JP6006539B2 - Circuit board and electronic component mounting board - Google Patents

Circuit board and electronic component mounting board Download PDF

Info

Publication number
JP6006539B2
JP6006539B2 JP2012130429A JP2012130429A JP6006539B2 JP 6006539 B2 JP6006539 B2 JP 6006539B2 JP 2012130429 A JP2012130429 A JP 2012130429A JP 2012130429 A JP2012130429 A JP 2012130429A JP 6006539 B2 JP6006539 B2 JP 6006539B2
Authority
JP
Japan
Prior art keywords
circuit board
insulating layer
inorganic filler
volume
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012130429A
Other languages
Japanese (ja)
Other versions
JP2013254879A (en
Inventor
伸也 芹澤
伸也 芹澤
良太 熊谷
良太 熊谷
宮川 健志
健志 宮川
章裕 柳瀬
章裕 柳瀬
満春 菅
満春 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2012130429A priority Critical patent/JP6006539B2/en
Publication of JP2013254879A publication Critical patent/JP2013254879A/en
Application granted granted Critical
Publication of JP6006539B2 publication Critical patent/JP6006539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、静電容量が大きいコンデンサを内蔵可能な回路基板及び電子部品搭載基板に関する。   The present invention relates to a circuit board and an electronic component mounting board that can incorporate a capacitor having a large capacitance.

高発熱性電子部品を実装する回路基板として、金属基板上に無機フィラーを充填したエポキシ樹脂等からなる絶縁層を設け、その上に導体層で回路を形成した金属ベース回路基板が知られている。また、ノイズの低減や回路基板の小型化を目的として、絶縁層を高誘電率化して、絶縁層をバイパスコンデンサの誘電体として利用させる技術が知られている(例えば、特許文献1)。   As a circuit board for mounting a highly exothermic electronic component, a metal base circuit board is known in which an insulating layer made of an epoxy resin or the like filled with an inorganic filler is provided on a metal board, and a circuit is formed thereon with a conductor layer. . In addition, for the purpose of reducing noise and downsizing of a circuit board, a technique for increasing the dielectric constant of an insulating layer and using the insulating layer as a dielectric of a bypass capacitor is known (for example, Patent Document 1).

特開平10−242607号公報JP-A-10-242607

特許文献1の回路基板では、絶縁層の比誘電率が比較的大きな値となっているものの、大きな静電容量が必要な用途では、特許文献1に記載の比誘電率では不十分であり、比誘電率をさらに大きくすることが求められている。   In the circuit board of Patent Document 1, although the dielectric constant of the insulating layer is a relatively large value, the dielectric constant described in Patent Document 1 is insufficient for applications that require a large capacitance, There is a need to further increase the dielectric constant.

本発明はこのような事情に鑑みてなされたものであり、静電容量が大きいコンデンサを内蔵可能な回路基板を提供するものである。   The present invention has been made in view of such circumstances, and provides a circuit board capable of incorporating a capacitor having a large capacitance.

本発明によれば、金属基板と、この基板上に形成された絶縁層と、前記絶縁層上に形成された導体層を有し、前記絶縁層は、樹脂と、無機フィラーとを含み、前記無機フィラーは、比誘電率が50以上であり、前記無機フィラーの充填率は、73〜79体積%であり、前記無機フィラーは、平均粒径が3〜7μmである粗粉と、平均粒径が0.05〜0.7μmである微粉を含み、前記粗粉と前記微粉の合計を100体積%としたときの、前記微粉の割合が20〜30体積%である、回路基板が提供される。   According to the present invention, it has a metal substrate, an insulating layer formed on the substrate, and a conductor layer formed on the insulating layer, the insulating layer including a resin and an inorganic filler, The inorganic filler has a relative dielectric constant of 50 or more, the filling rate of the inorganic filler is 73 to 79% by volume, the inorganic filler has a coarse powder having an average particle diameter of 3 to 7 μm, and an average particle diameter. Is provided, and a circuit board is provided in which the ratio of the fine powder is 20 to 30% by volume when the total of the coarse powder and the fine powder is 100% by volume. .

本発明者らは、最初に、特許文献1に記載の実験例では、無機フィラーの充填率が最大で55.6体積%であり、比誘電率が36〜65となっていることに着目し、比誘電率を高めるべく、無機フィラーの充填率を73体積%以上にすることを思いついた。そして、そのような充填率を有する絶縁層を実際に作成し、その比誘電率を測定したところ、絶縁層の比誘電率を高めることに成功した。但し、充填率が80体積%以上になると、比誘電率は高まるものの、導体層が絶縁層に接着しにくくなって、回路基板の作成が困難になったので、充填率の上限を79体積%にすることが重要であると分かった。   First, the inventors pay attention to the fact that in the experimental example described in Patent Document 1, the filling rate of the inorganic filler is 55.6% by volume at the maximum and the relative dielectric constant is 36 to 65. In order to increase the relative dielectric constant, the inventors have come up with an inorganic filler filling ratio of 73% by volume or more. And when the insulating layer which has such a filling rate was actually produced and the relative dielectric constant was measured, it succeeded in raising the relative dielectric constant of an insulating layer. However, when the filling rate is 80% by volume or more, although the relative dielectric constant increases, the conductor layer becomes difficult to adhere to the insulating layer, making it difficult to create a circuit board. Therefore, the upper limit of the filling rate is 79% by volume. It turned out to be important.

このように、無機フィラーの充填率を高めることによって絶縁層の比誘電率を高めることには成功した。しかし、得られた絶縁層の耐電圧を測定したところ、耐電圧が予想外に低くなってしまう場合があることが分かった。   Thus, it succeeded in raising the dielectric constant of an insulating layer by raising the filling rate of an inorganic filler. However, when the withstand voltage of the obtained insulating layer was measured, it was found that the withstand voltage might be unexpectedly lowered.

このような状況において、本発明者らがさらに検討を進めたところ、特定の平均粒径を有する粗粉と微粉と特定の割合で含有する無機フィラーを用いた場合に耐電圧が高い値になることを見出した。   In such a situation, when the present inventors further investigated, the withstand voltage becomes a high value when using an inorganic filler containing a specific average particle size of coarse powder and fine powder and a specific ratio. I found out.

以上の知見により、本発明者らは、特定の平均粒径を有する粗粉と微粉と特定の割合で含有し且つ特定の比誘電率を有する無機フィラーを特定の充填率で含有させた場合に初めて、その相乗効果によって、静電容量が大きいコンデンサを内蔵可能な回路基板が得られることを見出し、本発明の完成に到った。   Based on the above knowledge, the present inventors have included a specific ratio of coarse powder and fine powder having a specific average particle diameter and a specific ratio and an inorganic filler having a specific dielectric constant. For the first time, it has been found that a circuit board capable of incorporating a capacitor having a large capacitance can be obtained by the synergistic effect, and the present invention has been completed.

好ましくは、前記無機フィラーは、チタン酸バリウムである。
好ましくは、前記樹脂は、エポキシ樹脂である。
Preferably, the inorganic filler is barium titanate.
Preferably, the resin is an epoxy resin.

また、本発明によれば、上記回路基板と、この回路基板上に搭載された電子部品を有する電子部品搭載基板が提供される。   Moreover, according to this invention, the electronic component mounting board | substrate which has the said circuit board and the electronic component mounted on this circuit board is provided.

本発明の一実施形態の回路基板を示す断面図である。It is sectional drawing which shows the circuit board of one Embodiment of this invention.

以下、図1を用いて、本発明の一実施形態の回路基板について説明する。
図1に示すように、本実施形態の回路基板は、金属基板1と、金属基板1上に形成された絶縁層2と、絶縁層2上に形成された導体層3を有する。
Hereinafter, a circuit board according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the circuit board of this embodiment includes a metal substrate 1, an insulating layer 2 formed on the metal substrate 1, and a conductor layer 3 formed on the insulating layer 2.

1.金属基板1
基板1の材質は、特に制限はなく、鉄、銅、アルミニウムやその合金を用いることができる。基板1の厚さは、特に限定されないが、例えば0.5mm以上4mm以下である。基板1が薄すぎるとハンドリングが困難であったり、放熱性が悪化したりするからであり、基板1が厚すぎると、回路基板全体が不必要に厚くなってしまうからである。
1. Metal substrate 1
There is no restriction | limiting in particular in the material of the board | substrate 1, Iron, copper, aluminum, and its alloy can be used. Although the thickness of the board | substrate 1 is not specifically limited, For example, they are 0.5 mm or more and 4 mm or less. This is because if the substrate 1 is too thin, handling is difficult or heat dissipation is deteriorated, and if the substrate 1 is too thick, the entire circuit board becomes unnecessarily thick.

2.絶縁層2
絶縁層2は、樹脂と、無機フィラーとを含む。
2. Insulating layer 2
The insulating layer 2 contains a resin and an inorganic filler.

2−1.絶縁層の厚さ
本実施形態において、絶縁層の厚さは、30〜200μmが好ましく、50〜100μmがさらに好ましい。絶縁層があまりに薄いと電気絶縁性が確保できなくなる傾向にあり、あまりに厚いと熱放散性が低下する傾向にあり、さらに小型化や薄型化に寄与できなくなる傾向にあるためである。
2-1. Thickness of Insulating Layer In the present embodiment, the thickness of the insulating layer is preferably 30 to 200 μm, and more preferably 50 to 100 μm. This is because if the insulating layer is too thin, electrical insulation properties tend not to be ensured, and if it is too thick, heat dissipation tends to decrease, and further, it tends to be unable to contribute to miniaturization and thinning.

2−2.樹脂
樹脂の種類は特に限定されず、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂などを使用することができ、これには、電気絶縁性の良い高分子物質である可撓性付与成分を配合することが好ましく、可撓性付与成分としては、例えば、アクリルゴム、NBR、エポキシ変性アクリルゴム、エポキシ化ポリブタジエン、フェノキシ樹脂などが挙げられる。また導体層と絶縁層との接着性を向上させるためカップリング剤を使用することが好ましい。カップリング剤としては、シランカップリング剤が好ましく、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン等が挙げられる。
2-2. Resin The type of resin is not particularly limited, and an epoxy resin, a polyimide resin, a phenol resin, or the like can be used, and a flexibility-imparting component that is a polymer material with good electrical insulation can be added to this. Preferably, examples of the flexibility-imparting component include acrylic rubber, NBR, epoxy-modified acrylic rubber, epoxidized polybutadiene, and phenoxy resin. Moreover, it is preferable to use a coupling agent in order to improve the adhesiveness between the conductor layer and the insulating layer. As the coupling agent, a silane coupling agent is preferable, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N-β. -Aminoethyl-γ-aminopropyltrimethoxysilane and the like.

2−3.エポキシ樹脂
エポキシ樹脂としては、公知のエポキシ樹脂、例えばナフタレン型、フェニルメタン型、テトラキスフェノールメタン型、ビフェニル型、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等があげられ、このうち応力緩和性という理由で、主鎖がポリエーテル骨格を有し直鎖状であるエポキシ樹脂が好ましい。
主鎖がポリエーテル骨格を有し直鎖状であるエポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂に代表される脂肪族エポキシ樹脂、およびポリサルファイド変性エポキシ樹脂等があり、これらを複数組み合わせてもよい。
これらエポキシ樹脂のうち、回路基板に高い耐熱性が必要な場合には、電気絶縁性、熱伝導率が共に高く、耐熱性の高い樹脂硬化体が得られるビスフェノールA型エポキシ樹脂を用いることが好ましい。また、このビスフェノールA型エポキシ樹脂の効果が発揮する範囲内であれば、当該ビスフェノールA型エポキシ樹脂に他のエポキシ樹脂を組み合わせて用いることもできる。
2-3. Epoxy resin Examples of the epoxy resin include known epoxy resins such as naphthalene type, phenylmethane type, tetrakisphenol methane type, biphenyl type, and bisphenol A alkylene oxide adduct type epoxy resins, among which the stress relaxation property For this reason, an epoxy resin in which the main chain has a polyether skeleton and is linear is preferable.
The epoxy resin whose main chain has a polyether skeleton and is linear is bisphenol A type, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, polytetramethylene glycol type epoxy. There are aliphatic epoxy resins typified by resins, polysulfide-modified epoxy resins, and the like, and a plurality of these may be combined.
Of these epoxy resins, when high heat resistance is required for the circuit board, it is preferable to use a bisphenol A type epoxy resin that has a high electrical insulation property and thermal conductivity, and a cured resin body having high heat resistance can be obtained. . Moreover, as long as the effect of this bisphenol A type epoxy resin is exhibited, another epoxy resin may be used in combination with the bisphenol A type epoxy resin.

2−4.ビスフェノールA型エポキシ樹脂
ビスフェノールA型エポキシ樹脂を用いる場合、エポキシ当量300以下であることが一層好ましい。エポキシ当量が300以下であれば、高分子タイプになるときに見られる架橋密度の低下によるTg(ガラス転移温度)の低下、従って耐熱性の低下を引き起こすことが防止されるからである。また、分子量が大きくなると、液状から固形状となり、無機フィラーを硬化性樹脂中にブレンドすることが困難になり、均一な樹脂組成物が得られなくなるという問題も避けることができる。
2-4. Bisphenol A type epoxy resin When a bisphenol A type epoxy resin is used, it is more preferable that the epoxy equivalent is 300 or less. This is because if the epoxy equivalent is 300 or less, it is possible to prevent a decrease in Tg (glass transition temperature) due to a decrease in crosslink density, which is observed when a polymer type is obtained, and hence a decrease in heat resistance. Further, when the molecular weight is increased, the liquid state becomes a solid state, and it becomes difficult to blend the inorganic filler into the curable resin, and the problem that a uniform resin composition cannot be obtained can be avoided.

2−5.硬化剤
エポキシ樹脂には硬化剤を添加することが好ましい。硬化剤としては、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、それらの具体例としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAやレゾルシンなどから合成される各種ノボラック、各種多価フェノール化合物、無水マレイン酸、無水ピロメリト酸などの酸無水物およびメタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノフェニルスルホンなどの芳香族アミンなどがあげられる。半導体装置封止用としは、耐熱性、耐湿性および保存性の点から、フェノールノボラック、クレゾールノボラックなどのノボラック樹脂が好ましく用いられ、用途によっては二種以上の硬化剤を併用してもよい。
2-5. Curing agent It is preferable to add a curing agent to the epoxy resin. The curing agent is not particularly limited as long as it can be cured by reacting with an epoxy resin, and specific examples thereof include, for example, phenol novolac resin, cresol novolac resin, various novolacs synthesized from bisphenol A, resorcin, and the like. Examples include various polyphenol compounds, acid anhydrides such as maleic anhydride and pyromellitic anhydride, and aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminophenylsulfone. For semiconductor device sealing, novolak resins such as phenol novolak and cresol novolak are preferably used from the viewpoint of heat resistance, moisture resistance and storage stability, and two or more kinds of curing agents may be used in combination depending on the application.

2−6.硬化剤の添加量
硬化剤の添加量は、特に限定されないが、エポキシ樹脂100質量部に対して、5質量部以上50質量部以下であることが好ましく、例えば5、10、15、20、25、30、35、40、45、50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
2-6. Although the addition amount of a hardening | curing agent is not specifically limited, It is preferable that they are 5 mass parts or more and 50 mass parts or less with respect to 100 mass parts of epoxy resins, for example, 5, 10, 15, 20, 25 , 30, 35, 40, 45, 50 parts by mass, and may be within a range between any two of the numerical values exemplified here.

2−7.無機フィラー
絶縁層2に含有される無機フィラーとしては、比誘電率が50以上のものが用いられ、例えば二酸化チタン、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸鉛、ジルコン酸バリウム、ジルコン酸カルシウム、スズ酸バリウム、スズ酸カルシウムの単独又は複数の組み合わせであり、高い比誘電率の見地からチタン酸バリウムが好ましい。本明細書において、比誘電率は、温度25℃、周波数1MHz、電圧1Vの条件下にて、JIS C6481に基づいて測定したものを意味する。無機フィラーの比誘電率は、例えば、50、100、200、300、500、1000、1500であり、ここで例示した数値の何れか以上であってもよく、何れか2つの間の範囲内であってもよい。
2-7. Inorganic filler The inorganic filler contained in the insulating layer 2 has a relative dielectric constant of 50 or more. For example, titanium dioxide, barium titanate, calcium titanate, strontium titanate, lead titanate, barium zirconate, Calcium zirconate, barium stannate and calcium stannate are used alone or in combination, and barium titanate is preferred from the viewpoint of high dielectric constant. In this specification, the dielectric constant means a value measured based on JIS C6481 under conditions of a temperature of 25 ° C., a frequency of 1 MHz, and a voltage of 1 V. The relative dielectric constant of the inorganic filler is, for example, 50, 100, 200, 300, 500, 1000, 1500, and may be any one or more of the numerical values exemplified here, and within the range between any two There may be.

無機フィラーの充填率は、73〜79体積%であり、好ましくは77〜79体積%である。充填率が73体積%未満では絶縁層2の比誘電率が低くなりすぎ、充填率が79体積%を超えると導体層3と絶縁層2の接着性が悪くなりすぎるので、本発明においては、充填率を上記範囲内にすることが必須である。   The filling rate of the inorganic filler is 73 to 79% by volume, preferably 77 to 79% by volume. If the filling rate is less than 73% by volume, the dielectric constant of the insulating layer 2 becomes too low, and if the filling rate exceeds 79% by volume, the adhesion between the conductor layer 3 and the insulating layer 2 becomes too bad. It is essential that the filling rate be within the above range.

無機フィラーは、平均粒径が3〜7μmである粗粉と、平均粒径が0.05〜0.7μmである微粉を含み、粗粉と微粉の合計を100体積%としたときの、微粉の割合が20〜30体積%である。粗粉の平均粒径は、例えば3、4、5、6、7μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。微粉の平均粒径は、例えば0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。微粉の割合は、具体的には例えば20、21、22、23、24、25、26、27、28、29、30体積%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記粒径の粗粉と微粉とを上記割合で含有することによって耐電圧を高くすることができる。無機フィラーは、これら2種類の粉で構成されていてもよく、平均粒径が異なる別の種類の粉をさらに含んでいてもよい。本明細書において「平均粒径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。   The inorganic filler includes coarse powder having an average particle diameter of 3 to 7 μm and fine powder having an average particle diameter of 0.05 to 0.7 μm, and the fine powder when the total of the coarse powder and fine powder is 100% by volume. Is 20 to 30% by volume. The average particle diameter of the coarse powder is, for example, 3, 4, 5, 6, 7 μm, and may be within a range between any two of the numerical values exemplified here. The average particle size of the fine powder is, for example, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 μm, and any of the numerical values exemplified here It may be within a range between the two. Specifically, the proportion of fine powder is, for example, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30% by volume, and is within the range between any two of the numerical values exemplified here. It may be. The withstand voltage can be increased by containing the coarse particles and fine particles having the above-mentioned particle sizes in the above proportion. The inorganic filler may be composed of these two types of powders, and may further include other types of powders having different average particle sizes. In this specification, the “average particle size” means a particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.

3.導体層3
導体層の素材としては、銅、アルミニウム、鉄、錫、金、銀、モリブデン、ニッケル、チタニウムの単体又はこれら金属を二種類以上含む合金があり、汎用性の高い銅が好ましい。導体層の形状としては、板、シート、箔、これらの積層体がある。導体層の厚さは、特に限定されないが、例えば10〜300μmである。導体層3の表面にニッケルメッキ、ニッケル−金メッキ等のメッキ処理をしても良い。
3. Conductor layer 3
Examples of the material for the conductor layer include copper, aluminum, iron, tin, gold, silver, molybdenum, nickel, titanium, and an alloy containing two or more of these metals, and copper having high versatility is preferable. Examples of the shape of the conductor layer include a plate, a sheet, a foil, and a laminate thereof. Although the thickness of a conductor layer is not specifically limited, For example, it is 10-300 micrometers. The surface of the conductor layer 3 may be subjected to a plating process such as nickel plating or nickel-gold plating.

4.製造方法
本実施形態の回路基板の製造方法は、従来公知の回路基板の製造方法で良く、例えば、基材に絶縁層としての絶縁材を塗布した後に加熱半硬化させ、さらに絶縁層の表面に導体層としての金属箔をラミネート又は熱プレスする製造方法、絶縁剤をシート状にしたものを介して基材と導体層としての金属箔を貼り合わせる製造方法がある。
4). Manufacturing Method The circuit board manufacturing method of the present embodiment may be a conventionally known circuit board manufacturing method. For example, after applying an insulating material as an insulating layer to a base material, the substrate is heated and semi-cured, and further applied to the surface of the insulating layer. There are a manufacturing method in which a metal foil as a conductor layer is laminated or hot pressed, and a manufacturing method in which a base material and a metal foil as a conductor layer are bonded to each other through a sheet of insulating material.

以下に示す方法で、本発明の回路基板を実際に作製し、評価を行った。   The circuit board of the present invention was actually produced and evaluated by the following method.

(絶縁剤の作製)
絶縁層2を形成する絶縁剤は次のように作製した。ビスフェノールA型エポキシ樹脂(DIC社製、「EXA850CRP」)と、フェノールノボラック型硬化剤(明和化成株式会社製、「アクメックス MEH8005H」)又はアミン系硬化剤(日本合成化工社製、「アクメックス H−84B」)(ジアミノジフェニルメタン)と、無機フィラーとを自転公転式スーパーミキサー「あわとり練太郎」AR−250(株式会社シンキー製、登録商標)で5分間、攪拌混合し絶縁剤を作製した。エポキシ樹脂と硬化剤は、表1に示す割合で混合した。無機フィラーは、以下のチタン酸バリウムを表1に示す充填率・比率で混合したものを用いた。表1において、フィラー充填率についての数値は、体積%を示し、チタン酸バリウムについての数値は、チタン酸バリウム全体を100体積%とした場合の、それぞれの粉の体積%を示す。
(Production of insulating agent)
The insulating agent for forming the insulating layer 2 was produced as follows. Bisphenol A type epoxy resin (manufactured by DIC, “EXA850CRP”) and phenol novolac type curing agent (manufactured by Meiwa Kasei Co., Ltd., “Acmex MEH8005H”) or amine curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., “Acmex H” -84B ") (diaminodiphenylmethane) and an inorganic filler were stirred and mixed for 5 minutes with a rotation and revolution supermixer" Awatori Nertaro "AR-250 (manufactured by Shinky Co., Ltd., registered trademark) to produce an insulating agent. The epoxy resin and the curing agent were mixed at the ratio shown in Table 1. The inorganic filler used was a mixture of the following barium titanate at the filling rate and ratio shown in Table 1. In Table 1, the numerical value for the filler filling rate indicates volume%, and the numerical value for barium titanate indicates the volume% of each powder when the entire barium titanate is 100 volume%.

堺化学社製 BT−01 d50=0.1μm
堺化学社製 BT−03 d50=0.3μm
堺化学社製 BT−05 d50=0.5μm
日本化学工業社製 BT−UP1 d50=2μm
日本化学工業社製 BT−UP1 d50=5μm
日本化学工業社製 BT−UP1 d50=10μm
BT-01 d50 = 0.1 μm manufactured by Sakai Chemical
BT-03 made by Sakai Chemical Co., Ltd. d50 = 0.3μm
BT-05 made by Sakai Chemical Co., Ltd. d50 = 0.5μm
BT-UP1 d50 = 2μm manufactured by Nippon Chemical Industry Co., Ltd.
BT-UP1 d50 = 5μm manufactured by Nippon Chemical Industry Co., Ltd.
BT-UP1 d50 = 10μm manufactured by Nippon Chemical Industry Co., Ltd.

(導体層3の積層)
作製した絶縁剤を、基板1としての厚さ2.0mmのアルミニウム板(材質:4045、昭和電工株式会社製)上に、スクリーン印刷法で乾燥後の厚さが75μmとなるように塗布して絶縁層2を形成した。絶縁層2の上に導体層3としての厚さ70μmの銅箔GTS−MP(古河サーキットフォイル株式会社製、商品名)を貼り合わせ、180℃で7時間の加熱を行い絶縁層2を硬化させた。
(Lamination of conductor layer 3)
The produced insulating material is applied onto a 2.0 mm thick aluminum plate (material: 4045, manufactured by Showa Denko KK) as the substrate 1 so that the thickness after drying is 75 μm by screen printing. An insulating layer 2 was formed. A 70 μm thick copper foil GTS-MP (trade name, manufactured by Furukawa Circuit Foil Co., Ltd.) as the conductor layer 3 is bonded onto the insulating layer 2 and heated at 180 ° C. for 7 hours to cure the insulating layer 2. It was.

(導体層3に回路パターンを形成)
この導体層3をエッチングして回路パターンを形成し、回路基板を得た。
(Circuit pattern is formed on conductor layer 3)
The conductor layer 3 was etched to form a circuit pattern to obtain a circuit board.

(評価)
得られた回路基板について、以下の方法に従って、比誘電率、耐電圧、及び接着性の評価を行った。得られた結果を表1に示す。
(Evaluation)
About the obtained circuit board, the dielectric constant, withstand voltage, and adhesiveness were evaluated in accordance with the following method. The obtained results are shown in Table 1.

<比誘電率の測定方法>
回路基板の銅箔の周囲をエッチングし、直径20mmの円形部分を残し試料とした。測定は、温度25℃、周波数1MHz、電圧1Vの条件下にて、JIS C6481に基づき実施した。測定器には、LCRメータ(横河・ヒューレット・パッカード社製、「HP4284A」)を用いた。
上記条件で、静電容量(X;単位、F)を測定した。比誘電率(E)は、静電容量(X;単位、F)と絶縁層の厚み(Y;単位、m)と電極板の面積(Z;単位、m)と真空の誘電率(8.85×10−12;単位、F/m)から、
E=X×Y/(8.85×10−12×Z)
の式を用いて、算出した。
比誘電率の評価基準は、以下の通りである。
◎:180以上
○:170以上180未満
△:160以上170未満
×:160未満
<Measurement method of relative permittivity>
The periphery of the copper foil of the circuit board was etched, and a circular portion having a diameter of 20 mm was left as a sample. The measurement was performed based on JIS C6481 under conditions of a temperature of 25 ° C., a frequency of 1 MHz, and a voltage of 1 V. An LCR meter (manufactured by Yokogawa, Hewlett-Packard, “HP4284A”) was used as a measuring instrument.
The capacitance (X; unit, F) was measured under the above conditions. The relative dielectric constant (E) is the capacitance (X; unit, F), the thickness of the insulating layer (Y; unit, m), the area of the electrode plate (Z; unit, m 2 ), and the dielectric constant (8 .85 × 10 −12 ; units, F / m)
E = X × Y / (8.85 × 10 −12 × Z)
This was calculated using the following formula.
The evaluation criteria for the relative dielectric constant are as follows.
◎: 180 or more ○: 170 or more and less than 180 Δ: 160 or more and less than 170 ×: less than 160

<耐電圧の測定方法>
エッチング法により、回路基板上に直径が20mmの円形電極を作成し、JIS C 2110に規定された段階昇圧法により、円形電極とアルミニウム板との間の耐電圧を測定した。評価基準は、以下の通りである。
◎:1.2kV以上
○:1.0kV以上1.2kV未満
△:0.8kV以上1.0kV未満
×:0.8未満
<Measurement method of withstand voltage>
A circular electrode having a diameter of 20 mm was formed on the circuit board by an etching method, and the withstand voltage between the circular electrode and the aluminum plate was measured by a step-up method defined in JIS C2110. The evaluation criteria are as follows.
A: 1.2 kV or more ○: 1.0 kV or more and less than 1.2 kV Δ: 0.8 kV or more and less than 1.0 kV ×: less than 0.8

<接着性の評価方法>
幅10mmの銅箔を残すように回路基板を加工して試料とした。銅箔と基板を90度の角度とし、50mm/minの引っ張り速度で剥離し、引き剥し強度を測定した。その他の条件はJIS C6481に基づいた。測定機としてはテンシロン(東洋ボールドウィン社製、「U−1160」)を用いた。評価基準は、以下の通りである。
◎:2.2kgf/cm以上
○:2.0kgf/cm以上2.2kgf/cm未満
△:1.8kgf/cm以上2.0kgf/cm未満
×:1.8kgf/cm未満
<Adhesive evaluation method>
A circuit board was processed so as to leave a copper foil having a width of 10 mm to obtain a sample. Copper foil and a board | substrate were made into the angle of 90 degree | times, it peeled with the pulling speed of 50 mm / min, and the peeling strength was measured. Other conditions were based on JIS C6481. Tensilon (Toyo Baldwin, “U-1160”) was used as a measuring machine. The evaluation criteria are as follows.
◎: 2.2 kgf / cm or more ○: 2.0 kgf / cm or more and less than 2.2 kgf / cm Δ: 1.8 kgf / cm or more and less than 2.0 kgf / cm ×: less than 1.8 kgf / cm

(考察)
表1を参照すると、実施例1〜6では、比誘電率、耐電圧、及び接着性の全てにおいて良好な結果が得られた。一方、比較例1〜2では、フィラー充填率が低く、十分に高い比誘電率が得られなかった。比較例3では、フィラー充填率を高くしすぎたため、接着性が悪くなってしまった。比較例4では、粗粉の粒径が小さすぎたため、接着性が悪くなってしまった。比較例5では、粗粉の粒径が大きすぎたため、耐電圧が悪くなってしまった。比較例6では、微粉の粒径が大きすぎて、フィラー充填率を78体積%にすることができず、評価できなかった。比較例7では、微粉の割合が大きすぎて、比誘電率、耐電圧、及び接着性のいずれにおいても良好な結果が得られなかった。比較例8では、微粉の割合が小さすぎて、比誘電率及び耐電圧において良好な結果が得られなかった。
(Discussion)
Referring to Table 1, in Examples 1 to 6, good results were obtained in all of relative permittivity, withstand voltage, and adhesiveness. On the other hand, in Comparative Examples 1-2, the filler filling rate was low, and a sufficiently high relative dielectric constant could not be obtained. In Comparative Example 3, the filler filling rate was increased too much, so that the adhesiveness deteriorated. In Comparative Example 4, the particle size of the coarse powder was too small, resulting in poor adhesion. In Comparative Example 5, the withstand voltage deteriorated because the particle size of the coarse powder was too large. In Comparative Example 6, the particle size of the fine powder was too large, and the filler filling rate could not be 78% by volume, and could not be evaluated. In Comparative Example 7, the proportion of fine powder was too large, and good results were not obtained in any of the dielectric constant, withstand voltage, and adhesiveness. In Comparative Example 8, the proportion of fine powder was too small, and good results were not obtained in relative permittivity and withstand voltage.

Claims (4)

金属基板と、この基板上に形成された絶縁層と、前記絶縁層上に形成された導体層を有し、
前記絶縁層は、樹脂と、無機フィラーとを含み、
前記無機フィラーは、比誘電率が50以上であり、
前記無機フィラーの充填率は、73〜7体積%であり、
前記無機フィラーは、平均粒径が3〜7μmである粗粉と、平均粒径が0.05〜0.7μmである微粉を含み、前記粗粉と前記微粉の合計を100体積%としたときの、前記微粉の割合が20〜30体積%である、回路基板。
A metal substrate, an insulating layer formed on the substrate, and a conductor layer formed on the insulating layer;
The insulating layer includes a resin and an inorganic filler,
The inorganic filler has a relative dielectric constant of 50 or more,
Filling ratio of the inorganic filler is 73-7 8% by volume,
The inorganic filler includes coarse powder having an average particle diameter of 3 to 7 μm and fine powder having an average particle diameter of 0.05 to 0.7 μm, and the total of the coarse powder and the fine powder is 100% by volume. The circuit board whose ratio of the said fine powder is 20-30 volume%.
前記無機フィラーは、チタン酸バリウムである、請求項1に記載の回路基板。 The circuit board according to claim 1, wherein the inorganic filler is barium titanate. 前記樹脂は、エポキシ樹脂である、請求項1又は2に記載の回路基板。 The circuit board according to claim 1, wherein the resin is an epoxy resin. 請求項1〜3の何れか1つに記載の回路基板と、この回路基板上に搭載された電子部品を有する電子部品搭載基板。 An electronic component mounting board comprising: the circuit board according to claim 1; and an electronic component mounted on the circuit board.
JP2012130429A 2012-06-08 2012-06-08 Circuit board and electronic component mounting board Active JP6006539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130429A JP6006539B2 (en) 2012-06-08 2012-06-08 Circuit board and electronic component mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130429A JP6006539B2 (en) 2012-06-08 2012-06-08 Circuit board and electronic component mounting board

Publications (2)

Publication Number Publication Date
JP2013254879A JP2013254879A (en) 2013-12-19
JP6006539B2 true JP6006539B2 (en) 2016-10-12

Family

ID=49952151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130429A Active JP6006539B2 (en) 2012-06-08 2012-06-08 Circuit board and electronic component mounting board

Country Status (1)

Country Link
JP (1) JP6006539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404806B (en) * 2016-05-18 2020-12-01 德昌电机(深圳)有限公司 Printed circuit board and motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233669A (en) * 2000-02-24 2001-08-28 Ngk Spark Plug Co Ltd High-permittivity composite material and printed circuit board and multilayer printed circuit board using the same
JP3680854B2 (en) * 2003-04-04 2005-08-10 東レ株式会社 Paste composition and dielectric composition using the same
JP4972903B2 (en) * 2004-10-04 2012-07-11 東レ株式会社 Dielectric composition
JP2006160934A (en) * 2004-12-09 2006-06-22 Toray Ind Inc Paste composition and dielectric composition

Also Published As

Publication number Publication date
JP2013254879A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
KR100476285B1 (en) Through-Hole Wiring Board
TWI416673B (en) Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
JP3209132B2 (en) Metal base substrate
TWI477220B (en) A multilayered circuit board, insulating sheet, and semiconductor package by use of a multilayered circuit board
TWI556266B (en) Anisotropic conductive film and semiconductor device using the same
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JP2004047421A (en) Conductive paste
KR100685273B1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP2009194359A (en) Adhesive film for circuit connection, and connection structure of circuit member and method of connecting circuit member using the same
JPWO2009008471A1 (en) Copper foil with dielectric layer
TW508772B (en) Semiconductor apparatus
JP3826898B2 (en) Electronic component manufacturing method and semiconductor device
JP2013254921A (en) Circuit board and electronic-component mounting board
JP5118469B2 (en) Copper foil with filler particle-containing resin layer and copper-clad laminate using the filler particle-containing copper foil with resin layer
JP6239510B2 (en) Metal-based printed wiring board
WO2014087882A1 (en) Metal layer having resin layer attached thereto, laminated body, circuit board, and semiconductor device
JP2016094599A (en) Resin composition for thermally conductive sheet, resin layer with substrate, thermally conductive sheet, and semiconductor device
WO2018012017A1 (en) Electroconductive coating material and process for producing shielded packages using same
JP3621337B2 (en) Adhesive composition for semiconductor device and adhesive sheet
WO2012157665A1 (en) Semiconductor module component and liquid resin composition for encapsulation
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP6006539B2 (en) Circuit board and electronic component mounting board
JP2009194105A (en) Through-hole filler and multilayer wiring board
KR102660805B1 (en) Adhesive film and adhesive film laminate comprising same
JP2019179844A (en) Resin sheet for forming solder resist, circuit board, and semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250