-forming polymer has a functional group such as a hydroxyl group, the adhesiveness is improved, which is more preferable.

また、導電性接着剤層3及び絶縁性接着剤層4,5には、更に無機充填材やゴム粒子を混入・分散することができる。これらは、導電粒子1と共に導電性接着剤層3に混入・分散することができ、導電粒子1が使用されない絶縁性接着剤層4,5に混入・分散することもできるが、特に導電粒子1を使用する導電性接着剤層3に混入・分散することが好ましい。これら無機充填材やゴム粒子を導電性接着剤層3に添加することにより、導電性接着剤層3の40℃での貯蔵弾性率を容易に所望の範囲とすることができる。   In addition, inorganic fillers and rubber particles can be further mixed and dispersed in the conductive adhesive layer 3 and the insulating adhesive layers 4 and 5. These can be mixed and dispersed in the conductive adhesive layer 3 together with the conductive particles 1 and can also be mixed and dispersed in the insulating adhesive layers 4 and 5 where the conductive particles 1 are not used. It is preferable to mix and disperse in the conductive adhesive layer 3 using By adding these inorganic fillers and rubber particles to the conductive adhesive layer 3, the storage elastic modulus at 40 ° C. of the conductive adhesive layer 3 can be easily within a desired range.

無機充填材としては、特に制限はないが、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム等の粉体が挙げられる。無機充填材の平均粒径は、接続部での導通不良を防止する観点から、3μm以下であることが好ましい。   The inorganic filler is not particularly limited, and examples thereof include powders such as fused silica, crystalline silica, calcium silicate, alumina, and calcium carbonate. The average particle size of the inorganic filler is preferably 3 μm or less from the viewpoint of preventing poor conduction at the connection portion.

無機充填材の配合量は、導電性接着剤層3及び絶縁性接着剤層4,5のいずれにおいても、接着剤2の配合量100質量部に対して5〜100質量部であることが好ましい。   The amount of the inorganic filler is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the adhesive 2 in any of the conductive adhesive layer 3 and the insulating adhesive layers 4 and 5. .

ゴム粒子としては、ガラス転移温度が25℃以下のゴム粒子であれば特に制限はないが、例えば、ブタジエンゴム、アクリルゴム、スチレン−ブタジエン−スチレンゴム、ニトリル−ブタジエンゴム、シリコーンゴム等を用いることができる。   The rubber particles are not particularly limited as long as the glass particles have a glass transition temperature of 25 ° C. or lower. For example, butadiene rubber, acrylic rubber, styrene-butadiene-styrene rubber, nitrile-butadiene rubber, silicone rubber, or the like is used. Can do.

ゴム粒子としては、平均粒径が0.1〜10μmのものを用いることが好ましく、平均粒径以下の粒子が粒径分布の80%以上を占めるゴム粒子がより好ましい。ゴム粒子の平均粒径は、0.1〜5μmであることが更に好ましい。またゴム粒子の表面をシランカップリング剤で処理した場合、硬化性樹脂に対する分散性が向上するためより好ましい。   As the rubber particles, those having an average particle size of 0.1 to 10 μm are preferably used, and rubber particles in which particles having an average particle size or less occupy 80% or more of the particle size distribution are more preferable. The average particle size of the rubber particles is more preferably 0.1 to 5 μm. Moreover, when the surface of a rubber particle is processed with a silane coupling agent, since the dispersibility with respect to curable resin improves, it is more preferable.

ゴム粒子の中でシリコーンゴム粒子は、耐溶剤性に優れる他、分散性にも優れるため効果的なゴム粒子として用いることができる。なお、シリコーンゴム粒子は、シラン化合物やメチルトリアルコキシシラン及び/又はその部分加水分解縮合物を、苛性ソーダ、アンモニア等の塩基性物質によりpH9以上に調整したアルコール水溶液に添加し、加水分解、重縮合させる方法や、オルガノシロキサンの共重合等で得ることができる。   Among the rubber particles, the silicone rubber particles can be used as effective rubber particles because they are excellent in solvent resistance and dispersibility. Silicone rubber particles are hydrolyzed and polycondensed by adding a silane compound and methyltrialkoxysilane and / or a partially hydrolyzed condensate thereof to an aqueous alcohol solution adjusted to pH 9 or higher with a basic substance such as caustic soda or ammonia. Or a copolymerization of organosiloxane.

また、分子末端又は分子内側鎖に水酸基、エポキシ基、ケチミン、カルボキシル基、メルカプト基等の官能基を含有したシリコーンゴム粒子は、硬化性樹脂への分散性が向上するため好ましい。   Silicone rubber particles containing a functional group such as a hydroxyl group, an epoxy group, a ketimine, a carboxyl group, or a mercapto group at the molecular terminal or inner molecular chain are preferable because dispersibility in a curable resin is improved.

ゴム粒子の配合量は、導電性接着剤層3及び絶縁性接着剤層4,5のいずれにおいても、接着剤2の配合量100質量部に対して5〜50質量部であることが好ましい。   The compounding amount of the rubber particles is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the adhesive 2 in any of the conductive adhesive layer 3 and the insulating adhesive layers 4 and 5.

導電性接着剤層3及び絶縁性接着剤層4,5の形成は、少なくとも上記接着剤2を含み、導電性接着剤層3については更に導電粒子1を含む接着剤組成物を有機溶剤に溶解又は分散することで液状化して塗布液を調整し、この塗布液を剥離性基材(支持フィルム)上に塗布して、硬化剤の活性温度以下で溶剤を除去することにより行うことができる。   Formation of the conductive adhesive layer 3 and the insulating adhesive layers 4 and 5 includes at least the adhesive 2, and the conductive adhesive layer 3 further dissolves an adhesive composition including the conductive particles 1 in an organic solvent. Alternatively, it can be carried out by preparing a coating solution by liquefying by dispersing, coating the coating solution on a peelable substrate (support film), and removing the solvent below the activation temperature of the curing agent.

このとき用いる溶剤は、芳香族炭化水素系溶剤と含酸素系溶剤との混合溶剤が、材料の溶解性を向上させる観点から好ましい。また、剥離性基材としては、離型性を有するように表面処理されたPETフィルム等が好適に用いられる。   The solvent used at this time is preferably a mixed solvent of an aromatic hydrocarbon solvent and an oxygen-containing solvent from the viewpoint of improving the solubility of the material. Moreover, as a peelable base material, a PET film or the like surface-treated so as to have releasability is preferably used.

また、導電性接着剤層3の形成については、塗布液を調整後、この塗布液を剥離性基材(支持フィルム)上に塗布して、硬化剤の活性温度以上の条件で溶剤を除去することにより行うこともできる。このとき形成される導電性接着剤層3は、上述のようにDSCにおいて発熱量25〜130J/gを与えるものであり、かつ該発熱量に基づく硬化反応の反応率20〜100%を与えるものであることが好ましい。   Moreover, about formation of the conductive adhesive layer 3, after adjusting a coating liquid, this coating liquid is apply | coated on a peelable base material (support film), and a solvent is removed on the conditions beyond the active temperature of a hardening | curing agent. Can also be done. The conductive adhesive layer 3 formed at this time gives a calorific value of 25 to 130 J / g in the DSC as described above, and gives a curing reaction rate of 20 to 100% based on the calorific value. It is preferable that

なお、図示しないが、絶縁性接着剤層4,5の外側に更に導電性接着剤層又は絶縁性接着剤層を設けることもできる。   Although not shown, a conductive adhesive layer or an insulating adhesive layer can be further provided outside the insulating adhesive layers 4 and 5.

そして、回路接続用接着フィルム100の製法としては、例えば、上記のようにして形成した導電性接着剤層3及び絶縁性接着剤層4,5をラミネートする方法や、各層を順次塗工する方法等の公知の方法が採用することができる。   And as a manufacturing method of the adhesive film 100 for circuit connection, the method of laminating | stacking the conductive adhesive layer 3 and the insulating adhesive layers 4 and 5 which were formed as mentioned above, and the method of coating each layer sequentially, for example A known method such as the above can be employed.

次に、本発明に係る回路接続用接着フィルム100を用いた回路部材の接続構造について説明する。   Next, a circuit member connection structure using the circuit connection adhesive film 100 according to the present invention will be described.

図2は、本発明に係る回路部材の接続構造の好適な一実施形態を示す模式断面図である。図2に示す回路部材の接続構造200は、第一の基板11及びその主面上に形成された第一の回路電極12を有する第一の回路部材10と、第二の基板21及びその主面上に形成された第二の回路電極22を有する第二の回路部材20とが、上記本発明の回路接続用接着フィルム100が硬化した硬化物からなり第一及び第二の回路部材10,20の間に形成された回路接続部材100aによって接続されたものである。回路部材の接続構造200においては、第一の回路電極12と第二の回路電極22とが対向配置された状態で電気的に接続されている。   FIG. 2 is a schematic cross-sectional view showing a preferred embodiment of a circuit member connection structure according to the present invention. The circuit member connection structure 200 shown in FIG. 2 includes a first circuit member 10 having a first circuit electrode 12 formed on the first substrate 11 and its main surface, a second substrate 21 and its main substrate. The second circuit member 20 having the second circuit electrode 22 formed on the surface is made of a cured product obtained by curing the circuit connecting adhesive film 100 of the present invention, and the first and second circuit members 10, Are connected by a circuit connecting member 100a formed between the two. In the circuit member connection structure 200, the first circuit electrode 12 and the second circuit electrode 22 are electrically connected in a state of being opposed to each other.

回路接続部材100aは、本発明に係る回路接続用接着フィルム100が硬化した硬化物からなるものであり、上述した接着剤2の硬化物2a及びこれに分散している導電粒子1を含む導電性接着剤層3の硬化物3aと、その両面に形成された絶縁性接着剤層4,5の硬化物4a,5aとから構成されている。そして、第一の回路電極12と第二の回路電極22とは、導電粒子1を介して電気的に接続されている。   The circuit connection member 100a is made of a cured product obtained by curing the adhesive film for circuit connection 100 according to the present invention, and includes the cured product 2a of the adhesive 2 and the conductive particles 1 dispersed therein. It is comprised from the hardened | cured material 3a of the adhesive bond layer 3, and the hardened | cured materials 4a and 5a of the insulating adhesive layers 4 and 5 formed in the both surfaces. The first circuit electrode 12 and the second circuit electrode 22 are electrically connected via the conductive particles 1.

また、絶縁性接着剤層4,5の硬化物4a,5aは、それぞれ第一及び第二の回路電極12,22の周囲の少なくとも第一及び第二の基板11,21側を覆うように形成されている。これは、第一及び第二の回路部材10,20の接続時に、絶縁性接着剤層4,5が第一及び第二の回路電極12,22上(互いに対向している面上)から、その周囲に流出するためである。   The cured products 4a and 5a of the insulating adhesive layers 4 and 5 are formed so as to cover at least the first and second substrates 11 and 21 around the first and second circuit electrodes 12 and 22, respectively. Has been. This is because when the first and second circuit members 10 and 20 are connected, the insulating adhesive layers 4 and 5 are on the first and second circuit electrodes 12 and 22 (on the surfaces facing each other), This is because it flows out to the surroundings.

第一の回路電極12の高さh1及び第二の回路電極22の高さh2のうちの少なくとも一方は、3.0μm以下であることが好ましい。また、絶縁性接着剤層4,5のうちの少なくとも一方の厚みが0.1〜5.0μmである場合は、厚みが0.1〜5.0μmである当該絶縁性接着剤層が、回路電極の高さが3.0μm以下である回路電極側に配置されていることが好ましい。   At least one of the height h1 of the first circuit electrode 12 and the height h2 of the second circuit electrode 22 is preferably 3.0 μm or less. When the thickness of at least one of the insulating adhesive layers 4 and 5 is 0.1 to 5.0 μm, the insulating adhesive layer having a thickness of 0.1 to 5.0 μm It is preferable that the electrode is disposed on the circuit electrode side having a height of 3.0 μm or less.

第一及び第二の回路部材10,20としては、電気的接続を必要とする電極が形成されているものであれば特に制限はない。具体的には、液晶ディスプレイに用いられているITO等で電極が形成されているガラス又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、半導体シリコンチップ等が挙げられ、これらは必要に応じて組み合わせて使用される。このように、本実施形態では、プリント配線板や、ポリイミド等の有機物からなる材質をはじめ、銅、アルミニウム等の金属やITO(indium tin oxide)、窒化ケイ素(SiN)、二酸化ケイ素(SiO)等の無機材質のように多種多様な表面状態を有する回路部材を用いることができる。 The first and second circuit members 10 and 20 are not particularly limited as long as electrodes that require electrical connection are formed. Specific examples include glass or plastic substrates with electrodes formed of ITO or the like used for liquid crystal displays, printed wiring boards, ceramic wiring boards, flexible wiring boards, semiconductor silicon chips, and the like. Used in combination accordingly. As described above, in this embodiment, a printed wiring board, a material made of an organic material such as polyimide, a metal such as copper or aluminum, ITO (indium tin oxide), silicon nitride (SiN x ), silicon dioxide (SiO 2 ). Circuit members having various surface states such as inorganic materials such as) can be used.

回路部材の接続構造200は、第一の基板11の主面上に第一の回路電極12が形成された第一の回路部材10と、第二の基板21の主面上に第二の回路電極22が形成された第二の回路部材20と、第一の回路部材10及び第二の回路部材20の間に配置され、本発明に係る回路接続用接着フィルム100と、を第一の回路電極12と第二の回路電極22とが対向配置された状態で加熱及び加圧して、第一の回路電極12と第二の回路電極22とを電気的に接続する方法によって得られる。   The circuit member connection structure 200 includes a first circuit member 10 in which the first circuit electrode 12 is formed on the main surface of the first substrate 11 and a second circuit on the main surface of the second substrate 21. The second circuit member 20 on which the electrode 22 is formed and the first circuit member 10 and the second circuit member 20 are arranged between the first circuit member 10 and the circuit connection adhesive film 100 according to the present invention. It is obtained by a method of electrically connecting the first circuit electrode 12 and the second circuit electrode 22 by heating and pressurizing the electrode 12 and the second circuit electrode 22 facing each other.

この方法においては、剥離性基材上に形成されている回路接続用接着フィルム100を第二の回路部材20上に貼り合わせた状態で加熱及び加圧して回路接続用接着フィルム100を仮圧着し、剥離性基材を剥離してから、回路電極を位置合わせしながら第一の回路部材10を載せた後、加熱及び加圧して、第二の回路部材20、回路接続用接着フィルム100及び第一の回路部材10がこの順に積層された積層体を準備することができる。   In this method, the circuit connection adhesive film 100 is temporarily pressure-bonded by heating and pressurizing the circuit connection adhesive film 100 formed on the peelable substrate on the second circuit member 20. Then, after peeling off the peelable substrate, the first circuit member 10 is placed while aligning the circuit electrodes, and then heated and pressurized to form the second circuit member 20, the circuit connecting adhesive film 100, and the first A laminate in which one circuit member 10 is laminated in this order can be prepared.

上記積層体を加熱及び加圧する条件は、回路接続用接着フィルム中の接着剤の硬化性等に応じて、回路接続用接着フィルムが硬化して十分な接着強度が得られるように、適宜調整される。   Conditions for heating and pressurizing the laminate are appropriately adjusted according to the curability of the adhesive in the circuit connection adhesive film so that the circuit connection adhesive film is cured and sufficient adhesive strength is obtained. The

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に制限するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not restrict | limited to a following example.

(実施例1)
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)32質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)10質量部、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ社製、商品名:YL980)20質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)35質量部及びシランカップリング剤(日本ユニカー社製、商品名:A187)3質量部を溶剤であるトルエンに溶解し、固形分50質量%の絶縁性接着剤層形成用塗布液を得た。
Example 1
Phenoxy resin (Union Carbide, trade name: PKHC) 32 parts by mass, bisphenol A epoxy resin having an average particle diameter of 0.2 μm dispersed in 20% by mass of acrylic particle-containing resin (manufactured by Nippon Shokubai Co., Ltd., Product name: BPA 328) 10 parts by mass, bisphenol A type solid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product name: YL980), 20 parts by mass, imidazole-based curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941) 35 parts by mass and 3 parts by mass of a silane coupling agent (trade name: A187, manufactured by Nippon Unicar Co., Ltd.) were dissolved in toluene as a solvent to obtain a coating liquid for forming an insulating adhesive layer having a solid content of 50% by mass.

次いで、この塗布液を、片面(塗布液を塗布する面)に離型処理(中剥離処理)が施された厚み50μmのPETフィルムに塗工装置((株)康井精機社製、商品名:精密塗工機)を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み15μmの絶縁性接着剤層(a)を形成した。この絶縁性接着剤層(a)の貯蔵弾性率を、粘弾性測定装置(レオメトリックス社製、商品名:RSAII)を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Next, this coating solution is applied to a 50 μm-thick PET film having a release treatment (medium release treatment) on one side (the surface to which the coating solution is applied), and a product name (trade name, manufactured by Yasui Seiki Co., Ltd.). Was coated using a precision coating machine, and dried with hot air at 70 ° C. for 10 minutes to form an insulating adhesive layer (a) having a thickness of 15 μm on the PET film. When the storage elastic modulus of this insulating adhesive layer (a) was measured at a temperature rising rate of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring apparatus (trade name: RSAII, manufactured by Rheometrics), 40 The storage elastic modulus at 0 ° C. was 0.05 GPa.

更に、上記絶縁性接着剤層形成用塗布液を、片面(塗布液を塗布する面)に離型処理(軽剥離処理)が施された厚み25μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み2μmの絶縁性接着剤層(b)を形成した。この絶縁性接着剤層(b)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Furthermore, the coating liquid for forming the insulating adhesive layer was applied to a PET film having a thickness of 25 μm, on which one side (the surface on which the coating liquid was applied) was subjected to a release treatment (light release treatment), using a coating apparatus. The insulating adhesive layer (b) having a thickness of 2 μm was formed on the PET film by drying with hot air at 70 ° C. for 10 minutes. When the storage elastic modulus of this insulating adhesive layer (b) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

次に、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)60質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)12質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)16質量部、シランカップリング剤(日本ユニカー社製、商品名:A187)2質量部及びシリコーンゴム(東レダウコーニング社製、商品名:EP2100)10質量部を溶剤であるトルエンに溶解し、固形分50質量%の接着剤溶液を調整した。   Next, an acrylic particle-containing resin (Nippon Catalyst Co., Ltd.) in which 20% by mass of acrylic particles having an average particle size of 0.2 μm are dispersed in 60 parts by mass of a phenoxy resin (manufactured by Union Carbide, trade name: PKHC) and a bisphenol A type epoxy resin. 12 parts by mass, product name: BPA 328), 16 parts by mass of imidazole curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941), silane coupling agent (trade name: A187, Nihon Unicar) Part by mass and 10 parts by mass of silicone rubber (trade name: EP2100, manufactured by Toray Dow Corning) were dissolved in toluene as a solvent to prepare an adhesive solution having a solid content of 50% by mass.

この接着剤溶液100質量部に、ポリスチレン系核体(直径:2.8μm)の表面にNi層とその外側のAu層とを形成した導電粒子(平均粒径:3μm)35質量部を分散して導電性接着剤層形成用塗布液を得た。   In 100 parts by mass of this adhesive solution, 35 parts by mass of conductive particles (average particle size: 3 μm) in which a Ni layer and an outer Au layer are formed on the surface of a polystyrene core (diameter: 2.8 μm) are dispersed. Thus, a coating solution for forming a conductive adhesive layer was obtained.

この塗布液を、片面(塗布液を塗布する面)に離型処理(軽剥離処理)が施された厚み50μmのPETフィルムに塗工装置((株)康井精機社製、商品名:精密塗工機)を用いて塗布し、70℃で10分間熱風乾燥して、PETフィルム上に厚み6μmの導電性接着剤層(c)を形成した。この導電性接着剤層(c)の発熱量をDSC(TAInstrument社製の商品名:DSC1000)を用いて昇温速度10℃/分で25℃〜200℃まで測定したところ、発熱量は、80J/gであった。   This coating solution is applied to a 50 μm-thick PET film having a release treatment (light release treatment) on one side (surface to which the coating solution is applied), and a coating device (trade name: Precision, manufactured by Yasui Seiki Co., Ltd.). Was applied using a coating machine) and dried with hot air at 70 ° C. for 10 minutes to form a 6 μm thick conductive adhesive layer (c) on the PET film. When the calorific value of this conductive adhesive layer (c) was measured from 25 ° C. to 200 ° C. at a heating rate of 10 ° C./min using DSC (trade name: DSC1000, manufactured by TA Instruments), the calorific value was 80 J / G.

この導電性接着剤層(c)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.1GPaであった。 When the storage elastic modulus of this conductive adhesive layer (c) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.1 GPa. there were.

上記で得られた絶縁性接着剤層(a)と導電性接着剤層(c)とを、50℃で加熱しながらロールラミネータでラミネートして積層フィルムを得た。次いで、得られた積層フィルムの導電性接着剤層(c)側に、導電性接着剤層(c)上のPETフィルムを剥離した後、上記で得られた絶縁性接着剤層(b)を、50℃で加熱しながらロールラミネータでラミネートして、絶縁性接着剤層(a)の厚みが15μm、導電性接着剤層(c)の厚みが6μm及び絶縁性接着剤層(b)の厚みが2μmの3層構造の回路接続用接着フィルムを得た。   The insulating adhesive layer (a) and conductive adhesive layer (c) obtained above were laminated with a roll laminator while heating at 50 ° C. to obtain a laminated film. Subsequently, after peeling off the PET film on the conductive adhesive layer (c) on the conductive adhesive layer (c) side of the obtained laminated film, the insulating adhesive layer (b) obtained above is applied. Laminating with a roll laminator while heating at 50 ° C., the thickness of the insulating adhesive layer (a) is 15 μm, the thickness of the conductive adhesive layer (c) is 6 μm, and the thickness of the insulating adhesive layer (b) Obtained an adhesive film for circuit connection having a 3-layer structure of 2 μm.

(実施例2)
絶縁性接着剤層(a)の厚みを18μmとし、絶縁性接着剤層(b)の厚みを2μmとし、更に導電性接着剤層(c)の厚みを3μmとした以外は実施例1と同様の工程を経て、3層構造の回路接続用接着フィルムを得た。
(Example 2)
Example 1 except that the thickness of the insulating adhesive layer (a) was 18 μm, the thickness of the insulating adhesive layer (b) was 2 μm, and the thickness of the conductive adhesive layer (c) was 3 μm. Through this process, an adhesive film for circuit connection having a three-layer structure was obtained.

(実施例3)
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)32質量部、ビスフェールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)10質量部、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ社製、商品名:YL980)20質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)35質量部及びシランカップリング剤(日本ユニカー社製、商品名:A187)3質量部を溶剤であるトルエンに溶解し、固形分50質量%の絶縁性接着剤層形成用塗布液を得た。
(Example 3)
Acrylic particle-containing resin (manufactured by Nippon Shokubai Co., Ltd.) in which 32 mass parts of phenoxy resin (manufactured by Union Carbide, trade name: PKHC), 20 mass% of acrylic particles having an average particle diameter of 0.2 μm are dispersed in bisfer A type epoxy resin , Trade name: BPA328) 10 parts by mass, bisphenol A type solid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., trade name: YL980), imidazole curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941) ) 35 parts by mass and 3 parts by mass of a silane coupling agent (manufactured by Nippon Unicar Co., Ltd., trade name: A187) were dissolved in toluene as a solvent to obtain a coating liquid for forming an insulating adhesive layer having a solid content of 50% by mass. .

次いで、この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み18μmの絶縁性接着剤層(a)を形成した。この絶縁性接着剤層(a)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Next, this coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, An insulating adhesive layer (a) having a thickness of 18 μm was formed on the PET film. When the storage elastic modulus of this insulating adhesive layer (a) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

更に、上記絶縁性接着剤層形成用塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み25μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥して、PETフィルム上に厚み2μmの絶縁性接着剤層(b)を形成した。この絶縁性接着剤層(b)の貯蔵弾性率を粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Further, the above coating solution for forming an insulating adhesive layer was applied to a PET film having a thickness of 25 μm, on which one side (the surface on which the coating solution was applied), was applied using a coating apparatus, and the coating solution was applied at 70 ° C. The insulating adhesive layer (b) having a thickness of 2 μm was formed on the PET film by drying with hot air for a minute. When the storage elastic modulus of this insulating adhesive layer (b) was measured using a viscoelasticity measuring device at a heating rate of 10 ° C./min and a frequency of 1 Hz, the storage elastic modulus at 40 ° C. was 0.05 GPa. It was.

次に、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)60質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)12質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)16質量部、シランカップリング剤(日本ユニカー社製 A187)2質量部及びシリコーンゴム(東レダウコーニング社製、商品名:EP2100)10質量部を溶剤であるトルエンに溶解し、固形分50質量%の接着剤溶液を調整した。   Next, an acrylic particle-containing resin (Nippon Catalyst Co., Ltd.) in which 20% by mass of acrylic particles having an average particle size of 0.2 μm are dispersed in 60 parts by mass of a phenoxy resin (manufactured by Union Carbide, trade name: PKHC) and a bisphenol A type epoxy resin. 12 parts by mass, trade name: BPA 328), 16 parts by mass of imidazole-based curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941), 2 parts by mass of silane coupling agent (A187, manufactured by Nihon Unicar) and silicone 10 parts by mass of rubber (trade name: EP2100, manufactured by Toray Dow Corning Co., Ltd.) was dissolved in toluene as a solvent to prepare an adhesive solution having a solid content of 50% by mass.

この接着剤溶液100質量部に、ポリスチレン系核体(直径:2.8μm)の表面に、Ni層とその外周側にAu層とを形成した導電粒子(平均粒径:3μm)35質量部を分散して導電性接着剤層形成用塗布液を得た。   To 100 parts by mass of this adhesive solution, 35 parts by mass of conductive particles (average particle diameter: 3 μm) in which a Ni layer and an Au layer are formed on the outer peripheral side on the surface of a polystyrene core (diameter: 2.8 μm) Dispersed to obtain a coating solution for forming a conductive adhesive layer.

この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み3μmの導電性接着剤層(c)を形成した。この導電性接着剤層(c)の発熱量をDSCを用いて昇温速度10℃/分で25℃〜200℃まで測定したところ、発熱量は、80J/gであった。   This coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and then dried with hot air at 70 ° C. for 10 minutes, whereby PET film A conductive adhesive layer (c) having a thickness of 3 μm was formed thereon. When the calorific value of this conductive adhesive layer (c) was measured from 25 ° C. to 200 ° C. at a rate of temperature rise of 10 ° C./min using DSC, the calorific value was 80 J / g.

上記で得られた導電性接着剤層(c)を100℃で30分間熱風乾燥することにより、硬化反応の30%が終了した導電性接着剤層(c)とした。この導電性接着剤層(c)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.5GPaであった。   The conductive adhesive layer (c) obtained above was dried with hot air at 100 ° C. for 30 minutes to obtain a conductive adhesive layer (c) in which 30% of the curing reaction was completed. When the storage elastic modulus of this conductive adhesive layer (c) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.5 GPa. there were.

上記で得られた絶縁性接着剤層(a)と導電性接着剤層(c)とを、50℃で加熱しながらロールラミネータでラミネートして積層フィルムを得た。次いで、得られた積層フィルムの導電性接着剤層(c)側に、導電性接着剤層(c)上のPETフィルムを剥離した後、上記で得られた絶縁性接着剤層(b)を、50℃で加熱しながらロールラミネータでラミネートして、絶縁性接着剤層(a)の厚みが18μm、導電性接着剤層(c)の厚みが3μm及び絶縁性接着剤層(b)の厚みが2μmの3層構造の回路接続用接着フィルムを得た。   The insulating adhesive layer (a) and conductive adhesive layer (c) obtained above were laminated with a roll laminator while heating at 50 ° C. to obtain a laminated film. Subsequently, after peeling off the PET film on the conductive adhesive layer (c) on the conductive adhesive layer (c) side of the obtained laminated film, the insulating adhesive layer (b) obtained above is applied. Laminating with a roll laminator while heating at 50 ° C., the thickness of the insulating adhesive layer (a) is 18 μm, the thickness of the conductive adhesive layer (c) is 3 μm, and the thickness of the insulating adhesive layer (b) Obtained an adhesive film for circuit connection having a 3-layer structure of 2 μm.

(実施例4)
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)32質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)10質量部、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ社製、商品名:YL980)20質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)35質量部及びシランカップリング剤(日本ユニカー社製、商品名:A187)3質量部を溶剤であるトルエンに溶解し、固形分50質量%の絶縁性接着剤層形成用塗布液を得た。
Example 4
Phenoxy resin (Union Carbide, trade name: PKHC) 32 parts by mass, bisphenol A epoxy resin having an average particle diameter of 0.2 μm dispersed in 20% by mass of acrylic particle-containing resin (manufactured by Nippon Shokubai Co., Ltd., Product name: BPA 328) 10 parts by mass, bisphenol A type solid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product name: YL980), 20 parts by mass, imidazole-based curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941) 35 parts by mass and 3 parts by mass of a silane coupling agent (trade name: A187, manufactured by Nippon Unicar Co., Ltd.) were dissolved in toluene as a solvent to obtain a coating liquid for forming an insulating adhesive layer having a solid content of 50% by mass.

次いで、この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み18μmの絶縁性接着剤層(a)を形成した。この絶縁性接着剤層(a)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Next, this coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, An insulating adhesive layer (a) having a thickness of 18 μm was formed on the PET film. When the storage elastic modulus of this insulating adhesive layer (a) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

更に、上記絶縁性接着剤層形成用塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み25μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥して、PETフィルム上に厚み2μmの絶縁性接着剤層(b)を形成した。この絶縁性接着剤層(b)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Further, the above coating solution for forming an insulating adhesive layer was applied to a PET film having a thickness of 25 μm, on which one side (the surface on which the coating solution was applied), was applied using a coating apparatus, and the coating solution was applied at 70 ° C. The insulating adhesive layer (b) having a thickness of 2 μm was formed on the PET film by drying with hot air for a minute. When the storage elastic modulus of this insulating adhesive layer (b) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

次に、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)60質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)12質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)16質量部、シランカップリング剤(日本ユニカー社製、商品名:A187)2質量部及びシリコーンゴム(東レダウコーニング社製、商品名:EP2100)10質量部を溶剤であるトルエンに溶解し、固形分50質量%の接着剤溶液を調整した。   Next, an acrylic particle-containing resin (Nippon Catalyst Co., Ltd.) in which 20% by mass of acrylic particles having an average particle size of 0.2 μm are dispersed in 60 parts by mass of a phenoxy resin (manufactured by Union Carbide, trade name: PKHC) and a bisphenol A type epoxy resin. 12 parts by mass, product name: BPA 328), 16 parts by mass of imidazole curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941), silane coupling agent (trade name: A187, Nihon Unicar) Part by mass and 10 parts by mass of silicone rubber (trade name: EP2100, manufactured by Toray Dow Corning) were dissolved in toluene as a solvent to prepare an adhesive solution having a solid content of 50% by mass.

この接着剤溶液100質量部に、ポリスチレン系核体(直径:2.8μm)の表面に、Ni層とその外周側にAu層とを形成した導電粒子(平均粒径:3μm)35質量部を分散して導電性接着剤層形成用塗布液を得た。   To 100 parts by mass of this adhesive solution, 35 parts by mass of conductive particles (average particle diameter: 3 μm) in which a Ni layer and an Au layer are formed on the outer peripheral side on the surface of a polystyrene core (diameter: 2.8 μm) Dispersed to obtain a coating solution for forming a conductive adhesive layer.

この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み3μmの導電性接着剤層(c)を形成した。この導電性接着剤層(c)の発熱量を、DSCを用いて昇温速度10℃/分で25℃〜200℃まで測定したところ、発熱量は、80J/gであった。   This coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and then dried with hot air at 70 ° C. for 10 minutes, whereby PET film A conductive adhesive layer (c) having a thickness of 3 μm was formed thereon. When the calorific value of this conductive adhesive layer (c) was measured from 25 ° C. to 200 ° C. at a heating rate of 10 ° C./min using DSC, the calorific value was 80 J / g.

上記で得られた導電性接着剤層(c)を150℃で30分間熱風乾燥することにより、硬化反応の100%が終了した導電性接着剤層(c)とした。この導電性接着剤層(c)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、1.4GPaであった。   The conductive adhesive layer (c) obtained above was dried with hot air at 150 ° C. for 30 minutes to obtain a conductive adhesive layer (c) in which 100% of the curing reaction was completed. When the storage elastic modulus of this conductive adhesive layer (c) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 1.4 GPa. there were.

上記で得られた絶縁性接着剤層(a)と導電性接着剤層(c)とを、50℃で加熱しながらロールラミネータでラミネートして積層フィルムを得た。次いで、得られた積層フィルムの導電性接着剤層(c)側に、導電性接着剤層(c)上のPETフィルムを剥離した後、上記で得られた絶縁性接着剤層(b)を、50℃で加熱しながらロールラミネータでラミネートして、絶縁性接着剤層(a)の厚みが18μm、導電性接着剤層(c)の厚みが3μm及び絶縁性接着剤層(b)の厚みが2μmの3層構造の回路接続用接着フィルムを得た。   The insulating adhesive layer (a) and conductive adhesive layer (c) obtained above were laminated with a roll laminator while heating at 50 ° C. to obtain a laminated film. Subsequently, after peeling off the PET film on the conductive adhesive layer (c) on the conductive adhesive layer (c) side of the obtained laminated film, the insulating adhesive layer (b) obtained above is applied. Laminating with a roll laminator while heating at 50 ° C., the thickness of the insulating adhesive layer (a) is 18 μm, the thickness of the conductive adhesive layer (c) is 3 μm, and the thickness of the insulating adhesive layer (b) Obtained an adhesive film for circuit connection having a 3-layer structure of 2 μm.

(比較例1)
絶縁性接着剤層(a)の厚みを13μmとし、絶縁性接着剤層(b)の厚みを2μmとし、更に導電性接着剤層(c)の厚みを8μmとした以外は実施例1と同様の工程を経て、3層構造の回路接続用接着フィルムを得た。
(Comparative Example 1)
Example 1 except that the thickness of the insulating adhesive layer (a) was 13 μm, the thickness of the insulating adhesive layer (b) was 2 μm, and the thickness of the conductive adhesive layer (c) was 8 μm. Through this process, an adhesive film for circuit connection having a three-layer structure was obtained.

(比較例2)
絶縁性接着剤層(a)の厚みを13μmとし、絶縁性接着剤層(b)の厚みを2μmとし、更に導電性接着剤層(c)の厚みを8μmとした以外は実施例4と同様の工程を経て、3層構造の回路接続用接着フィルムを得た。
(Comparative Example 2)
Example 4 except that the thickness of the insulating adhesive layer (a) was 13 μm, the thickness of the insulating adhesive layer (b) was 2 μm, and the thickness of the conductive adhesive layer (c) was 8 μm. Through this process, an adhesive film for circuit connection having a three-layer structure was obtained.

(比較例3)
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)32質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)10質量部、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ社製、商品名:YL980)20質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)35質量部及びシランカップリング剤(日本ユニカー社製、商品名:A187)3質量部を溶剤であるトルエンに溶解し、固形分50質量%の絶縁性接着剤層形成用塗布液を得た。
(Comparative Example 3)
Phenoxy resin (Union Carbide, trade name: PKHC) 32 parts by mass, bisphenol A epoxy resin having an average particle diameter of 0.2 μm dispersed in 20% by mass of acrylic particle-containing resin (manufactured by Nippon Shokubai Co., Ltd., Product name: BPA 328) 10 parts by mass, bisphenol A type solid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product name: YL980), 20 parts by mass, imidazole-based curing agent (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name: Novacure HX-3941) 35 parts by mass and 3 parts by mass of a silane coupling agent (trade name: A187, manufactured by Nippon Unicar Co., Ltd.) were dissolved in toluene as a solvent to obtain a coating liquid for forming an insulating adhesive layer having a solid content of 50% by mass.

次いで、この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み15μmの絶縁性接着剤層(a)を形成した。この絶縁性接着剤層(a)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Next, this coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, An insulating adhesive layer (a) having a thickness of 15 μm was formed on the PET film. When the storage elastic modulus of this insulating adhesive layer (a) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

更に、上記絶縁性接着剤層形成用塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み25μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥して、PETフィルム上に厚み2μmの絶縁性接着剤層(b)を形成した。この絶縁性接着剤層(b)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。   Further, the above coating solution for forming an insulating adhesive layer was applied to a PET film having a thickness of 25 μm, on which one side (the surface on which the coating solution was applied), was applied using a coating apparatus, and the coating solution was applied at 70 ° C. The insulating adhesive layer (b) having a thickness of 2 μm was formed on the PET film by drying with hot air for a minute. When the storage elastic modulus of this insulating adhesive layer (b) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

次に、フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)32質量部、ビスフェノールA型エポキシ樹脂中に平均粒径0.2μmのアクリル粒子が20質量%分散されたアクリル粒子含有樹脂(日本触媒社製、商品名:BPA328)10質量部、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ社製、商品名:YL980)20質量部、イミダゾール系硬化剤(旭化成工業社製、商品名:ノバキュアHX−3941)35質量部及びシランカップリング剤(日本ユニカー社製、商品名:A187)3質量部を溶剤であるトルエンに溶解し、固形分50質量%の接着剤溶液を調整した。   Next, 32 parts by mass of phenoxy resin (trade name: PKHC, manufactured by Union Carbide), an acrylic particle-containing resin (Nippon Catalyst Co., Ltd.) in which 20% by mass of acrylic particles having an average particle size of 0.2 μm are dispersed in a bisphenol A type epoxy resin. Product name: BPA328) 10 parts by mass, bisphenol A type solid epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., product name: YL980), 20 parts by mass, imidazole curing agent (Asahi Kasei Kogyo Co., Ltd., product name: NovaCure HX) -3941) 35 parts by mass and 3 parts by mass of a silane coupling agent (manufactured by Nihon Unicar Co., Ltd., trade name: A187) were dissolved in toluene as a solvent to prepare an adhesive solution having a solid content of 50% by mass.

この接着剤溶液100質量部に、ポリスチレン系核体(直径:2.8μm)の表面に、Ni層とその外周側にAu層とを形成した導電粒子(平均粒径:3μm)35質量部を分散して導電性接着剤層形成用塗布液を得た。   To 100 parts by mass of this adhesive solution, 35 parts by mass of conductive particles (average particle diameter: 3 μm) in which a Ni layer and an Au layer are formed on the outer peripheral side on the surface of a polystyrene core (diameter: 2.8 μm) Dispersed to obtain a coating solution for forming a conductive adhesive layer.

この塗布液を、片面(塗布液を塗布する面)に離型処理が施された厚み50μmのPETフィルムに塗工装置を用いて塗布し、70℃で10分間熱風乾燥することにより、PETフィルム上に厚み6μmの導電性接着剤層(c)を形成した。この導電性接着剤層(c)の発熱量をDSCを用いて昇温速度10℃/分で25℃〜200℃まで測定したところ、発熱量は、180J/gであった。   This coating solution is applied to a PET film having a thickness of 50 μm on one side (the surface to which the coating solution is applied) using a coating apparatus, and then dried with hot air at 70 ° C. for 10 minutes, whereby PET film A conductive adhesive layer (c) having a thickness of 6 μm was formed thereon. When the calorific value of this conductive adhesive layer (c) was measured from 25 ° C. to 200 ° C. at a heating rate of 10 ° C./min using DSC, the calorific value was 180 J / g.

この導電性接着剤層(c)の貯蔵弾性率を、粘弾性測定装置を用いて昇温速度10℃/分、周波数:1Hzで測定したところ、40℃における貯蔵弾性率は、0.05GPaであった。 When the storage elastic modulus of this conductive adhesive layer (c) was measured at a rate of temperature increase of 10 ° C./min and a frequency of 1 Hz using a viscoelasticity measuring device, the storage elastic modulus at 40 ° C. was 0.05 GPa. there were.

上記で得られた絶縁性接着剤層(a)と導電性接着剤層(c)とを、50℃で加熱しながらロールラミネータでラミネートして積層フィルムを得た。次いで、得られた積層フィルムの導電性接着剤層(c)側に、導電性接着剤層(c)上のPETフィルムを剥離した後、上記で得られた絶縁性接着剤層(b)を、50℃で加熱しながらロールラミネータでラミネートして、絶縁性接着剤層(a)の厚みが15μm、導電性接着剤層(c)の厚みが6μm及び絶縁性接着剤層(b)の厚みが2μmの3層構造の回路接続用接着フィルムを得た。   The insulating adhesive layer (a) and conductive adhesive layer (c) obtained above were laminated with a roll laminator while heating at 50 ° C. to obtain a laminated film. Subsequently, after peeling off the PET film on the conductive adhesive layer (c) on the conductive adhesive layer (c) side of the obtained laminated film, the insulating adhesive layer (b) obtained above is applied. Laminating with a roll laminator while heating at 50 ° C., the thickness of the insulating adhesive layer (a) is 15 μm, the thickness of the conductive adhesive layer (c) is 6 μm, and the thickness of the insulating adhesive layer (b) Obtained an adhesive film for circuit connection having a 3-layer structure of 2 μm.

(比較例4)
絶縁性接着剤層(a)の厚みを18μmとし、絶縁性接着剤層(b)の厚みを2μmとし、更に導電性接着剤層(c)の厚みを3μmとした以外は比較例3と同様の工程を経て、3層構造の回路接続用接着フィルムを得た。
(Comparative Example 4)
Comparative Example 3 except that the thickness of the insulating adhesive layer (a) was 18 μm, the thickness of the insulating adhesive layer (b) was 2 μm, and the thickness of the conductive adhesive layer (c) was 3 μm. Through this process, an adhesive film for circuit connection having a three-layer structure was obtained.

[粒子捕捉数の測定]
上記実施例及び比較例で作製した回路接続用接着フィルムを用いて、金バンプ(面積:30μm×50μm、バンプ間スペース:12μm、バンプ高さ:15μm、バンプ数:300)付きチップ(1.2mm×19mm、厚み:500μm)とITO回路付きガラス基板(回路厚み:0.15μm、ガラス基板厚み:0.5mm)の接続を、以下に示すように行った。
[Measurement of the number of trapped particles]
Using the adhesive film for circuit connection prepared in the above examples and comparative examples, a chip (1.2 mm) with gold bumps (area: 30 μm × 50 μm, space between bumps: 12 μm, bump height: 15 μm, number of bumps: 300) × 19 mm, thickness: 500 μm) and a glass substrate with an ITO circuit (circuit thickness: 0.15 μm, glass substrate thickness: 0.5 mm) were connected as shown below.

まず、回路接続用接着フィルム(1.5mm×20mm)を、ITO回路付きガラス基板に80℃、0.98MPa(10kgf/cm)の条件で2秒間加熱加圧することで貼り付けた。このとき、3層構造の回路接続用接着フィルムは、絶縁性接着剤層(b)を、当該絶縁性接着剤層(b)上のPETフィルムを剥離した後にガラス基板に貼り付けた。 First, an adhesive film for circuit connection (1.5 mm × 20 mm) was attached to a glass substrate with an ITO circuit by heating and pressing for 2 seconds under the conditions of 80 ° C. and 0.98 MPa (10 kgf / cm 2 ). At this time, in the adhesive film for circuit connection having a three-layer structure, the insulating adhesive layer (b) was attached to the glass substrate after the PET film on the insulating adhesive layer (b) was peeled off.

次いで、回路接続用接着フィルムの絶縁性接着剤層(a)上のPETフィルムを剥離し、チップのバンプとITO回路付きガラス基板との位置合わせを行った後、190℃、40g/バンプ、10秒間の条件でチップ上方から加熱、加圧を行い絶縁性接着剤層(a)をチップに貼り付け、回路接続用接着フィルムを介したチップとガラス基板の本接続を行った。   Next, the PET film on the insulating adhesive layer (a) of the adhesive film for circuit connection was peeled off, and after aligning the bumps of the chip and the glass substrate with ITO circuit, 190 ° C., 40 g / bump, 10 The insulating adhesive layer (a) was affixed to the chip by heating and pressing from above the chip for 2 seconds, and the chip and the glass substrate were connected through the adhesive film for circuit connection.

このとき、金バンプに捕捉される導電粒子の数を、顕微鏡((株)ニコン社製、商品名:ECLIPSE L200)を用いて倍率200〜500倍で測定した。これにより、上記実施例及び比較例で作製した回路接続用接着フィルムのそれぞれについて、金バンプの粒子捕捉数の最小値を求めた。その結果を表1に示す。   At this time, the number of conductive particles captured by the gold bumps was measured at a magnification of 200 to 500 times using a microscope (trade name: ECLIPSE L200, manufactured by Nikon Corporation). Thereby, the minimum value of the particle | grain capture | acquisition number of a gold bump was calculated | required about each of the adhesive film for circuit connection produced by the said Example and comparative example. The results are shown in Table 1.

[絶縁抵抗値の測定]
上記実施例及び比較例で作製した回路接続用接着フィルムを用いて、金バンプ(面積:30μm×100μm、バンプ間スペース:10μm、高さ:15μm、バンプ数:472)付きチップ(1.9mm×15mm、厚み:500μm)と、ITO回路付きガラス基板(回路厚み:0.15μm、ガラス基板厚み:0.5mm)の接続を、以下に示すように行った。
[Measurement of insulation resistance]
Using the adhesive films for circuit connection produced in the above-mentioned examples and comparative examples, a chip (1.9 mm ×× with gold bumps (area: 30 μm × 100 μm, space between bumps: 10 μm, height: 15 μm, number of bumps: 472)) 15 mm, thickness: 500 μm) and a glass substrate with an ITO circuit (circuit thickness: 0.15 μm, glass substrate thickness: 0.5 mm) were connected as shown below.

まず、回路接続用接着フィルム(2.0mm×20mm)を、ITO回路付きガラス基板に、80℃、0.98MPa(10kgf/cm)の条件で2秒間加熱加圧して貼り付けた。このとき、3層構造の回路接続用接着フィルムは、絶縁性接着剤層(b)を、当該絶縁性接着剤層(b)上のPETフィルムを剥離した後にガラス基板に貼り付けた。 First, an adhesive film for circuit connection (2.0 mm × 20 mm) was applied to a glass substrate with an ITO circuit by heating and pressing for 2 seconds under the conditions of 80 ° C. and 0.98 MPa (10 kgf / cm 2 ). At this time, in the adhesive film for circuit connection having a three-layer structure, the insulating adhesive layer (b) was attached to the glass substrate after the PET film on the insulating adhesive layer (b) was peeled off.

次いで、回路接続用接着フィルムの絶縁性接着剤層(a)上のPETフィルムを剥離し、チップのバンプとITO回路付きガラス基板との位置合わせを行った後、190℃、40g/バンプ、10秒間の条件でチップ上方から加熱、加圧を行い絶縁性接着剤層(a)をチップに貼り付け、回路接続用接着フィルムを介したチップとガラス基板の本接続を行った。   Next, the PET film on the insulating adhesive layer (a) of the adhesive film for circuit connection was peeled off, and after aligning the bumps of the chip and the glass substrate with ITO circuit, 190 ° C., 40 g / bump, 10 The insulating adhesive layer (a) was affixed to the chip by heating and pressing from above the chip for 2 seconds, and the chip and the glass substrate were connected through the adhesive film for circuit connection.

こうして得られた接続サンプルについて、以下の通電耐湿試験を行った。すなわち、接続サンプルに対して、85℃、85%RHの環境下でDC15Vを500時間印加する処理を行った。   The connection sample thus obtained was subjected to the following current and moisture resistance test. That is, the process which applied DC15V for 500 hours in the environment of 85 degreeC and 85% RH was performed with respect to the connection sample.

通電耐湿試験後の接続サンプルの絶縁抵抗値について、絶縁抵抗計((株)アドバンテスト社製、商品名:R8340A)を用いて、隣接するバンプ間ごとの絶縁抵抗を室温中で測定電圧50V、電圧印加時間60秒の条件で測定した。これにより、隣接するバンプ間の絶縁特性が良好になっているかを判断した。この場合、絶縁抵抗値で1×10Ω以上を良好な絶縁特性とし、全ての隣接するバンプ間の絶縁抵抗値が1×10Ω以上のものをA、絶縁抵抗値が1×10Ω未満の隣接するバンプ間を含むものをBとして評価した。その結果を表1に示す。 About the insulation resistance value of the connection sample after the energization and moisture resistance test, an insulation resistance meter (trade name: R8340A, manufactured by Advantest Co., Ltd.) was used to measure the insulation resistance between adjacent bumps at room temperature at a voltage of 50V. Measurement was performed under the condition of an application time of 60 seconds. Thereby, it was judged whether the insulation characteristic between adjacent bumps was good. In this case, an insulation resistance value of 1 × 10 8 Ω or more is a good insulation characteristic, an insulation resistance value between all adjacent bumps of 1 × 10 8 Ω or more is A, and an insulation resistance value is 1 × 10 8. An evaluation including B between adjacent bumps of less than Ω was evaluated as B. The results are shown in Table 1.

[接続抵抗値の測定]
上記実施例及び比較例で作製した回路接続用接着フィルムを用いて、金バンプ(面積:30μm×50μm、バンプ間スペース:12μm、バンプ高さ:15μm、バンプ数:300)付きチップ(1.2×19mm、厚み:500μm)とITO回路付きガラス基板(回路厚み:0.15μm、ガラス基板厚み:0.5mm)の接続を、以下に示すように行った。
[Measurement of connection resistance]
Using the adhesive films for circuit connection prepared in the above examples and comparative examples, a chip (1.2) with gold bumps (area: 30 μm × 50 μm, space between bumps: 12 μm, bump height: 15 μm, number of bumps: 300) × 19 mm, thickness: 500 μm) and a glass substrate with an ITO circuit (circuit thickness: 0.15 μm, glass substrate thickness: 0.5 mm) were connected as shown below.

まず、回路接続用接着フィルム(1.5mm×20mm)を、ITO回路付きガラス基板に80℃、0.98MPa(10kgf/cm)の条件で2秒間加熱加圧して貼り付けた。このとき、3層構造の回路接続用接着フィルムは、絶縁性接着剤層(b)を、当該絶縁性接着剤層(b)上のPETフィルムを剥離した後にガラス基板に貼り付けた。 First, an adhesive film for circuit connection (1.5 mm × 20 mm) was applied to a glass substrate with an ITO circuit by heating and pressing for 2 seconds under the conditions of 80 ° C. and 0.98 MPa (10 kgf / cm 2 ). At this time, in the adhesive film for circuit connection having a three-layer structure, the insulating adhesive layer (b) was attached to the glass substrate after the PET film on the insulating adhesive layer (b) was peeled off.

次いで、回路接続用接着フィルムの絶縁性接着剤層(a)上のPETフィルムを剥離し、チップのバンプとITO回路付きガラス基板との位置合わせを行った後、190℃、40g/バンプ、10秒間の条件でチップ上方から加熱、加圧を行い絶縁性接着剤層(a)をチップに貼り付け、回路接続用接着フィルムを介したチップとガラス基板との本接続を行った。   Next, the PET film on the insulating adhesive layer (a) of the adhesive film for circuit connection was peeled off, and after aligning the bumps of the chip and the glass substrate with ITO circuit, 190 ° C., 40 g / bump, 10 The insulating adhesive layer (a) was affixed to the chip by heating and pressurizing from the top of the chip under the conditions for seconds, and the main connection between the chip and the glass substrate through the adhesive film for circuit connection was performed.

こうして得られた接続サンプルについて、以下の耐湿試験を行った。すなわち、接続サンプルを85℃、85%RHの環境下で1000時間放置する処理を行った。   The connection samples thus obtained were subjected to the following moisture resistance test. That is, the connection sample was left to stand for 1000 hours in an environment of 85 ° C. and 85% RH.

耐湿試験後の接続サンプルの接続抵抗値について、デジタルマルチメータ((株)アドバンテスト社製、商品名:R6451A)を用いて1バンプごとの接続抵抗を4端子法で測定した。これにより、導通が良好になっているかを判断した。この場合、接続抵抗値が20Ω以下を良好な導通とし、全てのバンプの接続抵抗値が20Ω以下のものをA、接続抵抗値が20Ωを越えるバンプを含むものをBとして評価した。その結果を表1に示す。なお、表1中の「オープン」とは、接続抵抗値を測定できなかったことを表示するものである。   About the connection resistance value of the connection sample after a moisture-proof test, the connection resistance for every bump was measured by the 4-terminal method using the digital multimeter (Corporation | KK ADVANTEST Co., Ltd. make, brand name: R6451A). Thereby, it was judged whether conduction was good. In this case, a connection resistance value of 20Ω or less was evaluated as good continuity, all bumps having connection resistance values of 20Ω or less were evaluated as A, and those including bumps having connection resistance values exceeding 20Ω were evaluated as B. The results are shown in Table 1. “Open” in Table 1 indicates that the connection resistance value could not be measured.

Figure 2009194359
Figure 2009194359

表1に示されるように、導電性接着剤層の厚みが導電粒子の平均粒径の2倍以下であり、かつ導電性接着剤層の40℃での貯蔵弾性率が0.1〜1.5GPaである、実施例1〜4の回路接続用接着フィルムでは、電極上の粒子捕捉数が十分であり、通電耐湿試験後の絶縁抵抗値及び耐湿試験後の接続抵抗値がともに良好であることが確認された。   As shown in Table 1, the thickness of the conductive adhesive layer is 2 times or less the average particle diameter of the conductive particles, and the storage elastic modulus at 40 ° C. of the conductive adhesive layer is 0.1 to 1. In the adhesive films for circuit connection of Examples 1 to 4 that are 5 GPa, the number of particles captured on the electrodes is sufficient, and both the insulation resistance value after the energization moisture resistance test and the connection resistance value after the moisture resistance test are good. Was confirmed.

一方、導電性接着剤層の厚みが導電粒子の平均粒径の2倍より大きい比較例1及び比較例2の回路接続用接着フィルムでは、通電耐湿試験後の絶縁抵抗値、耐湿試験後の接続抵抗値が劣ることが確認された。更に、導電性接着剤層の40℃での貯蔵弾性率が0.1GPa未満である比較例3及び比較例4の回路接続用接着フィルムでは、耐湿試験後の接続抵抗値及び粒子捕捉数が劣ることが確認された。   On the other hand, in the adhesive films for circuit connection of Comparative Example 1 and Comparative Example 2 in which the thickness of the conductive adhesive layer is larger than twice the average particle diameter of the conductive particles, the insulation resistance value after the energization and moisture resistance test and the connection after the moisture resistance test It was confirmed that the resistance value was inferior. Furthermore, in the adhesive films for circuit connection of Comparative Example 3 and Comparative Example 4 in which the storage elastic modulus at 40 ° C. of the conductive adhesive layer is less than 0.1 GPa, the connection resistance value and the number of particles trapped after the moisture resistance test are inferior. It was confirmed.

以上の結果から、本発明に係る回路接続用接着フィルムによれば、対向する回路電極間において十分な数の導電粒子を確実に捕捉することができることにより、高分解能化が可能であると共に、長期接続信頼性に優れることが確認された。   From the above results, according to the adhesive film for circuit connection according to the present invention, it is possible to reliably capture a sufficient number of conductive particles between the facing circuit electrodes, thereby enabling high resolution and long-term use. It was confirmed that the connection reliability was excellent.

本発明に係る回路接続用接着フィルムの好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the adhesive film for circuit connection which concerns on this invention. 本発明に係る回路部材の接続構造の好適な一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing a preferred embodiment of a circuit member connection structure according to the present invention.

符号の説明Explanation of symbols

1…導電粒子、2…接着剤、3…導電性接着剤層、2a〜5a…硬化物、4…第一の絶縁性接着剤層,5…第二の絶縁性接着剤層、10…第一の回路部材、11…第一の基板、12…第一の回路電極、20…第二の回路部材、21…第二の基板、22…第二の回路電極、100…回路接続用接着フィルム、100a…回路接続部材、200…回路部材の接続構造、h1…第一の回路電極の高さ、h2…第二の回路電極の高さ。   DESCRIPTION OF SYMBOLS 1 ... Conductive particle, 2 ... Adhesive, 3 ... Conductive adhesive layer, 2a-5a ... Hardened | cured material, 4 ... 1st insulating adhesive layer, 5 ... 2nd insulating adhesive layer, 10 ... 1st One circuit member, 11 ... first substrate, 12 ... first circuit electrode, 20 ... second circuit member, 21 ... second substrate, 22 ... second circuit electrode, 100 ... adhesive film for circuit connection , 100a: circuit connection member, 200: connection structure of circuit members, h1: height of the first circuit electrode, h2: height of the second circuit electrode.

Claims (7)

第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極及び前記第二の回路電極を対向配置された状態で接続するための回路接続用接着フィルムであって、
導電粒子及び接着剤を含有する導電性接着剤層と、
前記導電性接着剤層の片面に形成された絶縁性の第一の絶縁性接着剤層と、
前記導電性接着剤層の前記第一の絶縁性接着剤層が形成された面とは反対側の面に形成された絶縁性の第二の絶縁性接着剤層と、を少なくとも有し、
前記導電性接着剤層の厚みが前記導電粒子の平均粒径の2倍以下であり、かつ前記導電性接着剤層の40℃での貯蔵弾性率が0.1〜1.5GPaである、回路接続用接着フィルム。
A first circuit member having a first circuit electrode formed on the main surface of the first substrate; and a second circuit member having a second circuit electrode formed on the main surface of the second substrate. An adhesive film for circuit connection for connecting the first circuit electrode and the second circuit electrode in a state of being opposed to each other,
A conductive adhesive layer containing conductive particles and an adhesive;
An insulating first insulating adhesive layer formed on one side of the conductive adhesive layer;
An insulating second insulating adhesive layer formed on a surface opposite to the surface on which the first insulating adhesive layer of the conductive adhesive layer is formed, and
A circuit in which the thickness of the conductive adhesive layer is not more than twice the average particle size of the conductive particles, and the storage elastic modulus at 40 ° C. of the conductive adhesive layer is 0.1 to 1.5 GPa. Adhesive film for connection.
前記接着剤が熱又は光によって硬化する硬化性樹脂を含有し、
前記導電性接着剤層がフィルム形成性高分子を更に含有し、
前記第一の絶縁性接着剤層及び前記第二の絶縁性接着剤層の40℃での貯蔵弾性率がそれぞれ0.1GPa未満であり、
前記第一の絶縁性接着剤層及び前記第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmである、請求項1記載の回路接続用接着フィルム。
The adhesive contains a curable resin that is cured by heat or light,
The conductive adhesive layer further comprises a film-forming polymer;
Each of the first insulating adhesive layer and the second insulating adhesive layer has a storage elastic modulus at 40 ° C. of less than 0.1 GPa,
The adhesive film for circuit connection according to claim 1, wherein the thickness of at least one of the first insulating adhesive layer and the second insulating adhesive layer is 0.1 to 5.0 μm.
前記導電性接着剤層は、示差走査熱分析において発熱量25〜130J/gを与えるものであり、かつ該発熱量に基づく硬化反応の反応率20〜100%を与えるものである、請求項1又は2記載の回路接続用接着フィルム。   The conductive adhesive layer gives a calorific value of 25 to 130 J / g in differential scanning calorimetry, and gives a curing reaction rate of 20 to 100% based on the calorific value. Or the adhesive film for circuit connection of 2. 第一の基板の主面上に第一の回路電極が形成された第一の回材部材と、
第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、
前記第一の回路部材及び前記第二の回路部材の間に配置され、請求項1〜3のいずれか一項記載の回路接続用接着フィルムの硬化物からなる回路接続部材と、を備え、
前記回路接続部材によって、前記第一の回路電極と前記第二の回路電極とが対向配置された状態で電気的に接続されている、回路部材の接続構造。
A first circulating member in which a first circuit electrode is formed on the main surface of the first substrate;
A second circuit member having a second circuit electrode formed on the main surface of the second substrate;
A circuit connection member that is disposed between the first circuit member and the second circuit member, and is made of a cured product of the adhesive film for circuit connection according to any one of claims 1 to 3,
A circuit member connection structure in which the first circuit electrode and the second circuit electrode are electrically connected by the circuit connection member in a state of being opposed to each other.
前記第一の回路電極及び前記第二の回路電極のうちの少なくとも一方の回路電極の高さが3.0μm以下であり、
前記第一の絶縁性接着剤層及び前記第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmであり、
前記回路電極の高さが3.0μm以下である前記回路電極側に、前記層の厚みが0.1〜5.0μmである前記絶縁性接着剤層が配置されている、請求項4記載の回路部材の接続構造。
The height of at least one of the first circuit electrode and the second circuit electrode is 3.0 μm or less,
The thickness of at least one of the first insulating adhesive layer and the second insulating adhesive layer is 0.1 to 5.0 μm,
5. The insulating adhesive layer according to claim 4, wherein the thickness of the layer is 0.1 to 5.0 μm on the circuit electrode side where the height of the circuit electrode is 3.0 μm or less. Circuit member connection structure.
第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、
第二の基板の主面上に第二の回路電極が形成された第二の回路部材と、
前記第一の回路部材及び前記第二の回路部材の間に配置され、請求項1〜3のいずれか一項記載の回路接続用接着フィルムと、を前記第一の回路電極と前記第二の回路電極とが対向配置された状態で加熱及び加圧して、前記第一の回路電極と前記第二の回路電極とを電気的に接続する、回路部材の接続方法。
A first circuit member having a first circuit electrode formed on a main surface of the first substrate;
A second circuit member having a second circuit electrode formed on the main surface of the second substrate;
The adhesive film for circuit connection according to any one of claims 1 to 3, wherein the adhesive film for circuit connection is disposed between the first circuit member and the second circuit member, and the first circuit electrode and the second circuit member. A method for connecting circuit members, wherein the first circuit electrode and the second circuit electrode are electrically connected by heating and pressurizing the circuit electrode so as to face each other.
前記第一回路電極及び第二の回路電極のうち少なくとも一方の回路電極高さが3.0μm以下であり、
前記第一の絶縁性接着剤層及び前記第二の絶縁性接着剤層のうちの少なくとも一方の層の厚みが0.1〜5.0μmであり、
前記回路電極の高さが3.0μm以下である前記回路電極側に、前記層の厚みが0.1〜5.0μmである前記絶縁性接着剤層を配置して加熱及び加圧することにより、前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように前記第一の回路部材と前記第二の回路部材とを接続する、請求項6記載の回路部材の接続方法。
The circuit electrode height of at least one of the first circuit electrode and the second circuit electrode is 3.0 μm or less,
The thickness of at least one of the first insulating adhesive layer and the second insulating adhesive layer is 0.1 to 5.0 μm,
By placing the insulating adhesive layer having a thickness of 0.1 to 5.0 μm on the circuit electrode side where the height of the circuit electrode is 3.0 μm or less, and heating and pressing, The circuit member connection according to claim 6, wherein the first circuit member and the second circuit member are connected such that the first circuit electrode and the second circuit electrode are electrically connected. Method.
JP2008205702A 2008-01-16 2008-08-08 Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same Pending JP2009194359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205702A JP2009194359A (en) 2008-01-16 2008-08-08 Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008006781 2008-01-16
JP2008205702A JP2009194359A (en) 2008-01-16 2008-08-08 Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same

Publications (1)

Publication Number Publication Date
JP2009194359A true JP2009194359A (en) 2009-08-27

Family

ID=41076066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205702A Pending JP2009194359A (en) 2008-01-16 2008-08-08 Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same

Country Status (1)

Country Link
JP (1) JP2009194359A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995563B1 (en) * 2010-05-04 2010-11-19 주식회사 이녹스 Electrical conductive adhesive film for emi shielding
DE102010035277A1 (en) 2009-08-25 2011-03-31 Alps Electric Co., Ltd. Television signal receiving tuner
WO2011055784A1 (en) * 2009-11-05 2011-05-12 日立化成工業株式会社 Thermopolymerization initiator system and adhesive composition
KR101046200B1 (en) * 2010-06-23 2011-07-05 에스디플렉스(주) Method for manufacturing electromagnetic interference shielding film and electromagnetic interference shielding film manufactured by the method
JP2011190339A (en) * 2010-03-15 2011-09-29 Shin-Etsu Chemical Co Ltd Adhesive composition, semiconductor wafer protective film-forming sheet
WO2012066897A1 (en) * 2010-11-16 2012-05-24 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, united object, and process for producing united object
KR101188991B1 (en) 2011-01-24 2012-10-08 도레이첨단소재 주식회사 Adhesive which can be removed by controlled heat treatment and emi shield film using adhesive
CN103636068A (en) * 2011-07-07 2014-03-12 日立化成株式会社 Circuit-connecting material and connected circuit board structure
WO2014046082A1 (en) * 2012-09-18 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
CN103745771A (en) * 2013-12-23 2014-04-23 杨天纬 Wire used for signal transmission aspect
JP2014183266A (en) * 2013-03-21 2014-09-29 Hitachi Chemical Co Ltd Connection method of circuit members
CN105820769A (en) * 2016-04-22 2016-08-03 合肥宝亿自动化科技有限公司 Silicone tape seamless connection end structure
JP2016210997A (en) * 2012-09-18 2016-12-15 デクセリアルズ株式会社 Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
WO2017130789A1 (en) * 2016-01-29 2017-08-03 日立化成株式会社 Adhesive film, production process therefor, adhesive tape, and reel for adhesive film
CN110911866A (en) * 2018-09-14 2020-03-24 玮锋科技股份有限公司 Single-layer particle conductive elastomer and manufacturing method thereof
JP2020123631A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
JP2020123632A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
JP7435001B2 (en) 2020-02-17 2024-02-21 株式会社レゾナック Anisotropic conductive adhesive film, connected structure and manufacturing method thereof
JP7447382B2 (en) 2019-12-02 2024-03-12 株式会社巴川コーポレーション Conductive adhesive sheet for multilayer boards

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JP2003147287A (en) * 2001-11-14 2003-05-21 Hitachi Chem Co Ltd Adhesive film for connecting circuit
JP2005200521A (en) * 2004-01-15 2005-07-28 Sony Chem Corp Adhesive film and method of manufacturing adhesive film
WO2007123003A1 (en) * 2006-04-12 2007-11-01 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film, circuit member connecting structure and circuit member connecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JP2003147287A (en) * 2001-11-14 2003-05-21 Hitachi Chem Co Ltd Adhesive film for connecting circuit
JP2005200521A (en) * 2004-01-15 2005-07-28 Sony Chem Corp Adhesive film and method of manufacturing adhesive film
WO2007123003A1 (en) * 2006-04-12 2007-11-01 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film, circuit member connecting structure and circuit member connecting method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035277A1 (en) 2009-08-25 2011-03-31 Alps Electric Co., Ltd. Television signal receiving tuner
CN102597044A (en) * 2009-11-05 2012-07-18 日立化成工业株式会社 Thermopolymerization initiator system and adhesive composition
WO2011055784A1 (en) * 2009-11-05 2011-05-12 日立化成工業株式会社 Thermopolymerization initiator system and adhesive composition
JP2011116977A (en) * 2009-11-05 2011-06-16 Hitachi Chem Co Ltd Thermopolymerization initiator system and adhesive composition
TWI425014B (en) * 2009-11-05 2014-02-01 Hitachi Chemical Co Ltd A thermal polymerization-based initiator system and an adhesive composition
JP2011190339A (en) * 2010-03-15 2011-09-29 Shin-Etsu Chemical Co Ltd Adhesive composition, semiconductor wafer protective film-forming sheet
KR100995563B1 (en) * 2010-05-04 2010-11-19 주식회사 이녹스 Electrical conductive adhesive film for emi shielding
US20130206315A1 (en) * 2010-06-23 2013-08-15 Inktec Co., Ltd. Method for Manufacturing Electromagnetic Interference Shielding Film
WO2011162453A1 (en) * 2010-06-23 2011-12-29 주식회사 잉크테크 Method for manufacturing electromagnetic shielding film and electromagnetic shielding film manufactured thereby
KR101046200B1 (en) * 2010-06-23 2011-07-05 에스디플렉스(주) Method for manufacturing electromagnetic interference shielding film and electromagnetic interference shielding film manufactured by the method
US9167735B2 (en) * 2010-06-23 2015-10-20 Inktec Co., Ltd. Method for manufacturing electromagnetic interference shielding film
WO2012066897A1 (en) * 2010-11-16 2012-05-24 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, united object, and process for producing united object
KR101188991B1 (en) 2011-01-24 2012-10-08 도레이첨단소재 주식회사 Adhesive which can be removed by controlled heat treatment and emi shield film using adhesive
CN103636068A (en) * 2011-07-07 2014-03-12 日立化成株式会社 Circuit-connecting material and connected circuit board structure
JP2016210997A (en) * 2012-09-18 2016-12-15 デクセリアルズ株式会社 Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
WO2014046082A1 (en) * 2012-09-18 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
US10373926B2 (en) 2012-09-18 2019-08-06 Dexerials Corporation Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
JP2014077124A (en) * 2012-09-18 2014-05-01 Dexerials Corp Anisotropic conductive film, method of manufacturing the same, method of manufacturing connector, and connection method
CN104619799A (en) * 2012-09-18 2015-05-13 迪睿合电子材料有限公司 Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
US9960139B2 (en) 2012-09-18 2018-05-01 Dexerials Corporation Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
JP2014183266A (en) * 2013-03-21 2014-09-29 Hitachi Chemical Co Ltd Connection method of circuit members
CN103745771A (en) * 2013-12-23 2014-04-23 杨天纬 Wire used for signal transmission aspect
CN114196334A (en) * 2016-01-29 2022-03-18 昭和电工材料株式会社 Adhesive tape, method for producing same, and reel for adhesive film
CN108603078A (en) * 2016-01-29 2018-09-28 日立化成株式会社 Adhesive film and its manufacturing method, bonding agent band and adhesive film spool
JPWO2017130789A1 (en) * 2016-01-29 2018-11-22 日立化成株式会社 Adhesive film and method for producing the same, adhesive tape, and reel for adhesive film
TWI750149B (en) * 2016-01-29 2021-12-21 日商昭和電工材料股份有限公司 Adhesive tape, manufacturing method thereof, and reel for adhesive film
WO2017130789A1 (en) * 2016-01-29 2017-08-03 日立化成株式会社 Adhesive film, production process therefor, adhesive tape, and reel for adhesive film
CN114262577A (en) * 2016-01-29 2022-04-01 昭和电工材料株式会社 Adhesive tape, method for producing same, and reel for adhesive film
CN105820769A (en) * 2016-04-22 2016-08-03 合肥宝亿自动化科技有限公司 Silicone tape seamless connection end structure
CN110911866A (en) * 2018-09-14 2020-03-24 玮锋科技股份有限公司 Single-layer particle conductive elastomer and manufacturing method thereof
JP2020123631A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
JP2020123632A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
JP7447382B2 (en) 2019-12-02 2024-03-12 株式会社巴川コーポレーション Conductive adhesive sheet for multilayer boards
JP7435001B2 (en) 2020-02-17 2024-02-21 株式会社レゾナック Anisotropic conductive adhesive film, connected structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JP4978493B2 (en) Circuit connection material, connection structure and manufacturing method thereof
JP5581576B2 (en) Flux activator, adhesive resin composition, adhesive paste, adhesive film, semiconductor device manufacturing method, and semiconductor device
JP5441954B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP5029691B2 (en) Film adhesive for circuit connection
JP6208011B2 (en) Circuit connection material and circuit board connection structure
JP4433564B2 (en) Adhesive for circuit connection
JP2012021140A (en) Circuit connecting adhesive film, circuit connecting structure using the same, and connecting method of circuit member
JP2002204052A (en) Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
JP5485222B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2008308682A (en) Circuit connection material
JP5493327B2 (en) Resin composition for sealing filling, semiconductor device and method for manufacturing the same
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP4687576B2 (en) Film adhesive for circuit connection
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP2006028521A (en) Addhesive for circuit connection
JP2010016383A (en) Circuit member connecting adhesive, circuit board, and its manufacturing method
JP2009147361A (en) Adhesive for circuit member connection, circuit board, and manufacturing method thereof
JP4626495B2 (en) Adhesive for circuit connection
JP2005220341A (en) Filler, wiring board using the same, and producing method for the wiring board
JP2003147287A (en) Adhesive film for connecting circuit
JP5223946B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
EP4186937A1 (en) Thermally conductive adhesive sheet and semiconductor device
JP2007277478A (en) Adhesive for connecting circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218