JPH1045877A - Liquid sealing material - Google Patents

Liquid sealing material

Info

Publication number
JPH1045877A
JPH1045877A JP20800896A JP20800896A JPH1045877A JP H1045877 A JPH1045877 A JP H1045877A JP 20800896 A JP20800896 A JP 20800896A JP 20800896 A JP20800896 A JP 20800896A JP H1045877 A JPH1045877 A JP H1045877A
Authority
JP
Japan
Prior art keywords
group
filler
liquid
sealing material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20800896A
Other languages
Japanese (ja)
Inventor
Hideki Goto
英樹 後藤
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP20800896A priority Critical patent/JPH1045877A/en
Publication of JPH1045877A publication Critical patent/JPH1045877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid sealing material useful for producing highly reliable semiconductor packages not causing the generation of peeling and cracks even on pressure cooker tests and thermal shock cycle tests. SOLUTION: This liquid sealing material contains (a) a liquid epoxy resin, (b) an alkylated diaminodiphenylmethane which is an aromatic amine curing agent liquid at the ordinary temperature, (c) a polybutadiene compound having epoxy groups, (d) a silane coupling agent having one or more functional groups selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group and a methacryl group in the molecule, and (e) an inorganic filler 1 produced from a polysilazane or a metal alkoxide as a starting raw material and (f) an inorganic filler 2 having an average particle diameter of 1-10μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の封止に用
いられる液状封止材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid sealing material used for sealing a semiconductor.

【0002】[0002]

【従来の技術】例えば、プラスチックピングリッドアレ
イ(以下、PPGAという)型、プラスチックマルチチ
ップモジュール(以下PMCMという)型半導体等の封
止には液状の封止材料が用いられているが、セラミック
スによる気密封止型に比べて信頼性の点で充分ではな
く、デュアルインライン(以下、DIPという)型に比
べプラスチックパッケージの普及が遅れていた。PPG
A、PMCM型半導体の信頼性低下の原因としては、パ
ッケージ加工された有機のプリント配線基板から湿気が
侵入する、DIP型パッケージのトランスファーモール
ド成形と異なり、無圧下で液状封止材料をパッケージ内
に流入し成形するため樹脂中に気泡が残存して、熱スト
レスが加わった際にクラックが発生する、樹脂と半導体
チップ、有機基板との線膨張係数が異なるために熱スト
レスが加わった際、界面での剥離を生じ湿気の侵入を容
易にしてしまう等の問題が挙げられる。又、基材との線
膨張係数を合わせる為、無機フィラーのサイズ、形状、
含有量を調整して少しでもミスマッチを防ごうとの検討
が多くなされているが、硬化の際の樹脂粘度が下がるこ
とに依る無機フィラーとの分離は避けられず、更に、無
機フィラーにカップリング剤を添加し、処理することで
も目的の効果を達することは出来ない状況であった。
2. Description of the Related Art For example, a liquid sealing material is used for sealing a plastic pin grid array (hereinafter, referred to as PPGA) type or a plastic multi-chip module (hereinafter, referred to as PMCM) type semiconductor. The reliability is not sufficient as compared with the hermetic sealing type, and the spread of the plastic package has been delayed as compared with the dual in-line (hereinafter, referred to as DIP) type. PPG
A. The cause of the decrease in the reliability of PMCM type semiconductors is that unlike liquid transfer molding of DIP type packages, where moisture enters from packaged organic printed wiring boards, liquid sealing material is placed under no pressure in the packages. Bubbles remain in the resin due to inflow and molding, causing cracks when thermal stress is applied.When thermal stress is applied due to the difference in linear expansion coefficient between the resin and semiconductor chip, organic substrate, the interface And the like, which causes peeling of the film and facilitates the invasion of moisture. Also, to match the coefficient of linear expansion with the substrate, the size, shape,
Many studies have been conducted to adjust the content to prevent any mismatch, but separation from the inorganic filler due to the decrease in resin viscosity during curing is inevitable, and furthermore, coupling to the inorganic filler The desired effect could not be achieved even by adding and treating the agent.

【0003】[0003]

【発明が解決しようとする課題】本発明は、プレッシャ
ークッカーテスト(以下、PCTという)や冷熱サイク
ルテスト(以下、T/Cという)等の促進試験において
も不良品が発生せず、半導体の信頼性を大幅に向上でき
る液状の封止材料を提供する。
SUMMARY OF THE INVENTION According to the present invention, defective products are not generated even in accelerated tests such as a pressure cooker test (hereinafter, referred to as PCT) and a thermal cycle test (hereinafter, referred to as T / C), and the reliability of semiconductors is not increased. Provided is a liquid encapsulating material that can significantly improve the performance.

【0004】[0004]

【課題を解決するための手段】本発明は、液状樹脂とシ
リカに代表される従来の無機フィラーを分散、充填させ
たタイプの最大の欠点であった相分離の原因である熱硬
化時の樹脂と無機フィラーが分離するという欠点を補う
ため、調合、攪拌時だけでなく、硬化時点まで液状であ
り、樹脂の硬化と同時に無機化される出発原料としては
液状であるポリシラザン、金属アルコキサイドの無機充
填剤を加えるという従来の考え方とは全く異なる方式を
見出したものである。即ち本発明は、液状エポキシ樹
脂、常温で液体である芳香族アミン系硬化剤、エポキシ
基を有するポリブタジエン化合物、エポキシ基、アミノ
基、メルカプト基、ビニル基、メタクリル基の群から選
ばれる1個以上の官能基を分子内に有するシランカップ
リング剤、ポリシラザン、金属アルコキサイドを出発原
料とする無機充填材1及び平均粒径1〜10μmの無機
充填剤2よりなる液状封止材料であり、更に好ましい態
様は、該芳香族アミン系硬化剤がアルキル化ジアミノジ
フェニルメタンであり、該無機充填剤2が、粒径30μ
m以上のものが全充填材成分中の20重量%以下であ
り、粒径1μm以下のものが全充填材成分中の5〜40
重量%である液状封止材料である。
DISCLOSURE OF THE INVENTION The present invention relates to a thermosetting resin which causes phase separation, which is one of the biggest drawbacks of a type in which a liquid resin and a conventional inorganic filler represented by silica are dispersed and filled. In order to make up for the drawback that the inorganic filler separates from the mixture, not only at the time of mixing and stirring, but also at the time of curing, the starting material which is liquidized and mineralized at the same time as the curing of the resin is a liquid polysilazane, inorganic filler of metal alkoxide. They have found a system completely different from the conventional idea of adding an agent. That is, the present invention relates to a liquid epoxy resin, an aromatic amine-based curing agent which is liquid at room temperature, a polybutadiene compound having an epoxy group, at least one selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group and a methacryl group. A liquid sealing material comprising an inorganic filler 1 starting from a silane coupling agent having a functional group in the molecule, polysilazane, and metal alkoxide, and an inorganic filler 2 having an average particle size of 1 to 10 μm. Is that the aromatic amine-based curing agent is an alkylated diaminodiphenylmethane, and the inorganic filler 2 has a particle size of 30 μm.
m or more in the total filler component is 20% by weight or less, and those having a particle size of 1 μm or less are 5 to 40% in the total filler component.
It is a liquid encapsulating material in weight%.

【0005】[0005]

【発明の実施の形態】本発明に用いられる(a)液状エ
ポキシ樹脂は、その成分の50重量%以上は、25℃に
おける粘度が10Pa・s以下であることが好ましい。
エポキシ樹脂成分の50重量%以上が10Pa・s以下
の低粘度の液状エポキシでないと組成物の粘度が高くな
り、PPGA、PMCMパッケージを液状封止材料で流
入封止する際、気泡を巻き込んだり、コーナー端部の充
填不良が発生し易くなり信頼性低下につながるので好ま
しくない。エポキシ樹脂の粘度測定方法としては、室温
で液状の材料の場合、25℃において東機産業(株)製
E型粘度計で測定する。この要件を満足するエポキシ樹
脂であれば特に限定されるものではないが、具体例を挙
げると、ビスフェノールAジグリシジルエーテル型エポ
キシ樹脂、ビスフェノールFジグリシジルエーテル型エ
ポキシ樹脂、ビスフェノールSジグリシジルエーテル型
エポキシ樹脂、3,3’,5,5’−テトラメチル―
4,4’−ジヒドロキシビフェニルジグリシジルエーテ
ル型エポキシ樹脂、4,4’−ジヒドロキシビフェニル
ジグリシジルエーテル型エポキシ樹脂、1,6−ジヒド
ロキシビフェニルジグリシジルエーテル型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、臭素型クレ
ゾールノボラック型エポキシ樹脂、ビスフェノールDジ
グリシジルエーテル型エポキシ樹脂等がある。これらは
単独でも混合しても差し支えない。また、信頼性の優れ
た液状封止材料を得るためには、エポキシ樹脂のNa+
Cl-等のイオン性不純物はできるだけ少ないものが好
ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The liquid epoxy resin (a) used in the present invention preferably has a viscosity at 25 ° C. of 10 Pa · s or less at 50% by weight or more of its components.
Unless 50% by weight or more of the epoxy resin component is a low-viscosity liquid epoxy of 10 Pa · s or less, the viscosity of the composition becomes high, and when the PPGA or PMCM package is inflow-sealed with a liquid sealing material, bubbles are involved, It is not preferable because a defective filling at a corner end is apt to occur and leads to a decrease in reliability. As a method for measuring the viscosity of the epoxy resin, in the case of a material that is liquid at room temperature, the viscosity is measured at 25 ° C. with an E-type viscometer manufactured by Toki Sangyo Co., Ltd. There are no particular restrictions on the epoxy resin that satisfies this requirement, but specific examples include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, and bisphenol S diglycidyl ether type epoxy resin. Resin, 3,3 ', 5,5'-tetramethyl-
4,4'-dihydroxybiphenyldiglycidyl ether type epoxy resin, 4,4'-dihydroxybiphenyldiglycidyl ether type epoxy resin, 1,6-dihydroxybiphenyldiglycidyl ether type epoxy resin, phenol novolak type epoxy resin, bromine type cresol There are novolak type epoxy resins and bisphenol D diglycidyl ether type epoxy resins. These may be used alone or in combination. In addition, in order to obtain a highly reliable liquid sealing material, Na + of epoxy resin,
Cl - ionic impurities such as those as small as possible is preferable.

【0006】本発明に用いられる(b)芳香族アミン系
硬化剤は、常温で液体の芳香族アミン系硬化剤ならば使
用可能であるが、アルキル化ジアミノジフェニルメタン
が特に好ましい。芳香環を有さないアミン類は耐熱性に
乏しく、零度以下の雰囲気下でも反応性に富むため保存
性に劣るという致命的な欠点を有し本発明には適さな
い。また、信頼性の優れた液状封止材料を得るために、
アミン系硬化剤はNa+、Cl-等のイオン性不純物はで
きるだけ少ないものが好ましい。(b)芳香族アミン系
硬化剤は(a)液状エポキシ樹脂との組み合わせによっ
て、非常に流動性が良い材料を提供することができる。
無圧下でパッケージ内に流入し硬化させても、気泡が残
らず、ボイド、未充填などの流動性の不具合も発生しに
くい。主剤である(a)エポキシ樹脂と、硬化剤である
(b)芳香族アミン系硬化剤との配合モル比(a)/
(b)は0.9〜1.2が望ましい。0.9未満の場合
は、過剰に未反応のアミノ基が残存することとなり、耐
湿性の低下、信頼性の低下に繋がる。逆に1.2を超え
ると硬化が不十分となり、信頼性の低下に繋がる。
As the aromatic amine-based curing agent (b) used in the present invention, any aromatic amine-based curing agent that is liquid at room temperature can be used, but alkylated diaminodiphenylmethane is particularly preferred. Amines having no aromatic ring are poor in heat resistance and have a fatal drawback of poor preservability because they are highly reactive even in an atmosphere of zero degree or lower, and are not suitable for the present invention. Also, in order to obtain a liquid sealing material with excellent reliability,
Amine curing agent is Na +, Cl - ionic impurities such as those as small as possible is preferable. The combination of (b) the aromatic amine-based curing agent and (a) the liquid epoxy resin can provide a material having extremely good fluidity.
Even when flowing into the package under no pressure and curing, no air bubbles remain, and problems with fluidity such as voids and unfilling hardly occur. Mixing molar ratio of (a) epoxy resin as a main agent and (b) aromatic amine-based curing agent as a curing agent (a) /
(B) is desirably 0.9 to 1.2. If it is less than 0.9, an unreacted amino group remains excessively, which leads to a decrease in moisture resistance and a decrease in reliability. Conversely, if it exceeds 1.2, curing will be insufficient, leading to a decrease in reliability.

【0007】本発明に用いられるエラストマーとして
は、(a)エポキシ樹脂との相溶性が良く、低応力化及
び強靱化が期待される(c)エポキシ基を有するポリブ
タジエン化合物が挙げられる。一般にエラストマーは、
エポキシ樹脂との相溶性に欠けるため注入硬化した後は
ブリードのため成形性が低下する性質を有する。しか
し、エポキシ基を分子の一部に組み込むことにより相溶
性が増し、硬化剤(b)と一部反応し架橋するため、ブ
リード性は良くなり、エポキシ基を有するポリブタジエ
ン特有の低応力化及び強靱化も発現できると考えられ
る。エポキシ基を有するポリブタジエン化合物は、数平
均分子量が1000〜2000が好ましい。1000未
満だとブリードし易くなり、2000を越えると粘度が
高くなり、いずれも好ましくない。また、エポキシ含有
率(主鎖付加モル分率%)は、3〜10%が好ましい。
3%未満だと相溶性に欠け、10%を越えると硬化剤と
架橋し、いわゆる海島構造を取らなくなるため低応力化
が望めなくなる。
Examples of the elastomer used in the present invention include (a) a polybutadiene compound having an epoxy group, which has good compatibility with an epoxy resin and is expected to have low stress and toughness. Generally, elastomers are
It has a property that the moldability is reduced due to bleeding after injection curing due to lack of compatibility with the epoxy resin. However, the incorporation of an epoxy group into a part of the molecule increases the compatibility, partially reacts with the curing agent (b), and crosslinks, thereby improving the bleeding property and reducing the stress and toughness inherent to polybutadiene having an epoxy group. It is thought that the transformation can also be expressed. The polybutadiene compound having an epoxy group preferably has a number average molecular weight of 1,000 to 2,000. If it is less than 1000, bleeding tends to occur, and if it exceeds 2000, the viscosity becomes high, and both are not preferred. Further, the epoxy content (main chain addition mole fraction%) is preferably 3 to 10%.
If it is less than 3%, the compatibility is poor, and if it exceeds 10%, it crosslinks with the curing agent, so that a so-called sea-island structure cannot be obtained, so that a reduction in stress cannot be expected.

【0008】このエポキシ基を有するポリブタジエン化
合物は、その添加量を調整することにより、低応力性及
び靱性を最大限に引き出すことができる。添加量は、
(c)/{(a)+(b)+(c)}=0.03〜0.
1が望ましい。0.03未満だと低応力化及び強靱化の
効果が望めず、特にT/Cにおいて表面クラックが発生
し信頼性の不良に繋がる原因となる。また、0.1を越
えると(a)エポキシ樹脂との相溶性が悪くなり、パッ
ケージ表面に油浮き、ブリードが発生し成形性低下の原
因となる。また、低応力効果があり、かつ(c)エポキ
シ基を有するポリブタジエン化合物と相溶性のある、ラ
ンダム共重合シリコーン変性エポキシ樹脂、ランダム共
重合シリコーン変性フェノール樹脂、又はエポキシ基含
有のポリオレフィン等と組み合わせても良い。
By adjusting the amount of the polybutadiene compound having an epoxy group, low stress and toughness can be maximized. The amount of addition
(C) / {(a) + (b) + (c)} = 0.03-0.
1 is desirable. If it is less than 0.03, the effects of lowering the stress and increasing the toughness cannot be expected, and in particular, surface cracks occur in T / C, leading to poor reliability. On the other hand, if it exceeds 0.1, the compatibility with the epoxy resin (a) deteriorates, oil floats on the package surface, bleeding occurs, and the moldability is reduced. Further, in combination with a random copolymerized silicone-modified epoxy resin, a random copolymerized silicone-modified phenolic resin, or a polyolefin containing an epoxy group, which has a low stress effect and is compatible with (c) a polybutadiene compound having an epoxy group. Is also good.

【0009】(d)エポキシ基、アミノ基、メルカプト
基、ビニル基、メタクリル基の群から選ばれる1個以上
の官能基を分子内に有するシランカップリング剤として
は、エポキシシラン(例えば、信越化学工業(株)製KB
M−403)が好ましい。また用途に応じて基板との密
着性を高めたい場合には、必要に応じてアミノシラン、
メルカプトシラン、ビニルシラン、メタクリルシランを
カップリング剤全量に対し一部ないし全部添加してもよ
い。
(D) As a silane coupling agent having at least one functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group and a methacryl group in a molecule, epoxysilane (for example, Shin-Etsu Chemical Co., Ltd.) Industrial Co., Ltd. KB
M-403) is preferred. If you want to increase the adhesion to the substrate depending on the application, aminosilane,
Mercaptosilane, vinylsilane, and methacrylsilane may be partially or entirely added to the total amount of the coupling agent.

【0010】(e)無機充填材1としては金属アルコキ
サイドまたはポリシラザンがあげられる。また両者の混
合物でもよい。金属アルコキサイドとしては、テトラメ
トキシシラン、メチルトリメトキシシラン、エチルトリ
メトキシシラン、プロピルトリメトキシシラン、ブチル
トリメトキシシラン、テトラエトキシシラン、メチルト
リエトキシシラン、エチルトリエトキシシラン、プロピ
ルトリエトキシシラン、ブチルトリエトキシシラン、テ
トラプロポキシシラン、メチルトリプロポキシシラン、
エチルトリプロポキシシラン、ジメチルジメトキシシラ
ン、ジエチルジメトキシシラン、ジプロピルジメトキシ
シラン、ジメチルジエトキシシラン、ジエチルジエトキ
シシラン、γ−クロロプロピルトリメトキシシラン、γ
−クロロプロピルトリエトキシシラン、γ−メルカプト
プロピルトリメトキシシラン、γ−メルカプトプロピル
トリエトキシシラン、γ−アミノプロピルトリメトキシ
シラン、γ−アミノプロピルトリエトキシシラン、フェ
ニルトリメトキシシラン、フェニルトリエトキシシラ
ン、フェニルトリプロポキシシラン、ジフェニルジメト
キシシラン、ジフェニルジエトキシシラン、テトラメト
キシチタン、テトラエトキシチタン、テトラプロポキシ
チタン、テトラブトキシチタン、また分子内にフッ素を
含有する金属アルコキシド等が挙げられる。
(E) Examples of the inorganic filler 1 include metal alkoxide and polysilazane. Also, a mixture of both may be used. Metal alkoxides include tetramethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltrimethoxysilane Ethoxysilane, tetrapropoxysilane, methyltripropoxysilane,
Ethyltripropoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, dipropyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, γ-chloropropyltrimethoxysilane, γ
-Chloropropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyl Examples include tripropoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, and metal alkoxides containing fluorine in the molecule.

【0011】又、ポリシラザンとしては、ポリカルボシ
ラザン、ヘキサメチルジシラザン、メチルクロロシラザ
ン、ポリシクロメチルヒドリドシラザン、オリゴメチル
シラザン、ヒドリドポリシラザン、メチルビニルオリゴ
シラザン、メチルポリジシラザン、フェニルビニルポリ
シラザン、クロロメチルジシラザン、ポリメチルシラザ
ン、ポリメチルヒドロシラザン、ポリメタロシラザン、
ヘキサメチルシクロトリシラザン、オクタメチルシクロ
テトラシラザン、ポリチタノシラザン、ペルヒドロポリ
シラザン、オルガノポリシラザン、ポリアルミノシラザ
ン、ポリポロシラザン、ポリシロキサザン等が挙げられ
る。ポリシラザン、金属アルコキサイドを出発原料とし
て無機充填材1を形成する際、酸、塩基等を触媒として
用いることが出来るが、例えば、トリエチルアミン、ジ
エチルアミン、モノエタノールアミン、ジエタノールア
ミン、トリエタノールアミン、n−エキシルアミン、n
−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブ
チルアミン、グアニジン、ピグアニン、イミダゾール、
1,8−ジアザビシクロ−[5,4,0]−7−ウンデ
セン、1,4−ジアザビシクロ−[2,2,2]−オク
タン等のアミン類、水酸化ナトリウム、水酸化カリウ
ム、水酸化リチウム、ピリジン、アンモニア水等のアル
カリ類、リン酸等の無機酸類、ジブチル錫ジラウレート
等の有機スズ化合物、ホウ酸塩等の金属の有機酸塩、ア
ルミニウムアセチルアセトネート等のアルミニウムキレ
ート化合物、金属アルコキシド類、氷酢酸、無水酢酸、
プロピオン酸、無水プロピオン酸のような低級モノカル
ボン酸、またはその無水物、シュウ酸、フマル酸、マレ
イン酸、コハク酸のような低級ジカルボン酸、またはそ
の無水物、トリクロロ酢酸等の有機酸類、アルカリ金属
の有機カルボン酸塩や炭酸塩、過塩素酸、塩酸、硝酸、
スルホン酸、パラトルエンスルホン酸、三フッ化ホウ素
及びその電気供与体との錯体、四塩化スズ、二塩化亜
鉛、三塩化鉄、三塩化アルミニウム、三塩化アンチモ
ン、四塩化チタン等のルイス酸、及びその錯体等を使用
することが出来る。
Examples of the polysilazane include polycarbosilazane, hexamethyldisilazane, methylchlorosilazane, polycyclomethylhydridosilazane, oligomethylsilazane, hydridepolysilazane, methylvinyloligosilazane, methylpolydisilazane, phenylvinylpolysilazane, and chloromethyl. Disilazane, polymethylsilazane, polymethylhydrosilazane, polymetallosilazane,
Examples include hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, polytitanosilazane, perhydropolysilazane, organopolysilazane, polyaluminosilazane, polyporosilazane, and polysiloxazane. When forming the inorganic filler 1 using polysilazane or metal alkoxide as a starting material, an acid, a base, or the like can be used as a catalyst. For example, triethylamine, diethylamine, monoethanolamine, diethanolamine, triethanolamine, n-exylamine, n
-Butylamine, di-n-butylamine, tri-n-butylamine, guanidine, piguanine, imidazole,
Amines such as 1,8-diazabicyclo- [5,4,0] -7-undecene, 1,4-diazabicyclo- [2,2,2] -octane, sodium hydroxide, potassium hydroxide, lithium hydroxide; Pyridine, alkalis such as aqueous ammonia, inorganic acids such as phosphoric acid, organic tin compounds such as dibutyltin dilaurate, organic acid salts of metals such as borate, aluminum chelate compounds such as aluminum acetylacetonate, metal alkoxides, Glacial acetic acid, acetic anhydride,
Propionic acid, lower monocarboxylic acids such as propionic anhydride, or anhydrides thereof, oxalic acid, fumaric acid, maleic acid, lower dicarboxylic acids such as succinic acid or anhydrides thereof, organic acids such as trichloroacetic acid, alkalis Metal organic carboxylate and carbonate, perchloric acid, hydrochloric acid, nitric acid,
Lewis acids such as sulfonic acid, paratoluenesulfonic acid, boron trifluoride and its complex with an electric donor, tin tetrachloride, zinc dichloride, iron trichloride, aluminum trichloride, antimony trichloride, titanium tetrachloride, and The complex or the like can be used.

【0012】本発明によると、充填材原料として液状の
化合物を選択できるため、エポキシ樹脂との相容性が良
く、半導体封止材料中に充填材を均一に分散させること
ができる。また充填材原料はエポキシ樹脂中の水酸基と
の反応により、充填材が化学結合により封止材料のマト
リックス中に分散させることができるため、無機フィラ
ーの相分離を防止する効果が高い。充填材を形成するに
は、エポキシ樹脂の硬化と同時に充填材の形成反応を行
うか、もしくはあらかじめ用いるエポキシ樹脂と充填材
の出発物質の一部を反応させておいてもよい。あらかじ
めエポキシ樹脂と充填材原料の一部とを反応させると、
充填材の形成反応に伴い生成するアルコール、アミン、
水素等の各種の遊離物質を、分散混練及び真空脱気の際
に系から除くことが出来るため、半導体のパッケージン
グのボイドやクラックの発生を防止することができ有利
である。またエポキシ樹脂中の水酸基と充填材原料との
反応と、前項の充填材の形成反応のそれぞれに適した反
応条件、触媒等を用いることができ、充填材形成反応時
に、既にマトリックス中に反応の基点が形成されている
ために、充填材形成反応をより効率よく行うことができ
る。
According to the present invention, since a liquid compound can be selected as a filler material, compatibility with the epoxy resin is good, and the filler can be uniformly dispersed in the semiconductor encapsulating material. Further, the filler material can be dispersed in the matrix of the sealing material by a chemical bond due to the reaction with the hydroxyl group in the epoxy resin, so that the effect of preventing phase separation of the inorganic filler is high. In order to form the filler, a curing reaction of the filler may be performed simultaneously with the curing of the epoxy resin, or a part of the starting material of the filler may be reacted with the epoxy resin to be used in advance. If the epoxy resin and a part of the filler material react in advance,
Alcohols, amines generated during the formation reaction of the filler,
Since various free substances such as hydrogen can be removed from the system during dispersion kneading and vacuum degassing, the generation of voids and cracks in semiconductor packaging is advantageously prevented. In addition, it is possible to use reaction conditions, catalysts, and the like suitable for the reaction between the hydroxyl group in the epoxy resin and the raw material for the filler and the formation reaction of the filler described in the preceding section. Since the base point is formed, the filler forming reaction can be performed more efficiently.

【0013】(f)無機充填剤2としては、例えば、結
晶シリカ、溶融シリカ等が用いられる。形状は一般的に
は球状、破砕状、フレーク状等が有るが、充填剤をより
多く添加する事により線膨張係数の低減化が図られ、そ
の効果を上げる為には球状の無機充填剤が最も良い。添
加量は50〜80wt%が最も良い。50wt%未満だ
と線膨張係数の低減効果は小さく、80wt%を越える
と液状樹脂の粘度が高く成り過ぎ実用レベルでは使用し
難くなる。また充填材の粒度分布を調整することにより
粘度等の流動特性を最大限に引き出すことが可能であ
る。一般に分布範囲の広い粒度分布をもつ充填材や、大
きな粒径をもつ充填材ほど粘度が低くなる傾向があるこ
とが知られている。しかし、低粘度化を目的に例えば5
0μm以上の大きな粒径だけを揃えた充填材は、確実に
粘度は低くなるものの、硬化中に比重の比較的重い充填
材が沈み、硬化物の上下で組成比率の異なる、いわゆる
フィラー沈降が発生する。また、粒径の大きな充填材を
使うと、狭い隙間に流入しないという欠点が挙げられ
る。PPGA型パッケージに代表されるように、近年は
多ピン化省スペース化の傾向にあり、ワイヤー・ワイヤ
ー間のピッチが狭くなってきている。このような状況に
おいて、無圧下で液状封止材料を流入し、ボイド、未充
填などの流動性の不具合がないよう成形するために、充
填材の粒径を小さくしなければならない。しかし粒径を
小さくすることによって流動性が損なわれる不具合も多
くなる。
(F) As the inorganic filler 2, for example, crystalline silica, fused silica or the like is used. The shape is generally spherical, crushed, flake, etc., but by adding more filler, the linear expansion coefficient can be reduced, and in order to improve the effect, a spherical inorganic filler is used. The best. The best addition amount is 50-80 wt%. If it is less than 50 wt%, the effect of reducing the coefficient of linear expansion is small, and if it exceeds 80 wt%, the viscosity of the liquid resin becomes too high and it is difficult to use it at a practical level. Further, by adjusting the particle size distribution of the filler, it is possible to maximize flow characteristics such as viscosity. It is generally known that a filler having a particle size distribution having a wide distribution range or a filler having a large particle diameter tends to have a lower viscosity. However, for the purpose of lowering the viscosity, for example, 5
Fillers with only a large particle size of 0 μm or more have low viscosity, but the relatively heavy filler sinks during curing, causing so-called filler sedimentation in which the composition ratio differs between the top and bottom of the cured product. I do. Further, when a filler having a large particle size is used, there is a disadvantage that the filler does not flow into a narrow gap. As represented by a PPGA type package, in recent years, there has been a tendency to increase the number of pins and to save space, and the pitch between wires has become narrower. In such a situation, the particle size of the filler must be reduced in order to allow the liquid sealing material to flow under no pressure and to be formed without any fluidity defects such as voids and unfilled. However, reducing the particle size also increases the problem that the fluidity is impaired.

【0014】そこで充填材の平均粒径を1〜10μm
と、従来の液状封止材料のそれより小さくし、かつ粒径
30μm以上のものが全充填材成分中の20重量%以
下、粒径1μm以下のものが全充填材成分中の5〜40
重量%となるように粒径を調整することにより、流動性
が損なわれなくなる。平均粒径が1μm未満であれば、
成形時の粘度が高くなり流動性が損なわれ、10μmを
越えると半導体の信頼性が悪くなる。また粒径30μm
以上のものが全充填材成分中の20重量%を越えると同
じく信頼性が悪くなる。粒径1μm以下のものは全充填
材成分中の5〜40重量%と、微粒の充填材を適量入
れ、粒度分布を調整することで、硬化時に微粒の充填材
が沈むという充填材の沈降を抑えることができる。1μ
m以下のものが全充填材成分中5重量%未満だと充填材
の沈降を抑える効果がなく、40重量%を越えると粘度
が上昇しすぎて成形が難しくなる。本発明でいう粒度分
布および平均粒径は、レーザー式(Horiba、LA-500)に
て測定する。なお平均粒径はメジアン径とした。
Therefore, the average particle size of the filler is 1 to 10 μm.
20% by weight or less of the total filler component, and those having a particle size of 30 μm or more and 5 to 40% of the total filler component have a particle size of 1 μm or less.
By adjusting the particle size so as to be% by weight, the fluidity is not impaired. If the average particle size is less than 1 μm,
The viscosity at the time of molding becomes high and the fluidity is impaired. If it exceeds 10 μm, the reliability of the semiconductor becomes poor. The particle size is 30 μm
If the above content exceeds 20% by weight of the total filler component, the reliability is similarly deteriorated. For particles having a particle size of 1 μm or less, 5 to 40% by weight of the total filler component and an appropriate amount of fine filler are added and the particle size distribution is adjusted to prevent the filler from sinking when the fine filler sinks during curing. Can be suppressed. 1μ
If less than 5% by weight of the total filler component is less than 5% by weight, there is no effect of suppressing the settling of the filler. The particle size distribution and the average particle size in the present invention are measured by a laser method (Horiba, LA-500). The average particle size was the median size.

【0015】本発明の液状封止材料には、前記の必須成
分の他に必要に応じて他の樹脂や反応を促進するための
触媒、希釈剤、顔料、カップリング剤、難燃剤、レベリ
ング剤、消泡剤等の添加物を用いても差し支えない。液
状封止材料は、各成分、添加物等を例えば3本ロールに
て分散混練し真空下脱泡処理して製造する。
The liquid sealing material of the present invention contains, in addition to the above-mentioned essential components, other resins and catalysts for accelerating the reaction, a diluent, a pigment, a coupling agent, a flame retardant, and a leveling agent as required. Additives such as antifoaming agents may be used. The liquid sealing material is manufactured by dispersing and kneading the components, additives, and the like with, for example, three rolls and defoaming under vacuum.

【0016】[0016]

【実施例】本発明を以下に示す実施例及び比較例で説明
する。 <実施例1〜4>下記の原材料を表1に示す割合で3本
ロールにて分散混練し、真空下にて脱泡処理をして液状
封止材料を得た。得られた液状封止材料を用いてPPG
Aパッケージを封止し、165℃で3時間オーブン中で
硬化して半導体パッケージを得た。尚、溶融シリカの平
均粒径は2.5μmであり、全充填材成分中粒径30μ
m以上のものが12重量%、粒径1μm以下のものは8
重量%であった。 ・ビスフェノールFジグリシジルエーテル型エポキシ樹
脂(エポキシ当量155、1.6Pa・s/25℃) ・ナフタレンFジグリシジルエーテル型エポキシ樹脂
(当量135、124Pa・s/25℃) ・アルキル化ジアミノジフェニルメタン硬化剤(アミノ
当量65) ・エポキシ基を有するポリブタジエンゴム(数平均分子
量1500、エポキシ含有率5モル%) ・グリシジルトリメトキシシラン ・テトラエトキシシラン ・ペルヒドロポリシラザン(東燃製PHPSー1) ・トリエチルアミン ・溶融シリカ ・カーボンブラック
The present invention will be described with reference to the following examples and comparative examples. <Examples 1 to 4> The following raw materials were dispersed and kneaded at a ratio shown in Table 1 with three rolls, and subjected to defoaming treatment under vacuum to obtain a liquid sealing material. PPG using the obtained liquid sealing material
Package A was sealed and cured in an oven at 165 ° C. for 3 hours to obtain a semiconductor package. The average particle size of the fused silica was 2.5 μm, and the particle size in all the filler components was 30 μm.
m is 12% by weight and those having a particle size of 1 μm or less are 8% by weight.
% By weight.・ Bisphenol F diglycidyl ether type epoxy resin (Epoxy equivalent: 155, 1.6 Pa · s / 25 ° C.) ・ Naphthalene F diglycidyl ether type epoxy resin (Equivalent: 135, 124 Pa · s / 25 ° C.) ・ Alkylated diaminodiphenylmethane curing agent (Amino equivalent 65) ・ Polybutadiene rubber having epoxy group (number average molecular weight 1500, epoxy content 5 mol%) ・ Glycidyltrimethoxysilane ・ Tetraethoxysilane ・ Perhydropolysilazane (PHPN-1 manufactured by Tonen) ・ Triethylamine ・ Fused silica ·Carbon black

【0017】<実施例5>表1の実施例5−Iに示すよ
うな割合で、まずビスフェノールFジグリシジルエーテ
ル型エポキシ樹脂60部、ナフタレンFジグリシジルエ
ーテル型エポキシ樹脂40部、テトラエトキシシラン1
0重量部、トリエチルアミン0.3重量部をあらかじめ
60℃で5時間混合した後、真空脱気を行った。次に表
1の実施例5−IIに示すような割合で、残る原材料を加
えて3本ロールにて、分散混練し真空下脱泡処理をして
液状封止材料を得た。得られた液状封止材料を用いて、
PPGAパッケージを封止し、165℃で3時間オーブ
ン中で硬化して半導体パッケージを得た。尚、溶融シリ
カの平均粒径は2.5μmであり、全充填材成分中粒径
30μm以上のものが12重量%、粒径1μm以下のも
のは8重量%であった。
<Example 5> First, 60 parts of bisphenol F diglycidyl ether type epoxy resin, 40 parts of naphthalene F diglycidyl ether type epoxy resin, and tetraethoxysilane 1 were prepared in proportions as shown in Example 5-I of Table 1.
After 0 parts by weight and 0.3 parts by weight of triethylamine were previously mixed at 60 ° C. for 5 hours, vacuum degassing was performed. Next, the remaining raw materials were added at the ratios shown in Example 5-II in Table 1, dispersed and kneaded with three rolls, and defoamed under vacuum to obtain a liquid sealing material. Using the obtained liquid sealing material,
The PPGA package was sealed and cured in an oven at 165 ° C. for 3 hours to obtain a semiconductor package. The average particle size of the fused silica was 2.5 μm, and 12% by weight of particles having a particle size of 30 μm or more and 8% by weight of particles having a particle size of 1 μm or less in all the filler components.

【0018】<比較例1>下記の原材料を表1に示す割
合で3本ロールにて分散混練し、真空下脱泡処理をして
液状封止材料を得た。得られた液状封止材料を用いてP
PGAパッケージを封止し、165℃で3時間オーブン
中で硬化して半導体パッケージを得た。 ・ビスフェノールFジグリシジルエーテル型エポキシ樹
脂(エポキシ当量155、1.6Pa・s/25℃) ・ナフタレンFジグリシジルエーテル型エポキシ樹脂
(当量135、124Pa・s/25℃) ・アルキル化ジアミノジフェニルメタン ・ポリブタジエンゴム ・グリシジルトリメトキシシラン ・カーボンブラック ・溶融シリカ(平均粒径は2.5μm)
<Comparative Example 1> The following raw materials were dispersed and kneaded at the ratios shown in Table 1 with three rolls and subjected to a defoaming treatment under vacuum to obtain a liquid sealing material. Using the obtained liquid sealing material, P
The PGA package was sealed and cured in an oven at 165 ° C. for 3 hours to obtain a semiconductor package.・ Bisphenol F diglycidyl ether type epoxy resin (Epoxy equivalent: 155, 1.6 Pa · s / 25 ° C.) ・ Naphthalene F diglycidyl ether type epoxy resin (Equivalent: 135, 124 Pa · s / 25 ° C.) ・ Alkylated diaminodiphenylmethane ・ Polybutadiene Rubber ・ Glycidyltrimethoxysilane ・ Carbon black ・ Fused silica (average particle size is 2.5μm)

【0019】[0019]

【表1】 [Table 1]

【0020】《評価方法》 ・粘度:E型粘度計(25℃)にて、2.5rpmで測
定したものを値とした。この値が高いほど悪い。粘度が
50Pa・sを越えるとディスペンス時の作業性が悪く
なる。 ・チキソ比:上述粘度計で、0.5rpmと2.5rp
mでの粘度の比を値とした。 ・保存性:初期粘度の倍の粘度になる時間をとった。○
は72時間以上、△は24〜72時間、×は24時間以
下 ・硬化性:PPGAパッケージピースパーツに液状封止
材料を注入し、165℃、3時間にて硬化し、パッケー
ジ表面のボイドの数、フィラー分離を観察した。パッケ
ージ表面のボイドの数は顕微鏡で観察し、数μm以上の
ボイドをカウントした。未充填パッケージは、超音波探
傷機(以下SATという)にて観察した。フィラー分離
は、パッケージの断面を研磨し、表面の樹脂層の厚みを
測定した。5μm以上のものをフィラー分離有りとして
表した。評価したPPGAパッケージの数は10個であ
る。 ・硬化後の剥離及びクラック:処理前、PCT処理(1
25℃/2.3atm)720時間後、T/C処理(−
65℃/30分←→150℃/30分)1000サイク
ル後についてSATを用いて、半導体チップとプリント
基板界面との剥離、クラックの有無を確認した。評価し
たPPGAパッケージの数は10個である。
<< Evaluation Method >> Viscosity: The value measured at 2.5 rpm with an E-type viscometer (25 ° C.) was taken as a value. The higher the value, the worse. When the viscosity exceeds 50 Pa · s, workability at the time of dispensing deteriorates. -Thixo ratio: 0.5 rpm and 2.5 rpm with the above viscometer
The ratio of the viscosity in m was taken as the value. -Storage property: Time was taken for the viscosity to be twice the initial viscosity. ○
Is 72 hours or more, Δ is 24-72 hours, and X is 24 hours or less. Curability: Inject a liquid sealing material into PPGA package piece parts, cure at 165 ° C for 3 hours, and count the number of voids on the package surface. And filler separation was observed. The number of voids on the package surface was observed with a microscope, and the number of voids of several μm or more was counted. The unfilled package was observed with an ultrasonic flaw detector (hereinafter referred to as SAT). For the filler separation, the cross section of the package was polished, and the thickness of the resin layer on the surface was measured. Those having a size of 5 μm or more were indicated as having filler separation. The number of evaluated PPGA packages is 10. -Peeling and cracking after curing: before treatment, PCT treatment (1
After 720 hours at 25 ° C / 2.3atm, T / C treatment (-
(65 ° C./30 minutes →→ 150 ° C./30 minutes) After 1000 cycles, SAT was used to confirm the presence or absence of peeling and cracking between the semiconductor chip and the printed circuit board interface. The number of evaluated PPGA packages is 10.

【0021】評価結果を表2に示す。Table 2 shows the evaluation results.

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明の液状封止材料にて半導体パッケ
ージの封止を行うと、プレッシャークッカーテストや冷
熱サイクルテストにおいても剥離、クラックのない高信
頼性の半導体を得ることができる。
When the semiconductor package is sealed with the liquid sealing material of the present invention, a highly reliable semiconductor without peeling or cracking can be obtained even in a pressure cooker test or a thermal cycle test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08K 5/54 NLC C08K 5/54 NLC 7/18 NLD 7/18 NLD C08L 63/00 NJW C08L 63/00 NJW H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C08K 5/54 NLC C08K 5/54 NLC 7/18 NLD 7/18 NLD C08L 63/00 NJW C08L 63 / 00 NJW H01L 23/29 H01L 23/30 R 23/31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)液状エポキシ樹脂、(b)常温で
液体である芳香族アミン系硬化剤、(c)エポキシ基を
有するポリブタジエン化合物、(d)エポキシ基、アミ
ノ基、メルカプト基、ビニル基、メタクリル基の群から
選ばれる1個以上の官能基を分子内に有するシランカッ
プリング剤、(e)ポリシラザン、金属アルコキサイド
を出発原料とする無機充填材1及び(f)平均粒径1〜
10μmの無機充填剤2よりなることを特徴とする液状
封止材料。
1. A liquid epoxy resin, (b) an aromatic amine curing agent which is liquid at room temperature, (c) a polybutadiene compound having an epoxy group, (d) an epoxy group, an amino group, a mercapto group, and vinyl. Group, a silane coupling agent having at least one functional group selected from the group of methacrylic groups in the molecule, (e) an inorganic filler 1 starting from polysilazane and metal alkoxide, and (f) an average particle size of 1 to 1.
A liquid sealing material comprising an inorganic filler 2 of 10 μm.
【請求項2】 該芳香族アミン系硬化剤がアルキル化ジ
アミノジフェニルメタンであることを特徴とする請求項
1記載の液状封止材料。
2. The liquid sealing material according to claim 1, wherein the aromatic amine curing agent is an alkylated diaminodiphenylmethane.
【請求項3】 該無機充填剤2が、粒径30μm以上の
ものが全充填材成分中の20重量%以下であり、粒径1
μm以下のものが全充填材成分中の5〜40重量%であ
ることを特徴とする請求項1または2記載の液状封止材
料。
3. An inorganic filler 2 having a particle size of 30 μm or more accounts for 20% by weight or less of all the filler components, and a particle size of 1% or less.
3. The liquid encapsulating material according to claim 1, wherein the content of the filler is at most 5 [mu] m to 40% by weight of the total filler component.
JP20800896A 1996-08-07 1996-08-07 Liquid sealing material Pending JPH1045877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20800896A JPH1045877A (en) 1996-08-07 1996-08-07 Liquid sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20800896A JPH1045877A (en) 1996-08-07 1996-08-07 Liquid sealing material

Publications (1)

Publication Number Publication Date
JPH1045877A true JPH1045877A (en) 1998-02-17

Family

ID=16549148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20800896A Pending JPH1045877A (en) 1996-08-07 1996-08-07 Liquid sealing material

Country Status (1)

Country Link
JP (1) JPH1045877A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122945A (en) * 1999-10-27 2001-05-08 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2002114836A (en) * 2000-10-10 2002-04-16 Denki Kagaku Kogyo Kk Curable resin composition and metal base circuit board using the same
JP2002249640A (en) * 2001-02-22 2002-09-06 Toray Ind Inc Resin-sealed semiconductor device and epoxy resin composition for sealing semiconductor
JP2003518187A (en) * 1999-12-20 2003-06-03 スリーエム イノベイティブ プロパティズ カンパニー Encapsulant composition having thermal shock resistance
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199886A (en) * 2005-01-24 2006-08-03 Sumitomo Bakelite Co Ltd Liquid sealing resin composition
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
KR100895238B1 (en) * 2002-12-03 2009-04-27 에스케이케미칼주식회사 Liquid-phase device-protecting chemical composition for packaging semiconductor
WO2011065813A1 (en) * 2009-11-25 2011-06-03 Petroliam Nasional Berhad (Petronas) Water curable resin formulations
DE102011009873A1 (en) * 2010-09-29 2012-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactive resins and moldings produced therewith and flat or textile materials with particulate polysilazanes as novel flameproofing agents
KR101141629B1 (en) 2011-11-24 2012-05-17 주식회사 세명크리텍 Silane denatured polyurea resin waterproof agent including silane compound and increasing adhesive property and durability and method for flood protection and corrosion protection using the same
KR101390281B1 (en) * 2011-04-15 2014-04-30 공주대학교 산학협력단 Composition for encapsulation material of photoelectronic device, encapsulation material made from the composition and light emitting diode comprising the encapsulation material
JP2015521212A (en) * 2012-04-24 2015-07-27 ダウ グローバル テクノロジーズ エルエルシー Epoxy resin composition for marine equipment maintenance and restoration coating with improved overcoating
US9631099B2 (en) 2012-04-24 2017-04-25 Dow Global Technologies Llc Epoxy resin composition for marine maintenance and repair coatings with improved overcoatability
JP2017101254A (en) * 2017-02-28 2017-06-08 日立化成株式会社 Encapsulation epoxy resin molding material and electronic part device
CN110467468A (en) * 2019-09-19 2019-11-19 广东工业大学 A kind of photocurable polysilazane and preparation method thereof, SiCN ceramics and preparation method thereof
CN114956794A (en) * 2022-06-16 2022-08-30 宁夏合元碳素有限公司 Erosion-resistant rock wool furnace lining material and preparation method thereof
CN118240337A (en) * 2024-05-21 2024-06-25 珠海格力新材料有限公司 Mesogenic epoxy composition for encapsulation and preparation method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122945A (en) * 1999-10-27 2001-05-08 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP4534280B2 (en) * 1999-10-27 2010-09-01 日立化成工業株式会社 Epoxy resin molding material for sealing and electronic component device
JP2003518187A (en) * 1999-12-20 2003-06-03 スリーエム イノベイティブ プロパティズ カンパニー Encapsulant composition having thermal shock resistance
JP2002114836A (en) * 2000-10-10 2002-04-16 Denki Kagaku Kogyo Kk Curable resin composition and metal base circuit board using the same
JP2002249640A (en) * 2001-02-22 2002-09-06 Toray Ind Inc Resin-sealed semiconductor device and epoxy resin composition for sealing semiconductor
JP4736203B2 (en) * 2001-02-22 2011-07-27 住友ベークライト株式会社 Resin-encapsulated semiconductor device and epoxy resin composition for encapsulating semiconductor
KR100895238B1 (en) * 2002-12-03 2009-04-27 에스케이케미칼주식회사 Liquid-phase device-protecting chemical composition for packaging semiconductor
JP2006188622A (en) * 2005-01-07 2006-07-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199886A (en) * 2005-01-24 2006-08-03 Sumitomo Bakelite Co Ltd Liquid sealing resin composition
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2011065813A1 (en) * 2009-11-25 2011-06-03 Petroliam Nasional Berhad (Petronas) Water curable resin formulations
AU2010325302B2 (en) * 2009-11-25 2015-02-12 Petroliam Nasional Berhad (Petronas) Water curable resin formulations
WO2012041933A1 (en) 2010-09-29 2012-04-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactive resins and thus produced moulding body and flat or textile materials comprising particulate polysilazanes as novel fire retardants
DE102011009873A1 (en) * 2010-09-29 2012-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactive resins and moldings produced therewith and flat or textile materials with particulate polysilazanes as novel flameproofing agents
DE102011009873B4 (en) * 2010-09-29 2017-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactive resins and moldings produced therewith and sheet-like or textile materials with particulate polysilazanes as novel flame-proofing agents and also production processes for the moldings and materials
KR101390281B1 (en) * 2011-04-15 2014-04-30 공주대학교 산학협력단 Composition for encapsulation material of photoelectronic device, encapsulation material made from the composition and light emitting diode comprising the encapsulation material
KR101141629B1 (en) 2011-11-24 2012-05-17 주식회사 세명크리텍 Silane denatured polyurea resin waterproof agent including silane compound and increasing adhesive property and durability and method for flood protection and corrosion protection using the same
JP2015521212A (en) * 2012-04-24 2015-07-27 ダウ グローバル テクノロジーズ エルエルシー Epoxy resin composition for marine equipment maintenance and restoration coating with improved overcoating
US9376588B2 (en) 2012-04-24 2016-06-28 Dow Global Technologies Llc Epoxy resin composition for marine maintenance and repair coatings with improved overcoatability
US9631099B2 (en) 2012-04-24 2017-04-25 Dow Global Technologies Llc Epoxy resin composition for marine maintenance and repair coatings with improved overcoatability
JP2017101254A (en) * 2017-02-28 2017-06-08 日立化成株式会社 Encapsulation epoxy resin molding material and electronic part device
CN110467468A (en) * 2019-09-19 2019-11-19 广东工业大学 A kind of photocurable polysilazane and preparation method thereof, SiCN ceramics and preparation method thereof
CN114956794A (en) * 2022-06-16 2022-08-30 宁夏合元碳素有限公司 Erosion-resistant rock wool furnace lining material and preparation method thereof
CN114956794B (en) * 2022-06-16 2023-01-31 宁夏合元碳素有限公司 Erosion-resistant rock wool furnace lining material and preparation method thereof
CN118240337A (en) * 2024-05-21 2024-06-25 珠海格力新材料有限公司 Mesogenic epoxy composition for encapsulation and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH1045877A (en) Liquid sealing material
US6479167B2 (en) Sealing material for flip-chip semiconductor device, and flip-chip semiconductor device made therewith
KR101076977B1 (en) Resin composition for encapsulating semiconductor chip and semiconductor device
US20020089071A1 (en) Liquid epoxy resin composition and semiconductor device
KR20100051799A (en) Optical semiconductor-sealing composition
TW201723073A (en) Liquid epoxy resin composition
US6558812B2 (en) Liquid epoxy resin composition and semiconductor device
US20070106036A1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP3137314B2 (en) Liquid sealing material
US6534193B2 (en) Liquid epoxy resin composition and semiconductor device
JP2008001748A (en) Epoxy resin composition for sealing use and semiconductor device
JP5367205B2 (en) Liquid epoxy resin composition for sealing
JP3351974B2 (en) Liquid injection underfill material
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP3707534B2 (en) Liquid epoxy resin composition for semiconductor screen printing sealing
JP7465790B2 (en) Silicone hybrid resin composition and semiconductor device
JP2000017149A (en) Liquid epoxy resin composition for sealing medium and its cured product
JP4848925B2 (en) Epoxy resin composition and adhesive
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JP2771894B2 (en) Liquid epoxy resin composition
JP4508435B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
KR101293791B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
KR102319561B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JPH0639517B2 (en) Epoxy resin composition
JP2001240724A (en) Epoxy resin composition and semiconductor device