JP5286010B2 - 2-cylinder rotary compressor and refrigeration cycle equipment - Google Patents

2-cylinder rotary compressor and refrigeration cycle equipment Download PDF

Info

Publication number
JP5286010B2
JP5286010B2 JP2008243161A JP2008243161A JP5286010B2 JP 5286010 B2 JP5286010 B2 JP 5286010B2 JP 2008243161 A JP2008243161 A JP 2008243161A JP 2008243161 A JP2008243161 A JP 2008243161A JP 5286010 B2 JP5286010 B2 JP 5286010B2
Authority
JP
Japan
Prior art keywords
cylinder
shaft
eccentric
cylinder chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008243161A
Other languages
Japanese (ja)
Other versions
JP2010071264A (en
Inventor
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008243161A priority Critical patent/JP5286010B2/en
Priority to CN200980133645.XA priority patent/CN102132046B/en
Priority to KR1020117003688A priority patent/KR101271272B1/en
Priority to PCT/JP2009/065114 priority patent/WO2010024409A1/en
Publication of JP2010071264A publication Critical patent/JP2010071264A/en
Application granted granted Critical
Publication of JP5286010B2 publication Critical patent/JP5286010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、全能力運転と、能力半減運転との切換えが可能な2気筒回転式圧縮機と、この2気筒回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a two-cylinder rotary compressor capable of switching between full-capacity operation and half-capacity operation, and a refrigeration cycle apparatus including the two-cylinder rotary compressor and constituting a refrigeration cycle.

第1の圧縮機構部を構成する第1のシリンダと、第2の圧縮機構部を構成する第2のシリンダのそれぞれにシリンダ室を備えた2気筒回転式圧縮機が多用される。この種の圧縮機において、2つのシリンダ室同時に圧縮作用を行う、もしくはいずれか一方のシリンダ室での圧縮作用を中断して圧縮仕事を低減する、能力可変運転できれば有利である。   A two-cylinder rotary compressor having a cylinder chamber in each of the first cylinder constituting the first compression mechanism and the second cylinder constituting the second compression mechanism is often used. In this type of compressor, it is advantageous if variable capacity operation can be performed in which the compression action is performed simultaneously in two cylinder chambers or the compression action in one of the cylinder chambers is interrupted to reduce the compression work.

たとえば、[特許文献1]の2シリンダ型ロータリ式圧縮機は、シリンダ室を2室備え、それぞれのシリンダ室に偏心回転するローラと、このローラに弾性的に当接するブレード等からなる圧縮機構を備え、一方のシリンダ室のブレードをローラから離間保持するとともに、シリンダ室を高圧化して圧縮作用を中断させる高圧導入手段を備えている。   For example, a two-cylinder rotary compressor disclosed in [Patent Document 1] includes two cylinder chambers, and includes a compression mechanism including a roller that rotates eccentrically in each cylinder chamber, a blade that elastically contacts the roller, and the like. And a high pressure introducing means for holding the blade of one cylinder chamber away from the roller and increasing the pressure of the cylinder chamber to interrupt the compression action.

[特許文献2]に開示されるロータリ式密閉形圧縮機は、第1のシリンダと第2のシリンダのシリンダ室を二分するベーンをベーン室に収容し、第1のシリンダ側のベーンはばね部材によって押圧付勢し、第2のシリンダ側のベーンはベーン室に導かれるケース内圧力と、シリンダ室に導かれる吸込み圧もしくは吐出圧との差圧によって押圧付勢する。
特開平1−247786号公報 特開2004−301114号公報
In the rotary hermetic compressor disclosed in [Patent Document 2], a vane that bisects the cylinder chamber of the first cylinder and the second cylinder is accommodated in the vane chamber, and the vane on the first cylinder side is a spring member. The vane on the second cylinder side is pressed and urged by a differential pressure between the pressure inside the case guided to the vane chamber and the suction pressure or discharge pressure guided to the cylinder chamber.
JP-A-1-247786 JP 2004-301114 A

ところで、このような全能力運転と、能力半減運転との切換えが可能な2気筒回転式型圧縮機においては、回転数が低くなると電動機部のモータ効率が低下する。そのため、能力半減運転をなす低能力域では、回転軸の回転数を2倍にすることでモータ効率の向上を図る必要がある。   By the way, in such a two-cylinder rotary type compressor capable of switching between full-capacity operation and half-capacity operation, the motor efficiency of the electric motor section decreases as the rotational speed decreases. Therefore, it is necessary to improve motor efficiency by doubling the number of rotations of the rotating shaft in the low capacity range where the capacity is reduced by half.

上述の圧縮機において、最も軸摺動損失が大きい箇所は回転軸の偏心部であるので、この偏心部における摺動損失を低減しなければならない。しかしながら、[特許文献1]および[特許文献2]の圧縮機ではともに、回転数を上げるのにともなって、軸摺動損失割合が大きくなってしまい、能力半減運転時におけるモータ効率の向上を得難い。   In the above-described compressor, the portion with the largest shaft sliding loss is the eccentric portion of the rotating shaft, so the sliding loss at the eccentric portion must be reduced. However, in both the compressors of [Patent Document 1] and [Patent Document 2], as the rotational speed is increased, the shaft sliding loss ratio increases, and it is difficult to improve the motor efficiency during the half-capacity operation. .

なお、回転軸は主軸受に軸支される主軸部と、副軸受に軸支される副軸部とを備えているが、回転軸の偏心部に偏心ローラを組み込むにあたって、軸方向長さが主軸部よりは短い副軸部側から偏心ローラを挿入すれば、作業が容易に行える。そこで、偏心ローラの挿入をより容易にするために、単純に副軸部の軸径を小さく設定することが考えられる。   The rotating shaft has a main shaft portion that is supported by the main bearing and a sub shaft portion that is supported by the sub bearing. However, when the eccentric roller is incorporated in the eccentric portion of the rotating shaft, the axial length is reduced. If the eccentric roller is inserted from the side of the sub shaft shorter than the main shaft, the operation can be easily performed. Therefore, in order to make the insertion of the eccentric roller easier, it can be considered that the shaft diameter of the auxiliary shaft portion is simply set small.

しかしながら、その反面、単純に副軸部の軸径を小さく設定すると、実際の圧縮運転時に副軸部の軸面の面圧が上昇し易くなる。特に、低回転域(低能力域)において潤滑油の油膜が形成され難くなり、信頼性の低下を招いてしまう。   However, if the shaft diameter of the auxiliary shaft portion is simply set to be small, the surface pressure of the shaft surface of the auxiliary shaft portion is likely to increase during actual compression operation. In particular, it becomes difficult to form an oil film of a lubricating oil in a low rotation range (low performance range), leading to a decrease in reliability.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、2シリンダタイプで、全能力運転と能力半減運転との能力可変をなすことを前提として、信頼性を確保しつつ能力半減運転時のモータ効率の向上を確実に得られるようにした2気筒回転式圧縮機と、この2気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances. The purpose of the present invention is a two-cylinder type, on the premise that the capacity can be varied between full capacity operation and half capacity operation, while ensuring reliability. An attempt is made to provide a two-cylinder rotary compressor that can reliably improve the motor efficiency during half operation, and a refrigeration cycle apparatus that includes this two-cylinder rotary compressor and that can improve the refrigeration cycle efficiency. To do.

上記目的を満足するため本発明の2気筒回転式圧縮機は、密閉容器内に電動機部と圧縮機構部とを収容し、上記圧縮機構部は、中間仕切り板を介在して内径部を有する第1のシリンダと第2のシリンダを設け、第1のシリンダの電動機部側に中間仕切り板と第1のシリンダの内径部を覆って第1のシリンダ室を形成する主軸受を取付け、第2のシリンダの反電動機部側に中間仕切り板と第2のシリンダの内径部を覆って第2のシリンダ室を形成する副軸受を取付け、電動機部に連結される回転軸は第1のシリンダ室および第2のシリンダ室に1つずつ偏心部が設けられ、第1のシリンダ室の偏心部と第2のシリンダ室の偏心部とが互いに回転角を180°ずらした位置に配置され、主軸受に軸支される主軸部と、副軸受に軸支される副軸部とを有し、この回転軸の偏心部に偏心ローラを嵌合して第1のシリンダ室と第2のシリンダ室内で回転駆動し、第2のシリンダ室において圧縮運転と非圧縮運転との切換を可能とした切換え機構を備え、副軸受に軸支される回転軸の副軸部軸径φDbは(1)式が成立するように構成される。

Figure 0005286010
In order to satisfy the above object, a two-cylinder rotary compressor of the present invention houses an electric motor part and a compression mechanism part in a hermetic container, and the compression mechanism part has an inner diameter part with an intermediate partition plate interposed therebetween. The first cylinder and the second cylinder are provided, and the main bearing that forms the first cylinder chamber is formed on the motor part side of the first cylinder so as to cover the intermediate partition plate and the inner diameter part of the first cylinder, A sub-bearing that covers the intermediate partition plate and the inner diameter portion of the second cylinder to form a second cylinder chamber is attached to the counter-motor portion side of the cylinder, and the rotary shaft connected to the motor portion is connected to the first cylinder chamber and the second cylinder chamber . One eccentric portion is provided in each of the two cylinder chambers, and the eccentric portion of the first cylinder chamber and the eccentric portion of the second cylinder chamber are arranged at positions where the rotation angles are shifted from each other by 180 °. A main shaft portion that is supported, and a sub-shaft portion that is supported by the auxiliary bearing; It is possible to switch between compression operation and non-compression operation in the second cylinder chamber by fitting an eccentric roller to the eccentric portion of the rotation shaft and rotationally driving it in the first cylinder chamber and the second cylinder chamber. The sub-shaft portion shaft diameter φDb of the rotary shaft that is pivotally supported by the sub-bearing is configured so that the formula (1) is established.
Figure 0005286010

φDa:主軸受に軸支される回転軸の主軸部軸径。L1:第1のシリンダの軸方向中心位置から回転軸主軸部の軸負荷位置(主軸部における第1のシリンダ室側端部から主軸部軸径の半分の距離)までの軸方向距離。L2:第1のシリンダの軸方向中心位置から第2のシリンダの軸方向中心位置までの軸方向距離。L3:第2のシリンダの軸方向中心位置から回転軸副軸部の軸負荷位置(副軸部における第2のシリンダ室側端部から副軸部軸径の半分の距離)までの軸方向距離。L4:回転軸の偏心部と偏心ローラとの摺動長さ。E:回転軸の偏心部の偏心量。
上記目的を満足するため本発明の冷凍サイクル装置は、上記2気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて冷凍サイクルを構成する。
φDa: The diameter of the main shaft portion of the rotary shaft supported by the main bearing. L1: An axial distance from the axial center position of the first cylinder to the axial load position of the rotary shaft main shaft portion (distance half the main shaft portion shaft diameter from the first cylinder chamber side end portion of the main shaft portion). L2: An axial distance from the axial center position of the first cylinder to the axial center position of the second cylinder. L3: Axial distance from the axial center position of the second cylinder to the axial load position of the rotary shaft countershaft portion (distance from the second cylinder chamber side end of the subshaft portion to a half of the shaft diameter of the subshaft portion) . L4: sliding length between the eccentric portion of the rotating shaft and the eccentric roller. E: The amount of eccentricity of the eccentric part of the rotating shaft.
In order to satisfy the above object, a refrigeration cycle apparatus of the present invention comprises the above-described two-cylinder rotary compressor, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.

本発明によれば、2シリンダタイプで、全能力運転と能力半減運転との能力可変をなすことを前提として、信頼性を確保しつつ能力半減運転時のモータ効率の向上を確実に得られるようにした2気筒回転式圧縮機と、この2気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供できる。   According to the present invention, it is possible to reliably improve the motor efficiency during half-capacity operation while ensuring reliability on the premise that the two-cylinder type is capable of variable capacity between full-capacity operation and half-capacity operation. It is possible to provide a two-cylinder rotary compressor and a refrigeration cycle apparatus that includes this two-cylinder rotary compressor and that can improve the refrigeration cycle efficiency.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は2気筒回転式圧縮機Rの縦断面図および冷凍サイクル装置の冷凍サイクル構成を示す図。図2は2気筒回転式圧縮機Rの要部を拡大した縦断面。図3は2気筒回転式圧縮機Rの一部を分解した斜視図である。(なお、図面上の煩雑さを避けるために、説明しても符号を付していない部品があり、図示しても説明しない部品もある。以下同)
はじめに2気筒回転式圧縮機Rから説明すると、1は密閉容器であって、この密閉容器1内の下部には圧縮機構部3が設けられ、上部には電動機部4が設けられる。これら圧縮機構部3と電動機部4は、回転軸5によって連結される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor R and a diagram showing a refrigeration cycle configuration of a refrigeration cycle apparatus. FIG. 2 is an enlarged longitudinal section of a main part of the two-cylinder rotary compressor R. FIG. 3 is an exploded perspective view of a part of the two-cylinder rotary compressor R. (In order to avoid complications in the drawings, there are parts that are not denoted by reference numerals even if they are explained, and there are parts that are not explained even if they are shown. The same applies hereinafter).
First, a description will be given of the two-cylinder rotary compressor R. Reference numeral 1 denotes a sealed container, in which a compression mechanism unit 3 is provided in the lower part and the motor part 4 is provided in the upper part. The compression mechanism unit 3 and the motor unit 4 are connected by a rotating shaft 5.

上記圧縮機構部3は中間仕切り板2を介して、この中間仕切り板2の上面部に第1のシリンダ6Aを備え、下面部に第2のシリンダ6Bを備えている。さらに、第1のシリンダ6Aの上面部に主軸受7が取付け固定され、第2のシリンダ6Bの下面部に副軸受8が取付け固定される。   The compression mechanism section 3 includes a first cylinder 6A on the upper surface portion of the intermediate partition plate 2 via the intermediate partition plate 2, and a second cylinder 6B on the lower surface portion. Further, the main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 6A, and the auxiliary bearing 8 is attached and fixed to the lower surface portion of the second cylinder 6B.

上記主軸受7は回転軸5の主軸部5aを軸支し、副軸受8は回転軸5の副軸部5bを軸支する。さらに、上記回転軸5は、第1、第2のシリンダ6A、6B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部aと第2の偏心部bを一体に備えている。   The main bearing 7 supports the main shaft portion 5 a of the rotating shaft 5, and the auxiliary bearing 8 supports the auxiliary shaft portion 5 b of the rotating shaft 5. Further, the rotating shaft 5 penetrates through the first and second cylinders 6A and 6B, and the first eccentric part a and the second eccentric part b formed with a phase difference of about 180 ° are integrated. I have.

第1、第2の偏心部a、bは互いに同一軸径をなし、第1、第2のシリンダ6A、6Bの内径部に位置するように組立てられる。第1の偏心部aの周面には、第1の偏心ローラ9aが嵌合され、第2の偏心部bの周面には、第2の偏心ローラ9bが嵌合される。   The first and second eccentric parts a and b have the same shaft diameter and are assembled so as to be positioned at the inner diameter parts of the first and second cylinders 6A and 6B. A first eccentric roller 9a is fitted to the peripheral surface of the first eccentric part a, and a second eccentric roller 9b is fitted to the peripheral surface of the second eccentric part b.

上記第1のシリンダ6Aの内径部は、主軸受7と中間仕切り板2によって囲まれていて、第1のシリンダ室Saが形成される。第2のシリンダ6Bの内径部は、副軸受8と中間仕切り板2によって囲まれていて、第2のシリンダ室Sbが形成される。   An inner diameter portion of the first cylinder 6A is surrounded by the main bearing 7 and the intermediate partition plate 2, and a first cylinder chamber Sa is formed. The inner diameter portion of the second cylinder 6B is surrounded by the auxiliary bearing 8 and the intermediate partition plate 2, and a second cylinder chamber Sb is formed.

各シリンダ室Sa、Sbは互いに同一軸径および高さ寸法に形成され、上記偏心ローラ9a、9bの周壁一部が各シリンダ室Sa、Sbの周壁一部に線接触しながら偏心回転自在に収容される。   The cylinder chambers Sa and Sb are formed to have the same shaft diameter and height, and the eccentric rollers 9a and 9b are partly accommodated so that they can be eccentrically rotated while being in line contact with the peripheral walls of the cylinder chambers Sa and Sb. Is done.

特に図3に示すように、第1のシリンダ6Aには、第1のシリンダ室Saと連通する第1のベーン室10aが設けられ、第1のベーン11aが移動自在に収容される。第2のシリンダ6Bには、第2のシリンダ室Sbと連通する第2のベーン室10bが設けられ、第2のベーン11bが移動自在に収容される。   In particular, as shown in FIG. 3, the first cylinder 6A is provided with a first vane chamber 10a communicating with the first cylinder chamber Sa, and the first vane 11a is movably accommodated therein. The second cylinder 6B is provided with a second vane chamber 10b communicating with the second cylinder chamber Sb, and the second vane 11b is movably accommodated therein.

第1、第2のベーン11a、11bの先端部は平面視で半円状に形成されており、対向するシリンダ室Sa、Sbに突出して平面視で円形状の上記第1、第2の偏心ローラ9a、9b周壁に、この回転角度にかかわらず線接触できる。   The tip ends of the first and second vanes 11a and 11b are formed in a semicircular shape in a plan view, and project into the opposing cylinder chambers Sa and Sb to have a circular shape in the plan view. Line contact can be made with the peripheral walls of the rollers 9a and 9b regardless of the rotation angle.

上記第1のシリンダ6Aのみ、第1のベーン室10aと、このシリンダ6Aの外周面とを連通する横孔fが設けられ、圧縮ばねであるばね部材12が収容される。ばね部材12は第1のベーン11aの後端側端面と密閉容器1内周壁との間に介在され、このベーン11aに弾性力(背圧)を付与する。   Only the first cylinder 6A is provided with a lateral hole f that communicates the first vane chamber 10a with the outer peripheral surface of the cylinder 6A, and accommodates a spring member 12 that is a compression spring. The spring member 12 is interposed between the rear end side end face of the first vane 11a and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the vane 11a.

上記第2のベーン室10bには、第2のベーン11b以外に何らの部材も収容されていないが、後述するように第2のベーン室10bの設定環境および、切換え機構Kの作用に応じて、第2のベーン11bの先端縁を上記第2の偏心ローラ9b周面に接触できるようになっている。   The second vane chamber 10b contains no members other than the second vane 11b. However, depending on the setting environment of the second vane chamber 10b and the operation of the switching mechanism K as will be described later. The tip edge of the second vane 11b can come into contact with the peripheral surface of the second eccentric roller 9b.

すなわち、第2のシリンダ6Bの外形寸法形状と、中間仕切り板2および副軸受8の外径寸法との関係から、第2のシリンダ6Bの外形一部は密閉容器1内に露出する。この密閉容器1への露出部分が、ベーン室10bに相当するように設計されており、したがってベーン室10bおよびベーン11b後端部はケース内圧力を直接的に受ける。   That is, a part of the outer shape of the second cylinder 6B is exposed in the sealed container 1 due to the relationship between the outer dimensions of the second cylinder 6B and the outer diameters of the intermediate partition plate 2 and the auxiliary bearing 8. The exposed portion of the hermetic container 1 is designed to correspond to the vane chamber 10b. Therefore, the rear end portions of the vane chamber 10b and the vane 11b directly receive the pressure in the case.

特に、第2のシリンダ6Bおよび第2のベーン室10bは構造物であるからケース内圧力を受けても何らの影響もないが、第2のベーン11bは第2のベーン室10bに摺動自在に収容され、かつこの後端部が第2のベーン室10bに位置するので、密閉容器1内の圧力を直接的に受けることとなる。   In particular, since the second cylinder 6B and the second vane chamber 10b are structures, there is no influence even if they are subjected to pressure inside the case, but the second vane 11b is slidable in the second vane chamber 10b. And the rear end thereof is located in the second vane chamber 10b, so that the pressure in the sealed container 1 is directly received.

そしてさらに、第2のベーン11bの先端部が第2のシリンダ室Sbに対向しており、ベーン11b先端部はこのシリンダ室Sb内の圧力を受ける。結局、第2のベーン11bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。   Furthermore, the tip of the second vane 11b faces the second cylinder chamber Sb, and the tip of the vane 11b receives the pressure in the cylinder chamber Sb. Eventually, the second vane 11b is configured to move in a direction from a higher pressure to a lower pressure according to the mutual pressure received by the front end and the rear end.

再び図1に示すように、密閉容器1の上端部には、冷媒管Pが接続される。冷媒管Pは、凝縮器15と、膨張装置16と、蒸発器17を介してアキュームレータ18に接続され、さらにアキュームレータ18から上記2気筒回転式圧縮機Rに接続されて冷凍サイクルが構成される。   As shown in FIG. 1 again, a refrigerant pipe P is connected to the upper end of the sealed container 1. The refrigerant pipe P is connected to an accumulator 18 through a condenser 15, an expansion device 16, and an evaporator 17, and further connected from the accumulator 18 to the two-cylinder rotary compressor R to constitute a refrigeration cycle.

なお説明すると、上記アキュームレータ18底部から2気筒回転式圧縮機Rに対して2本の吸込み冷媒管Pa,Pbが接続される。一方の吸込み冷媒管Paは密閉容器1と第1のシリンダ6A側部を貫通し、第1のシリンダ室Sa内に直接連通する。他方の吸込み冷媒管Pbは密閉容器1を介して第2のシリンダ6B側部を貫通し、第2のシリンダ室Sb内に直接連通する。   More specifically, two suction refrigerant pipes Pa and Pb are connected to the two-cylinder rotary compressor R from the bottom of the accumulator 18. One suction refrigerant pipe Pa penetrates the sealed container 1 and the side of the first cylinder 6A, and communicates directly with the first cylinder chamber Sa. The other suction refrigerant pipe Pb passes through the side of the second cylinder 6B via the hermetic container 1 and directly communicates with the second cylinder chamber Sb.

また、2気筒回転式圧縮機Rと凝縮器15とを連通する冷媒管Pの中途部から分岐冷媒管Pcが分岐して設けられる。この分岐冷媒管Pcは、中途部に第1の開閉弁20が設けられ、アキュームレータ18と第2のシリンダ室Sbとを連通する吸込み冷媒管Pbの中途部に接続される。   Further, a branch refrigerant pipe Pc is branched from a midway part of the refrigerant pipe P communicating with the two-cylinder rotary compressor R and the condenser 15. The branch refrigerant pipe Pc is provided with a first on-off valve 20 in the middle, and is connected to a middle part of the suction refrigerant pipe Pb that communicates the accumulator 18 and the second cylinder chamber Sb.

さらに、上記吸込み冷媒管Pbで、分岐冷媒管Pcの接続部よりも上流側には、第2の開閉弁21が設けられる。上記第1の開閉弁20および第2の開閉弁21は、それぞれ電磁開閉弁である。   Furthermore, a second on-off valve 21 is provided upstream of the connection portion of the branch refrigerant pipe Pc in the suction refrigerant pipe Pb. Each of the first on-off valve 20 and the second on-off valve 21 is an electromagnetic on-off valve.

このようにして、第2のシリンダ室Sbに接続される吸込み冷媒管Pb、分岐冷媒管Pc、第1の開閉弁20および第2の開閉弁21とで、上記切換え機構Kが構成される。そして、切換え機構Kの切換え作動に応じて、第2のシリンダ6Bのシリンダ室Sbに吸込み圧もしくは吐出圧が導かれるようになっている。   Thus, the switching mechanism K is constituted by the suction refrigerant pipe Pb, the branch refrigerant pipe Pc, the first on-off valve 20 and the second on-off valve 21 connected to the second cylinder chamber Sb. In accordance with the switching operation of the switching mechanism K, the suction pressure or the discharge pressure is guided to the cylinder chamber Sb of the second cylinder 6B.

つぎに、上述の2気筒回転式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。   Next, the operation of the refrigeration cycle apparatus including the above-described two-cylinder rotary compressor R will be described.

a) 通常運転(全能力運転)を選択した場合:
通常運転の指示が入ると制御部は、切換え機構Kの第1の開閉弁20を閉成し、第2の開閉弁21を開放するよう制御し、かつインバータを介して電動機部4に運転信号を送る。回転軸5が回転駆動され、第1、第2の偏心ローラ9a,9bは同時に第1、第2のシリンダ室Sa,Sb内で偏心回転を行う。
a) When normal operation (full capacity operation) is selected:
When a normal operation instruction is input, the control unit controls the first on-off valve 20 of the switching mechanism K to be closed and the second on-off valve 21 to be opened, and the operation signal is sent to the motor unit 4 via the inverter. Send. The rotary shaft 5 is rotationally driven, and the first and second eccentric rollers 9a and 9b simultaneously perform eccentric rotation in the first and second cylinder chambers Sa and Sb.

第1のシリンダ6Aにおいては、第1のベーン11aがばね部材12によって常に弾性的に押圧付勢されるところから、第1のベーン11aの先端縁が第1の偏心ローラ9a周壁に摺接して、第1のシリンダ室Sa内を吸込み室と圧縮室に二分する。   In the first cylinder 6A, since the first vane 11a is always elastically pressed and biased by the spring member 12, the leading edge of the first vane 11a is in sliding contact with the peripheral wall of the first eccentric roller 9a. The first cylinder chamber Sa is divided into a suction chamber and a compression chamber.

第1の偏心ローラ9a周面が転接する第1のシリンダ室Sa内周面位置と第1のベーン11a先端とが一致し、第1のベーン11aが最も後退した状態で、第1のシリンダ室Saの空間容量が最大となる。冷媒ガスはアキュームレータ18から吸込み冷媒管Paを介して第1のシリンダ室Saに吸込まれ充満する。   The first cylinder chamber Sa is in a state in which the position of the inner peripheral surface of the first cylinder chamber Sa to which the peripheral surface of the first eccentric roller 9a is in rolling contact is coincident with the tip of the first vane 11a and the first vane 11a is most retracted. The space capacity of Sa is maximized. The refrigerant gas is sucked into the first cylinder chamber Sa from the accumulator 18 through the suction refrigerant pipe Pa and is filled.

さらに第1の偏心ローラ9aの偏心回転にともない、第1の偏心ローラ9a周面における第1のシリンダ室Sa内周面との転接位置が移動し、第1のシリンダ室Saの区画された圧縮室の容積が減少する。すなわち、先に第1のシリンダ室Saに導かれたガスが徐々に圧縮される。   Further, along with the eccentric rotation of the first eccentric roller 9a, the rolling contact position of the first eccentric roller 9a with the inner peripheral surface of the first cylinder chamber Sa moves and the first cylinder chamber Sa is partitioned. The volume of the compression chamber is reduced. That is, the gas previously introduced into the first cylinder chamber Sa is gradually compressed.

回転軸5が継続して回転され、第1のシリンダ室Saに区画された圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで吐出弁が開放する。高圧ガスはバルブカバーを介して密閉容器1内に吐出され充満する。そして、密閉容器1上部に接続される冷媒管Pから吐出される。   The rotary shaft 5 is continuously rotated, the capacity of the compression chamber partitioned into the first cylinder chamber Sa is further reduced, the gas is compressed, and the discharge valve is opened when the pressure rises to a predetermined pressure. The high pressure gas is discharged into the sealed container 1 through the valve cover and is filled. And it discharges from the refrigerant | coolant pipe | tube P connected to the airtight container 1 upper part.

一方、切換え機構Kを構成する第1の開閉弁20が閉成されているので、第2のシリンダ室Sbに吐出圧(高圧)が導かれることはない。そして、第2の開閉弁21が開放されているので、蒸発器17で蒸発しアキュームレータ18で気液分離された低圧の蒸発冷媒が第2のシリンダ室Sbに導かれる。   On the other hand, since the first on-off valve 20 constituting the switching mechanism K is closed, the discharge pressure (high pressure) is not led to the second cylinder chamber Sb. Since the second on-off valve 21 is opened, the low-pressure evaporative refrigerant evaporated by the evaporator 17 and gas-liquid separated by the accumulator 18 is guided to the second cylinder chamber Sb.

上記第2のシリンダ室Sbは吸込み圧(低圧)雰囲気となる一方で、第2のベーン室10bが密閉容器1内に露出して吐出圧(高圧)下にある。第2のベーン11bにおいては、その先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で差圧が存在する。   The second cylinder chamber Sb is in a suction pressure (low pressure) atmosphere, while the second vane chamber 10b is exposed in the sealed container 1 and is under a discharge pressure (high pressure). In the 2nd vane 11b, the front-end | tip part becomes low-pressure conditions, and a rear-end part becomes high-pressure conditions, and a differential pressure | voltage exists in a front-and-back end part.

この差圧の影響で、第2のベーン11bの先端部が第2の偏心ローラ9bに摺接するように押圧付勢される。したがって、第2のシリンダ室Sbにおいても圧縮作用が行われることとなり、第1のシリンダ室Saと第2のシリンダ室Sbの両方で圧縮作用がなされる、全能力運転となる。   Due to the effect of this differential pressure, the tip of the second vane 11b is pressed and urged so as to be in sliding contact with the second eccentric roller 9b. Therefore, the compression action is performed also in the second cylinder chamber Sb, and the full capacity operation is performed in which the compression action is performed in both the first cylinder chamber Sa and the second cylinder chamber Sb.

密閉容器1から冷媒管Pを介して吐出される高圧ガスは、凝縮器15で外気もしくは水と熱交換して凝縮液化し、膨張装置16で断熱膨張し、蒸発器17で熱交換空気から蒸発潜熱を奪って冷凍作用をなす。   The high-pressure gas discharged from the sealed container 1 through the refrigerant pipe P is condensed and liquefied by exchanging heat with outside air or water in the condenser 15, adiabatically expanded in the expansion device 16, and evaporated from the heat exchange air in the evaporator 17. Takes out latent heat and freezes.

そして、蒸発したあとの冷媒はアキュームレータ18に導かれて気液分離され、再び各吸込み冷媒管Pa,Pbから2気筒回転式圧縮機Rにおける第1のシリンダ室Saと第2のシリンダ室Sb2に吸込まれて、上述の作用がなされ、上述の経路を循環する。   Then, the evaporated refrigerant is guided to the accumulator 18 and separated into gas and liquid, and again from the suction refrigerant pipes Pa and Pb to the first cylinder chamber Sa and the second cylinder chamber Sb2 in the two-cylinder rotary compressor R. Inhaled, the above-mentioned action is performed, and the above-mentioned route is circulated.

b) 特別運転(能力半減運転)を選択した場合:
特別運転(圧縮能力を半減する運転)を選択すると、切換え機構Kは第1の開閉弁20を開放し、第2の開閉弁21を閉成するように切換え設定する。第1のシリンダ室Saにおいては上述したように通常の圧縮作用がなされ、密閉容器1内に吐出された高圧ガスが充満してケース内高圧となる。
b) When special operation (capacity half operation) is selected:
When the special operation (operation that halves the compression capacity) is selected, the switching mechanism K switches and sets so that the first on-off valve 20 is opened and the second on-off valve 21 is closed. In the first cylinder chamber Sa, the normal compression action is performed as described above, and the high-pressure gas discharged into the hermetic container 1 is filled to become a high pressure in the case.

冷媒管Pから吐出される高圧ガスの一部が分岐冷媒管Pcに分流され、開放された第1の開閉弁20と吸込み冷媒管Pbを介して第2のシリンダ室Sb内に導入される。上記第2のシリンダ室Sbが吐出圧(高圧)雰囲気となる一方で、第2のベーン室10bはケース内高圧と同一の状況下にあることには変りがない。   A part of the high-pressure gas discharged from the refrigerant pipe P is divided into the branch refrigerant pipe Pc, and is introduced into the second cylinder chamber Sb through the opened first on-off valve 20 and the suction refrigerant pipe Pb. While the second cylinder chamber Sb is in a discharge pressure (high pressure) atmosphere, the second vane chamber 10b remains in the same situation as the high pressure in the case.

そのため、第2のベーン11bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。第2のベーン11bは偏心ローラ9bの回転にともなって蹴られ、この周面から離間した位置で停止状態を保持する。   Therefore, the second vane 11b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The second vane 11b is kicked with the rotation of the eccentric roller 9b, and keeps the stopped state at a position away from the peripheral surface.

第2の偏心ローラ9bは空回転をなしたままであり、第2のシリンダ室Sbでの圧縮作用は行われない(非圧縮運転状態)。結局、第1のシリンダ室Saでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。   The second eccentric roller 9b remains idling, and no compression action is performed in the second cylinder chamber Sb (non-compression operation state). Eventually, only the compression action in the first cylinder chamber Sa is effective, and an operation with half the capacity is performed.

なお、第2のシリンダ室Sbにおいて圧縮運転と非圧縮運転を切換える切換え機構Kは、上記実施の形態で示したものに限られない。たとえば、第2のベーン室10bの圧力を高圧と低圧に切換え、第2のベーン室10bの圧力を高圧にしたときに第2のシリンダ室Sbで圧縮運転をなし、低圧にしたときには非圧縮運転を行うようにしても良い。   Note that the switching mechanism K that switches between the compression operation and the non-compression operation in the second cylinder chamber Sb is not limited to that shown in the above embodiment. For example, the pressure in the second vane chamber 10b is switched between high pressure and low pressure, the compression operation is performed in the second cylinder chamber Sb when the pressure in the second vane chamber 10b is high, and the non-compression operation is performed when the pressure is low. May be performed.

このように、副軸受8側のシリンダ室、すなわち第2のシリンダ室Sbで圧縮運転と非圧縮運転との切換を可能とした2気筒回転式圧縮機Rにおいて、副軸受8に軸支される回転軸5の副軸部5b軸径φDbは、以下の(1)式が成立するように設定される。

Figure 0005286010
As described above, in the two-cylinder rotary compressor R that enables switching between the compression operation and the non-compression operation in the cylinder chamber on the side of the auxiliary bearing 8, that is, the second cylinder chamber Sb, the auxiliary bearing 8 is pivotally supported. The subshaft portion 5b shaft diameter φDb of the rotating shaft 5 is set so that the following expression (1) is established.
Figure 0005286010

ここで、 φDa:主軸受7に軸支される回転軸5の主軸部5a軸径。
L1: 第1のシリンダ6Aの軸方向中心位置から回転軸主軸部5aの軸負荷位置(主軸部5aにおける第1のシリンダ室Sa側端部から主軸部5a軸径φDaの半分の距離Da/2)までの軸方向距離。
L2: 第1のシリンダ6Aの軸方向中心位置から第2のシリンダ6Bの軸方向中心位置までの軸方向距離。
L3: 第2のシリンダ6Bの軸方向中心位置から回転軸副軸部5bの軸負荷位置(副軸部5bにおける第2のシリンダ室Sa側端部から副軸部5b軸径φDbの半分の距離Db/2)までの軸方向距離。
L4: 回転軸5の偏心部bと偏心ローラ9bとの摺動長さ。
E: 回転軸5の偏心部bの偏心量。
Here, φDa: the diameter of the main shaft portion 5a of the rotary shaft 5 supported by the main bearing 7.
L1: The axial load position of the rotary shaft main shaft portion 5a from the axial center position of the first cylinder 6A (the distance Da / 2 from the end of the main shaft portion 5a on the first cylinder chamber Sa side to a half of the main shaft portion 5a shaft diameter φDa) Axial distance to).
L2: An axial distance from the axial center position of the first cylinder 6A to the axial center position of the second cylinder 6B.
L3: The axial load position of the rotary shaft countershaft portion 5b from the axial center position of the second cylinder 6B (the distance half the shaft diameter φDb from the end of the subshaft portion 5b on the second cylinder chamber Sa side to the subshaft portion 5b) Axial distance to Db / 2).
L4: A sliding length between the eccentric portion b of the rotating shaft 5 and the eccentric roller 9b.
E: The amount of eccentricity of the eccentric part b of the rotating shaft 5.

すなわち、上述した2気筒回転式圧縮機Rにおいては、回転軸5の回転数が低くなると電動機部4であるモータの効率が低下する。そのため、低能力域では第2のシリンダ室Sbにおいて非圧縮運転状態(以下、「休筒運転」と呼ぶ)となし、かつ回転数を2倍に上げることでモータ効率を上げるよう制御している。   That is, in the above-described two-cylinder rotary compressor R, the efficiency of the motor that is the electric motor section 4 is reduced when the rotational speed of the rotary shaft 5 is reduced. Therefore, in the low capacity region, the second cylinder chamber Sb is in an uncompressed operation state (hereinafter referred to as “cylinder operation”), and the motor efficiency is controlled to be increased by doubling the rotational speed. .

しかしながら、この場合は回転数を上げることによる軸摺動損失の増加を招き、軸摺動損失割合の大きい設計仕様においては、休筒運転によるモータ効率の向上が得られない。特に、2気筒回転式圧縮機Rにおいて最も軸摺動損失の大きい箇所は回転軸5に形成される偏心部a,bであるので、これら偏心部a,bでの摺動損失を低減させる必要がある。   However, in this case, the shaft sliding loss is increased by increasing the rotation speed, and in the design specification having a large shaft sliding loss ratio, the motor efficiency cannot be improved by the cylinder resting operation. In particular, in the two-cylinder rotary compressor R, the portions with the largest shaft sliding loss are the eccentric portions a and b formed on the rotary shaft 5, and therefore it is necessary to reduce the sliding loss at these eccentric portions a and b. There is.

図2に拡大して示すように、回転軸5に形成される第1の偏心部aと第2の偏心部bの、第1の偏心ローラ9aと第2の偏心ローラ9bに対する摺動長さをL4とし、第1の偏心部aと第2の偏心部bの軸径をφDcrとする。   As shown in FIG. 2 in an enlarged manner, the sliding length of the first eccentric portion a and the second eccentric portion b formed on the rotating shaft 5 with respect to the first eccentric roller 9a and the second eccentric roller 9b. Is L4, and the shaft diameters of the first eccentric part a and the second eccentric part b are φDcr.

図4は、横軸に(L4/φDcr)をとり、縦軸に偏心部摺動損失[W]をとった場合の、L4/φDcrと偏心部摺動損失の特性図であり、2気筒運転時および休筒運転時それぞれについて同能力下で比較して示す。   FIG. 4 is a characteristic diagram of L4 / φDcr and eccentric part sliding loss when (L4 / φDcr) is taken on the horizontal axis and eccentric part sliding loss [W] is taken on the vertical axis. Comparisons are made under the same capacity for both the hour and the idle cylinder operation.

なお、偏心部摺動損失[W]の値は、第1、第2の偏心部a,bの第1、第2の偏心ローラ9a,9bに対する摺動長さL4を一定とし、第1、第2の偏心部軸径φDcrを変化させて導いている。また、休筒運転時の回転数は2気筒運転時の2倍とし、休筒側偏心部である第2の偏心部bの摺動損失は「0」と仮定している。
2気筒運転時の変化を破線で示し、休筒運転時の変化を実線で示す。この図から、L4/φDcr値の減少とともに損失差が大きくなるのが分る。
The value of the eccentric portion sliding loss [W] is set such that the sliding length L4 of the first and second eccentric portions a and b with respect to the first and second eccentric rollers 9a and 9b is constant, The second eccentric portion shaft diameter φDcr is changed and led. Further, it is assumed that the number of revolutions during the cylinder resting operation is twice that during the two cylinder operation, and the sliding loss of the second eccentric portion b which is the cylinder eccentric side eccentric portion is “0”.
The change during the two-cylinder operation is indicated by a broken line, and the change during the non-cylinder operation is indicated by a solid line. From this figure, it can be seen that the loss difference increases as the L4 / φDcr value decreases.

図5は、空気調和機としての冷房中間条件における同能力時のL4/φDcrと総合効率の特性図である。ここでも、横軸にL4/φDcrをとり、偏心部摺動長さL4を一定とし、偏心部軸径φDcrを変化させて導いている。縦軸は総合効率である。
この図から休筒運転による効率向上を得るには、
L4/φDcr ≧ 0.43 ……(2)
(2)式を満足する必要がある。
FIG. 5 is a characteristic diagram of L4 / φDcr and total efficiency at the same capacity under the cooling intermediate condition as an air conditioner. Also here, L4 / φDcr is taken on the horizontal axis, the eccentric portion sliding length L4 is constant, and the eccentric portion shaft diameter φDcr is changed. The vertical axis is the overall efficiency.
From this figure, in order to obtain the efficiency improvement due to idle cylinder operation,
L4 / φDcr ≧ 0.43 (2)
It is necessary to satisfy the formula (2).

上述の冷房中間条件を得るための測定条件を、以下の[表1]に示す。

Figure 0005286010
The measurement conditions for obtaining the above-mentioned cooling intermediate conditions are shown in [Table 1] below.
Figure 0005286010

なお、表1中の、kPaAは絶対圧。 In Table 1, kPaA is an absolute pressure.

再び図2に示すように、第1、第2の偏心部a,bの軸径φDcrと、副軸部5bの軸径φDbとの間には、特に第1の偏心部aに第1の偏心ローラ9aを副軸部5b側から組み込むために
φDcr ≧ φDb+2×E ……(3)
(3)式を満足する必要がある。
As shown in FIG. 2 again, the first eccentric portion a has a first diameter between the shaft diameter φDcr of the first and second eccentric portions a and b and the shaft diameter φDb of the auxiliary shaft portion 5b. In order to incorporate the eccentric roller 9a from the auxiliary shaft portion 5b side
φDcr ≧ φDb + 2 × E (3)
It is necessary to satisfy the formula (3).

したがって、(2)式と(3)式を展開し、休筒運転による効率向上が得られる条件として、
φDb ≦ L4/0.43−2×E ……(4)
(4)式を満足しなければならない。
Therefore, as a condition for expanding the expressions (2) and (3) and obtaining the efficiency improvement by the idle cylinder operation,
φDb ≦ L4 / 0.43-2 × E (4)
(4) Formula must be satisfied.

一方、上記副軸部5bの軸径φDbを小さくするにしたがって、軸面に対する面圧が上がり、特に低回転域(低能力域)において潤滑油の油膜が形成され難くなって信頼性が悪化する。   On the other hand, as the shaft diameter φDb of the auxiliary shaft portion 5b is reduced, the surface pressure with respect to the shaft surface increases, and the oil film of the lubricating oil is difficult to be formed particularly in the low rotation region (low performance region), and the reliability deteriorates. .

上述した2気筒回転式圧縮機Rにおいては、低能力域で副軸部5b側である第2のシリンダ室Sbを休筒させるため、回転軸5の主軸部5aにかかるガス負荷Faと、副軸部5bにかかるガス負荷Fbとの比は、図2に示すように、
Fa:Fb = (L2+L3):1 ……(5)
となる。
In the above-described two-cylinder rotary compressor R, in order to rest the second cylinder chamber Sb on the side of the auxiliary shaft portion 5b in the low capacity region, the gas load Fa applied to the main shaft portion 5a of the rotating shaft 5, The ratio with the gas load Fb applied to the shaft portion 5b is as shown in FIG.
Fa: Fb = (L2 + L3): 1 (5)
It becomes.

また、主軸部5aに対する面圧Paと、副軸部5bに対する面圧Pbとの比は、負荷を受ける摺動長比が軸径比と同等とすると、
Pa:Pb = (L2+L3)/φDa:L1/φDb ……(6)
となる。
Further, the ratio of the surface pressure Pa to the main shaft portion 5a and the surface pressure Pb to the sub shaft portion 5b is such that the sliding length ratio under load is equal to the shaft diameter ratio.
Pa: Pb = (L2 + L3) / φDa 2 : L1 / φDb 2 (6)
It becomes.

ここで、回転軸5の副軸部5bにおいて主軸部5aと同等以上の面圧を確保するためには、

Figure 0005286010
Here, in order to ensure a surface pressure equal to or greater than that of the main shaft portion 5a in the sub shaft portion 5b of the rotating shaft 5,
Figure 0005286010

(7)式を満たす必要がある。 It is necessary to satisfy the formula (7).

したがって、これらのことから

Figure 0005286010
So from these things
Figure 0005286010

(1)式が導き出される。
すなわち、上述した(1)式を満足することで、信頼性を確保しつつ、休筒運転による効率向上が充分に得られる。
Equation (1) is derived.
That is, by satisfying the above-described expression (1), it is possible to sufficiently improve the efficiency by the idle cylinder operation while ensuring the reliability.

以下の表2は、(1)式を具体的に表現した設計例である。

Figure 0005286010
Table 2 below is a design example that specifically expresses the expression (1).
Figure 0005286010

そして、このような2気筒回転式圧縮機Rを備えて冷凍サイクルを構成する冷凍サイクル装置は、さらに冷凍効率の向上を得られる。   And the refrigerating cycle apparatus which comprises such a 2 cylinder rotary compressor R and comprises a refrigerating cycle can obtain the improvement of refrigerating efficiency further.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における一実施の形態に係る、2気筒回転式圧縮機の概略縦断面図および冷凍サイクル装置の冷凍サイクル構成図。1 is a schematic longitudinal sectional view of a two-cylinder rotary compressor and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus according to an embodiment of the present invention. 同実施の形態に係る、2気筒回転式圧縮機要部の拡大した縦断面図。The expanded longitudinal cross-sectional view of the 2-cylinder rotary compressor principal part which concerns on the same embodiment. 同実施の形態に係る、2気筒回転式圧縮機要部の一部分解斜視図。The partial exploded perspective view of the 2-cylinder rotary compressor principal part which concerns on the embodiment. 同実施の形態に係る、偏心部摺動長さ/偏心部軸径に対する偏心部摺動損失の特性図。The characteristic figure of the eccentric part sliding loss with respect to the eccentric part sliding length / eccentric part axial diameter based on the embodiment. 同実施の形態に係る、偏心部摺動長さ/偏心部軸径に対する総合効率の特性図。The characteristic figure of the total efficiency with respect to the eccentric part sliding length / eccentric part axial diameter based on the embodiment.

符号の説明Explanation of symbols

1…密閉容器、4…電動機部、3A…第1の圧縮機構部、3B…第2の圧縮機構部、2…中間仕切り板、6A…第1のシリンダ、6B…第2のシリンダ、Sa…第1のシリンダ室、7…主軸受、Sb…第2のシリンダ室、8…副軸受、a…第1の偏心部、b…第2の偏心部、5…回転軸、9a…第1の偏心ローラ、9b…第2の偏心ローラ、K…切換え機構、R…2気筒回転式圧縮機、15…凝縮器、16…膨張装置、17…蒸発器。   DESCRIPTION OF SYMBOLS 1 ... Sealed container, 4 ... Electric motor part, 3A ... 1st compression mechanism part, 3B ... 2nd compression mechanism part, 2 ... Intermediate partition plate, 6A ... 1st cylinder, 6B ... 2nd cylinder, Sa ... 1st cylinder chamber, 7 ... main bearing, Sb ... 2nd cylinder chamber, 8 ... sub bearing, a ... 1st eccentric part, b ... 2nd eccentric part, 5 ... rotating shaft, 9a ... 1st Eccentric roller, 9b ... second eccentric roller, K ... switching mechanism, R ... two-cylinder rotary compressor, 15 ... condenser, 16 ... expansion device, 17 ... evaporator.

Claims (2)

密閉容器内に、電動機部と圧縮機構部とを収容し、
上記圧縮機構部は、
中間仕切り板を介在して設けられ、それぞれが内径部を有する第1のシリンダおよび第2のシリンダと、
上記第1のシリンダの上記電動機部側に取付けられ、上記中間仕切り板とともに第1のシリンダの内径部を覆って第1のシリンダ室を形成する主軸受と、
上記第2のシリンダの反電動機部側に取付けられ、上記中間仕切り板とともに第2のシリンダの内径部を覆って第2のシリンダ室を形成する副軸受と、
上記第1のシリンダ室および第2のシリンダ室に1つずつ偏心部が設けられ、第1のシリンダ室の偏心部と第2のシリンダ室の偏心部とが互いに回転角を180°ずらした位置に配置され、
上記主軸受に軸支される主軸部および、上記副軸受に軸支される副軸部を有し、上記電動機部に連結される回転軸と、
この回転軸の上記偏心部それぞれに嵌合され、上記第1のシリンダ室と第2のシリンダ室内で回転駆動される偏心ローラと、
上記第2のシリンダ室において、圧縮運転と非圧縮運転との切換をなす切換え機構と、
を具備する2気筒回転式圧縮機において、
上記副軸受に軸支される上記回転軸の副軸部の軸径φDbは、
Figure 0005286010
φDa: 主軸受に軸支される回転軸の主軸部軸径
L1: 第1のシリンダの軸方向中心位置から回転軸主軸部の軸負荷位置(主軸部における第1のシリンダ室側端部から主軸部軸径の半分の距離)までの軸方向距離
L2: 第1のシリンダの軸方向中心位置から第2のシリンダの軸方向中心位置までの軸方向距離
L3: 第2のシリンダの軸方向中心位置から回転軸副軸部の軸負荷位置(副軸部における第2のシリンダ室側端部から副軸部軸径の半分の距離)までの軸方向距離
L4: 回転軸の偏心部と偏心ローラとの摺動長さ
E: 回転軸の偏心部の偏心量
上記(1)式が成立するように構成されることを特徴とする2気筒回転式圧縮機。
The motor part and the compression mechanism part are accommodated in the sealed container,
The compression mechanism is
A first cylinder and a second cylinder each provided with an intermediate partition plate, each having an inner diameter;
A main bearing attached to the motor part side of the first cylinder and covering the inner diameter part of the first cylinder together with the intermediate partition plate to form a first cylinder chamber;
A sub-bearing attached to the anti-motor part side of the second cylinder and covering the inner diameter part of the second cylinder together with the intermediate partition plate to form a second cylinder chamber;
Each of the first cylinder chamber and the second cylinder chamber is provided with an eccentric portion, and the eccentric portion of the first cylinder chamber and the eccentric portion of the second cylinder chamber are shifted from each other by 180 °. Placed in
A main shaft portion that is pivotally supported by the main bearing, and a rotary shaft that is pivotally supported by the sub-bearing and is coupled to the electric motor portion;
An eccentric roller fitted into each of the eccentric portions of the rotating shaft and driven to rotate in the first cylinder chamber and the second cylinder chamber;
A switching mechanism for switching between compression operation and non-compression operation in the second cylinder chamber;
A two-cylinder rotary compressor comprising:
The shaft diameter φDb of the auxiliary shaft portion of the rotary shaft supported by the auxiliary bearing is:
Figure 0005286010
φDa: Main shaft portion shaft diameter of the rotating shaft supported by the main bearing L1: From the axial center position of the first cylinder to the axial load position of the rotating shaft main shaft portion (from the first cylinder chamber side end of the main shaft portion to the main shaft L2: Axial distance from the axial center position of the first cylinder to the axial center position of the second cylinder L3: Axial center position of the second cylinder Axial distance from the shaft load position of the rotary shaft subshaft portion (the distance from the second cylinder chamber side end of the subshaft portion to the half of the shaft diameter of the subshaft portion) L4: Eccentric portion and eccentric roller of the rotary shaft Sliding length E: Eccentric amount of the eccentric portion of the rotating shaft A two-cylinder rotary compressor characterized in that the above formula (1) is established.
上記請求項1記載の2気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the two-cylinder rotary compressor according to claim 1, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
JP2008243161A 2008-08-29 2008-09-22 2-cylinder rotary compressor and refrigeration cycle equipment Active JP5286010B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008243161A JP5286010B2 (en) 2008-09-22 2008-09-22 2-cylinder rotary compressor and refrigeration cycle equipment
CN200980133645.XA CN102132046B (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
KR1020117003688A KR101271272B1 (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
PCT/JP2009/065114 WO2010024409A1 (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243161A JP5286010B2 (en) 2008-09-22 2008-09-22 2-cylinder rotary compressor and refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010071264A JP2010071264A (en) 2010-04-02
JP5286010B2 true JP5286010B2 (en) 2013-09-11

Family

ID=42203272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243161A Active JP5286010B2 (en) 2008-08-29 2008-09-22 2-cylinder rotary compressor and refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5286010B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000452B2 (en) * 2013-05-24 2016-09-28 三菱電機株式会社 Heat pump equipment
JP6262101B2 (en) * 2014-08-27 2018-01-17 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
US9974137B2 (en) 2014-12-05 2018-05-15 Sharp Kabushiki Kaisha Lighting device and light emitting device having red and green phosphor arranged therein

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
US7044717B2 (en) * 2002-06-11 2006-05-16 Tecumseh Products Company Lubrication of a hermetic carbon dioxide compressor
JP4045154B2 (en) * 2002-09-11 2008-02-13 日立アプライアンス株式会社 Compressor
CN100545457C (en) * 2003-12-03 2009-09-30 东芝开利株式会社 Cooling recirculation system

Also Published As

Publication number Publication date
JP2010071264A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
JP5786030B2 (en) Hermetic rotary compressor and refrigeration cycle equipment
JP5063673B2 (en) Refrigeration cycle equipment
JP5068719B2 (en) Rotary compressor and refrigeration cycle equipment
KR100299590B1 (en) Rotary type hermetic compressor and refrigerating cycle apparatus
JP5810221B2 (en) Rotary compressor and refrigeration cycle equipment
JPWO2009028632A1 (en) Rotary compressor and refrigeration cycle apparatus
JP2014034940A (en) Rotary compressor and refrigeration cycle device
JP5564617B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
JPWO2009031626A1 (en) 2-cylinder rotary compressor and refrigeration cycle apparatus
JP4504667B2 (en) Refrigeration cycle equipment
JP2008057395A (en) Hermetic rotary compressor and refrigeration cycle device
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
KR101324373B1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2007154680A (en) Refrigerating cycle device
JP6078393B2 (en) Rotary compressor, refrigeration cycle equipment
JP2009074445A (en) Two-cylinder rotary compressor and refrigerating cycle device
JP2005256614A (en) Multi-cylinder type rotary compressor
JP7357178B1 (en) Compressors and air conditioners
JP7358674B1 (en) Compressors and air conditioners
JP2002106989A (en) Two-stage compressor, refrigerating cycle device and refrigerator
JP2018059515A (en) Rotary compressor
WO2016139825A1 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250