JP4509514B2 - 汚染物質ガスの分解装置および汚染土壌の処理装置 - Google Patents

汚染物質ガスの分解装置および汚染土壌の処理装置 Download PDF

Info

Publication number
JP4509514B2
JP4509514B2 JP2003315734A JP2003315734A JP4509514B2 JP 4509514 B2 JP4509514 B2 JP 4509514B2 JP 2003315734 A JP2003315734 A JP 2003315734A JP 2003315734 A JP2003315734 A JP 2003315734A JP 4509514 B2 JP4509514 B2 JP 4509514B2
Authority
JP
Japan
Prior art keywords
heating furnace
gas
temperature
pollutant
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003315734A
Other languages
English (en)
Other versions
JP2005081234A (ja
Inventor
岳史 佐藤
朋浩 轟木
武志 五反田
智子 吉川
肇 名古
幸彦 新澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tanabe Engr Corp
Original Assignee
Toshiba Corp
Tanabe Engr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tanabe Engr Corp filed Critical Toshiba Corp
Priority to JP2003315734A priority Critical patent/JP4509514B2/ja
Publication of JP2005081234A publication Critical patent/JP2005081234A/ja
Application granted granted Critical
Publication of JP4509514B2 publication Critical patent/JP4509514B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、有機系の汚染物質ガスを分解する装置、およびこの分解装置を備え汚染物質を含有する土壌を処理する装置に関する。
近年、有機系の汚染物質による環境汚染が社会的に注目され、例えば汚染土壌から汚染物質を除去して無害化することが求められている。有機系の汚染物質の代表例としては、PCB、ダイオキシン、トリクロロエチレン、ベンゼン、油などがある。
従来、これらの有機系汚染物質を土壌から除去するには、以下のような方法が用いられている。例えば、芳香族ハロゲン化合物に汚染された土壌を加熱し、芳香族ハロゲン化合物を揮発させ、触媒の存在下に分解する方法が知られている(特許文献1参照)。また、汚染土壌に高カロリー廃棄物を加えて焼却し、焼却により発生した排ガスを1000℃以上のアフターバーナで二次燃焼する方法が知られている(特許文献2参照)。
しかし、土壌には芳香族ハロゲン化合物以外の有機化合物が数重量%含まれており、芳香族ハロゲン化合物を揮発させる加熱工程において土壌中に含まれている有機化合物が熱分解して炭化水素ガスが生成するため、上述した触媒による分解方法では、触媒が炭化水素ガスによって劣化する。また、触媒活性面が加熱工程で発生する粉塵・ダストによって被覆され触媒活性が損なわれる。さらに、触媒が芳香族ハロゲン化物の分解によって生成するハロゲン化水素により被毒し、やはり触媒活性が損なわれる。この結果、芳香族ハロゲン化合物を効率的に分解することができない。
一方、排ガスを二次燃焼する方法は、炉内においてバーナで燃料を燃焼させて生成した燃焼ガスによって汚染物質ガスを直接加熱する方式(直接燃焼方式ともいう)なので、バーナ近傍の炉内温度は局所的に高いが炉壁付近の炉内温度は低いという現象、いわゆる温度むらが生じやすい。こうした温度むらが生じた場合、炉内温度が低い領域では汚染物質ガスを確実に分解することができないという問題がある。また、直接加熱方式では、排ガス量が増加することに起因して、炉サイズの巨大化、排ガス処理装置の巨大化、排ガス処理の負荷増大などの問題や、燃焼により新たにダイオキシンなどの意図しない副生成物が生じるという問題もある。
特開平7−328595号公報 特開平11−148631号公報
本発明の目的は、多量の排ガスを放出することなく、汚染物質ガスを確実に分解することができる汚染物質ガスの分解装置および汚染土壌の処理装置を提供することにある。
本発明の一態様に係る汚染物質ガスの分解装置は、汚染物質ガスを昇温する第1の加熱炉と、前記第1の加熱炉に接続され、汚染物質ガスを昇温後の温度に保持して酸化剤ガスと反応させる第2の加熱炉と、前記第1および第2の加熱炉内部に配置された複数のラジアントチューブ型ヒータと、前記第1および第2の加熱炉の内壁を覆う断熱材とを有する。
本発明の他の態様に係る汚染土壌の処理装置は、汚染物質を含有する土壌を加熱して汚染物質ガスを揮発させる揮発装置と、前記揮発装置で揮発された汚染物質ガスを分解する、上述した汚染物質ガスの分解装置とを有する。
本発明の汚染物質ガスの分解装置および汚染土壌の処理装置によれば、ラジアントチューブ型ヒータを用いた間接加熱方式で汚染物質ガスを分解するので多量の排ガスを放出することがなく、しかも汚染物質ガスを確実に分解することができる。
本発明者らは、汚染物質ガスを分解するために、揮発させた汚染物質ガスを間接加熱して酸化剤ガス(水蒸気、空気、高濃度酸素など)と反応させれば、汚染物質ガスを効率的に分解できることを見出した。ここで、間接加熱とは、熱源と非加熱ガスが金属やセラミックなどでできた隔壁で隔離されており、その隔壁を通した放射・伝熱によって加熱する方法を意味し、直接加熱(直接燃焼)と異なる。間接加熱は、直接加熱(直接燃焼)と比較して、発生する排ガス量が少なくなるという利点がある。
本発明者らは、間接加熱により汚染物質ガスを酸化剤ガスと反応させて分解する際に、汚染物質ガスを約600〜1300℃の設定温度に2〜10秒間滞留させる必要があることを見出した。加熱温度が600℃より低い場合には、汚染物質ガスが十分に分解せずに残存する。一方、加熱温度が1300℃を超えると、加熱炉を構成する耐熱金属材料の耐用限界を超える。また、汚染物質ガスを分解するのに必要な温度よりも過剰に高温であるため熱効率が悪い。滞留時間が2秒より短い場合には汚染物質ガスが十分に分解せずに残存する。一方、滞留時間が10秒より長いと、汚染物質ガスを分解するのに必要な滞留時間よりも過剰に処理を行うことになるため、装置が過剰に大きくなり熱効率も悪い。
本発明者らは、上記の条件を満たすのに有利な装置の構成について検討した。最初に、汚染物質ガスを間接加熱する装置として、たとえば円筒または直方体などの形状を有する金属またはセラミックスからなる炉芯管を用い、その内部に汚染物質ガスを通過させ、その外側から加熱することを検討した。しかし、管径の大きい場合には半径方向の温度むらが顕著であるため、汚染物質ガスを効率的に分解することが困難になることがわかってきた。
また、本発明に係る装置では吹き抜けにも留意する必要がある。吹き抜けとは、ガスの一部が炉芯管の入口から出口へ直線的に流れて炉内を通り抜ける現象のことを指す。吹き抜けたガスの滞留時間は、全ガスの平均滞留時間(炉内容積/ガス流量)に比べ極端に小さくなる。しかも、吹き抜けによってガスの温度分布が不均一になりやすい。したがって、吹き抜けが生じると汚染物質ガスを適切に分解できなくなるため、汚染物質ガスの分解効率が低下する。
さらに、汚染土壌を処理する場合には分解装置の前段で土壌を加熱して汚染物質ガスを揮発させるが、土壌に含まれる物質は種々雑多であり、しかも同じサイトの土壌でも含有される物質は均一ではない。このため、投入される土壌の組成が短時間で大きく変動する可能性があり、汚染物質ガスの分解装置に導入されるガス中の汚染物質、水分、低沸点有機物などの組成も短時間で大きく変動する可能性がある。その場合、ガスの熱伝導率、流速などが変化し、炉芯管内の温度分布すなわち温度むらが大きくなる。
一方、管径を小さくした場合には、ダストなどの固形分による閉塞の問題が発生する。特に汚染土壌を処理する場合には、後述するように小さな土粒子がダストとなってガスに混入するため、この問題が顕著である。
さらに、炉芯管では、高温部において構成材料である金属またはセラミックスの熱膨張に起因してガスリークが生じるなどの問題も多いため、スケールアップが困難である。
これに対して、本発明の実施形態に係る汚染物質ガスの分解装置は、上述したような炉芯管形式の装置の欠点を解消することができる。
本発明の実施形態に係る汚染物質ガスの分解装置は、第1および第2の分割された2つの加熱炉を接続した特徴的な形態を有する。第1の加熱炉および第2の加熱炉の形状は特に限定されず、たとえば円筒でも直方体でもよい。この装置において用いられるラジアントチューブ型ヒータとは、金属やセラミックスなどの耐熱性チューブの内部に熱源を通し、チューブ外表面からの放射・伝熱により周囲を加熱するヒータである。熱源としては、油や燃料ガスを燃焼させて生成した燃焼ガスや、電気ヒータなどが用いられる。第1および第2の加熱炉内部に複数のラジアントチューブ型ヒータを配置すると、炉内において伝熱面が広く分布するので炉内温度の均一性を高めることができ、またガスの流通に対する障害となるので吹き抜け防止にも効果がある。上述したように、吹き抜けとは、炉の入口から出口に直線的に流れるガスの流れにおいてその滞留時間が平均滞留時間(炉内容積/ガス流量)に比べ極端に小さくなる現象である。第1および第2の加熱炉の内壁を覆う断熱材としては、耐熱レンガやセラミックボードなどが用いられる。こうした、いわゆる内断熱型の加熱炉では、炉内の高温の汚染物質ガスが断熱材に直接接触し、その外側の耐熱金属製の外皮へのガスの接触を避けることができる。
本発明の実施形態に係る汚染物質ガスの分解装置は以下のような利点を有する。この装置では、第1の加熱炉で汚染物質ガスを昇温させて第1の加熱炉の出口において汚染物質ガスの温度を目標とする反応温度にほぼ設定することができ、第2の加熱炉内で汚染物質ガスを昇温後の温度にほぼ均一に保持するとともに適切な滞留時間を確保することができる。これは、第1および第2の加熱炉内部に複数のラジアントチューブ型ヒータを配置したことにより、上述したように吹き抜けや温度むらによる影響が小さくなるためである。このとき、分解装置の前段で投入される土壌の組成が変動して分解装置に導入されるガスの組成が変動したとしても、第1の加熱炉内でその影響を散逸させることができるので、第1の加熱炉の出口においてはほぼ設定温度を維持することができる。また、耐熱金属製の外皮の内壁を断熱材で覆った内断熱型の加熱炉を採用したことによって、密閉構造を容易に実現できるとともに外皮の熱膨張自体を抑えることができるため、外皮の熱膨張に伴うガスリークの問題が生じることがなく、装置のスケールアップも容易になる。
図1に、本発明の一実施形態に係る汚染物質ガスの分解装置の断面図を示す。図1に示すように、この分解装置は概略的には第1の加熱炉10と第2の加熱炉20の底部どうしを接続配管30で接続した構造を有する。図1の詳細については後述する。
図1に示す汚染物質ガスの分解装置はたとえば汚染土壌の処理装置に組み込んで使用される。図2に、本発明の一実施形態に係る汚染土壌の処理装置の概略図を示す。汚染土壌は揮発装置101に投入されて200〜600℃に加熱される。こうして汚染土壌から汚染物質ガスを揮発させる。揮発装置101で処理された土壌は冷却装置102へ送られて冷却された後に清浄土壌として取り出される。ブロア105の吸引力によって、揮発装置101で揮発された汚染物質ガスは分解装置103へ送られ、第1の加熱炉10において昇温され、第2の加熱炉20において酸化剤ガスとの反応により分解される。処理後のガスは排ガス処理装置104で処理され、ブロア105を通して排ガスとして排出される。
揮発装置101としてはスクリューフィーダまたはキルンが用いられ、土壌を間接加熱して汚染土壌から汚染物質ガスを揮発させる。スクリューフィーダまたはキルンが優れている点は、土壌の間接的な加熱が容易であること、連続処理が可能なこと、回転数などを調節することで処理量を適宜変更可能なこと、攪拌を伴うため土壌温度が均一になることである。排ガス処理装置104としては、アルカリ水シャワーのスクラバー装置などが用いられる。
汚染物質ガスの分解装置の詳細について再び図1を参照して詳細に説明する。
第1および第2の加熱炉10、20を構成する外皮11、21は一般的な鋼材で形成されている。第1および第2の加熱炉10、20の内部形状は、円筒、直方体など適宜選択することができる。第1および第2の加熱炉10、20の内壁は耐熱レンガやセラミックボードなどの断熱材12、22で覆われている。
第1の加熱炉10の入口配管15は接続配管30に対して最も遠い位置の上部に設けられている。第2の加熱炉20の出口配管25は接続配管30に対して最も遠い位置の上部に設けられている。このように、各々の加熱炉の入口と出口を互いに最も遠い位置に設けることが好ましい。すなわち、入口配管15を通して第1の加熱炉10へ流入するガスの流入方向の延長線上から接続配管30(第1の加熱炉の出口)をはずして設け、接続配管30(第2の加熱炉の入口)を通して第2の加熱炉20へ流入するガスの流入方向の延長線上から第2の加熱炉20の出口配管25をはずして設けることにより、吹き抜けを効果的に防止できる。
第1の加熱炉10の入口配管15内には、酸化剤供給ノズル40が挿入されている。酸化剤供給ノズル40の周囲には酸化剤予熱ヒータ41が設けられている。なお、酸化剤供給ノズル40および酸化剤予熱ヒータ41は必須の部材ではなく、必要に応じて設けられる。
第1および第2の加熱炉10、20の上部から炉内へ複数のラジアントチューブ型ヒータ13、23が吊下されている。この場合、たとえば外皮11、21とラジアントチューブ型ヒータ13、23とを例えばフランジを介して接続することができ、気密性を保つのに有利である。以下、この点をより詳細に説明する。汚染物質ガスの分解装置では、加熱炉内に意図しない空気などが流入することは反応管理および温度管理の点から好ましくない。すなわち、加熱炉内に意図しない空気などが流入すると、低温ガスが混入することによる炉内温度の低下、炉内ガスが増加することによる滞留時間の減少が起こり、分解処理に必要な温度および滞留時間を維持できなくなる。このため、炉内を気密に保つ必要がある。ここで、炉芯管形式の加熱炉の場合には、炉芯管と前後の接続配管との間(複数の炉芯管を直列に接続する場合には炉芯管と炉芯管との間)の高温部で密閉構造をとる必要があるため、気密性を確保することが困難である。これは、高温部における熱膨張の影響を考慮する必要があり、しかも高温部においては管に亀裂などが生じやすいためである。これに対して、本発明の実施形態に係る分解装置のように、内断熱型の加熱炉を用いた場合、断熱材の外側にある耐熱金属製の外皮において密閉構造をとることができ、ラジアントチューブ型ヒータの場合には外皮との接続部をフランジ構造とすることにより気密性を確保できる。
また、ラジアントチューブ型ヒータをフランジによって外皮に接続した場合、別の効果も得られる。上述したように、汚染土壌処理装置において分解装置の前段の揮発装置としてスクリューフィーダやキルンを用いた場合、汚染土壌を攪拌しながら搬送するため、細かい土粒子がダストとなってガスに含有され、さらに土粒子が1000℃以上の高温にさらされると融解・固化して塊状のクリンカを形成することもある。ここで、前述したように炉芯管形式の加熱炉では、流路を狭く(径を小さく)するとダストやクリンカによる閉塞の問題が顕著になり、これを避けるために流路を広く(径を大きく)すると半径方向での温度むらの現象が生じる。これに対して、本発明の実施形態に係る分解装置ではラジアントチューブ型ヒータにクリンカなどが付着した場合にフランジをはずして個々のラジアントチューブ型ヒータを引き抜いて清掃することができるので、炉芯管の内面を清掃するのに比べると格段に作業が容易である。なお、個々のラジアントチューブ型ヒータを加熱炉から引き抜くことができる接続構造であればよく、フランジ構造に限定されるわけではない。また、本発明の実施形態に係る分解装置においては、ダストやクリンカが加熱炉の底部に蓄積するのでダスト掻き出しフィーダなどの設置すればその除去は容易である。
ラジアントチューブ型ヒータの熱源は、電気ヒータでもよいし、灯油、重油、都市ガスなどの燃料の燃焼ガスを用いてもよい。電気ヒータを用いる場合には、ラジアントチューブ中に発熱体を挿入する。灯油、重油、都市ガスなどを用いる場合、ラジアントチューブの端部より外側に使用燃料に適した燃焼バーナを設け、燃焼バーナから発生する高温ガスをラジアントチューブ中に通過させる。この場合、外管内に燃焼ガス送風管を先端付近まで挿入した二重管構造のラジアントチューブを用いる。燃焼バーナによる燃焼ガスは、燃焼ガス送風管の内側を通し、ラジアントチューブの先端において折り返し、燃焼ガス送風管の外側を通して戻す。戻ってきたガスは、排ガスとして系外に放出してもよいし、熱交換器へ送って排熱を利用し装置全体の熱効率の向上させるようにしてもよい。
ラジアントチューブ型ヒータの形状は、直管タイプでもよいし、U字管タイプでもよい。また、ラジアントチューブ型ヒータの施工方法も特に限定されず、加熱炉上部から吊下させてもよいし、加熱炉側部から横向きに挿入してもよいし、加熱炉底部から上向きに挿入してもよい。ただし、ラジアントチューブ型ヒータを横向きに挿入する場合には、高温下におけるチューブの変形に十分注意を払う必要がある。
ラジアントチューブ型ヒータの出力を制御するには、適切な位置に温度計測器を設置し、その温度計測器による検出温度を設定温度に近づけるようにフィードバック制御するが、温度計測器の設置位置は特に限定されない。ただし、上述したように、第1の加熱炉に配置されたラジアントチューブ型ヒータの出力を制御するには、第1の加熱炉と第2の加熱炉との間の接続配管中に温度計測器を設け、この温度計測器による検出温度を利用することが好ましく、第2の加熱炉に配置されたラジアントチューブ型ヒータの出力を制御するには、第2の加熱炉の出口配管中に温度計測器を設け、この温度計測器による検出温度を利用することが好ましい。
第1の加熱炉に配置されたラジアントチューブ型ヒータの出力制御を、接続配管におけるガス温度に基づいて実施するのがよい理由は、第2の加熱炉に入るガス温度を設定温度に近づけることが容易になるためである。ここで、例えば第1の加熱炉の内部に温度計測器を設けてその制御点での検出温度に基づいてラジアントチューブ型ヒータの出力制御を行った場合、第1の加熱炉内部の制御点から第2の加熱炉入口に達するまでにガスの熱量が逃げてしまい、第2の加熱炉の入口においては設定温度よりも低い温度になる可能性がある。これに対して、第1の加熱炉と第2の加熱炉との間の接続配管内、特に第2の加熱炉の入口付近に設定した制御点でのガス温度に基づいて第1の加熱炉に配置されたラジアントチューブ型ヒータの出力を制御した場合には、その制御点から第2の加熱炉入口に達するまでに逃げるガスの熱量が小さいため、第2の加熱炉入口の温度を設定温度に近づけるのが容易になる。ラジアントチューブ型ヒータの出力の制御方法は、検出温度が設定温度に達していない場合は出力をON、超えている場合はOFFにする制御法や、設定温度と検出温度を比較して出力をPID制御する方法(たとえばバーナへの燃料の供給量をPID制御する方法)など、適宜選択することができる。
図1に示す汚染物質ガスの分解装置の動作は以下のとおりである。揮発装置(図2の101)において汚染土壌より揮発された汚染物質ガスは、入口配管15を通して第1の加熱炉10に入る。このガスには、有機系汚染物質の他に、土壌に含まれていた水分や低沸点有機物質が含まれる。第1の加熱炉10では、接続配管30内に配置された第1の温度計測器51による検出温度に基づいて第1の制御器14によってラジアントチューブ型ヒータ13の出力を制御し、汚染物質ガスを目標とする反応温度まで昇温させる。また、汚染物質ガスとともに、必要に応じて酸化剤供給ノズル40から酸化剤ガス(水蒸気、空気または高濃度酸素ガス)が酸化剤予熱ヒータ41によって予熱されて供給される。第1の加熱炉10で昇温されて目標とする反応温度に達した汚染物質ガスおよび酸化剤ガスは、接続配管30を通して第2の加熱炉20へ入る。第2の加熱炉20では、出口配管25内に配置された第2の温度計測器52による検出温度に基づいて第2の制御器24によってラジアントチューブ型ヒータ23の出力を制御し、汚染物質ガスおよび酸化剤ガスを設定した反応温度に保持して十分な時間だけ滞留させることにより、汚染物質ガスを分解して無害化する。処理後のガスは、出口配管25を通して排ガス処理装置(図2の104)へ送られる。
上述したように、図1における酸化剤供給ノズル40および酸化剤予熱ヒータ41は必ずしも設ける必要はない。たとえば、汚染土壌に多量の水分が含有されていた場合には、それを揮発させた水蒸気を酸化剤ガスとして用いることもできる。酸化剤ガスの量は、分解装置内のガスについて酸素原子と炭素原子のモル量を比較した時に、酸素原子のモル量が炭素原子のモル量と同量以上、望ましくは2倍以上含まれるように調整することが好ましい。酸素原子が炭素原子に比較して少ない場合には、汚染物質ガスを十分に分解することができない。
酸化剤ガスの供給量を調整するには、以下のような種々の方法を用いることができる。たとえば、土壌から揮発するガスの成分を予測して炭素原子の量を想定し、それに対して十分な量の酸素原子が存在するように酸化剤ガスの供給量を決定する方法を用いることができる。また、第2の加熱炉の出口において処理後のガス中の一酸化炭素または水素の濃度を計測し、その濃度がある一定値以下になるように酸化剤ガスの供給量を制御してもよい。この方法は、酸化剤ガスの供給量が少なすぎると酸化反応が不完全になり、一酸化炭素や水素が生成することを利用している。また、第2の加熱炉からの出口ガス全体の発熱量を一定値以下に保つように酸化剤ガスの供給量を制御する方法を用いてもよい。
以下、実施例に基づいて本発明に係る汚染物質ガスの分解装置および汚染土壌の処理装置の効果を説明する。
(実施例1)
図2に示す構成を有する処理装置を用いて汚染土壌を処理した例を説明する。本実施例で用いた処理装置は、1t/hrの土壌処理能力を有する。
図3(a)、(b)および(c)は、それぞれ汚染物質ガスの分解装置103の長手方向の断面図、幅方向の断面図および上面図であり、これらの図には主要な寸法(単位はmm)を表示している。なお、図1と同一の部材には同一の符号を付している。
図3の分解装置では、第1の加熱炉10および第2の加熱炉20は、いずれも鋼材からなる外皮11、21の内側に断熱材12、22として耐熱レンガを施工した内断熱型の加熱炉であって、炉内寸法が高さ1900mm、長さ2000mm、幅1200mmであり、直方体形状を有する。第1の加熱炉10のサイズは、炉出口(接続配管30)において汚染物質ガスが1000℃まで昇温されるように設計している。第2の加熱炉20のサイズは、1000℃のガスを約5秒間滞留できるように設計している。設計の基準として用いたガス量は、揮発装置(図2の101)において土壌に含まれる汚染物質、水分および低沸点有機物が全て揮発するものとして算出したガス量と、酸化剤として添加した空気量とを合計した全ガス量である。第1の加熱炉10と第2の加熱炉20との間の接続配管30は内側断熱材張りの円管であり、その寸法は内径300mm、長さ500mmである。
断熱材12、22としての耐熱レンガの厚さは、定常状態での処理時に外皮温度が100℃に達しないように設計している。こうした設計により、外皮表面が高温になることに伴う火災や火傷などの事故の発生や、外皮から熱が逃げることに伴う熱効率の低下を防止している。
第1の加熱炉10および第2の加熱炉20には、それぞれ横3列、縦5列の計15本のラジアントチューブ型ヒータ13、23が配置されている。個々のラジアントチューブ型ヒータ13、23の上端部はフランジ60により外皮11、21に取り付けられて気密構造を確保している。個々のラジアントチューブ型ヒータ13、23はフランジ60をはずして上方に引き抜くことができるので、チューブに付着したクリンカを掃除する作業が容易になる。
ラジアントチューブ型ヒータ13、23は耐熱金属製であり、その外管は外径150mm、長さ2000mmの大きさである。ラジアントチューブ型ヒータ13、23は、外管の内側に燃焼ガス送風管を先端付近まで挿入した二重管構造となっている。各々のラジアントチューブ型ヒータ13、23の上端の炉外には、灯油バーナが設けられている。そして、灯油バーナから高温の燃焼ガスを発生させ、燃焼ガス送風管の内側を通し、ラジアントチューブの先端において折り返し、燃焼ガス送風管の外側を通して戻すことにより、外管からの放射伝熱によって炉内の汚染物質ガスを間接加熱するようになっている。戻ってきた燃焼ガスは排ガスとして系外に放出されるが、灯油の燃焼ガスであるため排ガス処理装置は特に必要ない。
第1の加熱炉10では接続配管30内に配置された第1の温度計測器51による検出温度に基づいて第1の制御器14によってラジアントチューブ型ヒータ13の出力を制御し、第2の加熱炉20では出口配管25内に配置された第2の温度計測器52による検出温度に基づいて第2の制御器24によってラジアントチューブ型ヒータ23の出力を制御した。本実施例では、第1の温度計測器51および第2の温度計測器52による検出温度を、設定温度である1000℃に近づけるように、灯油バーナへの灯油の供給量をPID制御した。
汚染土壌として、水分含有量10重量%、有機物含有量5重量%であり、汚染物質としてPCBを5000mg/kgの濃度で含むものを用意した。この汚染土壌をホッパーから揮発装置101内に投入して500℃に加熱し、汚染土壌から水分、低沸点有機物およびPCBを揮発させた。ブロア105の吸引力により、汚染物質ガスを分解装置103に送り、第1の加熱炉10において汚染物質ガスを約1000℃まで昇温し、第2の加熱炉20において汚染物質ガスを約1000℃に保持して分解した。この際、酸化剤供給ノズル40から酸化剤として空気を第1の加熱炉10に220Nm3/hrの流量で供給することにより、第2の加熱炉20内におけるガスの滞留時間を設計値通り約5秒とすることができた。処理後のガスを排ガス処理装置104で除塵および冷却して排気した。
各種の分析結果は以下の通りであった。
揮発装置101から発生したガス量は約130Nm3/hrであり、主な成分は水蒸気であった。処理後の土壌中PCB濃度は0.06mg/kgであった。したがって、PCBの除去率は99.99%以上であった。
図4に示すように、図3に示す第2の加熱炉20内の複数個所で温度を測定した温度分布を調べた。その結果、炉内の温度は982℃〜1009℃の範囲にあり、ほとんど温度むらがないことが示された。入口でのガス中PCB濃度は15000mg/Nm3、出口でのガス中PCB濃度は0.09mg/Nm3であり、分解率は99.99%以上であった。
排ガス処理装置104を経て大気へ放出される排ガスは、PCB濃度0.010mg/Nm3、ダイオキシン濃度0.02ng−TEQ/Nm3、塩化水素濃度0.3mg/Nm3であり、大気汚染防止法の排ガス基準を満たすものであった。
(実施例2)
第2の加熱炉20におけるガスの温度、ガスの滞留時間、および第1の加熱炉10へ供給する酸化剤の種類と量を何通りかに変化させて処理を行った。なお、揮発装置の条件など、その他の条件は実施例1と同一とした。表1に試験結果を示す。判定基準は、排ガスPCB濃度が0.10mg/Nm3以下である場合に合格とした。この値は、焼却施設における排ガス中PCB濃度の排出許容限界値である。
表1から、第2の加熱炉20においてガスの温度を600℃〜1300℃、ガスの滞留時間を2〜10秒の範囲に設定するのが有効であることがわかる。
Figure 0004509514
(比較例)
直接加熱方式の加熱炉を用いて汚染物質ガスの分解試験を行った例を示す。図5(a)および(b)に、この試験に用いた加熱炉の長手方向の断面図および幅方向の断面図をそれぞれ示す。この加熱炉200は、外皮201の内側に断熱材202を施工したものであって、炉内寸法が高さ1900mm、幅1200mm、長さ3500mmであり、直方体形状を有する。この加熱炉200の内容積は、実施例1に用いた分解装置の第1の加熱炉10と第2の加熱炉20の合計内容積にほぼ等しい。この加熱炉200の入口付近に直接加熱のための都市ガスバーナ203を設けている。また、加熱炉200の中央部付近に温度計測器204を設け、この温度計測器204による検出温度に基づいて都市ガスバーナ203の出力を制御するようにしている。
図6に、この加熱炉内の温度分布を示す。バーナ203付近の温度は高いが、炉壁付近の温度は低くなっており、温度むらが発生している様子がわかる。
次に、実施例1と同じ条件で汚染土壌の処理試験を行った。加熱炉200入口でのガス中PCB濃度は15000mg/Nm3、出口でのガス中PCB濃度は3000mg/Nm3であり、分解率は約80%程度であった。また、排ガス処理装置を経て大気へ放出される排ガスは、PCB濃度が12mg/Nm3であり、実施例2に示した排出許容限界値を大きく上回り、許容できないものであった。
(実施例3)
実施例1では、接続配管30内に配置された第1の温度計測器51による検出温度に基づいて第1の制御器14によって第1の加熱炉10内のラジアントチューブ型ヒータ13の出力を制御した。
これと対比するために、図7に示すように、第1の加熱炉10の内部に設けた温度計測器をヒータ制御点に設定し、その検出温度に基づいて第1の加熱炉10内のラジアントチューブ型ヒータ13の出力を制御した。図7に、第1および第2の加熱炉10、20内の温度分布を調べた結果を示す。
図7に示した第2の加熱炉20内の温度分布は、図6に示した直接加熱方式の加熱炉200内の温度分布と比較すれば温度むらが抑制されているので、本実施例の装置構成で汚染物質ガスの分解処理を行うことは可能である。
ただし、図7では接続配管30内ですでに930℃程度までガス温度が低下しており、その結果として図4の場合に比べると第2の加熱炉20内における温度むらが大きいことがわかる。したがって、実施例1のように第1の加熱炉10と第2の加熱炉20との間の接続配管30での検出温度に基づいて第1の加熱炉10の温度制御を行い、汚染物質ガスを設定温度まで昇温するようにすれば、第2の加熱炉20における温度むらを抑制できる効果が大きいことがわかる。
本発明の一実施形態に係る汚染物質ガスの分解装置を示す断面図。 本発明の一実施形態に係る汚染土壌の処理装置の概略図。 本発明の実施例1において用いた分解装置の長手方向の断面図、幅方向の断面図および上面図。 図3に示す第2の加熱炉内での温度分布を示す図。 比較例において用いた加熱炉の長手方向の断面図および幅方向の断面図。 図5に示す加熱炉内での温度分布を示す図。 本発明の実施例3における第1および第2の加熱炉内での温度分布を示す図。
符号の説明
10…第1の加熱炉、20…第2の加熱炉、11、21…外皮、12、22…断熱材、13、23…ラジアントチューブ型ヒータ、14、24…第1および第2の制御器、15…入口配管、25…出口配管、30…接続配管、40…酸化剤供給ノズル、41…酸化剤予熱ヒータ、51、52…第1および第2の温度計測器、60…フランジ、101…揮発装置、102…冷却装置、103…分解装置、104…排ガス処理装置、105…ブロア。

Claims (5)

  1. 土粒子を含む汚染物質ガスを昇温する第1の加熱炉と、
    前記第1の加熱炉に接続され、汚染物質ガスを昇温後の温度に保持して酸化剤ガスと反応させる第2の加熱炉と、
    前記第1および第2の加熱炉内部に配置された複数のラジアントチューブ型ヒータと、
    前記第1および第2の加熱炉の内壁を覆う断熱材と
    有し、前記ラジアントチューブ型ヒータは前記第1および第2の加熱炉から引き抜いて付着物の清掃ができることを特徴とする汚染物質ガスの分解装置。
  2. 前記第1の加熱炉と前記第2の加熱炉との間の接続配管中に設けられた温度計測器と、前記温度計測器による検出温度に基づいて前記第1の加熱炉内に配置されたラジアントチューブ型ヒータの出力を制御する制御器とを有することを特徴とする請求項1に記載の汚染物質ガスの分解装置。
  3. 前記第1の加熱炉に酸化剤ガス供給手段を設けたことを特徴とする請求項1に記載の汚染物質ガスの分解装置。
  4. 入口配管を通して前記第1の加熱炉へ流入するガスの流入方向の延長線上からはずれるように、前記第1の加熱炉と前記第2の加熱炉との間の接続配管を設け、前記接続配管を通して前記第2の加熱炉へ流入するガスの流入方向の延長線上からはずれるように、前記第2の加熱炉の出口配管を設けたことを特徴とする請求項1に記載の汚染物質ガスの分解装置。
  5. 汚染物質を含有する土壌を加熱して汚染物質ガスを揮発させる揮発装置と、
    前記揮発装置で揮発された、土粒子を含む汚染物質ガスを分解する、請求項1ないし4のいずれか1項に記載の汚染物質ガスの分解装置と
    を有することを特徴とする汚染土壌の処理装置。
JP2003315734A 2003-09-08 2003-09-08 汚染物質ガスの分解装置および汚染土壌の処理装置 Expired - Lifetime JP4509514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315734A JP4509514B2 (ja) 2003-09-08 2003-09-08 汚染物質ガスの分解装置および汚染土壌の処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315734A JP4509514B2 (ja) 2003-09-08 2003-09-08 汚染物質ガスの分解装置および汚染土壌の処理装置

Publications (2)

Publication Number Publication Date
JP2005081234A JP2005081234A (ja) 2005-03-31
JP4509514B2 true JP4509514B2 (ja) 2010-07-21

Family

ID=34415903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315734A Expired - Lifetime JP4509514B2 (ja) 2003-09-08 2003-09-08 汚染物質ガスの分解装置および汚染土壌の処理装置

Country Status (1)

Country Link
JP (1) JP4509514B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142393B2 (ja) * 2019-04-25 2022-09-27 株式会社日省エンジニアリング 有機物処理装置
JP7142394B2 (ja) * 2019-06-28 2022-09-27 株式会社日省エンジニアリング 水蒸気発生機能を備えた有機物処理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279942A (ja) * 1999-03-30 2000-10-10 Sumitomo Heavy Ind Ltd 汚染土壌の処理方法及び処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737129B2 (ja) * 1987-12-04 1998-04-08 大同特殊鋼株式会社 ラジアントチューブの密閉支持構造
JPH06123414A (ja) * 1992-10-12 1994-05-06 Hitachi Metals Ltd 焼却炉及び焼却方法
JP3064760B2 (ja) * 1993-09-30 2000-07-12 日本鋼管株式会社 高温用蓄熱式加熱装置
JPH07328595A (ja) * 1994-06-07 1995-12-19 Ebara Corp 芳香族ハロゲン化合物で汚染された土壌の浄化方法
JP3219689B2 (ja) * 1996-04-19 2001-10-15 旺栄開発工業株式会社 難分解物質の分解処理方法及びその装置
JPH11353033A (ja) * 1998-06-05 1999-12-24 Japan Organo Co Ltd 間接加熱方式の温度制御システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279942A (ja) * 1999-03-30 2000-10-10 Sumitomo Heavy Ind Ltd 汚染土壌の処理方法及び処理装置

Also Published As

Publication number Publication date
JP2005081234A (ja) 2005-03-31

Similar Documents

Publication Publication Date Title
JP6416804B2 (ja) 誘導プラズマによる有機化合物の熱破壊装置
US5062372A (en) Lined hazardous waste incinerator
JP5492482B2 (ja) 直接燃焼式脱臭炉
JPS6354973B2 (ja)
JP4509514B2 (ja) 汚染物質ガスの分解装置および汚染土壌の処理装置
JPH031007A (ja) 固形残査を燃料とする加熱炉
JP4406347B2 (ja) 汚染物質の分解装置及び土壌中の汚染物質処理装置
EP3106529B1 (en) Method and plant of treating and smelting metals
JP4524387B2 (ja) フライアッシュ処理装置
JP2001286727A (ja) 排ガスの処理方法および設備
JP3961441B2 (ja) 土壌の処理方法および装置
JP3731684B2 (ja) ダイオキシン類除去用の高温熱交換機およびその高温熱交換機を用いた燃焼炉装置
JP4160065B2 (ja) 土壌の処理装置
JP3840208B2 (ja) 土壌の処理装置及び処理方法
KR100621461B1 (ko) 배기가스의 처리방법 및 설비
JP3744401B2 (ja) 加熱処理方法と加熱処理装置
JPH0712321A (ja) 焼却排ガス有害物質熱分解炉
JP2006023052A (ja) 灰溶融炉の排ガス処理方法およびその処理設備
KR100515893B1 (ko) 연속식 고온 소각 장치
JP2005164117A (ja) 溶融炉の燃焼用空気予熱方法及びその装置
JP3586451B2 (ja) 捕集飛灰の脱塩素化装置及びその脱塩素化方法
JPS6332210A (ja) 廃棄物燃焼システム
KR20240047012A (ko) 미 분해 암모니아 가스 저감 장치
CN117212827A (zh) 一种垃圾烟气二次燃烧装置
JP2002263605A (ja) 灰加熱脱塩素化装置とその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term