JP4504667B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4504667B2
JP4504667B2 JP2003411831A JP2003411831A JP4504667B2 JP 4504667 B2 JP4504667 B2 JP 4504667B2 JP 2003411831 A JP2003411831 A JP 2003411831A JP 2003411831 A JP2003411831 A JP 2003411831A JP 4504667 B2 JP4504667 B2 JP 4504667B2
Authority
JP
Japan
Prior art keywords
cylinder
compression mechanism
pressure
vane
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003411831A
Other languages
Japanese (ja)
Other versions
JP2005171847A (en
Inventor
和 高島
昌一郎 北市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003411831A priority Critical patent/JP4504667B2/en
Publication of JP2005171847A publication Critical patent/JP2005171847A/en
Application granted granted Critical
Publication of JP4504667B2 publication Critical patent/JP4504667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、2シリンダ形ロータリ式圧縮機を用いて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus that constitutes a refrigeration cycle using a two-cylinder rotary compressor.

近年、圧縮機構部を構成するシリンダを上下に2セット備えた、2シリンダタイプのロータリ式圧縮機が標準化されつつある。このような2シリンダ形ロータリ式圧縮機において、常時圧縮作用をなすシリンダ室と、負荷の大小に応じて圧縮運転と運転停止である非圧縮運転の切換えを可能とするシリンダ室を備えることができれば、仕様が拡大されて有利となる。   In recent years, a two-cylinder type rotary compressor provided with two sets of upper and lower cylinders constituting a compression mechanism is being standardized. In such a two-cylinder rotary compressor, if a cylinder chamber that always performs a compression action and a cylinder chamber that enables switching between a compression operation and a non-compression operation that is stopped according to the magnitude of the load can be provided. The specifications are expanded and advantageous.

たとえば、[特許文献1]には、シリンダ室を2室備え、必要に応じていずれか一方のシリンダ室のベーンをローラから強制的に離間保持するとともに、そのシリンダ室を高圧化して圧縮作用を中断させる高圧導入手段を備えたことを特徴とする2シリンダ型ロータリ式圧縮機が開示されている。
特開平1−247786号公報
For example, in [Patent Document 1], two cylinder chambers are provided, and if necessary, the vanes of either one of the cylinder chambers are forcibly separated from the rollers, and the cylinder chamber is pressurized and compressed. A two-cylinder rotary compressor characterized in that it is provided with high-pressure introduction means for interrupting is disclosed.
JP-A-1-247786

ところで、シリンダ内に収容するピストンを往復駆動して冷媒ガスの圧縮作用を行わせる、いわゆるレシプロ式圧縮機の場合は、圧縮した冷媒ガスの吐出が断続的になり脈動が生じてしまうことと対照的に、ロータリ式圧縮機では連続的に冷媒ガスが圧縮され吐出されるので、脈動が発生しないとされている。
しかしながら、実際にはシリンダ内をローラが偏心回転するのにともなって吸込み、圧縮および吐出弁が開放される吐出が行われ、特に吐出工程が終了して吸込み工程に切換る際に瞬間的ではあるが間(空白)がある。結果として、レシプロ式圧縮機のように顕著ではないものの、ロータリ式圧縮機においても脈動が存在している。
By the way, in the case of a so-called reciprocating compressor in which the piston accommodated in the cylinder is driven to reciprocate to compress the refrigerant gas, the discharge of the compressed refrigerant gas is intermittent and the pulsation occurs. In particular, in a rotary compressor, refrigerant gas is continuously compressed and discharged, so that no pulsation occurs.
However, in actuality, suction is performed as the roller rotates eccentrically in the cylinder, and the compression and discharge are performed so that the discharge valve is opened. Especially, when the discharge process is finished and switched to the suction process, it is instantaneous. There is a space (blank). As a result, although not as remarkable as in a reciprocating compressor, pulsation also exists in a rotary compressor.

設計的には、ロータリ式圧縮機における脈動による過給損失を低減させるために、アキュームレータと各圧縮機構における各シリンダ室とを連通する吸込み管の長さ寸法を適正に設定して対応している。
常に2つのシリンダ室で圧縮運転を行わせる単純な2シリンダ形ロータリ式圧縮機であれば、アキュームレータと各シリンダ室とを連通する各吸込み管の長さ寸法を同一の適正寸法に設定できる。しかしながら、上述の圧縮運転と非圧縮運転とに切換える側のシリンダ室に連通する吸込み管には切換え機構を設ける必要があるから、常に圧縮運転をなす側のシリンダ室に連通する吸込み管よりも長くなってしまう。
In terms of design, in order to reduce supercharging loss due to pulsation in a rotary compressor, the length of the suction pipe that communicates between the accumulator and each cylinder chamber in each compression mechanism is set appropriately. .
In the case of a simple two-cylinder rotary compressor that always performs compression operation in two cylinder chambers, the length of each suction pipe that communicates the accumulator and each cylinder chamber can be set to the same appropriate dimension. However, since it is necessary to provide a switching mechanism in the suction pipe that communicates with the cylinder chamber on the switching side between the compression operation and the non-compression operation, the suction pipe is always longer than the suction pipe that communicates with the cylinder chamber on the compression operation side. turn into.

そのため、圧縮運転と非圧縮運転とに切換える側のシリンダ室を備えた圧縮機構部においては、適正長さの吸込み管が接続された圧縮機構部よりも低い運転周波数にて、いわゆる過給損失が発生し易く、その運転周波数付近で圧縮機の運転効率が低下する。
図4(A)は、具体的な過給による2シリンダ形ロータリ式圧縮機の運転効率と体積効率の特性図である。すなわち、過給が発生する運転周波数Fにおいては、圧縮機に吸込まれる冷媒量が増加して体積効率が増え、過給効果(冷凍能力の増大)を得られる一方で、過給損失が生じて圧縮機の運転効率が低下する。
Therefore, in the compression mechanism portion provided with the cylinder chamber on the side to be switched between the compression operation and the non-compression operation, a so-called supercharging loss occurs at an operation frequency lower than that of the compression mechanism portion to which the suction pipe of an appropriate length is connected. It is easy to generate | occur | produce and the operating efficiency of a compressor falls near the operating frequency.
FIG. 4A is a characteristic diagram of operating efficiency and volumetric efficiency of a two-cylinder rotary compressor with specific supercharging. That is, at the operating frequency F at which supercharging occurs, the amount of refrigerant sucked into the compressor increases, the volume efficiency increases, and a supercharging effect (increase in refrigeration capacity) can be obtained, while a supercharging loss occurs. This reduces the operating efficiency of the compressor.

そこで、図4(B)に示すように、過給が発生する運転周波数Fが最大運転周波数Fmaxよりも大になるように設定を代えることにより、最大運転周波数Fmaxの範囲内では体積効率と運転効率がともに同様傾向に増大して過給損失が生じないようになる。
あるいは、図4(C)に示すように、過給損失が発生する運転周波数Fと最大運転周波数Fmaxとが一致するように設定を代えることにより、運転周波数の上限付近で過給損失による運転効率の低下が発生するものの、体積効率の増大による最大の過給効果が得られるようになる。
Therefore, as shown in FIG. 4B, by changing the setting so that the operation frequency F at which supercharging occurs is larger than the maximum operation frequency Fmax, the volume efficiency and the operation are within the range of the maximum operation frequency Fmax. Both efficiencies increase in the same way and no supercharging loss occurs.
Alternatively, as shown in FIG. 4C, by changing the setting so that the operating frequency F at which the supercharging loss occurs and the maximum operating frequency Fmax coincide with each other, the operating efficiency due to the supercharging loss near the upper limit of the operating frequency. However, the maximum supercharging effect due to the increase in volumetric efficiency can be obtained.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、負荷の大小に応じて圧縮運転と圧縮停止である非圧縮運転に切換える2シリンダ形ロータリ式圧縮機を備え、切換え機構が設けられることで吸込み通路の長さ寸法が適正値よりも長くなってしまうのに対応して、圧縮機の過給損失の抑制を図り、運転効率の向上を得られる冷凍サイクル装置を提供しようとするものである。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a switching mechanism including a two-cylinder rotary compressor that switches between a compression operation and a non-compression operation that is a compression stop depending on the magnitude of the load. To provide a refrigeration cycle apparatus that can suppress the supercharging loss of the compressor and improve the operation efficiency in response to the length of the suction passage becoming longer than the appropriate value. It is what.

上記目的を満足するため本発明の冷凍サイクル装置は、2シリンダ形ロータリ式圧縮機は密閉ケース内に電動機部と第1の圧縮機構部および第2の圧縮機構部を収容し、第1、第2の圧縮機構部で圧縮したガスを一旦密閉ケース内に吐出して、ケース内高圧とする。
吸込み通路は2シリンダ形ロータリ式圧縮機の各圧縮機構部に連通され、冷凍サイクルのアキュームレータを介して低圧冷媒を各圧縮機構部のシリンダ室に導入する。
第1、第2の圧縮機構部は、偏心ローラを偏心回転自在に収容するシリンダ室を備えたシリンダ、このシリンダに設けられ先端縁が偏心ローラの周面に当接するよう押圧付勢され偏心ローラの回転方向に沿ってシリンダ室を二分するベーンおよびベーンの背面側端部を収容するベーン室を備える。
第2の圧縮機構部のシリンダ室に連通する吸込み通路には、シリンダ室に吸込み圧もしくは吐出圧を導く切換え手段を備える。第1の圧縮機構部のシリンダに設けられるベーンは、ベーン室に配備されるばね部材によって押圧付勢される。
第2の圧縮機構部のシリンダに設けられるベーンは、切換え手段により第2の圧縮機構部のシリンダ室に吸込み圧が導かれたとき、ベーン室に導かれるケース内圧力とシリンダ室に導かれた吸込み圧との差圧によって、ベーンの先端縁が偏心ローラの周面に当接するよう押圧付勢される。
吐出圧が導かれたときは、ベーン室に導かれるケース内圧力とシリンダ室に導かれた吐出圧とが均衡してベーンの前後端部で押圧が均衡し、ベーンの先端縁が偏心ローラの周面から離間する。
さらに、空間ボリュームをアキュームレータと第2の圧縮機構部のシリンダ室とを連結する吸込み通路の中途部に設ける。
Refrigeration cycle apparatus of the present invention to satisfy the above object, 2 cylinder type rotary compressor to the electric motor unit and the first compression mechanism and the second compression mechanism accommodated in the closed case, first, The gas compressed by the compression mechanism part 2 is once discharged into the sealed case to obtain a high pressure in the case.
The suction passage communicates with each compression mechanism portion of the two-cylinder rotary compressor, and introduces low-pressure refrigerant into the cylinder chamber of each compression mechanism portion via the accumulator of the refrigeration cycle .
The first and second compression mechanisms include a cylinder chamber having a cylinder chamber that accommodates the eccentric roller so as to be eccentrically rotatable. The first and second compression mechanisms are pressed and urged so that the tip edge of the cylinder comes into contact with the circumferential surface of the eccentric roller. A vane that bisects the cylinder chamber along the rotation direction and a vane chamber that accommodates the rear side end of the vane.
The suction passage communicating with the cylinder chamber of the second compression mechanism section is provided with switching means for introducing suction pressure or discharge pressure to the cylinder chamber. The vane provided in the cylinder of the first compression mechanism is pressed and urged by a spring member provided in the vane chamber.
The vane provided in the cylinder of the second compression mechanism section is guided to the pressure inside the case and the cylinder chamber when the suction pressure is guided to the cylinder chamber of the second compression mechanism section by the switching means. Due to the pressure difference from the suction pressure, the tip edge of the vane is pressed and urged so as to contact the peripheral surface of the eccentric roller.
When the discharge pressure is guided, the pressure inside the case guided to the vane chamber and the discharge pressure guided to the cylinder chamber are balanced, and the pressure is balanced at the front and rear ends of the vane. Separate from the peripheral surface.
Furthermore, a space volume is provided in the middle of the suction passage that connects the accumulator and the cylinder chamber of the second compression mechanism.

本発明によれば、2シリンダ形ロータリ式圧縮機に対し負荷に応じて圧縮運転と非圧縮運転とに切換える切換え手段を備えたことによる過給損失の抑制を図り、運転効率の向上を得られるという効果を奏する。   According to the present invention, it is possible to suppress the supercharging loss due to the provision of the switching means for switching between the compression operation and the non-compression operation according to the load with respect to the two-cylinder rotary compressor, and to improve the operation efficiency. There is an effect.

以下、本発明における第1の実施の形態を、図面にもとづいて説明する。
図1は、2シリンダ形ロータリ式圧縮機Rの断面構造と、このロータリ式圧縮機Rを備えた冷凍サイクルの構成を示す図である。
はじめに2シリンダ形ロータリ式圧縮機Rから説明すると、1は密閉ケースであって、この密閉ケース1内の下部には後述する圧縮機構体2が設けられ、上部には電動機部3が設けられる。これら電動機部3と圧縮機構体2とは回転軸4を介して連結される。上記電動機部3は、運転周波数を可変するインバータ30に接続されるとともに、インバータ30を介して、このインバータ30を制御する制御部40に電気的に接続される。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a cross-sectional structure of a two-cylinder rotary compressor R and a configuration of a refrigeration cycle including the rotary compressor R.
First, a description will be given of a two-cylinder rotary compressor R. Reference numeral 1 denotes a hermetic case. A lower part of the hermetic case 1 is provided with a compression mechanism 2 described later, and an upper part is provided with an electric motor unit 3. The electric motor unit 3 and the compression mechanism 2 are connected via a rotating shaft 4. The electric motor unit 3 is connected to an inverter 30 that varies the operating frequency, and is electrically connected to a control unit 40 that controls the inverter 30 via the inverter 30.

上記圧縮機構体2は、回転軸4の下部に中間仕切り板7を介して上下に配設される第1の圧縮機構部5と、第2の圧縮機構部6とから構成される。各圧縮機構部5,6は、第1のシリンダ8Aと、第2のシリンダ8Bを備えている。
第1のシリンダ8Aの上面部には主軸受け9が重ね合わされ、バルブカバーaとともに取付けボルトを介してシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には副軸受け11が重ね合わされ、バルブカバーbとともに取付けボルトを介して第2のシリンダ8Bに取付け固定される。
The compression mechanism body 2 includes a first compression mechanism portion 5 and a second compression mechanism portion 6 that are disposed below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween. Each compression mechanism part 5 and 6 is provided with the 1st cylinder 8A and the 2nd cylinder 8B.
A main bearing 9 is superposed on the upper surface portion of the first cylinder 8A, and is fixed to the cylinder 8A via a mounting bolt together with the valve cover a. A secondary bearing 11 is superimposed on the lower surface portion of the second cylinder 8B, and is fixed to the second cylinder 8B together with the valve cover b via a mounting bolt.

上記回転軸4は、各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するように組立てられる。各偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。
上記第1のシリンダ8Aと第2のシリンダ8Bは、上記中間仕切り板7と主軸受け9および副軸受け11で上下面が区画され、それぞれの内部にシリンダ室14a,14bが形成される。各シリンダ室14a,14bは互いに同一直径および高さ寸法に形成され、各シリンダ室14a,14bに上記偏心ローラ13a,13bがそれぞれ偏心回転自在に収容される。
The rotary shaft 4 integrally includes two eccentric portions 4a and 4b that penetrate through the cylinders 8A and 8B and have a phase difference of about 180 °. Each eccentric part 4a, 4b has the same diameter as each other, and is assembled so as to be located in each cylinder 8A, 8B inner diameter part. Eccentric rollers 13a and 13b having the same diameter are fitted to the peripheral surfaces of the eccentric parts 4a and 4b.
The first cylinder 8A and the second cylinder 8B have upper and lower surfaces defined by the intermediate partition plate 7, the main bearing 9 and the sub-bearing 11, and cylinder chambers 14a and 14b are formed in the respective interiors. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated in the cylinder chambers 14a and 14b so as to be eccentrically rotatable.

各シリンダ8A,8Bには、シリンダ室14a,14bと連通するベーン室22a,22bが設けられている。各ベーン室22a,22bには、ベーン15a,15bがシリンダ室14a,14bに対して突没自在に収容される。
図2は、第1の圧縮機構部5における第1のシリンダ8Aと、第2の圧縮機構部6における第2のシリンダ8Bを分解して示す斜視図である。
上記ベーン室22a,22bは、ベーン15a,15bの両側面が摺動自在に移動できるベーン収納溝23a,23bと、各ベーン収納溝23a,23b端部に一体に連設されベーン15a,15bの後端部が収容される縦孔部24a,24bとからなる。上記第1のシリンダ8Aには、外周面とベーン室22aとを連通する横孔25が設けられ、ばね部材26が収容される。このばね部材26は、ベーン15aの背面側端面と密閉ケース1内周面との間に介在され、ベーン15aに弾性力(背圧)を付与して先端縁を偏心ローラ13aに接触させる圧縮ばねである。
The cylinders 8A and 8B are provided with vane chambers 22a and 22b communicating with the cylinder chambers 14a and 14b. In each of the vane chambers 22a and 22b, the vanes 15a and 15b are accommodated so as to protrude and retract with respect to the cylinder chambers 14a and 14b.
FIG. 2 is an exploded perspective view showing the first cylinder 8A in the first compression mechanism section 5 and the second cylinder 8B in the second compression mechanism section 6. As shown in FIG.
The vane chambers 22a and 22b are integrally connected to vane storage grooves 23a and 23b in which both side surfaces of the vanes 15a and 15b are slidably movable and end portions of the vane storage grooves 23a and 23b. It consists of vertical hole parts 24a and 24b in which the rear end part is accommodated. The first cylinder 8A is provided with a lateral hole 25 that communicates the outer peripheral surface with the vane chamber 22a, and the spring member 26 is accommodated therein. This spring member 26 is interposed between the back side end surface of the vane 15a and the inner peripheral surface of the sealing case 1, and applies a resilient force (back pressure) to the vane 15a to bring the tip edge into contact with the eccentric roller 13a. It is.

上記第2のシリンダ8B側のベーン室22bにはベーン15b以外に何らの部材も収容されていないが、後述するようにベーン室22bの設定環境および、圧力切換え機構(切換え手段)Kの作用に応じて、ベーン15bの先端縁を偏心ローラ13bに接触させるようになっている。各ベーン15a,15bの先端縁は平面視で半円状に形成されており、平面視で円形状の偏心ローラ13a,13b周壁に偏心ローラ13aの回転角度にかかわらず線接触できる。
上記偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ベーン15a,15bはベーン収納溝23a,23bに沿って往復運動し、かつベーン後端部が縦孔部24a,24bから進退自在となる作用ができる。上述したように、第2のシリンダ8Bの外形寸法形状と、中間仕切板7および副軸受け11の外径寸法との関係から、第2のシリンダ8Bの外形一部は密閉ケース1内に露出する。
No member other than the vane 15b is accommodated in the vane chamber 22b on the second cylinder 8B side. However, as will be described later, the setting environment of the vane chamber 22b and the action of the pressure switching mechanism (switching means) K are affected. Accordingly, the tip edge of the vane 15b is brought into contact with the eccentric roller 13b. The tip edges of the vanes 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller 13a.
When the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the vanes 15a and 15b reciprocate along the vane housing grooves 23a and 23b, and the rear end of the vane is a vertical hole. The action | operation which can freely advance / retreat from 24a, 24b can be performed. As described above, a part of the outer shape of the second cylinder 8B is exposed in the sealed case 1 due to the relationship between the outer dimension of the second cylinder 8B and the outer diameter of the intermediate partition plate 7 and the auxiliary bearing 11. .

第2のシリンダ8Bにおける密閉ケース1への露出部分がベーン室22bに相当するように設計され、ベーン室22bおよびベーン15b後端部はケース内圧力を直接的に受ける。第2のシリンダ8Bおよびベーン室22bは構造物であるからケース内圧力を受けても何らの影響もないが、ベーン15bはベーン室22bに摺動自在に収容され後端部がベーン室22bの縦孔部24bに位置するので、ケース内圧力を直接的に受ける。
上記ベーン15bの先端部は第2のシリンダ室14bに対向しており、ベーン先端部はシリンダ室14b内の圧力を受ける。結局、ベーン15bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。
The exposed portion of the second cylinder 8B to the sealed case 1 is designed to correspond to the vane chamber 22b, and the vane chamber 22b and the rear end portion of the vane 15b directly receive the internal pressure of the case. Since the second cylinder 8B and the vane chamber 22b are structures, there is no influence even if the pressure in the case is applied, but the vane 15b is slidably accommodated in the vane chamber 22b and the rear end thereof is the vane chamber 22b. Since it is located in the vertical hole 24b, it receives the pressure in the case directly.
The tip of the vane 15b faces the second cylinder chamber 14b, and the vane tip receives the pressure in the cylinder chamber 14b. Eventually, the vane 15b is configured to move in a direction from a higher pressure to a lower pressure according to the mutual pressure received by the front end and the rear end.

再び図1に示すように、密閉ケース1の上端部には吐出管18が接続される。この吐出管18は、凝縮器19と、膨張機構20および蒸発器21を介してアキュームレータ17に接続される。このアキュームレータ17底部には、圧縮機Rに対する吸込み通路を構成する吸込み管16a,16bが接続される。一方の吸込み管16aは密閉ケース1と第1のシリンダ8A側部を貫通し、第1のシリンダ室14a内に直接連通する。他方の吸込み管16bは密閉ケース1と第2のシリンダ8B側部を貫通し、第2のシリンダ室14b内に直接連通する。   As shown in FIG. 1 again, a discharge pipe 18 is connected to the upper end of the sealed case 1. The discharge pipe 18 is connected to the accumulator 17 via a condenser 19, an expansion mechanism 20 and an evaporator 21. Suction pipes 16 a and 16 b constituting a suction passage for the compressor R are connected to the bottom of the accumulator 17. One suction pipe 16a penetrates the sealed case 1 and the side of the first cylinder 8A, and communicates directly with the first cylinder chamber 14a. The other suction pipe 16b penetrates the sealed case 1 and the side of the second cylinder 8B, and communicates directly with the second cylinder chamber 14b.

そして、圧縮機Rと凝縮器19とを連通する吐出管18の中途部から分岐して、吸込み管16bの中途部に接続する分岐管Pが設けられ、この分岐管Pの中途部に第1の開閉弁28が設けられる。吸込み管16bにおいて、分岐管Pとの接続部cよりも上流側には第2の開閉弁29が設けられる。第1の開閉弁28と第2の開閉弁29はそれぞれ電磁弁であって、上記制御部40からの電気信号に応じて開閉制御されるようになっている。
このようにして、第2のシリンダ室14bに接続される吸込み管16b、分岐管P、第1の開閉弁28および第2の開閉弁29とで圧力切換え機構(切換え手段)Kが構成される。この圧力切換え機構Kの切換え作動に応じて、第2のシリンダ8Bのシリンダ室14bに吸込み圧(低圧)もしくは吐出圧(高圧)が導かれるようになっている。
A branch pipe P is provided that branches from a middle portion of the discharge pipe 18 that communicates the compressor R and the condenser 19 and is connected to a middle part of the suction pipe 16b. On-off valve 28 is provided. In the suction pipe 16b, a second on-off valve 29 is provided on the upstream side of the connection part c with the branch pipe P. Each of the first on-off valve 28 and the second on-off valve 29 is an electromagnetic valve, and is controlled to open and close in accordance with an electric signal from the control unit 40.
In this way, the pressure switching mechanism (switching means) K is constituted by the suction pipe 16b, the branch pipe P, the first on-off valve 28 and the second on-off valve 29 connected to the second cylinder chamber 14b. . In accordance with the switching operation of the pressure switching mechanism K, the suction pressure (low pressure) or the discharge pressure (high pressure) is guided to the cylinder chamber 14b of the second cylinder 8B.

特に、第1のシリンダ室14aに連通する第1の吸込み管16aの全長と比較して、第2のシリンダ室14bに連通する第2の吸込み管16bには圧力切換え機構Kを構成する第1の開閉弁28を備えた分岐管Pが接続され、あるいは第2の開閉弁29が設けられるところから、第2の吸込み管16b自体の全長が長くなってしまう。
そこで、第2の吸込み管16bにおける上記分岐管Pとの接続部cよりも下流側で、かつ第2のシリンダ室8Bに至る間には、空間ボリュームであるところのバッファ50が設けられる。このバッファ50は少なくとも吸込み管16bの直径よりも大なる内径を有するタンクもしくは筒体状のものである。
In particular, the first suction pipe 16b communicating with the second cylinder chamber 14b has a first pressure switching mechanism K as compared with the entire length of the first suction pipe 16a communicating with the first cylinder chamber 14a. Since the branch pipe P having the open / close valve 28 is connected or the second open / close valve 29 is provided, the entire length of the second suction pipe 16b itself becomes long.
Therefore, a buffer 50 that is a space volume is provided in the second suction pipe 16b on the downstream side of the connection portion c with the branch pipe P and between the second suction pipe 16b and the second cylinder chamber 8B. The buffer 50 is a tank or cylindrical body having an inner diameter larger than at least the diameter of the suction pipe 16b.

つぎに、上述の2シリンダ形ロータリ式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。
(1) 通常運転(全能力運転)を選択した場合:
制御部40は、圧力切換え機構Kの第1の開閉弁28を閉成し、第2の開閉弁29を開放するよう制御する。そして、制御部40はインバータ30を介して電動機部3に運転信号を送る。回転軸4が回転駆動され、偏心ローラ13a,13bは各シリンダ室14a,14b内で偏心回転を行う。
Next, the operation of the refrigeration cycle apparatus provided with the above-described two-cylinder rotary compressor R will be described.
(1) When normal operation (full capacity operation) is selected:
The control unit 40 controls to close the first on-off valve 28 of the pressure switching mechanism K and to open the second on-off valve 29. Then, the control unit 40 sends an operation signal to the electric motor unit 3 via the inverter 30. The rotating shaft 4 is driven to rotate, and the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b.

第1のシリンダ8Aにおいてベーン15aがばね部材26によって常に弾性的に押圧付勢され、ベーン15aの先端縁が偏心ローラ13a周壁に摺接して第1のシリンダ室14a内を吸込み室と圧縮室に二分する。冷媒ガスはアキュームレータ17から吸込管16aを介して第1のシリンダ室14aに吸込まれて充満する。
偏心ローラ13aの偏心回転にともなってシリンダ室14aの区画された容積が減少し、吸込まれたガスが徐々に圧縮される。回転軸4が継続して回転されガスが圧縮されて所定圧まで上昇すると、図示しない吐出弁が開放する。高圧ガスはバルブカバーaを介して密閉ケース1内に吐出され、ついには密閉ケース上部の吐出管18から吐出される。
In the first cylinder 8A, the vane 15a is always elastically pressed and urged by the spring member 26, and the tip edge of the vane 15a is in sliding contact with the peripheral wall of the eccentric roller 13a so that the inside of the first cylinder chamber 14a becomes a suction chamber and a compression chamber. Divide into two. The refrigerant gas is sucked from the accumulator 17 through the suction pipe 16a into the first cylinder chamber 14a to be filled.
Along with the eccentric rotation of the eccentric roller 13a, the partitioned volume of the cylinder chamber 14a decreases, and the sucked gas is gradually compressed. When the rotating shaft 4 is continuously rotated and the gas is compressed and rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed case 1 through the valve cover a, and finally discharged from the discharge pipe 18 above the sealed case.

一方、圧力切換え機構Kを構成する第1の開閉弁28が閉成されているので、第2のシリンダ室14bに吐出圧(高圧)が導かれることはない。第2の開閉弁29が開放されているので、アキュームレータ17から低圧の蒸発冷媒が第2のシリンダ室14bに導かれる。第2のシリンダ室14bは吸込み圧(低圧)雰囲気となる一方で、ベーン室22bが密閉ケース1内に露出して吐出圧(高圧)下にある。ベーン15b先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で差圧が存在する。   On the other hand, since the first on-off valve 28 constituting the pressure switching mechanism K is closed, the discharge pressure (high pressure) is not guided to the second cylinder chamber 14b. Since the second on-off valve 29 is opened, the low-pressure evaporative refrigerant is guided from the accumulator 17 to the second cylinder chamber 14b. While the second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, the vane chamber 22b is exposed in the sealed case 1 and is under a discharge pressure (high pressure). The tip of the vane 15b has a low pressure condition, and the rear end has a high pressure condition, and there is a differential pressure at the front and rear ends.

この差圧の影響で、ベーン15bの先端部が偏心ローラ13bに摺接するように押圧付勢され、第1のシリンダ室14aと全く同様の圧縮作用が第2のシリンダ室14bでも行われる。結局、第1のシリンダ室14aおよび第2のシリンダ室14bとの両方で圧縮作用がなされる、全能力運転が行われる。
密閉ケース1から吐出管18を介して吐出される高圧ガスは、凝縮器19に導かれて凝縮液化し、膨張機構20で断熱膨張し、蒸発器21で熱交換空気から蒸発潜熱を奪って冷房作用をなす。蒸発したあとの冷媒はアキュームレータ17で気液分離され、再び各吸込み管16a,16bから圧縮機Rの第1,第2のシリンダ室14a,14bに吸込まれて上述の経路を循環する。
Under the influence of this differential pressure, the tip of the vane 15b is pressed and urged so as to be in sliding contact with the eccentric roller 13b, and the same compression action as that of the first cylinder chamber 14a is also performed in the second cylinder chamber 14b. Eventually, a full capacity operation is performed in which the compression action is performed in both the first cylinder chamber 14a and the second cylinder chamber 14b.
The high-pressure gas discharged from the sealed case 1 through the discharge pipe 18 is led to the condenser 19 to be condensed and liquefied, adiabatically expanded by the expansion mechanism 20, and the evaporator 21 takes away latent heat of evaporation from the heat exchange air and cools it. It works. The evaporated refrigerant is separated into gas and liquid by the accumulator 17, and is again sucked into the first and second cylinder chambers 14a and 14b of the compressor R from the suction pipes 16a and 16b and circulates in the above-described path.

(2) 特別運転(能力半減運転)を選択した場合:
特別運転(圧縮能力を半減する運転)を選択すると、制御部40は第1の開閉弁28を開放し、第2の開閉弁29を閉成する切換えをなす。第1のシリンダ室14aでは上述した通常の圧縮作用がなされ、密閉ケース1内に吐出した高圧ガスが充満する。吐出管18から吐出される高圧ガスの一部が分岐管Pに分流し、第1の開閉弁28と吸込み管16bを介して第2のシリンダ室14b内に導入され、シリンダ室14bは高圧となる。
(2) When special operation (half-capacity operation) is selected:
When the special operation (operation that halves the compression capacity) is selected, the control unit 40 performs switching to open the first on-off valve 28 and close the second on-off valve 29. In the first cylinder chamber 14a, the normal compression action described above is performed, and the high-pressure gas discharged into the sealed case 1 is filled. Part of the high-pressure gas discharged from the discharge pipe 18 is diverted to the branch pipe P and introduced into the second cylinder chamber 14b via the first on-off valve 28 and the suction pipe 16b, and the cylinder chamber 14b has a high pressure. Become.

第2のシリンダ室14bが吐出圧(高圧)雰囲気にある一方で、ベーン室22bはケース内高圧と同一の状況にあることには変りがない。そのため、ベーン15bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。ベーン15bはローラ13bの外周面から離間した位置で停止状態を保持し、第2のシリンダ室14bでの圧縮作用は行われない。
結局、第1のシリンダ室14aでの圧縮作用のみが有効であり、能力を半減した運転がなされる。第2のシリンダ室14bの内部は高圧となっているので、密閉ケース1内から第2のシリンダ室14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。したがって、効率低下せずに能力を半分にした運転が可能となる。
While the second cylinder chamber 14b is in the discharge pressure (high pressure) atmosphere, the vane chamber 22b remains in the same situation as the high pressure in the case. Therefore, the vane 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 15b maintains a stopped state at a position separated from the outer peripheral surface of the roller 13b, and no compression action is performed in the second cylinder chamber 14b.
Eventually, only the compression action in the first cylinder chamber 14a is effective, and the operation is performed with half the capacity. Since the inside of the second cylinder chamber 14b is at a high pressure, there is no leakage of compressed gas from the sealed case 1 into the second cylinder chamber 14b, and no loss is caused thereby. Therefore, it is possible to operate with half the capacity without lowering the efficiency.

先に説明したように第1の圧縮機構部5に接続する第1の吸込み管16aと比較して、第2の圧縮機構部6に接続する第2の吸込み管16bには圧力切換え機構Kを構成する部材(第2の開閉弁29等)が設けられるので全長が長くなってしまう。
先に図4(A)で示したように、そのままでは低い運転周波数Fで過給損失が発生し、その運転周波数F付近で運転効率が低下する。ここでは、アキュームレータ17と第2のシリンダ室14bとを連通する第2の吸込み管16bの中途部で、かつ分岐管Pとの接続部cよりも下流側にバッファ(空間ボリューム)50を設けている。
As described above, compared to the first suction pipe 16a connected to the first compression mechanism section 5, the second suction pipe 16b connected to the second compression mechanism section 6 is provided with a pressure switching mechanism K. Since the member (2nd on-off valve 29 grade | etc.,) To comprise is provided, full length will become long.
As shown in FIG. 4A, a supercharging loss occurs at a low operating frequency F as it is, and the operating efficiency decreases near the operating frequency F. Here, a buffer (space volume) 50 is provided in the middle of the second suction pipe 16b communicating with the accumulator 17 and the second cylinder chamber 14b and downstream of the connection part c with the branch pipe P. Yes.

すなわち、アキュームレータ17から導かれた低圧冷媒がバッファ50に一時的に集溜され、しかる後、第2のシリンダ室14bに導かれる。冷媒の流れとしてはバッファ50によって圧力緩和が行われ、あたかも分断状態となってバッファ50から新たな流れが出たとみなされる。このことから、アキュームレータ17とバッファ50との間の吸込み管の長さは、過給損失を生じる運転周波数を決定する吸込み管の長さから除外されて、実質的な吸込み管の長さが短くなり過給損失を生じる運転周波数を高くできる。   That is, the low-pressure refrigerant led from the accumulator 17 is temporarily collected in the buffer 50 and then led to the second cylinder chamber 14b. As for the flow of the refrigerant, the pressure is relaxed by the buffer 50, and it is considered as if a new flow comes out of the buffer 50 as if it is in a divided state. For this reason, the length of the suction pipe between the accumulator 17 and the buffer 50 is excluded from the length of the suction pipe that determines the operating frequency causing the supercharging loss, and the length of the substantial suction pipe is shortened. Therefore, the operating frequency causing supercharging loss can be increased.

図3は、本発明における第2の実施の形態である、圧力切換え機構Kaの構成を説明する図である。2シリンダ形ロータリ式圧縮機Rおよび冷凍サイクルの構成は先に説明したものと全く同一であり、同番号を付して新たな説明を省略する。なお、インバータ回路30と制御部40は省略している。
上記圧力切換え機構Kaは、吐出管18から連通する分岐管Pと、アキュームレータ17から蒸発した低圧ガスを導出案内する吸込み管16cと、第2のシリンダ室14bに連通する吸込み管16bのそれぞれ端部が接続されるポートを備えた三方切換え弁35からなる。
FIG. 3 is a diagram illustrating the configuration of the pressure switching mechanism Ka according to the second embodiment of the present invention. The configurations of the two-cylinder rotary compressor R and the refrigeration cycle are exactly the same as those described above, and the same numbers are assigned and a new description is omitted. Note that the inverter circuit 30 and the control unit 40 are omitted.
The pressure switching mechanism Ka includes branch pipes P that communicate with the discharge pipe 18, suction pipes 16c that guide and guide the low-pressure gas evaporated from the accumulator 17, and end portions of the suction pipes 16b that communicate with the second cylinder chamber 14b. Comprises a three-way switching valve 35 having a port to which is connected.

全能力運転を選択すると、三方切換え弁35は吸込み管16c、16bを介してアキュームレータ17と第2のシリンダ室14bとを連通する。したがって、第2のシリンダ室14bが低圧となり、高圧のベーン室22bとの間で差圧が生じる。ベーン15bは背圧を受けて偏心ローラ13bに接触し、往復動して圧縮作用が行われる。
能力半減運転を選択すると、三方切換え弁35は分岐管Pと吸込み管16bを介して第2のシリンダ室14bを連通し、アキュームレータ17はバイパスする。第2のシリンダ室14bに高圧冷媒が導かれて高圧となる。高圧のベーン室22bと同一条件となって、ベーン15bはその位置を移動しない。したがって、第1のシリンダ室14aのみの能力半減運転が行われることになる。
When the full capacity operation is selected, the three-way switching valve 35 communicates the accumulator 17 and the second cylinder chamber 14b via the suction pipes 16c and 16b. Therefore, the second cylinder chamber 14b has a low pressure, and a differential pressure is generated between the second cylinder chamber 14b and the high-pressure vane chamber 22b. The vane 15b receives back pressure, contacts the eccentric roller 13b, and reciprocates to perform a compression action.
When the half-capacity operation is selected, the three-way switching valve 35 communicates with the second cylinder chamber 14b via the branch pipe P and the suction pipe 16b, and the accumulator 17 is bypassed. The high-pressure refrigerant is guided to the second cylinder chamber 14b and becomes high pressure. Under the same conditions as the high-pressure vane chamber 22b, the vane 15b does not move its position. Accordingly, the half capacity operation of only the first cylinder chamber 14a is performed.

通常運転時に低圧冷媒がバッファ50に一時的に集溜され、冷媒の流れとしてはバッファ50によって圧力緩和が行われ、あたかも分断状態となってバッファ50から新たな流れが出たとみなされる。このことから、アキュームレータ17とバッファ50との間の吸込み管の長さは、過給損失を生じる運転周波数を決定する吸込み管の長さから除外され、実質的な吸込み管の長さが短くなり過給損失を生じる運転周波数を高くできる。
先に図4(B)で説明したように、吸込み管16bの長さから定まる過給運転周波数Fを最大運転周波数Fmaxよりも大きくするには、以下のようにすればよい。すなわち、バッファ50から第2のシリンダ室14bまでの吸込み管16bの長さLsは、下記の(1)式を満足するよう設定する。
During normal operation, the low-pressure refrigerant is temporarily collected in the buffer 50, and the pressure of the refrigerant is relieved by the buffer 50. As a result, the refrigerant 50 is considered to be in a divided state and a new flow comes out of the buffer 50. For this reason, the length of the suction pipe between the accumulator 17 and the buffer 50 is excluded from the length of the suction pipe that determines the operating frequency causing the supercharging loss, and the length of the suction pipe is substantially shortened. The operating frequency that causes supercharging loss can be increased.
As described above with reference to FIG. 4B, the supercharging operation frequency F determined from the length of the suction pipe 16b may be made larger than the maximum operation frequency Fmax as follows. That is, the length Ls of the suction pipe 16b from the buffer 50 to the second cylinder chamber 14b is set so as to satisfy the following expression (1).

Ls < C/4Fa − V/S …… (1)
ただし、C:音速、Fa:1.1×Fmax、Fmax:最大運転周波数、
V:第2のシリンダ室14bの容積、S:吸込み管16bの面積。
このように過給の発生する運転周波数Fを最大運転周波数Fmax範囲よりも大とすることで、最大運転周波数Fmaxの範囲内では過給損失が発生せず、性能低下のない2シリンダ形ロータリ式圧縮機を提供できる。
Ls <C / 4Fa−V / S (1)
Where C: sound speed, Fa: 1.1 × Fmax, Fmax: maximum operating frequency,
V: volume of the second cylinder chamber 14b, S: area of the suction pipe 16b.
Thus, by setting the operating frequency F at which supercharging occurs to be greater than the maximum operating frequency Fmax range, there is no supercharging loss within the range of the maximum operating frequency Fmax, and there is no performance degradation. A compressor can be provided.

また、先に図4(C)で説明したように、吸込み管16bの長さから定まる過給運転周波数Fを最大運転周波数Fmax付近に設定するには、以下のようにすればよい。すなわち、バッファ50から第2のシリンダ室14bまでの吸込み管16bの長さLsは、下記の(2)式を満足するよう設定する。
Ls = C/4Fb − V/S …… (2)
ただし、C:音速、Fb:(0.8〜1.1)×Fmax、Fmax:最大周波数、
V:第2のシリンダ室14bの容積、S:吸込み管16bの面積。
Further, as described above with reference to FIG. 4C, the supercharging operation frequency F determined from the length of the suction pipe 16b may be set in the vicinity of the maximum operation frequency Fmax as follows. That is, the length Ls of the suction pipe 16b from the buffer 50 to the second cylinder chamber 14b is set so as to satisfy the following expression (2).
Ls = C / 4Fb−V / S (2)
Where C: sound velocity, Fb: (0.8 to 1.1) × Fmax, Fmax: maximum frequency,
V: volume of the second cylinder chamber 14b, S: area of the suction pipe 16b.

このように過給が発生する運転周波数Fを最大運転周波数Fmax付近とすることで、最大運転周波数Fmax付近で過給効果により能力増加が可能となる。一方、それよりも運転周波数が低い場合には、過給損失を抑制して、運転効率の低下のない2シリンダ形ロータリ式圧縮機を提供できる。
図5(A)(B)は、過給が発生する運転周波数Fにおける2シリンダ形ロータリ式圧縮機Rの運転効率と、バッファ50との関係を示す。同図の結果から、バッファ50を以下の(3)式および(4)式を満足するように設定することにより、過給損失による効率低下を抑制できる。
By setting the operating frequency F at which supercharging occurs in the vicinity of the maximum operating frequency Fmax, the capacity can be increased due to the supercharging effect near the maximum operating frequency Fmax. On the other hand, when the operating frequency is lower than that, it is possible to provide a two-cylinder rotary compressor that suppresses the supercharging loss and does not decrease the operating efficiency.
5A and 5B show the relationship between the operating efficiency of the two-cylinder rotary compressor R and the buffer 50 at the operating frequency F at which supercharging occurs. From the results shown in FIG. 5, the efficiency reduction due to the supercharging loss can be suppressed by setting the buffer 50 so as to satisfy the following expressions (3) and (4).

Db ≧ 2Ds …… (3)
Lb = (0.2〜1)×Ls …… (4)
ただし、Db:バッファ50の直径、Lb:バッファ50の長さ、
Ds:吸込み管16bの管径、Ls:バッファ50から第2のシリンダ室14bまでの吸込み管16bの長さ。
また、図3に示すように、バッファ50をアキュームレータ17に溶接加工による固定をなし、もしくはバンドを用いて固定をなしている。このことにより、圧縮機Rの運転にともなう振動や、製品としての輸送時の振動もしくは衝撃によりバッファ50を含めた配管系統の破損を確実に防止できる。
Db ≧ 2Ds (3)
Lb = (0.2-1) × Ls (4)
Where Db: diameter of the buffer 50, Lb: length of the buffer 50,
Ds: pipe diameter of the suction pipe 16b, Ls: length of the suction pipe 16b from the buffer 50 to the second cylinder chamber 14b.
Further, as shown in FIG. 3, the buffer 50 is fixed to the accumulator 17 by welding or is fixed using a band. As a result, it is possible to reliably prevent damage to the piping system including the buffer 50 due to vibration associated with the operation of the compressor R and vibration or impact during transportation as a product.

また、図3に示すように、バッファ50内に異物捕獲手段としてのフィルタ60aを設けている。このフィルタ60aは、バッファ50内以外の第2のシリンダ室14bから三方切換え弁35までの吸込み通路(吸込み管)のいずれかに設けてよい。
あるいは、圧縮機Rの吐出管18の中途部から分岐される分岐管Pの中途部にフィルタ60bを設けてもよい。
なお、バッファ50内にフィルタ60aを設けた場合には、バッファ50の断面積が大きいため、フィルタ60aによる冷媒の圧力損失を低減できる。
Further, as shown in FIG. 3, a filter 60 a as a foreign matter capturing means is provided in the buffer 50. The filter 60 a may be provided in any of the suction passages (suction pipes) from the second cylinder chamber 14 b other than the buffer 50 to the three-way switching valve 35.
Or you may provide the filter 60b in the middle part of the branch pipe P branched from the middle part of the discharge pipe 18 of the compressor R. FIG.
In addition, when the filter 60a is provided in the buffer 50, since the cross-sectional area of the buffer 50 is large, the pressure loss of the refrigerant | coolant by the filter 60a can be reduced.

第2のシリンダ室14bにおける非圧縮運転(運転停止)時に、このシリンダ室14bに導入される高圧冷媒はアキュームレータ17を通過しないため、そのままでは高圧冷媒に含まれる異物が高圧冷媒とともに第2のシリンダ室14bに導入される虞れがあるが、上述の部位にフィルタ60a,60bを備えることにより、高圧冷媒に含まれる異物を捕獲でき、信頼性の向上に寄与する。
なお、図3に示すように吸込み管16b、16cの一部とバッファ50を断熱材65で覆う。上述したように負荷の大小に応じて切換えられる第2のシリンダ室14bに接続される吸込み管16b、16cは、常に圧縮運転をなす第1のシリンダ室14aに接続される吸込み管16aよりも長くなるため、吸込み管16b、16c内を導かれる冷媒が加熱され易く、性能低下が発生する。上記断熱材65で吸込み管16b、16cおよびバッファ50を覆うことにより、冷媒加熱を抑制して性能低下のない2シリンダ形ロータリ式圧縮機Rを提供できる。
During the non-compression operation (operation stop) in the second cylinder chamber 14b, the high-pressure refrigerant introduced into the cylinder chamber 14b does not pass through the accumulator 17, so that the foreign matter contained in the high-pressure refrigerant as it is together with the high-pressure refrigerant is added to the second cylinder Although there is a possibility of being introduced into the chamber 14b, the provision of the filters 60a and 60b at the above-described sites can capture foreign substances contained in the high-pressure refrigerant, contributing to an improvement in reliability.
As shown in FIG. 3, a part of the suction pipes 16 b and 16 c and the buffer 50 are covered with a heat insulating material 65. As described above, the suction pipes 16b and 16c connected to the second cylinder chamber 14b switched according to the magnitude of the load are longer than the suction pipe 16a connected to the first cylinder chamber 14a that always performs the compression operation. Therefore, the refrigerant guided through the suction pipes 16b and 16c is easily heated, and the performance is deteriorated. By covering the suction pipes 16b and 16c and the buffer 50 with the heat insulating material 65, it is possible to provide a two-cylinder rotary compressor R that suppresses refrigerant heating and does not deteriorate in performance.

なお、上記第2のシリンダ室14bに対し吸込み圧と吐出圧とを切換える圧力切換え機構K、Kaの構成は先に説明したものに限定されるものではなく、第2の開閉弁29に代えて逆止弁を備えてもよい。
あるいは、第1の圧縮機構部5のように、第2の圧縮機構部6においてもベーン室22bにばね部材26を用いたうえで、第2の機構部6のシリンダ室8Bに対する高圧と低圧の接続を切換えるように構成してもよい。
この場合、全能力運転時は第1の圧縮機構部5のシリンダ室8Aと同様な作用が第2の機構部6のシリンダ室8Bにおいてなされるので、圧縮効率の向上を図れる。ただし、能力半減運転時においてもベーン15bはばね部材26に押圧付勢されて往復動してしまい、仕事が発生して圧縮効率は低下するが、第1の圧縮機構部5と第2の圧縮機構部6は互いに同一構成となるので、機構的に簡素ですむ。
The configuration of the pressure switching mechanisms K and Ka for switching the suction pressure and the discharge pressure with respect to the second cylinder chamber 14b is not limited to the one described above, and instead of the second on-off valve 29. A check valve may be provided.
Or like the 1st compression mechanism part 5, after using the spring member 26 for the vane chamber 22b also in the 2nd compression mechanism part 6, the high pressure and the low pressure with respect to the cylinder chamber 8B of the 2nd mechanism part 6 are used. You may comprise so that a connection may be switched.
In this case, during the full capacity operation, the same action as the cylinder chamber 8A of the first compression mechanism section 5 is performed in the cylinder chamber 8B of the second mechanism section 6, so that the compression efficiency can be improved. However, the vane 15b is pressed and urged by the spring member 26 to reciprocate even during half-capacity operation, causing work and reducing compression efficiency. However, the first compression mechanism 5 and the second compression are reduced. Since the mechanism parts 6 have the same configuration, the mechanism is simple.

さらにまた、両方の圧縮機構部5,6のベーン15a,15b側にばね部材26を設けるとともに、第2の圧縮機構部6のベーン室22bを密閉構造にして、たとえば起動時にシリンダ室14bに導かれる冷凍サイクルの高圧よりも低圧を密閉構造のベーン室22bに導くようにしても良い。
起動時は、密閉ケース1内が低圧状態から所定の高圧状態に至るまでにある程度の時間があり、上述の密閉ケース1内の圧力に晒されるベーン室22bの構成では、全能力運転を選択してもシリンダ室14bと圧力差が生じ難い。そこで、ベーン室22bを密閉構造にして起動時に低圧を導けば、ばね部材26を設けない場合と同様に、圧力差によりベーン15bが引き離されて起動時においても圧縮効率は良い。ただし、ベーン室22bを密閉構造とすることで機構的に複雑となり、低圧を導く手段も必要となる。
なお、ロータリ式密閉形圧縮機Rと、この圧縮機を備えた冷凍サイクル装置は以上説明した構成に限定されるものではなく、本発明の趣旨を越えない範囲内で種々変形実施可能であることは勿論である。
Furthermore, the spring member 26 is provided on the vane 15a, 15b side of both the compression mechanism portions 5, 6 and the vane chamber 22b of the second compression mechanism portion 6 is sealed so as to be guided to the cylinder chamber 14b at the time of startup, for example. A lower pressure than the high pressure of the refrigeration cycle to be used may be guided to the sealed vane chamber 22b.
At the time of startup, there is a certain amount of time until the inside of the sealed case 1 reaches a predetermined high pressure state from the low pressure state. In the configuration of the vane chamber 22b exposed to the pressure in the above-described sealed case 1, full capacity operation is selected. However, a pressure difference is unlikely to occur with the cylinder chamber 14b. Therefore, if the vane chamber 22b is sealed and a low pressure is introduced at the time of startup, the vane 15b is pulled away by the pressure difference and the compression efficiency is good at the time of startup as in the case where the spring member 26 is not provided. However, since the vane chamber 22b has a sealed structure, it is mechanically complicated, and means for introducing a low pressure is required.
The rotary hermetic compressor R and the refrigeration cycle apparatus provided with this compressor are not limited to the above-described configuration, and various modifications can be made within the scope of the present invention. Of course.

本発明における第1の実施の形態に係る、2シリンダ形ロータリ式圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the 2 cylinder type rotary compressor which concern on 1st Embodiment in this invention. 同実施の形態に係る、圧縮機構一部の分解した斜視図。The disassembled perspective view of a part of compression mechanism based on the embodiment. 本発明における第2の実施の形態に係る、2シリンダ形ロータリ式圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the 2 cylinder type rotary compressor which concern on 2nd Embodiment in this invention. 互いに異なる運転周波数に対する体積効率と運転効率の特性図。The characteristic figure of volumetric efficiency and driving efficiency with respect to mutually different driving frequencies. バッファに対する吸込み管の管径と全長およびこれらに対する運転効率の特性図。FIG. 4 is a characteristic diagram of the diameter and the total length of the suction pipe with respect to the buffer and the operation efficiency for these.

符号の説明Explanation of symbols

1…密閉ケース、3…電動機部、5…第1の圧縮機構部、6…第2の圧縮機構部、R…2シリンダ形ロータリ式圧縮機、14a…第1のシリンダ室、14b…第2のシリンダ室、K…圧力切換え機構(切換え手段)、16a…第1の吸込み管、16b…第2の吸込み管、50…バッファ(空間ボリューム)、60a,60b…フィルタ(異物捕獲手段)。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 3 ... Electric motor part, 5 ... 1st compression mechanism part, 6 ... 2nd compression mechanism part, R ... 2 cylinder type rotary compressor, 14a ... 1st cylinder chamber, 14b ... 2nd Cylinder chamber, K ... pressure switching mechanism (switching means), 16a ... first suction pipe, 16b ... second suction pipe, 50 ... buffer (space volume), 60a, 60b ... filter (foreign matter capturing means).

Claims (1)

冷凍サイクルの一部を構成し、密閉ケース内に電動機部と、この電動機部と連結される第1の圧縮機構部および第2の圧縮機構部を収容してなり、上記第1の圧縮機構部および第2の圧縮機構部で圧縮したガスを一旦密閉ケース内に吐出してケース内高圧とする2シリンダ形ロータリ式圧縮機と、
この2シリンダ形ロータリ式圧縮機の各圧縮機構部に連通され、冷凍サイクルの一部を構成するアキュームレータを介して低圧冷媒を各圧縮機構部のシリンダ室に導入する吸込み通路とを備えた冷凍サイクル装置において、
上記2シリンダ形ロータリ式圧縮機の上記第1の圧縮機構部および第2の圧縮機構部は、
それぞれ偏心ローラが偏心回転自在に収容されるシリンダ室を備えたシリンダと、
上記シリンダに設けられ、その先端縁が上記偏心ローラの周面に当接するよう押圧付勢され、偏心ローラの回転方向に沿ってシリンダ室を二分するベーンおよびそれぞれの上記ベーンの背面側端部を収容するベーン室と、
上記第2の圧縮機構部のシリンダ室に連通する吸込み通路に設けられ、上記第2の圧縮機構部のシリンダのシリンダ室に、吸込み圧もしくは吐出圧を導く切換え手段とを具備し、
上記第1の圧縮機構部のシリンダに設けられるベーンは、上記ベーン室に配備されるばね部材によって押圧付勢され、
上記第2の圧縮機構部のシリンダに設けられるベーンは、上記切換え手段により第2の圧縮機構部のシリンダ室に吸込み圧が導かれたとき、上記ベーン室に導かれるケース内圧力と上記シリンダ室に導かれた吸込み圧との差圧によって、上記ベーンの先端縁が上記偏心ローラの周面に当接するよう押圧付勢され、上記切換え手段により第2の圧縮機構部のシリンダ室に吐出圧が導かれたとき、上記ベーン室に導かれるケース内圧力と上記シリンダ室に導かれた吐出圧とが均衡して上記ベーンの前後端部で押圧が均衡し、上記ベーンの先端縁が上記偏心ローラの周面から離間するようにされ、
さらに、上記アキュームレータと上記第2の圧縮機構部のシリンダ室とを連結する吸込み通路の中途部に設けられる空間ボリュームと
を具備することを特徴とする冷凍サイクル装置。
Form part of a refrigeration cycle, an electric motor unit in the sealed case, Ri Na houses the first compression mechanism and the second compression mechanism portion connected with the motor unit, the first compression mechanism A two-cylinder rotary compressor that discharges gas compressed by the second compression mechanism and the second compression mechanism into a sealed case to make the case high pressure ;
A refrigeration cycle comprising a suction passage that communicates with each compression mechanism of the two-cylinder rotary compressor and introduces low-pressure refrigerant into the cylinder chamber of each compression mechanism via an accumulator that forms part of the refrigeration cycle. In the device
The first compression mechanism portion and the second compression mechanism portion of the two-cylinder rotary compressor are as follows:
A cylinder having a cylinder chamber in which each eccentric roller is accommodated in an eccentric rotatable manner;
A vane provided on the cylinder, the tip edge of which is pressed and biased to contact the circumferential surface of the eccentric roller, divides the cylinder chamber into two along the rotational direction of the eccentric roller, and the rear side end of each vane. A vane chamber to house,
Provided in a suction passage communicating with the cylinder chamber of the second compression mechanism section, and switching means for guiding suction pressure or discharge pressure to the cylinder chamber of the cylinder of the second compression mechanism section ,
The vane provided in the cylinder of the first compression mechanism is pressed and urged by a spring member provided in the vane chamber,
The vane provided in the cylinder of the second compression mechanism section is configured such that when suction pressure is guided to the cylinder chamber of the second compression mechanism section by the switching means, the pressure in the case and the cylinder chamber are guided to the vane chamber. The leading edge of the vane is pressed and urged to come into contact with the circumferential surface of the eccentric roller by the pressure difference from the suction pressure introduced to the suction pressure, and the discharge pressure is applied to the cylinder chamber of the second compression mechanism by the switching means. When guided, the pressure in the case guided to the vane chamber and the discharge pressure guided to the cylinder chamber are balanced, and the pressure is balanced at the front and rear end portions of the vane, and the leading edge of the vane is the eccentric roller. To be separated from the circumferential surface of the
The refrigeration cycle apparatus further comprises a space volume provided in a midway portion of the suction passage connecting the accumulator and the cylinder chamber of the second compression mechanism.
JP2003411831A 2003-12-10 2003-12-10 Refrigeration cycle equipment Expired - Lifetime JP4504667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411831A JP4504667B2 (en) 2003-12-10 2003-12-10 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411831A JP4504667B2 (en) 2003-12-10 2003-12-10 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005171847A JP2005171847A (en) 2005-06-30
JP4504667B2 true JP4504667B2 (en) 2010-07-14

Family

ID=34732462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411831A Expired - Lifetime JP4504667B2 (en) 2003-12-10 2003-12-10 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4504667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454544A (en) * 2014-12-03 2015-03-25 广东美芝制冷设备有限公司 Double-cylinder rotary compressor and refrigerating device with same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048500A (en) * 2008-08-22 2010-03-04 Toshiba Carrier Corp Refrigerating cycle device
JP5520460B2 (en) * 2008-08-25 2014-06-11 東芝キヤリア株式会社 Method for manufacturing hermetic compressor and method for manufacturing refrigeration cycle apparatus
JP5195497B2 (en) * 2009-02-17 2013-05-08 ダイキン工業株式会社 Rotary fluid machine
MY164285A (en) * 2011-06-08 2017-11-30 Toshiba Carrier Corp Sealed Compressor and Refrigeration Cycle Device
JP6071190B2 (en) * 2011-12-09 2017-02-01 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
CN102705237B (en) * 2012-04-27 2015-08-26 珠海格力电器股份有限公司 Structure and method for adjusting volume of medium-pressure cavity of two-stage compressor
JP6041721B2 (en) * 2013-03-22 2016-12-14 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP6037563B2 (en) * 2013-03-22 2016-12-07 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP6324624B2 (en) * 2015-05-14 2018-05-16 三菱電機株式会社 Refrigerant compressor and vapor compression refrigeration cycle apparatus equipped with the same
CN106704189A (en) * 2015-08-10 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 Compressor and heat exchange system
CN107178503B (en) * 2017-07-28 2021-06-08 广东美芝制冷设备有限公司 Rotary compressor and refrigerating device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740682U (en) * 1980-08-20 1982-03-04
JPS6388297A (en) * 1986-09-30 1988-04-19 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPH01142281A (en) * 1987-11-27 1989-06-05 Hitachi Ltd Supercharging type compressor
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH01294987A (en) * 1988-05-23 1989-11-28 Mitsubishi Electric Corp Multi-cylinder type rotary compressor
JPH01294986A (en) * 1988-05-23 1989-11-28 Mitsubishi Electric Corp Multi-cylinder type rotary compressor
JPH0350397A (en) * 1989-07-19 1991-03-04 Mitsubishi Electric Corp Rotary type compressor
JPH04203387A (en) * 1990-11-30 1992-07-23 Hitachi Ltd Rotary compressor
JPH06299974A (en) * 1993-04-13 1994-10-25 Mitsubishi Heavy Ind Ltd Liquid coolant pump
JP2001280761A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Refrigerant gas recovering system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740682U (en) * 1980-08-20 1982-03-04
JPS6388297A (en) * 1986-09-30 1988-04-19 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPH01142281A (en) * 1987-11-27 1989-06-05 Hitachi Ltd Supercharging type compressor
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH01294987A (en) * 1988-05-23 1989-11-28 Mitsubishi Electric Corp Multi-cylinder type rotary compressor
JPH01294986A (en) * 1988-05-23 1989-11-28 Mitsubishi Electric Corp Multi-cylinder type rotary compressor
JPH0350397A (en) * 1989-07-19 1991-03-04 Mitsubishi Electric Corp Rotary type compressor
JPH04203387A (en) * 1990-11-30 1992-07-23 Hitachi Ltd Rotary compressor
JPH06299974A (en) * 1993-04-13 1994-10-25 Mitsubishi Heavy Ind Ltd Liquid coolant pump
JP2001280761A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Refrigerant gas recovering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454544A (en) * 2014-12-03 2015-03-25 广东美芝制冷设备有限公司 Double-cylinder rotary compressor and refrigerating device with same

Also Published As

Publication number Publication date
JP2005171847A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5063673B2 (en) Refrigeration cycle equipment
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
CN101765715B (en) 2 stage rotary compressor
CN101835987B (en) 2 stage rotary compressor
CN100386523C (en) Air conditioner
JP4504667B2 (en) Refrigeration cycle equipment
US20100226796A1 (en) Rotary compressor
KR20100112486A (en) 2-stage rotary compressor
KR100758403B1 (en) Hermetic rotary compressor
KR20090049411A (en) 2 stage rotary compressor
JP2007146747A (en) Refrigerating cycle device
JP5005598B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2007146663A (en) Sealed compressor and refrigerating cycle device
KR101324373B1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JPH0681786A (en) Two-stage compression type rotary compressor
CN100376847C (en) Air conditioner
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP2005256614A (en) Multi-cylinder type rotary compressor
KR101328229B1 (en) Rotary compressor
JP2007154680A (en) Refrigerating cycle device
JP2008157101A (en) Rotary compressor and refrigerating cycle device
KR101340164B1 (en) Two stage rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term