WO2010024409A1 - Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus - Google Patents

Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus Download PDF

Info

Publication number
WO2010024409A1
WO2010024409A1 PCT/JP2009/065114 JP2009065114W WO2010024409A1 WO 2010024409 A1 WO2010024409 A1 WO 2010024409A1 JP 2009065114 W JP2009065114 W JP 2009065114W WO 2010024409 A1 WO2010024409 A1 WO 2010024409A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
chamber
slider
blade
pressure
Prior art date
Application number
PCT/JP2009/065114
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 二見
卓也 平山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008243161A external-priority patent/JP5286010B2/en
Priority claimed from JP2009074713A external-priority patent/JP5360709B2/en
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN200980133645.XA priority Critical patent/CN102132046B/en
Priority to KR1020117003688A priority patent/KR101271272B1/en
Publication of WO2010024409A1 publication Critical patent/WO2010024409A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/58Valve parameters

Definitions

  • the present invention relates to a hermetic compressor capable of switching compression capacity, a two-cylinder rotary compressor capable of switching between full capacity operation and half capacity operation, and a refrigeration cycle comprising these compressors.
  • the present invention relates to a refrigeration cycle apparatus.
  • a hermetic compressor having a cylinder chamber in each of the first cylinder constituting the first compression mechanism and the second cylinder constituting the second compression mechanism is often used.
  • this type of compressor it is advantageous if a so-called variable capacity can be achieved in which the compression action is performed simultaneously in two cylinder chambers or the compression action in one of the cylinder chambers is interrupted to reduce the compression work.
  • a pipe that branches from a suction pipe that communicates the accumulator and the second cylinder chamber is provided, and a pipe that communicates with the branch chamber and a blade chamber provided in the second cylinder and communicates with the inner bottom of the sealed container.
  • An invention has been disclosed in which a first open / close valve is provided in a branch pipe, and a second open / close valve is provided in a pipe communicating with the inner bottom of a sealed container (Japanese Patent Laid-Open No. 2006-300140).
  • the suction pressure (low pressure gas refrigerant) derived from the accumulator is guided to the blade chamber.
  • a low pressure back pressure is applied to the blade, and a low pressure atmosphere having the same pressure as the cylinder chamber is created. In this cylinder chamber, no compression action is performed, and only the other cylinder chamber is compressed, resulting in a half capacity operation.
  • a blade chamber is partitioned by a cylinder and a sealed container, and a slider is reciprocated by an electromagnetic coil to open and close a suction passage that communicates the suction pipe and the blade chamber (Japanese Patent Laid-Open No. 5-256286). ).
  • the blade chamber becomes low pressure.
  • the blade is pulled by a spring member, and compression action is not performed in one cylinder chamber, but compression operation is performed in the other cylinder chamber.
  • the discharge pressure gas is introduced into the blade chamber from between the cylinder and the sealed container.
  • the blade chamber has a high pressure, and the blade is pressed and urged to compress in the cylinder chamber.
  • the other cylinder chamber performs a normal compression action, and the two chambers are operated simultaneously.
  • (2-cylinder rotary compressor) A two-cylinder rotary compressor having a cylinder chamber in each of the first cylinder constituting the first compression mechanism and the second cylinder constituting the second compression mechanism is often used.
  • this type of compressor it is advantageous if variable capacity operation can be performed in which the compression action is performed simultaneously in two cylinder chambers or the compression action in one of the cylinder chambers is interrupted to reduce the compression work.
  • each of the cylinder chambers includes a roller that rotates eccentrically, and a compression mechanism that includes a blade that elastically contacts the roller, and the blade of one cylinder chamber is held away from the roller.
  • a two-cylinder rotary compressor having a high-pressure introducing means for increasing the pressure in the cylinder chamber and interrupting the compression action has been disclosed (Japanese Patent Laid-Open No. 1-2247786).
  • a vane that bisects the cylinder chamber of the first cylinder and the second cylinder is accommodated in the vane chamber, the vane on the first cylinder side is pressed and urged by a spring member, and the vane on the second cylinder side is moved to the vane chamber.
  • a rotary-type hermetic compressor is disclosed that is pressed and urged by a differential pressure between a guided internal pressure of the case and a suction pressure or a discharge pressure guided to a cylinder chamber (Japanese Patent Laid-Open No. 2004-301114).
  • the discharge gas is configured to be guided to the blade chamber through the gap between the cylinder and the hermetic container. take time. Therefore, there is a delay in switching from the compression pause of the second cylinder chamber to the compression action. If the gap is increased, the amount of discharge gas leaking to the suction side during compression stop increases, resulting in a reduction in efficiency.
  • ⁇ Cylinder shape is special and it is difficult to standardize with a cylinder that always performs compression operation. If the slider and cylinder are not precisely aligned, the suction communication path cannot be blocked by the slider.
  • the configuration in which the blade chamber is partitioned by the cylinder and the sealed container is difficult in terms of processing. Lubricating oil is not supplied to the blade chamber during the compression operation, and the sliding between the blade and the cylinder tends to be hindered.
  • the rotating shaft has a main shaft portion that is supported by the main bearing and a sub shaft portion that is supported by the sub bearing.
  • the eccentric roller when the eccentric roller is incorporated in the eccentric portion of the rotating shaft, the axial length is reduced. If the eccentric roller is inserted from the side of the sub shaft shorter than the main shaft, the operation can be easily performed. Therefore, in order to make the insertion of the eccentric roller easier, it is conceivable to simply set the shaft diameter of the auxiliary shaft portion to be small.
  • the shaft diameter of the auxiliary shaft portion is simply set small, the surface pressure of the shaft surface of the auxiliary shaft portion is likely to increase during the actual compression operation. In particular, it becomes difficult to form an oil film of a lubricating oil in a low rotation range (low performance range), leading to a decrease in reliability.
  • the present invention has been made on the basis of the above circumstances, and the object thereof is a two-cylinder type, and on the premise that the compression capacity can be changed, the structure is simplified and the number of parts is reduced.
  • a hermetic compressor that can reduce costs and reduce the time required for operation switching, and a refrigeration system that can improve the refrigeration cycle efficiency with this hermetic compressor A cycle device is to be provided.
  • the 2-cylinder type is a two-cylinder engine that ensures the improvement of motor efficiency during half-capacity operation while ensuring reliability, assuming that the capacity can be varied between full-capacity operation and half-capacity operation. It is an object of the present invention to provide a rotary compressor and a refrigeration cycle apparatus provided with the two-cylinder rotary compressor and capable of improving the refrigeration cycle efficiency.
  • the hermetic compressor of the present invention accommodates an electric motor part and a compression mechanism part in a hermetic container, and the compression mechanism part interposes an intermediate partition plate and the first cylinder and the second cylinder.
  • a cylinder chamber was formed in each inner diameter portion, and a blade chamber communicating with each cylinder chamber was provided.
  • a two-cylinder rotary compressor of the present invention houses an electric motor part and a compression mechanism part in a hermetic container, and the compression mechanism part has an inner diameter part with an intermediate partition plate interposed therebetween.
  • the first cylinder and the second cylinder are provided, and the main bearing that forms the first cylinder chamber is formed on the motor part side of the first cylinder so as to cover the intermediate partition plate and the inner diameter part of the first cylinder,
  • a secondary bearing that forms a second cylinder chamber covering the inner partition plate and the inner diameter portion of the second cylinder is mounted on the side opposite to the motor portion of the cylinder, and the rotary shaft connected to the motor portion is connected to the first cylinder chamber and the first cylinder chamber.
  • the two cylinder chambers have two eccentric portions whose rotational angles are shifted from each other by 180 °, a main shaft portion pivotally supported by the main bearing, and a subshaft portion pivotally supported by the sub-bearing.
  • the first cylinder chamber and the second cylinder chamber are fitted with an eccentric roller in the part.
  • a rotation mechanism that is rotationally driven and enables switching between compression operation and non-compression operation in the second cylinder chamber, and the sub-shaft portion shaft diameter ⁇ Db of the rotary shaft that is pivotally supported by the sub-bearing is expressed by equation (1) It is configured to hold.
  • ⁇ Da Shaft diameter of the main shaft of the rotary shaft supported by the main bearing.
  • L1 An axial distance from the axial center position of the first cylinder to the axial load position of the rotary shaft main shaft portion (distance half the main shaft portion shaft diameter from the first cylinder chamber side end portion of the main shaft portion).
  • L2 An axial distance from the axial center position of the first cylinder to the axial center position of the second cylinder.
  • L3 Axial distance from the axial center position of the second cylinder to the axial load position of the rotary shaft countershaft portion (distance from the second cylinder chamber side end of the subshaft portion to a half of the shaft diameter of the subshaft portion) .
  • L4 sliding length between the eccentric portion of the rotating shaft and the eccentric roller.
  • E The amount of eccentricity of the eccentric part of the rotating shaft.
  • FIG. 1 It is a longitudinal cross-sectional view which expands a principal part and shows the state at the time of full capacity driving
  • 9B is a longitudinal sectional view of the same pressure switching valve taken along line BB in FIG. 9A and viewed in the direction of the arrow. It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of full capacity driving
  • FIG. 1 is a diagram illustrating a cross-sectional structure in which a part of the hermetic compressor R is omitted and a refrigeration cycle configuration of a refrigeration cycle apparatus including the hermetic compressor R.
  • Reference numeral 1 denotes a hermetic container, and a lower part in the hermetic container 1 is provided with a first compression mechanism part 3A and a second compression mechanism part 3B via an intermediate partition plate 2. Is provided, and an electric motor unit 4 is provided at the top.
  • the first compression mechanism unit 3 ⁇ / b> A and the second compression mechanism unit 3 ⁇ / b> B are connected to the electric motor unit 4 by the rotation shaft 5.
  • the first compression mechanism portion 3A includes a first cylinder 6A
  • the second compression mechanism portion 3B includes a second cylinder 6B.
  • the main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 6A
  • the auxiliary bearing 8 is attached and fixed to the lower surface portion of the second cylinder 6B.
  • the rotating shaft 5 integrally includes a first eccentric portion Xa and a second eccentric portion Xb that penetrate the cylinders 6A and 6B and have a phase difference of about 180 °.
  • Each eccentric part Xa, Xb has the same diameter as each other, and is assembled so as to be positioned at the inner diameter part of each cylinder 6A, 6B.
  • the first eccentric roller 9a is fitted to the peripheral surface of the first eccentric portion Xa
  • the second eccentric roller 9b is fitted to the peripheral surface of the second eccentric portion Xb.
  • the first cylinder chamber Sa is formed in the inner diameter portion of the first cylinder 6A
  • the second cylinder chamber Sb is formed in the inner diameter portion of the second cylinder 6B.
  • the cylinder chambers Sa and Sb are formed to have the same diameter and height, and a part of the peripheral wall of the eccentric rollers 9a and 9b is accommodated so as to be eccentrically rotatable while making line contact with a part of the peripheral wall of the cylinder chambers Sa and Sb.
  • the first cylinder 6A is provided with a first blade chamber 10a communicating with the first cylinder chamber Sa, and the first blade 11a is movably accommodated therein.
  • the second cylinder 6B is provided with a second blade chamber 10b communicating with the second cylinder chamber Sb, and the second blade 11b is movably accommodated therein.
  • the tip portions of the first and second blades 11a and 11b are formed in a semicircular shape in a plan view, and project into the opposing cylinder chambers Sa and Sb so as to have a circular shape in a plan view. Line contact can be made with the peripheral walls of the rollers 9a and 9b regardless of the rotation angle.
  • Only the first cylinder 6A is provided with a lateral hole that communicates the first blade chamber 10a with the outer peripheral surface of the cylinder 6A, and accommodates a spring member 14 that is a compression spring.
  • the spring member 14 is interposed between the rear end face of the first blade 11a and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the blade 11a.
  • the second blade chamber 10b provided in the second cylinder 6B is provided with a second blade 11b and a pressure switching valve K described later.
  • a discharge pressure (high pressure) or suction pressure (low pressure) back pressure can be applied to the blade 11b in accordance with the switching operation of the pressure switching valve K, and the leading edge can be brought into contact with or separated from the eccentric roller 9b.
  • An oil reservoir 15 for collecting lubricating oil is formed at the inner bottom of the sealed container 1.
  • the broken line crossing the flange portion of the main bearing 7 indicates the level of the lubricating oil, and almost all of the first compression mechanism portion 3A and all of the second compression mechanism portion 3B It is immersed in the lubricating oil of the reservoir 15.
  • a hermetic compressor R configured as described above, and a discharge pipe P is connected to the upper end of the hermetic container 1.
  • the discharge pipe P is connected to the upper end of the accumulator 20 via the condenser 17, the expansion device 18 and the evaporator 19.
  • the accumulator 20 and the hermetic compressor R are connected via a first suction pipe Pa and a second suction pipe Pb.
  • the first suction pipe Pa penetrates the sealed container 1 constituting the hermetic compressor R and the side of the first cylinder 6A and communicates with the first cylinder chamber Sa.
  • the second suction pipe Pb penetrates the sealed container 1 and the side of the second cylinder 6B and communicates with the second cylinder chamber Sb.
  • the hermetic compressor R, the condenser 17, the expansion device 18, the evaporator 19, and the accumulator 20 described above are sequentially connected by piping to constitute a refrigeration cycle apparatus.
  • FIG. 2 is a cross-sectional plan view of the hermetic compressor R provided with the pressure switching valve K in the first embodiment.
  • 3A is a schematic front view of the pressure switching valve K.
  • FIG. 3B and 3C are schematic plan views of the pressure switching valve K in different states.
  • the pressure switching valve K is immersed in the lubricating oil in the oil reservoir 15 formed at the inner bottom of the sealed container 1, and the valve main body 21, the electromagnetic coil 22, and the magnetic member 23 are integrally connected. And a slider 24.
  • valve body 21 has an inner portion and an outer portion curved, and in the front view shown in FIG. 3A, the upper end surface and the lower end surface are formed flat.
  • the substantially prismatic shape A slider hole 25 having a perfectly circular cross section is provided through the left and right end surfaces of the valve body 21.
  • the suction communication passage 26, the blade chamber communication passage 27, and the discharge communication passage 28, each of which is a predetermined distance from one end face of the valve body 21, are provided apart from each other and arranged side by side.
  • Each of the communication passages 26 to 28 is provided from the outer peripheral surface of the valve body 21 to the slider hole 25, and communicates the outside of the valve body 21 and the slider hole 25.
  • the suction communication path 26 and the blade chamber communication path 27 are opened on the same side surface of the valve body 21, and the discharge communication path 28 is opened on the side surface of the valve body 21 opposite to the suction communication path 26 and the blade chamber communication path 27. Is done.
  • the distance from the suction communication passage 26 and the distance from the discharge communication passage 28 are set to be the same with respect to the blade chamber communication passage 27 as a reference.
  • the diameters of the blade chamber communication path 27 and the discharge communication path 28 are set to be the same, and the suction communication path 26 is formed to have a smaller diameter than these diameters.
  • the electromagnetic coil 22 is integrally connected to the end surface of the valve body 21 on the side where the discharge communication passage 28 is provided, and has an inner peripheral portion 29 having substantially the same diameter as the slider hole 25.
  • the slider 24 has a cylindrical shape that is slidably fitted over the slider hole 25 provided in the valve body 21 and the inner peripheral portion 29 of the electromagnetic coil 22.
  • a cutout portion 30 having a further reduced outer diameter is provided at a substantially intermediate portion along the axial direction on the peripheral surface of the slider 24.
  • the magnetic member 23 is connected to or integrally formed with one end face of the slider 24, and is shown only in FIG. 3C and omitted in FIG. 3B.
  • the outer diameter of the magnetic member 23 is formed to be the same as the outer diameter of the slider 24.
  • a compression spring (not shown) abuts on the end surface opposite to the slider 24, and the magnetic member 23 and the slider 24 are elastic along the axial direction. Is urged to press.
  • the slider 24 when the electromagnetic coil 22 is energized and the magnetic member 23 is magnetically attracted against the elastic force of the compression spring, the slider 24 has the notch 30 as shown in FIG. And it is displaced to a position facing the discharge communication passage 28. The position of the slider 24 at this time is referred to as a “first operation position”.
  • the pressure switching valve K is attached to the lower surface of the second cylinder 6B and closes the lower open surface of the second blade chamber 10b.
  • the upper open surface of the second blade chamber 10b is closed by the intermediate partition plate 2 interposed between the first cylinder 6A and the second cylinder 6B, and the upper surface of the second blade chamber 10b is The lower surface is in a closed state.
  • the second cylinder 6B is provided with a suction hole to which the second suction pipe Pb is connected and a communication hole that communicates the lower surface of the second cylinder 6B.
  • the suction communication passage 26 provided in the valve body 21 at the pressure switching valve K is configured to communicate with the second suction pipe Pb through the communication hole. .
  • blade chamber communication passage 27 is opened to the second blade chamber 10b, and the discharge communication passage 28 is opened to the oil reservoir 15 in the sealed container 1.
  • the operation of the pressure switching valve K causes normal operation (full capacity operation), Switching to cylinder operation (half-capacity operation) can be selected.
  • the electromagnetic coil 22 of the pressure switching valve K is energized, and the magnetic member 23 and the slider 24 are magnetically attracted against the elastic force of the compression spring.
  • the slider 24 is moved and displaced to the first operating position shown in FIG. 3B, and the blade chamber communication path 27 and the discharge communication path 28 are communicated with the notch 30. Therefore, the second blade chamber 10b and the oil reservoir 15 are communicated with each other via the pressure switching valve K.
  • the refrigerant gas is sucked into the first cylinder chamber Sa from the accumulator 20 through the first suction pipe Pa and is filled.
  • the eccentric rotation of the eccentric roller 9a With the eccentric rotation of the eccentric roller 9a, the volume of one of the compartments of the cylinder chamber Sa decreases, and the sucked gas is gradually compressed.
  • the discharge valve is opened, and the high-pressure gas is guided into the sealed container 1 through the valve cover.
  • the high-pressure gas filled in the sealed container 1 is discharged to the discharge pipe P and led to the condenser 17.
  • the high-pressure gas is condensed and liquefied in the condenser 17 to be converted into liquid refrigerant, guided to the expansion device 18 and expanded adiabatically, evaporated in the evaporator 19, and takes latent heat of evaporation from the air flowing through the evaporator 19.
  • the refrigerant evaporated in the evaporator 19 is led to the accumulator 20 for gas-liquid separation, and the separated low-pressure gas refrigerant is led from the accumulator 20 to the first cylinder chamber Sa via the first suction pipe Pa. It is compressed again and discharged into the sealed container 1 to constitute the refrigeration cycle as described above.
  • the low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa.
  • the second cylinder chamber Sb is filled with a low-pressure gas refrigerant to create a suction pressure (low pressure) atmosphere.
  • the slider 24 in the pressure switching valve K is held at the first operating position, and the oil reservoir 15 and the second blade chamber 10b communicate with each other.
  • the sealed container 1 is filled with the high-pressure gas compressed and discharged in the first cylinder chamber Sa, and the lubricating oil in the oil reservoir 15 at the bottom of the sealed container 1 is affected by high pressure.
  • Lubricating oil in the oil reservoir 15 enters the discharge communication passage 28 of the pressure switching valve K, and is guided to the blade chamber communication passage 27 through a gap between the notch 30 of the slider 24 and the slider hole 25. Since the blade chamber communication passage 27 communicates with the second blade chamber 10b, the high-pressure lubricating oil fills the second blade chamber 10b and applies a back pressure to the second blade 11b.
  • the rear end portion of the second blade 11b is under a discharge pressure (high pressure), while the front end portion is in a low-pressure atmosphere by a low-pressure gas refrigerant guided from the second suction pipe Pb to the second cylinder chamber Sb. .
  • a differential pressure exists at the front and rear end portions of the second blade 11b, and the tip portion of the blade 11b is pressed and biased so as to be in sliding contact with the peripheral wall of the second eccentric roller 9b due to the differential pressure.
  • the magnetic member 23 and the slider 24 receive the elastic force of the compression spring, and the slider 24 is moved and displaced to the second operating position. Therefore, the blade chamber communication passage 27 and the suction communication passage 26 are communicated with the notch 30, and the second blade chamber 10 b and the second suction pipe Pb are communicated with each other via the pressure switching valve K.
  • the above-described normal compression action is performed, and the high-pressure gas discharged from the discharge pipe P is led to the condenser 17, the expansion device 18, and the evaporator 19 to perform a refrigeration cycle action. Then, the air is sucked into the first cylinder chamber Sa from the accumulator 20 through the first suction pipe Pa and compressed.
  • the low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa.
  • the second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
  • the slider 24 in the pressure switching valve K is held at the second operating position, and the second suction pipe Pb and the second blade chamber 10b communicate with each other. Accordingly, the second blade chamber 10b is filled with the low-pressure gas refrigerant, and a low-pressure back pressure is applied to the second blade 11b.
  • the rear end of the second blade 11b is under a suction pressure (low pressure), while the front end is in a low pressure atmosphere by a gas refrigerant guided from the second suction pipe Pb to the second cylinder chamber Sb. Accordingly, there is no differential pressure at the front and rear end portions of the second blade 11b, and the tip portion of the blade 11b is held by the kicked back by the peripheral wall of the eccentric roller 9b.
  • the compression operation is performed only in the first cylinder chamber Sa, and the compression operation is not performed in the second cylinder chamber Sb.
  • the discharge pressure is introduced into the second blade chamber 10b by the switching operation of the pressure switching valve K, so that the switching from the compression pause state to the compression operation can be performed in a short time, and the refrigeration Improved cycle efficiency can be obtained.
  • the blade chamber communication passage 27 and the discharge communication passage 28 have a large cross-sectional area. It is desirable that Further, the suction communication passage 26 may have a small cross-sectional area since there is no gas refrigerant or lubricating oil coming in and out after communicating with the second blade chamber 10b.
  • the diameter of the suction communication passage 26 is formed small, and the diameters of the blade chamber communication passage 27 and the discharge communication passage 28 are larger than the diameter of the suction communication passage 26. Formed.
  • a blade chamber communication passage 27 communicating with the second blade chamber 10b and a suction communication passage 26 communicating with the second cylinder chamber Sb via the second suction pipe Pb are connected to the slider hole 25 of the pressure switching valve K. Further, a discharge communication passage 28 communicating with the inside of the closed container 1 that is the oil reservoir 15 is connected, and a notch 30 is provided in a part of the peripheral surface of the slider 24.
  • the blade chamber communication passage 27 and the discharge communication passage 28 communicate with each other through the notch 30.
  • the blade chamber communication path 27 and the suction communication path 26 communicate with each other through the notch 30. That is, the discharge pressure and the suction pressure guided to the second blade chamber 10b can be switched smoothly and surely while being a simple mechanism that simply reciprocates the slider 24.
  • the oil reservoir 15 for collecting the lubricating oil is provided at the bottom of the sealed container 1 so that the pressure switching valve K is immersed in the lubricating oil in the oil reservoir 15.
  • the discharge communication passage 28 provided in the pressure switching valve K is opened in the lubricating oil. Since the lubricating oil enters and exits the second blade chamber 10b by the second blade 11b reciprocating during the compression action, the resistance is reduced, and the movement of the second blade 11b is smooth and the loss is reduced.
  • FIG. 4 is a longitudinal sectional view of the main part of the hermetic compressor R provided with the pressure switching valve Ka.
  • 5 and 6 are enlarged longitudinal sectional views of the pressure switching valve Ka in different states.
  • FIG. 1 Since the configuration of the hermetic compressor R excluding the pressure switching valve Ka described later is the same as that shown in FIG. 1, FIG. 1 is applied here, and in FIG. Thus, a new description is omitted.
  • FIG. 4 shows an outline of the pressure switching valve Ka, in which only some components are denoted by reference numerals, details are shown in FIGS. 5 and 6, and all component parts are denoted by reference numerals.
  • the pressure switching valve Ka includes a valve body 21A, a magnetic member 23A, a slider 24A, an electromagnetic coil 22A, and a cylindrical member 31 made of a nonmagnetic material.
  • the valve body 21A is attached to the lower surface of the second cylinder 6B so as to close the lower open surface of the second blade chamber 10b.
  • a slider hole 25A is provided through the left and right end faces of the valve body 21A, and the slider 24A is slidably received in the slider hole 25A.
  • the end face of the slider hole 25A is opened to the oil reservoir 15 in the sealed container 1 to form a discharge communication path 28A.
  • the slider hole 25A and the second blade chamber 10b communicate with each other through a blade chamber communication path 27A.
  • the second suction pipe Pb connected to the second cylinder chamber Sb and the slider hole 25A communicate with each other through a suction communication passage 26A formed across the valve body 21A and the valve body 21A.
  • the diameter of the suction communication path 26A is formed to be the smallest
  • the diameter of the blade chamber communication path 27A is formed larger than the diameter of the suction communication path 26A
  • the diameter of the discharge communication path 28A is the diameter of the blade chamber communication path 27A. Than is formed.
  • a groove portion 32 is provided on the end surface opposite to the end surface where the discharge communication passage 28A of the valve body 21A is opened and along the slider hole 25A, and the end portion of the cylindrical member 31 is fitted and fixed.
  • the cylindrical member 31 is inserted from the outside of the sealed container 1 into an insertion hole 33 provided in the sealed container 1, and the tip opening is engaged and fixed to the groove 32 of the valve body 21A.
  • a narrow gap is formed between the end face of the valve body 21A and the inner peripheral wall of the sealed container 1, and a part of the cylindrical member 31 is exposed.
  • An oil hole 34 composed of a plurality of small holes is provided in the exposed portion of the cylindrical member 31 so that the outer surface side and the inside of the cylindrical member 31 communicate with each other. That is, the lubricating oil is guided into the cylindrical member 31 from the oil hole 34, and the smooth movement of the slider 24 is ensured as will be described later.
  • the insertion hole 33 of the sealed container 1 and the circumferential surface of the cylindrical member 31 inserted therethrough are brazed using a brazing material (seal material) (see V in the figure), and are completely sealed. ing.
  • the closed end surface of the cylindrical member 31 protrudes to the outside of the sealed container 1, and the electromagnetic coil 22 ⁇ / b> A is fitted and fixed to the outer peripheral surface of the end portion.
  • the compression spring 35 is inserted into the end of the cylindrical member 31 and comes into contact with the end surface of the magnetic member 23A inserted into the cylindrical member 31.
  • the magnetic member 23A is formed in a slidable diameter in the cylindrical member 31, and the slider 24A is integrally provided continuously.
  • the slider 24A has a flange portion Xd formed in a small diameter having a gap between the inner diameter of the cylindrical member 31 and the gap between the base end portion connected to the magnetic member 23A and the fitting portion between the cylindrical member 31 and the valve main body 21A.
  • a sliding contact portion Xe is integrally connected to both ends of the notch portion 30A at the front end of the flange portion Xd with the notch portion 30A interposed therebetween.
  • the sliding contact portion Xe is slidably fitted in the slider hole 25A.
  • the notch 30A is designed to have a diameter smaller than the diameter of the slider hole 25A and substantially the same diameter as the flange Xd. Therefore, a narrow gap is formed between the peripheral surface of the cutout portion 30A and the peripheral surface of the slider hole 25A, and between the peripheral surface of the flange portion Xd and the inner peripheral surface of the cylindrical member 31.
  • the notch 30A faces the suction communication path 26A, but the slider 24A The front end surface is retracted to a position where the blade chamber communication passage 27A of the valve body 21A is opened.
  • the position of the slider 24A at this time is referred to as a “first operation position”.
  • the position of the slider 24A at this time is referred to as a “second operating position”. Note that the oil hole 34 provided in the cylindrical member 31 is always closed without being closed by the slider 24A regardless of the position movement of the slider 24A.
  • the electromagnetic coil 22A of the pressure switching valve Ka is energized, and the magnetic member 23A and the slider 24A resist the elastic force of the compression spring 35. Magnetically attracted.
  • the slider 24A is moved and displaced to the first operating position shown in FIG. 5, and the blade chamber communication path 27A and the discharge communication path 28A are communicated. Therefore, the second blade chamber 10B and the oil reservoir 15 are communicated with each other via the pressure switching valve Ka.
  • the sealed container 1 is filled with a compressed gas refrigerant and further discharged from the closed compressor R to the discharge pipe P to constitute a refrigeration cycle.
  • the low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa.
  • the second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
  • the slider 24A in the pressure switching valve Ka is held in the first operating position, and the lubricating oil in the oil reservoir 15 is guided from the discharge communication passage 28A of the pressure switching valve Ka to the blade chamber communication passage 27A.
  • the second blade chamber 10b is filled, and a discharge pressure (high pressure) back pressure is applied to the second blade 11b.
  • the second blade 11b has a differential pressure at the front and rear end portions, and due to the differential pressure, the tip end portion of the blade 11b is pressed and urged so as to be in sliding contact with the peripheral wall of the eccentric roller 9b.
  • the full capacity in which the compression action exactly the same as that of the first cylinder chamber Sa is also performed in the second cylinder chamber Sb, and eventually the compression action is performed in both the first cylinder chamber Sa and the second cylinder chamber Sb. It becomes driving.
  • the energization to the electromagnetic coil 22A is cut off, and the magnetic member 23A and the slider 24A receive the elastic force of the compression spring 35. Since the slider 24A is in the second operating position shown in FIG. 6, the blade chamber communication passage 27A and the suction communication passage 26A communicate with each other via the notch 30A, and the second blade chamber 10b and the second suction pipe Pb are connected. Is communicated.
  • the low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa.
  • the second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
  • the second blade chamber 10b Since the slider 24A in the pressure switching valve Ka is held at the second operating position and the second suction pipe Pb and the second blade chamber 10b communicate with each other, the second blade chamber 10b has a low-pressure gas.
  • the refrigerant is filled with a low-pressure atmosphere, and a suction pressure (low pressure) back pressure is applied to the second blade 11b.
  • the rear end of the second blade 11b is under the suction pressure (low pressure), while the front end is under the low pressure atmosphere of the second cylinder chamber Sb. Therefore, there is no differential pressure at the front and rear end portions of the second blade 11b, and the eccentric roller 9b rotates idly. Eventually, the compression action is performed only in the first cylinder chamber Sa, and the capacity half operation is not performed in the second cylinder chamber Sb.
  • the slider 24A can be reciprocated with a relatively simple configuration by combining the magnetic member 23A and the electromagnetic coil 22A. Since the electromagnetic coil 22A is attached to the outer space of the sealed container 1, it is not necessary to attach a sealed terminal for energization to the sealed container 1, and the wiring configuration can be simplified.
  • the electromagnetic coil 22A need not be immersed in the lubricating oil in the oil reservoir 15, the electromagnetic coil 22A need not have oil resistance and refrigerant resistance. Since the cylindrical member 31 that accommodates the magnetic member 23A and the slider 24A is fitted and fixed in the groove portion 32 provided in the valve body 21A, the slider hole 25A and the slider 24A can be easily centered, and the assemblability is good. .
  • the cylindrical member 31 containing the slider 24A, the magnetic member 23A, and the compression spring 35 is inserted through the insertion hole 33 provided in the sealed container 1, and this end is fitted into the groove 32 of the valve body 21A. Fix it. Thereafter, the insertion hole 33 of the sealed container 1 and the peripheral surface of the insertion portion of the cylindrical member 31 are sealed by brazing.
  • the electromagnetic coil 22A may be attached to the cylindrical member 31 in advance, or may be attached after the compressor is assembled. Therefore, the pressure switching valve Ka can be assembled only by adding to the conventional compressor assembling method without requiring a special assembling process or a special hermetic container, and the increase in man-hours can be minimized.
  • the cylindrical member 31 is preferably made of a nonmagnetic material so that the electromagnetic coil 22A magnetically attracts the magnetic member 23A. However, if the magnetic member 23A can operate normally, the cylindrical member 31 has some magnetism. May be.
  • FIG. 7 is a cross-sectional plan view of the hermetic compressor R for explaining the pressure switching valve Ka according to the third embodiment.
  • the pressure switching valve Ka is provided in the intermediate partition plate 2 interposed between the first cylinder 6A and the second cylinder 6B. That is, a slider hole 25B is provided from a part of the outer peripheral surface of the intermediate partition plate 2 to a position facing the second blade chamber 10b, and the slider 24A, the magnetic member 23A and the cylindrical member 31 containing the compression spring 35 are attached. It is done.
  • the slider hole 25B has a blade chamber communication path (not shown) communicating with the second blade chamber 10b, a suction communication path 26A communicating with the second suction pipe Pb, and a discharge communication opening in the sealed container 1.
  • a passage (not shown) is provided.
  • the upper surface of the second blade chamber 10b is closed by the intermediate partition plate 2, but the lower surface is open in the sealed container 1 and is exposed to the discharge pressure, so some kind of closing member is necessary.
  • the intermediate partition plate 2 also serves as a valve body originally provided in the pressure switching valve Ka. Therefore, the number of parts is reduced, the man-hours for attaching the valve body and the processing of the screw holes for attachment to the second cylinder 6B become unnecessary, and the influence on the cost can be suppressed.
  • the hermetic compressor R is configured to connect the first suction pipe Pa and the second suction pipe Pb independent to each of the first cylinder chamber Sa and the second cylinder chamber Sb. It is not limited to this.
  • FIG. 8 is a longitudinal sectional view of a main part of a hermetic compressor R as a fourth embodiment.
  • first and second suction pipes Pa and Pb a type in which one suction pipe P is connected to a suction guide path 40 provided in the intermediate partition plate 2A may be used.
  • the suction guide path 40 is branched into two guide paths 40a and 40b inside the intermediate partition plate 2A, one branch guide path 40a communicates with the first cylinder chamber Sa, and the other branch guide path 40b is the first. It is formed to communicate with the two cylinder chambers Sb.
  • the pressure switching valve Ka used here has the same configuration as that described in the second embodiment based on FIGS. 4, 5 and 6, and is attached at the same position.
  • a hole 42 for communicating the suction communication path 26A provided in the valve main body 21A and the suction guide path 40 provided in the intermediate partition plate 2 is provided through the upper and lower end surfaces of the second cylinder 6B. Also, it is necessary to provide the intermediate partition plate 2A.
  • the pressure switching valve K described above includes an electromagnetic coil 22, a magnetic member 23, and a slider 24 integrally connected to the magnetic member 23, and is configured to reciprocate the slider 24 in the axial direction.
  • an electromagnetic coil 22 a magnetic member 23
  • a slider 24 integrally connected to the magnetic member 23, and is configured to reciprocate the slider 24 in the axial direction.
  • it is not limited to this.
  • a pressure switching valve K as shown in FIGS. 9A and 9B may be used.
  • a first cutout portion 30Da in which a part of the peripheral surface of the rotating shaft 24D is cut out is provided, and the first cutout portion 30Da is a peripheral surface portion that faces 180 ° and is axially
  • the second notch 30Db is provided with the position shifted.
  • the end of the rotation shaft 24D is connected to an actuator 50 such as a pulse motor.
  • a suction communication passage 26D and a blade chamber communication passage 27D are provided with a predetermined distance from each other and extending from the same side surface to the slider hole 25D.
  • a discharge communication path 28D is provided from the opposite side surface to the slider hole 25D with a predetermined distance from the blade chamber communication path 27D.
  • the first notch 30Da in the rotation shaft 24D can communicate the suction communication path 26D and the blade chamber communication path 27. Further, if the rotation shaft 24D is rotated 180 °, the second notch 30Db communicates the blade chamber communication path 27D and the discharge communication path 28D.
  • the pressure switching valve Ka has such a configuration, the protrusion amount of the actuator 50 from the valve body 21D can be minimized. Further, an actuator having oil resistance and refrigerant resistance can be accommodated in the hermetic container 1, and it is not necessary to secure an external space.
  • the slider 24 is displaced to the “second operating position” in order to perform the cylinder resting operation (capacity half operation).
  • the energization of the electromagnetic coil 22 is cut off, the magnetic attraction action on the slider 24 and the magnetic member 23 is eliminated, and the elastic force of the compression spring 35 is applied to the slider 24 instead.
  • positioning means for the slider 24A when the slider 24A is displaced to the second operating position will be described.
  • FIGS. 10A and 10B are schematic longitudinal sectional views of the pressure switching valve Kb and a part of the hermetic compressor provided with the pressure switching valve Kb in the sixth embodiment.
  • FIG. 10A shows a state during full capacity operation
  • FIG. 10B shows a state during half capacity operation.
  • the basic configuration of the pressure switching valve Ka used in this embodiment employs the basic configuration of the pressure switching valve Ka described in the second embodiment (FIGS. 4 to 6).
  • the intermediate partition plate 2A and the suction guide path 40 provided in the intermediate partition plate 2A are the same as those described in the fourth embodiment (FIG. 8).
  • the pressure switching valve Kb is fixed to the valve body 21B, the magnetic member 23A, the slider 24A integrally formed with or coupled to the magnetic member 23A, the electromagnetic coil 22B, the cylindrical member 31 made of a non-magnetic material, and the cylindrical member 31.
  • the permanent magnet 31A as a slider holding member.
  • the electromagnetic coil 22B used here is not of the type that is controlled to be switched according to the presence or absence of energization as described above, but is a so-called self-holding type that maintains its state by switching to the reverse polarity.
  • the valve body 21B is attached to the lower surface of the second cylinder 6B so as to close the lower open surface of the second blade chamber 10b, and the cylindrical member 31 is connected to the valve body 21B.
  • a slider hole 25A is provided between the valve body 21B and the cylindrical member 31, and the slider 24A is slidably accommodated in the slider hole 25A.
  • the end face of the valve main body 21B is provided with a hole having a diameter smaller than the diameter of the slider hole 25A, which is referred to as a discharge communication passage 28A. Since the diameter of the discharge communication passage 28A is smaller than the diameter of the slider hole 25A, the stepped portion 60, which is a slider positioning means, is provided at the end of the valve body 21B.
  • the slider 24A is provided with a through hole 61 at the center axis position along the axial direction, and both ends of the slider 24A have the same atmosphere through the through hole 61. That is, by providing the through hole 61, both end portions of the slider 24A can maintain the same pressure, and a pressure balance can be obtained.
  • the suction pressure is introduced into the second blade chamber 10b to enable the cylinder resting operation for the second cylinder chamber Sb.
  • a permanent magnet Z is attached along the peripheral surface of the chamber 10b where the second blade 11b contacts and is separated.
  • the electromagnetic coil 22B When the normal operation is selected, the electromagnetic coil 22B is energized, and the magnetic member 23A is magnetically attracted against the elastic force of the compression spring 35 as the slider urging member.
  • the end surface of the slider 24A is retracted to a position where the blade chamber communication passage 27A of the valve body 21A is opened, and is in a “first operation position” where the blade chamber communication passage 27A communicates with the discharge communication passage 28A. Displace. Even if the energization of the electromagnetic coil 22B is stopped in this state, the magnetic member 23A is attracted to the permanent magnet 31A, and the position of the slider 24A is maintained.
  • the discharge pressure (high pressure) in the hermetic container 1 is guided from the discharge communication passage 28A of the pressure switching valve Kb to the second blade chamber 10b via the blade chamber communication passage 27A, and has a high pressure with respect to the second blade 11b. Back pressure is applied. Therefore, a differential pressure is generated at the front and rear end portions of the second blade 11b, and the full capacity operation that performs the compression action is performed also in the second cylinder chamber Sb.
  • the electromagnetic coil 22B is switched to the reverse polarity, the repulsive force acts on the slider 24A together with the magnetic member 23A, the elastic force of the compression spring 35 acts, and the permanent magnet 31A overcomes the attractive force.
  • the slider 24A moves.
  • the front end surface of the slider 24A passes over the blade chamber communication passage 27A and is bumped by a stepped portion 60 provided on the end surface of the valve body 21B. In this state, even if energization of the electromagnetic coil 22B is stopped, the position of the slider 24A is held by the elastic force of the compression spring 35.
  • the slider 24A is positioned by the step portion 60, blocks the discharge communication path 28A and the outer peripheral surface of the valve body 21B, and closes the discharge communication path 28A and the blade chamber communication path 27A that have been communicated so far. .
  • the blade chamber communication passage 27A and the suction communication passage 26A communicate with each other through the notch 30A of the slider 24A, and the displacement is shifted to the “second operating position”.
  • the suction pressure (low pressure) introduced from the accumulator 20 is guided to the second blade chamber 10b via the suction communication passage 26A and the blade chamber communication passage 27A of the pressure switching valve Kb, and is low in pressure with respect to the second blade 11b.
  • the back pressure is applied.
  • the second blade 11b has the same low pressure at the front and rear ends, the front end is kicked by the eccentric roller 9b and retracted into the second blade chamber 10b, and the rear end is magnetically attracted to the permanent magnet Z, and the position thereof is increased. Hold. In the second cylinder chamber Sb, a half capacity operation is performed in which the compression action stops.
  • the pressure switching valve Kb needs to be further downsized. Therefore, if the slider 24A can always be accurately positioned, the required stroke including the tolerance of the slider 24A can be reduced, and the pressure switching valve Kb can be downsized.
  • the surrounding area may be a discharge pressure atmosphere, and there are many high and low pressure seal portions, and if the slider 24A is not positioned accurately, the amount of leakage is large. As a result, performance is degraded.
  • the step portion (slider positioning means) 60 is provided so that the slider 24A of the pressure switching valve Kb is restrained at a position where the second blade chamber 10b and the suction communication passage 26A communicate with each other. Therefore, the pressure switching valve Kb can be downsized. In addition, the leakage amount can be reduced and the performance can be improved.
  • the step portion 60 may be formed by providing a slider hole 25A in the valve body 21A and processing only the end of the valve body 21A, or by using a separate piece. In any case, the provision of the step portion 60 as the positioning means for the slider 24A makes it easy to ensure the positional accuracy of the slider 24A and enables more accurate positioning.
  • the self-holding type of the electromagnetic coil 22B which is energized only when the position of the slider 24A is moved and switched to the reverse polarity, is used.
  • the same effect can be obtained by energizing only at the time of switching, and the power consumption can be greatly reduced.
  • the pressures at both ends of the slider 24A can always be kept the same. Therefore, the movement of the position of the slider 24A is smoothly started, and the operation reliability can be improved.
  • FIG. 11 is a schematic longitudinal sectional view of a pressure switching valve Kc and a part of a hermetic compressor provided with the pressure switching valve Kc, showing a first modification example of the sixth embodiment. The state during operation (full capacity operation) is shown.
  • the slider hole 25B provided in the valve main body 21C is opened with the same diameter at the end of the valve main body 21C to form a discharge communication path 28A.
  • the end f of the valve main body 21 ⁇ / b> C protrudes in the axial direction, particularly in a part on the upper side, and abuts on the circumferential surface of the flange 8 a of the auxiliary bearing 8.
  • the projecting length of the projecting portion f is substantially the same as the plate thickness of the valve cover 12 fitted into the peripheral surface of the flange portion 8a of the auxiliary bearing 8.
  • valve cover 12 constitutes a positioning means for the slider 24A, and positions the slider 24A at the second operating position.
  • the valve cover 12 which is an existing part can also be used, and the influence on the cost is suppressed. Further, by closing the pressure switching valve Kc itself against the outer peripheral surface of the sub-bearing 8, the closing performance of the second blade chamber 10b is improved.
  • FIG. 12 is a schematic longitudinal sectional view of a pressure switching valve Kd and a part of a hermetic compressor provided with the pressure switching valve Kd, showing a second modification of the sixth embodiment. The state during operation (full capacity operation) is shown.
  • a part of the auxiliary bearing 8A is extended to a position in the vicinity of the inner peripheral wall of the sealed container 1, which is a part provided with the original valve body, and the auxiliary bearing 8A is configured to also use a part of the pressure switching valve Kd.
  • a slider hole 25C is provided from the outer peripheral surface of the extension portion of the auxiliary bearing 8A toward the axis, and the end of the slider hole 25C serves as a slider positioning means.
  • a suction communication path 26A, a blade chamber communication path 27A, and a discharge communication path 28A are provided in an extension of the auxiliary bearing 8A.
  • the slider 24A moves to the left from the state shown in the figure by switching to the opposite polarity with respect to the electromagnetic coil 22B. Finally, the end of the slider 24A is the end face of the slider hole 25C which is the slider positioning means. And is positioned at the second operating position.
  • the slider positioning means can be shared by the auxiliary bearing 8A which is an existing part, and the influence on the cost is suppressed.
  • the space efficiency is improved, the pressure switching valve Kd is easily built in, and the degree of freedom in design can be improved.
  • the cylindrical member 31 is attached to the sealed container 1 by brazing, but the present invention is not limited to this and is described below. May be.
  • FIGS. 13A, 13B, 14A, and 14B are a schematic longitudinal sectional view of a part of a hermetic compressor including the pressure switching valve Ke and the pressure switching valve Ke according to the seventh embodiment, and a schematic view.
  • FIG. 13A, 13B, 14A, and 14B are a schematic longitudinal sectional view of a part of a hermetic compressor including the pressure switching valve Ke and the pressure switching valve Ke according to the seventh embodiment, and a schematic view.
  • FIGS. 13A and 13B show a state during half-capacity operation
  • FIGS. 14A and 14B show a state during full-capacity operation.
  • the idle cylinder operation is performed for the second cylinder chamber Sb at the time of half capacity operation.
  • the idle cylinder operation is performed for the first cylinder chamber Sa. It is configured.
  • a second blade chamber 10b is provided in the second cylinder 6B, and a second blade 11b and a spring member 14 which is a compression spring that always applies a back pressure to the second blade 11b are accommodated. Therefore, the tip of the second blade 11b is always in contact with the second eccentric roller 9b accommodated in the second cylinder chamber Sb.
  • a slider hole 25D is provided from the outer peripheral surface of the intermediate partition plate 2A to the hole through which the rotation shaft is inserted, and the slider 24A is inserted.
  • the airtight container 1 is provided with an attachment hole, and one end of the guide pipe 70 is attached. The other end of the guide pipe 70 protrudes from the sealed container 1 to the outside with a necessary minimum length.
  • a cylindrical member 31 made of a non-magnetic material is inserted into the guide pipe 70, and the cylindrical member 31 is bonded and fixed to the guide pipe 70 by high frequency induction heating.
  • the high frequency induction heating can perform uniform heating in a short time. Accordingly, it is possible to secure the concentricity between the slider hole 25 ⁇ / b> D and the cylindrical member 31 by performing mounting and fixing that reliably prevents thermal deformation of the cylindrical member 31.
  • One end of the cylindrical member 31 is inserted into the sealed container 1 and press-fitted into a step provided on the peripheral surface of the slider hole 25D of the intermediate partition plate 2A.
  • the other end of the cylindrical member 31 protrudes outside from the sealed container 1, and an electromagnetic coil 22B is attached to this end, and the end of the cylindrical member 31 is closed by the electromagnetic coil 22B.
  • the slider 24A, the magnetic member 23A provided integrally with the slider 24A or connected as a separate part, and the compression spring 35 are accommodated from the slider hole 25D to the inside of the cylindrical member 31.
  • a stopper pin 72 is provided at a predetermined portion of the slider hole 25D across the slider hole 25D.
  • a suction pipe P extending from the accumulator 20 passes through the sealed container 1 and is connected to a suction guide path 40 provided in the intermediate partition plate 2A.
  • the suction guide path 40 is branched into two guide paths 40a and 40b.
  • One branch guide path 40a communicates with the first cylinder chamber Sa, and the other branch guide path 40b communicates with the second cylinder chamber Sb. This is as described above.
  • a lateral hole 73 is provided from the side surface portion of the intermediate partition plate 2A, penetrates from the peripheral surface portion of the slider hole 25D to the opposing peripheral surface portion via the shaft core, and further the suction It is provided so as to communicate with the guide path 40.
  • the intermediate partition plate 2 ⁇ / b> A portion of the lateral hole 73 is closed with a plug 74. Accordingly, the lateral hole 73 forms a suction communication path 26B that allows the slider hole 25D and the suction guide path 40 to communicate with each other.
  • the suction communication path 26B is composed of a lateral hole 73a provided from the side surface on the opposite side of the intermediate partition plate 2A to the slider hole 25D via the suction guide path 40, as shown by a two-dot chain line in the figure. Also good.
  • the intermediate partition plate 2A is provided with a blade chamber communication passage 27B that communicates the slider hole 25D with the first blade chamber 10a. Further, the intermediate partition plate 2A and the first cylinder 6A include a slider chamber. A discharge communication path 28 ⁇ / b> B that communicates the hole 25 ⁇ / b> D and the inside of the sealed container 1 is provided.
  • the slider 24A is in the second operating position, and the suction communication path 26B and the blade chamber are provided via the notch 30A of the slider 24A and the slider hole 25D.
  • the communication path 27B communicates.
  • the suction pressure (low pressure) is guided to the first blade chamber 10a, and the cylinder resting operation (capacity half operation) is performed in the first cylinder chamber Sa.
  • the blade chamber communication passage 27B and the discharge communication passage 28B communicate with each other through the notch 30A of the slider 24A and the slider hole 25D, and the discharge pressure (high pressure) in the hermetic container 1 is changed to the first blade chamber 10a.
  • the normal operation full capacity operation
  • the compression action is performed in the first cylinder chamber Sa together with the second cylinder chamber Sb.
  • the guide pipe 70 is provided in the hermetic container 1, and the cylindrical member 31 constituting the pressure switching valve Ke is bonded and fixed to the guide pipe 70 by high-frequency induction heating.
  • uniform heating can be performed.
  • the thermal deformation of the cylindrical member 31 can be reliably prevented, and the concentricity between the slider hole 25D and the cylindrical member 31 can be ensured.
  • the malfunction of the slider 24A accommodated in the cylindrical member 31 can be prevented and the reliability can be improved. Moreover, since the guide pipe 70 is provided in the sealed container 1, the cylindrical member 31 can be easily attached to the sealed container without increasing the heating amount.
  • FIG. 15 shows a modification of the seventh embodiment. Only the configuration different from the seventh embodiment will be described, and FIGS. 13 and 14 will be applied to the same components and the same configurations, and the description will be omitted by assigning the same numbers.
  • a material having a Young's modulus smaller than that of the sealed container 1 material or form having low rigidity
  • An auxiliary pipe 73 is fixed to the cylindrical member 31, and the auxiliary pipe 73 is made of a material having a Young's modulus smaller than that of the cylindrical member 31 (a material or a form having low rigidity).
  • the cylindrical member 31 is attached to the sealed container 1 by joining and fixing the guide pipe 70 and the auxiliary pipe 73 by brazing.
  • the guide pipe 70 and the auxiliary pipe 73 are heated during the brazing process, but these are made of a material having low rigidity, and can prevent the cylindrical member 31 attached to the sealed container 1 from being deformed. Therefore, the malfunction of the slider 24A accommodated in the cylindrical member 31 can be prevented, and the reliability can be improved.
  • the guide pipe 70 and the auxiliary pipe 73 are both selected from copper pipes, and it goes without saying that the above-described effects can be obtained even if the guide pipe 70 and the auxiliary pipe 73 are joined and fixed by copper brazing. Yes.
  • the target of the cylinder resting operation is the first cylinder chamber Sa
  • the second cylinder chamber Sb is permanently attached to the blade chambers 10a and 10b acting on the cylinder chamber Sa.
  • the magnet Z is attached, and the rear end portions of the blades 11a and 11b accommodated in the blade chambers 10a and 10b are magnetically attracted during the cylinder resting operation.
  • the blade during the idle cylinder operation that stops the compression action does not act on the blade due to the differential pressure between the discharge pressure and the suction pressure, and is pushed to the outer diameter side by the eccentric roller.
  • the blade is magnetically adsorbed by a permanent magnet.
  • a lateral hole for attaching a permanent magnet is provided from the side surface of the cylinder to the blade chamber.
  • a configuration is disclosed in which one end surface of the permanent magnet inserted into the horizontal hole is flush with the cylinder side surface, and the other end surface protrudes into the blade chamber and is fixedly mounted.
  • the blade has a vertically long plate shape, whereas the permanent magnets are magnetically attracted to the blade, and in order to securely attach and fix to the cylinder, the cylindrical shape with the axial direction from the cylinder end face toward the blade chamber Is used.
  • the permanent magnet formed into a cylindrical shape is magnetized in the radial direction, but there is no magnetic member on the outer peripheral side. Therefore, the resistance of the magnetic circuit is large, the magnetic flux is small, and a sufficient magnetic force cannot be generated. In order to obtain a predetermined magnetic force, there is another problem that the permanent magnet must be enlarged.
  • the permanent magnet mounting structure in the blade chamber is improved in consideration of the above problems.
  • the second blade chamber 10b will be described as an object, but there is no problem even if the object is changed to the first blade chamber 10a.
  • the second blade chamber 10b is provided in the second cylinder 6B.
  • the blade chamber 10b is opened to the second cylinder chamber Sb formed in the inner diameter portion of the second cylinder 6B, and a groove portion 10b1 provided along the outer diameter direction of the second cylinder 6B. It consists of the vertical hole part 10b2 provided in the edge part of 10b1.
  • Both the groove portion 10b1 and the vertical hole portion 10b2 constituting the second blade chamber 10b are provided through the upper and lower surfaces in the thickness direction of the cylinder 6B from the upper surface to the lower surface of the second cylinder 6B. .
  • the second blade 11b is movably accommodated across the groove 10b1 and the vertical hole 10b2.
  • both side surfaces of the second blade 11b are fitted into the both side surfaces of the groove 10b1 with almost no gap and move in a sliding contact state.
  • a permanent magnet Z having a width dimension substantially the same as the width dimension of the blade 11b is attached along the plate thickness direction of the cylinder 6B to a peripheral surface portion facing the groove section 10b1 in the vertical hole section 10b2 in the second blade chamber 10b. It is done.
  • the permanent magnet Z may be attached to the vertical hole portion 10b2 using an adhesive, or using a holding member as described later.
  • the rear end of the second blade 11b is formed to have a length that adheres to the permanent magnet Z when the front end is in a position where it is slightly recessed from the peripheral surface of the second cylinder chamber Sb.
  • the length in the longitudinal direction, which is the front-rear direction of the paper surface, is the same as the thickness of the second cylinder.
  • FIGS. 17A and 17B and FIGS. 18A, 18B, and 18C are modified examples of the eighth embodiment.
  • FIG. 17A is a plan view of the first holding member 80A that holds the second blade 11b in the second blade chamber 10b
  • FIG. 17B shows the second blade that holds the second blade 11b in the second blade chamber 10b. It is a top view of holding member 80B.
  • FIG. 18A is a perspective view of the first holding member
  • FIG. 18B is a front view of the first holding member
  • FIG. 18C is a side view of the first holding member.
  • the first holding member 80A is formed in a substantially H-shape from a pair of horizontal pieces that are spaced apart in the vertical direction and a vertical piece that connects the central portions of the pair of horizontal pieces, and a lower horizontal piece.
  • a base portion Xg provided with a piece projecting downward from the center of the piece, a bent portion Xm integrally bent from both ends of the horizontal piece of the base portion Xg, and a holding projection Xh described later provided on the base portion Xg It consists of.
  • the holding protrusion Xh has a pair of protrusions that are cut in a direction opposite to the bending direction of the bending portion Xm, with a predetermined interval in the vertical direction at the center of the vertical piece of the base portion Xg, and the protrusion It is composed of bent pieces that are bent in opposite directions to the bending direction of the bent portion Xm along the both side edges of the base portion Xg at portions facing each other.
  • the protrusion (folding) height of the holding projection Xh is made larger than the thickness of the permanent magnet Z.
  • the permanent magnet Z is inserted and held between the pair of protrusions constituting the holding protrusion Xh and the bent piece. In order to ensure reliability, it is preferable to apply an adhesive between the holding projection Xh and the permanent magnet Z.
  • the end edge protrudes from the surface of the permanent magnet Z by setting the protrusion height of the holding protrusion h.
  • the first holding member 80A holding the permanent magnet Z is inserted and attached to the second blade chamber 10b. Also at this time, it is preferable to apply an adhesive to the bent portion Xm mounting surface of the first holding member 80A in advance.
  • the radius of curvature of the bent portion Xm is formed larger than the radius of curvature of the vertical hole portion 10b2, and the bent portion Xm is inserted into the vertical hole portion 10b2 in a contracted state, and the elastic repulsive force of the bent portion Xm. It is also possible to use an attachment. In any case, the permanent magnet Z is attached to the second blade chamber 10b by the first holding member 80A.
  • the first holding 80A is obtained by press forming a sheet metal and can be manufactured at a low cost while being highly accurate.
  • the permanent magnet can be easily attached to the blade chamber 10b by inserting the permanent magnet into the blade chamber 10b after being attached to the holding member 80A.
  • the protrusion (bending) height of the holding protrusion Xh constituting the first holding member 80A is made larger than the thickness of the permanent magnet Z, the impact when the permanent magnet Z magnetically attracts the blade 11b. 80A receives the holding member. Therefore, damage to the permanent magnet Z can be prevented, and reliability can be improved.
  • the second holding member 80B shown in FIG. 17B will be described.
  • the second holding member 80B is curved so as to be along a part of the peripheral surface of the second blade chamber 10b, and a holding projection Xn is integrally provided on the one surface.
  • the axial length of the second blade chamber 10b matches the length of the second holding member 80B.
  • the permanent magnet Z is attached to the second holding member 80B in advance and then inserted into the blade chamber 10b.
  • An adhesive may be applied to the holding member 80B, or the radius of curvature of the holding member 80B may be larger than the radius of curvature of the blade chamber 10b and inserted in a contracted state, and the repulsive force may be applied to the blade chamber 10b.
  • the protrusion height of the holding protrusion Xm is slightly higher than the plate thickness of the permanent magnet Z, and the blade 11b does not contact the permanent magnet Z when the blade 11b is magnetically attracted. Therefore, the permanent magnet Z can be prevented from being damaged, and the reliability can be improved. Since the permanent magnet Z directly faces the blade 11b, the magnetic force of the permanent magnet Z acts on the blade 11b with certainty, thereby improving the reliability.
  • the half capacity operation that is half of the full capacity is performed in which the cylinder resting operation is performed in one cylinder chamber in contrast to the full capacity operation in which the compression operation is performed in both cylinder chambers in the normal operation.
  • the present invention is not limited to this. That is, it is possible to switch between full capacity operation and operation with an arbitrary compression capacity by appropriately changing the displacement volume of the cylinder chamber on the side where cylinder resting is performed.
  • FIG. 19 is a longitudinal sectional view of a two-cylinder rotary compressor Q and a diagram showing a refrigeration cycle configuration of a refrigeration cycle apparatus.
  • FIG. 20 is an enlarged longitudinal section of the main part of the two-cylinder rotary compressor Q.
  • FIG. 21 is an exploded perspective view of a part of the two-cylinder rotary compressor Q.
  • a hermetic container is a hermetic container, and a compression mechanism 103 is provided in the lower part of the hermetic container 101, and an electric motor part 104 is provided in the upper part.
  • the compression mechanism unit 103 and the electric motor unit 104 are connected by a rotating shaft 105.
  • the compression mechanism section 103 includes a first cylinder 106A on the upper surface portion of the intermediate partition plate 102 and a second cylinder 106B on the lower surface portion via the intermediate partition plate 102. Further, the main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 106A, and the auxiliary bearing 108 is attached and fixed to the lower surface portion of the second cylinder 106B.
  • the main bearing 107 supports the main shaft portion 105 a of the rotating shaft 105
  • the auxiliary bearing 108 supports the auxiliary shaft portion 105 b of the rotating shaft 105.
  • the rotating shaft 105 penetrates through the first and second cylinders 106A and 106B, and integrally forms the first eccentric portion Ya and the second eccentric portion Yb formed with a phase difference of about 180 °. I have.
  • the first and second eccentric portions Ya and b have the same shaft diameter and are assembled so as to be positioned at the inner diameter portions of the first and second cylinders 106A and 106B.
  • a first eccentric roller 109a is fitted to the circumferential surface of the first eccentric portion Ya, and a second eccentric roller 109b is fitted to the circumferential surface of the second eccentric portion Yb.
  • the inner diameter portion of the first cylinder 106A is surrounded by the main bearing 107 and the intermediate partition plate 102 to form a first cylinder chamber Ta.
  • An inner diameter portion of the second cylinder 106B is surrounded by the auxiliary bearing 108 and the intermediate partition plate 102, and a second cylinder chamber Tb is formed.
  • the cylinder chambers Ta and Tb are formed to have the same shaft diameter and height dimension, and the eccentric rollers 109a and 109b are partly accommodated so that they can be eccentrically rotated while being in line contact with the peripheral walls of the cylinder chambers Ta and Tb. Is done.
  • the first cylinder 106A is provided with a first vane chamber 110a communicating with the first cylinder chamber Ta, and the first vane 111a is movably accommodated therein.
  • the second cylinder 106B is provided with a second vane chamber 110b communicating with the second cylinder chamber Tb, and the second vane 111b is movably accommodated therein.
  • the tip ends of the first and second vanes 111a and 111b are formed in a semicircular shape in a plan view, and project into the opposing cylinder chambers Ta and Tb and have a circular shape in the plan view. Line contact can be made with the peripheral walls of the rollers 109a and 109b regardless of the rotation angle.
  • Only the first cylinder 106A is provided with a lateral hole f that communicates the first vane chamber 110a with the outer peripheral surface of the cylinder 106A, and accommodates a spring member 112 that is a compression spring.
  • the spring member 112 is interposed between the rear end side end face of the first vane 111a and the inner peripheral wall of the sealed container 101, and applies an elastic force (back pressure) to the vane 111a.
  • the second vane chamber 110b does not contain any members other than the second vane 111b. However, depending on the setting environment of the second vane chamber 110b and the operation of the switching mechanism M as described later. The tip edge of the second vane 111b can come into contact with the peripheral surface of the second eccentric roller 109b.
  • a part of the outer shape of the second cylinder 106B is exposed in the sealed container 101 from the relationship between the outer dimension of the second cylinder 106B and the outer diameter of the intermediate partition plate 102 and the auxiliary bearing 108.
  • the exposed portion of the hermetic container 101 is designed to correspond to the vane chamber 110b. Therefore, the rear end portions of the vane chamber 110b and the vane 111b directly receive the pressure in the case.
  • the second cylinder 106B and the second vane chamber 110b are structures, there is no influence even if they are subjected to the pressure in the case, but the second vane 111b is slidable in the second vane chamber 110b. And the rear end thereof is located in the second vane chamber 110b, so that the pressure in the sealed container 101 is directly received.
  • the tip of the second vane 111b faces the second cylinder chamber Tb, and the tip of the vane 111b receives the pressure in the cylinder chamber Tb.
  • the second vane 111b is configured to move in a direction from a higher pressure to a lower pressure according to the mutual pressure received by the front end and the rear end.
  • the refrigerant pipe G is connected to the upper end of the sealed container 101.
  • the refrigerant pipe G is connected to an accumulator 118 through a condenser 115, an expansion device 116, and an evaporator 117, and is further connected from the accumulator 118 to the two-cylinder rotary compressor Q to constitute a refrigeration cycle.
  • two suction refrigerant tubes Ga and Gb are connected to the two-cylinder rotary compressor Q from the bottom of the accumulator 118.
  • One suction refrigerant pipe Ga penetrates the sealed container 101 and the side of the first cylinder 106A, and communicates directly with the first cylinder chamber Ta.
  • the other suction refrigerant pipe Gb passes through the side of the second cylinder 106B via the hermetic container 101, and communicates directly with the second cylinder chamber Tb.
  • a branch refrigerant pipe Gc is branched from a middle portion of the refrigerant pipe G communicating with the two-cylinder rotary compressor Q and the condenser 115.
  • the branch refrigerant pipe Gc is provided with a first on-off valve 120 in the middle, and is connected to the middle part of the suction refrigerant pipe Gb that communicates the accumulator 118 and the second cylinder chamber Tb.
  • a second on-off valve 121 is provided upstream of the connection portion of the branch refrigerant pipe Gc in the suction refrigerant pipe Gb.
  • Each of the first on-off valve 120 and the second on-off valve 121 is an electromagnetic on-off valve.
  • the switching mechanism M is configured by the suction refrigerant pipe Gb, the branch refrigerant pipe Gc, the first on-off valve 120, and the second on-off valve 121 connected to the second cylinder chamber Tb.
  • the suction pressure or the discharge pressure is guided to the cylinder chamber Tb of the second cylinder 106B.
  • the first cylinder chamber Ta is divided into a suction chamber and a compression chamber.
  • the position of the inner circumferential surface of the first cylinder chamber Ta where the circumferential surface of the first eccentric roller 109a is in rolling contact with the tip of the first vane 111a is the first cylinder chamber with the first vane 111a retracted most.
  • the space capacity of Ta is maximized.
  • the refrigerant gas is sucked from the accumulator 118 through the refrigerant pipe Ga into the first cylinder chamber Ta to be filled.
  • the rolling contact position with the inner peripheral surface of the first cylinder chamber Ta on the peripheral surface of the first eccentric roller 109a moves, and the first cylinder chamber Ta is partitioned.
  • the volume of the compression chamber is reduced. That is, the gas previously introduced into the first cylinder chamber Ta is gradually compressed.
  • the rotating shaft 105 is continuously rotated, the capacity of the compression chamber partitioned into the first cylinder chamber Ta is further reduced, the gas is compressed, and the discharge valve is opened when the pressure rises to a predetermined pressure.
  • the high-pressure gas is discharged into the sealed container 101 through the valve cover and is filled. And it discharges from the refrigerant
  • the discharge pressure (high pressure) is not guided to the second cylinder chamber Tb. Since the second on-off valve 121 is opened, the low-pressure evaporative refrigerant evaporated by the evaporator 117 and gas-liquid separated by the accumulator 118 is guided to the second cylinder chamber Tb.
  • the second cylinder chamber Tb is in a suction pressure (low pressure) atmosphere, while the second vane chamber 110b is exposed in the sealed container 101 and is under a discharge pressure (high pressure).
  • tip part becomes a low pressure condition
  • a rear-end part becomes a high pressure condition
  • voltage exists in a front-and-back end part.
  • the high pressure gas discharged from the sealed container 101 through the refrigerant pipe G is condensed and liquefied by exchanging heat with the outside air or water in the condenser 115, adiabatically expanded in the expansion device 116, and evaporated from the heat exchange air in the evaporator 117. Takes out latent heat and freezes.
  • the evaporated refrigerant is guided to the accumulator 118 and separated into gas and liquid, and again from the suction refrigerant pipes Ga and Gb to the first cylinder chamber Ta and the second cylinder chamber Tb2 in the two-cylinder rotary compressor Q. Inhaled, the above-mentioned action is performed, and the above-mentioned route is circulated.
  • a part of the high-pressure gas discharged from the refrigerant pipe G is divided into the branch refrigerant pipe Gc and introduced into the second cylinder chamber Tb through the opened first on-off valve 120 and the suction refrigerant pipe Gb. While the second cylinder chamber Tb becomes a discharge pressure (high pressure) atmosphere, the second vane chamber 110b remains in the same situation as the high pressure in the case.
  • the second vane 111b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends.
  • the second vane 111b is kicked along with the rotation of the eccentric roller 109b, and maintains a stopped state at a position separated from the peripheral surface.
  • the second eccentric roller 109b remains idling, and no compression action is performed in the second cylinder chamber Tb (non-compression operation state). Eventually, only the compression action in the first cylinder chamber Ta is effective, and an operation with half the capacity is performed.
  • the switching mechanism M that switches between the compression operation and the non-compression operation in the second cylinder chamber Tb is not limited to that shown in the above embodiment.
  • the pressure in the second vane chamber 110b is switched between high pressure and low pressure
  • the compression operation is performed in the second cylinder chamber Tb when the pressure in the second vane chamber 110b is high
  • the non-compression operation is performed when the pressure is low. May be performed.
  • the auxiliary bearing 108 is pivotally supported.
  • the subshaft portion 105b shaft diameter ⁇ Db of the rotating shaft 105 is set so that the following equation (1) is established.
  • ⁇ Da the diameter of the main shaft portion 105 a of the rotary shaft 105 supported by the main bearing 107.
  • L2 An axial distance from the axial center position of the first cylinder 106A to the axial center position of the second cylinder 106B.
  • L3 The axial load position of the rotary shaft countershaft portion 105b from the axial center position of the second cylinder 106B (the distance half the shaft diameter 105D of the subshaft portion 105b from the end of the subshaft portion 105b on the second cylinder chamber Ta side) Axial distance to Db / 2).
  • L4 sliding length between the eccentric portion Yb of the rotating shaft 105 and the eccentric roller 109b.
  • the efficiency of the motor that is the motor unit 104 decreases when the rotational speed of the rotary shaft 105 decreases. Therefore, in the low capacity region, the second cylinder chamber Tb is in an uncompressed operation state (hereinafter referred to as “cylinder operation”), and the motor efficiency is controlled to be increased by doubling the rotational speed. .
  • the shaft sliding loss is increased by increasing the number of revolutions, and in the design specification having a large shaft sliding loss ratio, the motor efficiency cannot be improved by the cylinder resting operation.
  • the portions with the largest shaft sliding loss are the eccentric portions Ya and Yb formed on the rotating shaft 105. Therefore, it is necessary to reduce the sliding loss at these eccentric portions Ya and Yb. There is.
  • FIG. 22 is a characteristic diagram of L4 / ⁇ Dcr and eccentric part sliding loss when (L4 / ⁇ Dcr) is taken on the horizontal axis and eccentric part sliding loss [W] is taken on the vertical axis. Comparisons are shown under the same capacity for both hour and idle cylinder operation.
  • the value of the eccentric portion sliding loss [W] is set such that the sliding length L4 of the first and second eccentric portions Ya and Yb with respect to the first and second eccentric rollers 109a and 109b is constant, The second eccentric portion shaft diameter ⁇ Dcr is changed and led. Further, it is assumed that the number of revolutions during the cylinder resting operation is twice that during the two cylinder operation, and the sliding loss of the second eccentric portion Yb that is the cylinder resting side eccentric portion is “0”.
  • FIG. 23 is a characteristic diagram of L4 / ⁇ Dcr and total efficiency at the same capacity under the cooling intermediate condition as an air conditioner. Also here, L4 / ⁇ Dcr is taken on the horizontal axis, the eccentric portion sliding length L4 is constant, and the eccentric portion shaft diameter ⁇ Dcr is changed. The vertical axis is the overall efficiency.
  • kPaA is an absolute pressure
  • the first eccentric portion Ya has the first eccentric portion Ya between the shaft diameter ⁇ Dcr of the first and second eccentric portions Ya and Yb and the shaft diameter ⁇ Db of the auxiliary shaft portion 105b.
  • the eccentric roller 109a from the auxiliary shaft portion 105b side ⁇ Dcr ⁇ ⁇ Db + 2 ⁇ E (3) It is necessary to satisfy the formula (3).
  • the ratio of the surface pressure Na to the main shaft portion 105a and the surface pressure Nb to the sub shaft portion 105b is such that the sliding length ratio under load is equal to the shaft diameter ratio.
  • Na: Nb (L2 + L3) / ⁇ Da2: L1 / ⁇ Db2 (6) It becomes.
  • Equation (1) is derived.
  • the refrigeration cycle apparatus which comprises such a two-cylinder rotary compressor Q and constitutes a refrigeration cycle can further improve the refrigeration efficiency.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
  • the structure is simplified and the number of parts is reduced to reduce the number of man-hours. It is possible to provide a hermetic compressor that can shorten the time required for operation switching, and a refrigeration cycle apparatus that includes this hermetic compressor and can improve refrigeration cycle efficiency.
  • the 2-cylinder type is a two-cylinder engine that ensures the improvement of motor efficiency during half-capacity operation while ensuring reliability, assuming that the capacity can be varied between full-capacity operation and half-capacity operation. It is possible to provide a rotary compressor and a refrigeration cycle apparatus that includes this two-cylinder rotary compressor and can improve the efficiency of the refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

In an enclosed container (1), there is mounted a portion of a pressure switching valve (K) for switching the pressure of a second blade chamber (10b) formed in a second cylinder (6B), into a discharge pressure and a suction pressure.  The pressure switching valve (K) is equipped with a valve body (21) having a slider hole (25) along the axial direction, and a slider (24) arranged in the slider hole (25).  The slider (24) can be switched between a first operation position, at which the spaces in the second blade chamber (10b) and the enclosed container (1) communicate with each other, and a second operation position, at which the second blade chamber (10b) and a suction communication passage (26) to be connected with a second cylinder chamber (Sb) communicate with each other, so that the capacities of the full-capacity run and the half-capacity run can be varied.  Thus, the constitution is simplified, and the number of parts is decreased to reduce the step number.  The influences on the cost can be suppressed to shorten the time period the run-switching.

Description

密閉型圧縮機、2気筒回転式圧縮機及び冷凍サイクル装置Hermetic compressor, two-cylinder rotary compressor, and refrigeration cycle apparatus
 本発明は、圧縮能力の切換えが可能な密閉型圧縮機、全能力運転と能力半減運転との切換えが可能な2気筒回転式圧縮機、及び、これらの圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。 The present invention relates to a hermetic compressor capable of switching compression capacity, a two-cylinder rotary compressor capable of switching between full capacity operation and half capacity operation, and a refrigeration cycle comprising these compressors. The present invention relates to a refrigeration cycle apparatus.
(密閉型圧縮機)
 第1の圧縮機構部を構成する第1のシリンダと、第2の圧縮機構部を構成する第2のシリンダのそれぞれにシリンダ室を備えた密閉型圧縮機が多用される。この種の圧縮機において、2つのシリンダ室同時に圧縮作用を行う、もしくはいずれか一方のシリンダ室での圧縮作用を中断して圧縮仕事を低減する、いわゆる能力可変ができれば有利である。
(Closed compressor)
A hermetic compressor having a cylinder chamber in each of the first cylinder constituting the first compression mechanism and the second cylinder constituting the second compression mechanism is often used. In this type of compressor, it is advantageous if a so-called variable capacity can be achieved in which the compression action is performed simultaneously in two cylinder chambers or the compression action in one of the cylinder chambers is interrupted to reduce the compression work.
 たとえば、アキュームレータと第2のシリンダ室とを連通する吸込み管から分岐する分岐管を設け、この分岐管と第2のシリンダに設けられるブレード室に連通するとともに、密閉容器の内底部に連通する配管構成を備え、分岐管に第1の開閉弁を備え、密閉容器内底部に連通する配管に第2の開閉弁を備えた発明が開示されている(特開2006-300460号公報)。 For example, a pipe that branches from a suction pipe that communicates the accumulator and the second cylinder chamber is provided, and a pipe that communicates with the branch chamber and a blade chamber provided in the second cylinder and communicates with the inner bottom of the sealed container. An invention has been disclosed in which a first open / close valve is provided in a branch pipe, and a second open / close valve is provided in a pipe communicating with the inner bottom of a sealed container (Japanese Patent Laid-Open No. 2006-300140).
 第1の開閉弁を閉成し、第2の開閉弁を開放すると、密閉容器内の吐出圧(の潤滑油)がブレード室に導かれ、ブレードに高圧の背圧を付与してシリンダ室で圧縮作用を行わせる。他方のシリンダ室では通常の圧縮作用が行われていて、2室同時の圧縮作用となり、全能力運転となる。 When the first on-off valve is closed and the second on-off valve is opened, the discharge pressure (lubricating oil) in the sealed container is guided to the blade chamber, and a high back pressure is applied to the blade in the cylinder chamber. Make compression work. In the other cylinder chamber, a normal compressing action is performed, and the compressing action is simultaneously performed in the two chambers, resulting in full capacity operation.
 第1の開閉弁を開放し、第2の開閉弁を閉成すると、アキュームレータから導出される吸込み圧(低圧ガス冷媒)が上記ブレード室に導かれる。ブレードに低圧の背圧が付与され、シリンダ室と同圧の低圧雰囲気となる。このシリンダ室では圧縮作用が行われず、他方のシリンダ室のみの圧縮作用となり、能力半減運転となる。 When the first on-off valve is opened and the second on-off valve is closed, the suction pressure (low pressure gas refrigerant) derived from the accumulator is guided to the blade chamber. A low pressure back pressure is applied to the blade, and a low pressure atmosphere having the same pressure as the cylinder chamber is created. In this cylinder chamber, no compression action is performed, and only the other cylinder chamber is compressed, resulting in a half capacity operation.
 また、シリンダと密閉容器でブレード室を仕切るとともに、電磁コイルによってスライダを往復駆動させ、吸込み管とブレード室とを連通する吸込み通路を開閉する発明が開示されている(特開平5-256286号公報)。 Further, an invention is disclosed in which a blade chamber is partitioned by a cylinder and a sealed container, and a slider is reciprocated by an electromagnetic coil to open and close a suction passage that communicates the suction pipe and the blade chamber (Japanese Patent Laid-Open No. 5-256286). ).
 スライダを移動させて吸込み通路を開放し、ブレード室と吸込み管が連通すると、ブレード室が低圧となる。ブレードはばね部材で引っ張られ、一方のシリンダ室では圧縮作用が行われないが、他方のシリンダ室では圧縮運転をなす。 ¡When the slider is moved to open the suction passage and the blade chamber communicates with the suction pipe, the blade chamber becomes low pressure. The blade is pulled by a spring member, and compression action is not performed in one cylinder chamber, but compression operation is performed in the other cylinder chamber.
 スライダを逆方向へ移動し吸込み通路を閉成すると、シリンダと密閉容器との間から吐出圧のガスがブレード室へ導かれる。ブレード室は高圧となり、ブレードが押圧付勢されてシリンダ室で圧縮作用が行われる。他方のシリンダ室では通常の圧縮作用をなし、2室同時の運転となる。 ¡When the slider is moved in the opposite direction and the suction passage is closed, the discharge pressure gas is introduced into the blade chamber from between the cylinder and the sealed container. The blade chamber has a high pressure, and the blade is pressed and urged to compress in the cylinder chamber. The other cylinder chamber performs a normal compression action, and the two chambers are operated simultaneously.
(2気筒回転式圧縮機)
 第1の圧縮機構部を構成する第1のシリンダと、第2の圧縮機構部を構成する第2のシリンダのそれぞれにシリンダ室を備えた2気筒回転式圧縮機が多用される。この種の圧縮機において、2つのシリンダ室同時に圧縮作用を行う、もしくはいずれか一方のシリンダ室での圧縮作用を中断して圧縮仕事を低減する、能力可変運転できれば有利である。
(2-cylinder rotary compressor)
A two-cylinder rotary compressor having a cylinder chamber in each of the first cylinder constituting the first compression mechanism and the second cylinder constituting the second compression mechanism is often used. In this type of compressor, it is advantageous if variable capacity operation can be performed in which the compression action is performed simultaneously in two cylinder chambers or the compression action in one of the cylinder chambers is interrupted to reduce the compression work.
 たとえば、シリンダ室を2室備え、それぞれのシリンダ室に偏心回転するローラと、このローラに弾性的に当接するブレード等からなる圧縮機構を備え、一方のシリンダ室のブレードをローラから離間保持するとともに、シリンダ室を高圧化して圧縮作用を中断させる高圧導入手段を備えた2シリンダ型ロータリ式圧縮機が開示されている(特開平1-247786号公報)。 For example, two cylinder chambers are provided, each of the cylinder chambers includes a roller that rotates eccentrically, and a compression mechanism that includes a blade that elastically contacts the roller, and the blade of one cylinder chamber is held away from the roller. A two-cylinder rotary compressor having a high-pressure introducing means for increasing the pressure in the cylinder chamber and interrupting the compression action has been disclosed (Japanese Patent Laid-Open No. 1-2247786).
 第1のシリンダと第2のシリンダのシリンダ室を二分するベーンをベーン室に収容し、第1のシリンダ側のベーンはばね部材によって押圧付勢し、第2のシリンダ側のベーンはベーン室に導かれるケース内圧力と、シリンダ室に導かれる吸込み圧もしくは吐出圧との差圧によって押圧付勢するロータリ式密閉形圧縮機が開示されている(特開2004-301114号公報)。 A vane that bisects the cylinder chamber of the first cylinder and the second cylinder is accommodated in the vane chamber, the vane on the first cylinder side is pressed and urged by a spring member, and the vane on the second cylinder side is moved to the vane chamber. A rotary-type hermetic compressor is disclosed that is pressed and urged by a differential pressure between a guided internal pressure of the case and a suction pressure or a discharge pressure guided to a cylinder chamber (Japanese Patent Laid-Open No. 2004-301114).
(密閉型圧縮機)
 しかしながら、特開2006-300460号公報に開示された密閉型圧縮機では、吸込み管から分岐する分岐管と、密閉容器内底部に連通する配管と、ブレード室に連通する配管及び、2個の開閉弁を揃えなければならず、しかも、ブレード室を閉空間に仕切る部材も必要であり、部品数が多くなって部品代が嵩む。
(Closed compressor)
However, in the hermetic compressor disclosed in Japanese Patent Application Laid-Open No. 2006-300440, a branch pipe branched from the suction pipe, a pipe communicating with the bottom of the sealed container, a pipe communicating with the blade chamber, and two open / close Valves must be arranged, and a member for partitioning the blade chamber into a closed space is also required, which increases the number of parts and increases the part cost.
 当然ながら、各部品の取付けと組立に多くの工数が必要であり、コストに悪影響がある。さらに、密閉容器の外部に配管部品と開閉弁が取付けられるので、圧縮機の据付けにあたって広い空間スペースが要求されるとともに、防音材の装着が行い難くなる。 Of course, a lot of man-hours are required for mounting and assembling each part, which adversely affects the cost. Furthermore, since piping parts and on-off valves are attached to the outside of the hermetic container, a large space is required for installing the compressor, and it is difficult to install a soundproof material.
 特開平5-256286号公報に開示された密閉型圧縮機では、吐出ガスがシリンダと密閉容器との隙間を介してブレード室に導くように構成しているので、ブレード室が高圧化するまでに時間がかかる。そのため、第2のシリンダ室の圧縮休止から圧縮作用への切換えに遅れが生じる。上記隙間を大にすると、圧縮休止時に吐出ガスが吸込み側へ漏れる量が多くなり、効率低下を招く。 In the hermetic compressor disclosed in Japanese Patent Application Laid-Open No. 5-256286, the discharge gas is configured to be guided to the blade chamber through the gap between the cylinder and the hermetic container. take time. Therefore, there is a delay in switching from the compression pause of the second cylinder chamber to the compression action. If the gap is increased, the amount of discharge gas leaking to the suction side during compression stop increases, resulting in a reduction in efficiency.
 シリンダ形状が特殊で、常時圧縮運転をなすシリンダとの標準化が行い難い。スライダとシリンダの位置合せを高精密にしないと、スライダで吸込み連通路を塞ぐことができない。シリンダと密閉容器でブレード室を仕切る構成は、加工上困難である。圧縮作用時にブレード室に潤滑油が供給されず、ブレードとシリンダとの摺動に支障をきたし易い。 ¡Cylinder shape is special and it is difficult to standardize with a cylinder that always performs compression operation. If the slider and cylinder are not precisely aligned, the suction communication path cannot be blocked by the slider. The configuration in which the blade chamber is partitioned by the cylinder and the sealed container is difficult in terms of processing. Lubricating oil is not supplied to the blade chamber during the compression operation, and the sliding between the blade and the cylinder tends to be hindered.
(2気筒回転式圧縮機)
 上述したような全能力運転と、能力半減運転との切換えが可能な2気筒回転式型圧縮機においては、回転数が低くなると電動機部のモータ効率が低下する。そのため、能力半減運転をなす低能力域では、回転軸の回転数を2倍にすることでモータ効率の向上を図る必要がある。
(2-cylinder rotary compressor)
In the two-cylinder rotary type compressor capable of switching between the full capacity operation and the half capacity operation as described above, the motor efficiency of the electric motor section decreases as the rotational speed decreases. Therefore, it is necessary to improve motor efficiency by doubling the number of rotations of the rotating shaft in the low capacity range where the capacity is reduced by half.
 上述の圧縮機において、最も軸摺動損失が大きい箇所は回転軸の偏心部であるので、この偏心部における摺動損失を低減しなければならない。しかしながら、特開平1-247786号公報及び特開2004-301114号公報に記載された圧縮機ではともに、回転数を上げるのに伴って、軸摺動損失割合が大きくなってしまい、能力半減運転時におけるモータ効率の向上を得難い。 In the above-mentioned compressor, since the portion with the largest shaft sliding loss is the eccentric portion of the rotating shaft, the sliding loss at this eccentric portion must be reduced. However, in the compressors described in JP-A-1-247786 and JP-A-2004-301114, as the rotational speed is increased, the shaft sliding loss ratio increases, and the capacity is reduced by half. It is difficult to improve motor efficiency.
 なお、回転軸は主軸受に軸支される主軸部と、副軸受に軸支される副軸部とを備えているが、回転軸の偏心部に偏心ローラを組み込むにあたって、軸方向長さが主軸部よりは短い副軸部側から偏心ローラを挿入すれば、作業が容易に行える。そこで、偏心ローラの挿入をより容易にするために、単純に副軸部の軸径を小さく設定することが考えられる。 The rotating shaft has a main shaft portion that is supported by the main bearing and a sub shaft portion that is supported by the sub bearing. However, when the eccentric roller is incorporated in the eccentric portion of the rotating shaft, the axial length is reduced. If the eccentric roller is inserted from the side of the sub shaft shorter than the main shaft, the operation can be easily performed. Therefore, in order to make the insertion of the eccentric roller easier, it is conceivable to simply set the shaft diameter of the auxiliary shaft portion to be small.
 しかしながら、その反面、単純に副軸部の軸径を小さく設定すると、実際の圧縮運転時に副軸部の軸面の面圧が上昇し易くなる。特に、低回転域(低能力域)において潤滑油の油膜が形成され難くなり、信頼性の低下を招いてしまう。 However, on the other hand, if the shaft diameter of the auxiliary shaft portion is simply set small, the surface pressure of the shaft surface of the auxiliary shaft portion is likely to increase during the actual compression operation. In particular, it becomes difficult to form an oil film of a lubricating oil in a low rotation range (low performance range), leading to a decrease in reliability.
 本発明は上記事情にもとづきなされたものであり、その目的とするところは、2シリンダタイプであって、圧縮能力可変をなすことを前提として、構成の簡素化と、部品数を低減して工数の削減化を図り、コストへの影響を抑制するとともに、運転切換えに必要な時間の短縮化を図れる密閉型圧縮機と、この密閉型圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供しようとするものである。 The present invention has been made on the basis of the above circumstances, and the object thereof is a two-cylinder type, and on the premise that the compression capacity can be changed, the structure is simplified and the number of parts is reduced. A hermetic compressor that can reduce costs and reduce the time required for operation switching, and a refrigeration system that can improve the refrigeration cycle efficiency with this hermetic compressor A cycle device is to be provided.
 また、2シリンダタイプで、全能力運転と能力半減運転との能力可変をなすことを前提として、信頼性を確保しつつ能力半減運転時のモータ効率の向上を確実に得られるようにした2気筒回転式圧縮機と、この2気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供しようとするものである。 The 2-cylinder type is a two-cylinder engine that ensures the improvement of motor efficiency during half-capacity operation while ensuring reliability, assuming that the capacity can be varied between full-capacity operation and half-capacity operation. It is an object of the present invention to provide a rotary compressor and a refrigeration cycle apparatus provided with the two-cylinder rotary compressor and capable of improving the refrigeration cycle efficiency.
 上記目的を満足するため本発明の密閉型圧縮機は、密閉容器内に電動機部と圧縮機構部とを収容し、上記圧縮機構部は中間仕切り板を介在して第1のシリンダ及び第2のシリンダを備え、それぞれの内径部にシリンダ室を形成し、それぞれのシリンダ室に連通するブレード室を備えた。 In order to satisfy the above object, the hermetic compressor of the present invention accommodates an electric motor part and a compression mechanism part in a hermetic container, and the compression mechanism part interposes an intermediate partition plate and the first cylinder and the second cylinder. A cylinder chamber was formed in each inner diameter portion, and a blade chamber communicating with each cylinder chamber was provided.
 上記目的を満足するため本発明の2気筒回転式圧縮機は、密閉容器内に電動機部と圧縮機構部とを収容し、上記圧縮機構部は、中間仕切り板を介在して内径部を有する第1のシリンダと第2のシリンダを設け、第1のシリンダの電動機部側に中間仕切り板と第1のシリンダの内径部を覆って第1のシリンダ室を形成する主軸受を取付け、第2のシリンダの反電動機部側に中間仕切り板と第2のシリンダの内径部を覆って第2のシリンダ室を形成する副軸受を取付け、電動機部に連結される回転軸は第1のシリンダ室と第2のシリンダ室に互いに回転角を180°ずらせた2つの偏心部と、主軸受に軸支される主軸部と、副軸受に軸支される副軸部とを有し、この回転軸の偏心部に偏心ローラを嵌合して第1のシリンダ室と第2のシリンダ室内で回転駆動し、第2のシリンダ室において圧縮運転と非圧縮運転との切換を可能とした切換え機構を備え、副軸受に軸支される回転軸の副軸部軸径φDbは(1)式が成立するように構成される。
Figure JPOXMLDOC01-appb-M000002
In order to satisfy the above object, a two-cylinder rotary compressor of the present invention houses an electric motor part and a compression mechanism part in a hermetic container, and the compression mechanism part has an inner diameter part with an intermediate partition plate interposed therebetween. The first cylinder and the second cylinder are provided, and the main bearing that forms the first cylinder chamber is formed on the motor part side of the first cylinder so as to cover the intermediate partition plate and the inner diameter part of the first cylinder, A secondary bearing that forms a second cylinder chamber covering the inner partition plate and the inner diameter portion of the second cylinder is mounted on the side opposite to the motor portion of the cylinder, and the rotary shaft connected to the motor portion is connected to the first cylinder chamber and the first cylinder chamber. The two cylinder chambers have two eccentric portions whose rotational angles are shifted from each other by 180 °, a main shaft portion pivotally supported by the main bearing, and a subshaft portion pivotally supported by the sub-bearing. The first cylinder chamber and the second cylinder chamber are fitted with an eccentric roller in the part. A rotation mechanism that is rotationally driven and enables switching between compression operation and non-compression operation in the second cylinder chamber, and the sub-shaft portion shaft diameter φDb of the rotary shaft that is pivotally supported by the sub-bearing is expressed by equation (1) It is configured to hold.
Figure JPOXMLDOC01-appb-M000002
 φDa:主軸受に軸支される回転軸の主軸部軸径。L1:第1のシリンダの軸方向中心位置から回転軸主軸部の軸負荷位置(主軸部における第1のシリンダ室側端部から主軸部軸径の半分の距離)までの軸方向距離。L2:第1のシリンダの軸方向中心位置から第2のシリンダの軸方向中心位置までの軸方向距離。L3:第2のシリンダの軸方向中心位置から回転軸副軸部の軸負荷位置(副軸部における第2のシリンダ室側端部から副軸部軸径の半分の距離)までの軸方向距離。L4:回転軸の偏心部と偏心ローラとの摺動長さ。E:回転軸の偏心部の偏心量。 ΦDa: Shaft diameter of the main shaft of the rotary shaft supported by the main bearing. L1: An axial distance from the axial center position of the first cylinder to the axial load position of the rotary shaft main shaft portion (distance half the main shaft portion shaft diameter from the first cylinder chamber side end portion of the main shaft portion). L2: An axial distance from the axial center position of the first cylinder to the axial center position of the second cylinder. L3: Axial distance from the axial center position of the second cylinder to the axial load position of the rotary shaft countershaft portion (distance from the second cylinder chamber side end of the subshaft portion to a half of the shaft diameter of the subshaft portion) . L4: sliding length between the eccentric portion of the rotating shaft and the eccentric roller. E: The amount of eccentricity of the eccentric part of the rotating shaft.
本発明における第1の実施の形態に係る圧力切換え弁を備えた密閉型圧縮機の一部省略した縦断面及び冷凍サイクル装置の冷凍サイクル構成を示す説明図である。It is explanatory drawing which shows the refrigeration cycle structure of the refrigeration cycle apparatus of the vertical cross section which a part of the hermetic compressor provided with the pressure switching valve according to the first embodiment of the present invention is omitted. 同密閉型圧縮機の横断平面図である。It is a cross-sectional plan view of the same hermetic compressor. 同圧力切換え弁を示す正面図である。It is a front view which shows the same pressure switching valve. 同圧力切換え弁を示す平面図である。It is a top view which shows the same pressure switching valve. 同圧力切換え弁の別の状態を示す平面図である。It is a top view which shows another state of the same pressure switching valve. 本発明における第2の実施の形態に係る圧力切換え弁を備えた密閉型圧縮機の一部省略した断面図である。It is sectional drawing which abbreviate | omitted one part of the hermetic compressor provided with the pressure switching valve which concerns on 2nd Embodiment in this invention. 同第2の実施の形態に係る密閉型圧縮機の全能力運転時の状態を要部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands a principal part and shows the state at the time of full capacity driving | operation of the hermetic compressor which concerns on the said 2nd Embodiment. 同密閉型圧縮機の能力半減運転時の状態を要部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands a principal part and shows the state at the time of half capacity operation of the hermetic compressor. 本発明における第3の実施の形態に係る密閉型圧縮機要部の横断平面図である。It is a cross-sectional top view of the principal part of the hermetic compressor which concerns on 3rd Embodiment in this invention. 本発明における第4の実施の形態に係る密閉型圧縮機要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the hermetic compressor which concerns on 4th Embodiment in this invention. 本発明における第5の実施の形態に係る圧力切換え弁の平面図である。It is a top view of the pressure switching valve concerning a 5th embodiment in the present invention. 同圧力切換え弁を図9AにおけるB-B線で切断して矢印方向に見た縦断面図である。FIG. 9B is a longitudinal sectional view of the same pressure switching valve taken along line BB in FIG. 9A and viewed in the direction of the arrow. 本発明における第6の実施の形態に係る密閉型圧縮機の全能力運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of full capacity driving | operation of the hermetic compressor which concerns on 6th Embodiment in this invention. 同密閉型圧縮機の能力半減運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of the half capacity | capacitance driving | running of the hermetic compressor. 同密閉型圧縮機の変形例における全能力運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of full capacity driving | operation in the modification of the same hermetic compressor. 同密閉型圧縮機のさらに異なる変形例における全能力運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of full capacity operation in the further different modification of the hermetic compressor. 本発明における第7の実施の形態に係る密閉型圧縮機の能力半減運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of the capability half operation of the hermetic compressor which concerns on 7th Embodiment in this invention. 同密閉型圧縮機の能力半減運転時の圧力切換え弁の状態を示す横断平面図である。It is a cross-sectional top view which shows the state of the pressure switching valve at the time of the half capacity | capacitance driving | operation of the hermetic compressor. 本発明における第7の実施の形態に係る密閉型圧縮機の全能力運転時の圧力切換え弁の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the pressure switching valve at the time of full capacity driving | operation of the hermetic compressor which concerns on 7th Embodiment in this invention. 同密閉型圧縮機の全能力運転時の圧力切換え弁の状態を示す横断平面図である。It is a cross-sectional top view which shows the state of the pressure switching valve at the time of full capacity driving | operation of the hermetic compressor. 同第7の実施の形態での変形例に係る、能力半減運転時の圧力切換え弁の状態を示す密閉型圧縮機要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the sealed compressor which shows the state of the pressure switching valve at the time of a half capacity operation according to the modification in the seventh embodiment. 本発明における第8の実施の形態に係る永久磁石の取付け構造を示すシリンダ一部の平面図である。It is a top view of a part of cylinder which shows the attachment structure of the permanent magnet which concerns on 8th Embodiment in this invention. 同永久磁石を保持する第1の保持部材による取付け構造におけるシリンダ一部を示す平面図である。It is a top view which shows a cylinder part in the attachment structure by the 1st holding member holding the same permanent magnet. 同永久磁石を保持する第1の保持部材による取付け構造における第2の保持部材を示す平面図である。It is a top view which shows the 2nd holding member in the attachment structure by the 1st holding member holding the same permanent magnet. 同第8の実施の形態での変形例に係る第1の保持部材を示す斜視図である。It is a perspective view which shows the 1st holding member which concerns on the modification in the 8th Embodiment. 同第1の保持部材を示す正面図である。It is a front view which shows the 1st holding member. 同第1の保持部材を示す側面図である。It is a side view which shows the 1st holding member. 本発明における第9の実施の形態に係る2気筒回転式圧縮機の概略縦断面及び冷凍サイクル装置の冷凍サイクル構成を示す説明図である。It is explanatory drawing which shows the schematic longitudinal cross-section of the 2-cylinder rotary compressor which concerns on 9th Embodiment in this invention, and the refrigerating-cycle structure of a refrigerating-cycle apparatus. 同2気筒回転式圧縮機の要部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the principal part of the same 2-cylinder rotary compressor. 同2気筒回転式圧縮機の要部を示す一部分解斜視図である。It is a partially exploded perspective view which shows the principal part of the 2 cylinder rotary compressor. 同2気筒回転式圧縮機における偏心部摺動長さ/偏心部軸径に対する偏心部摺動損失の特性図である。It is a characteristic figure of the eccentric part sliding loss with respect to the eccentric part sliding length / eccentric part axial diameter in the same 2-cylinder rotary compressor. 同2気筒回転式圧縮機における偏心部摺動長さ/偏心部軸径に対する総合効率の特性図である。It is a characteristic figure of the total efficiency with respect to the eccentric part sliding length / eccentric part axial diameter in the same 2-cylinder rotary compressor.
 図1は、密閉型圧縮機Rの一部を省略した断面構造と、この密閉型圧縮機Rを備えた冷凍サイクル装置の冷凍サイクル構成を示す図である。 FIG. 1 is a diagram illustrating a cross-sectional structure in which a part of the hermetic compressor R is omitted and a refrigeration cycle configuration of a refrigeration cycle apparatus including the hermetic compressor R.
 はじめに密閉型圧縮機Rから説明すると、1は密閉容器であって、この密閉容器1内の下部には中間仕切り板2を介して第1の圧縮機構部3Aと、第2の圧縮機構部3Bが設けられ、上部には電動機部4が設けられる。これら第1の圧縮機構部3A及び第2の圧縮機構部3Bは、回転軸5により電動機部4に連結される。 First, the hermetic compressor R will be described. Reference numeral 1 denotes a hermetic container, and a lower part in the hermetic container 1 is provided with a first compression mechanism part 3A and a second compression mechanism part 3B via an intermediate partition plate 2. Is provided, and an electric motor unit 4 is provided at the top. The first compression mechanism unit 3 </ b> A and the second compression mechanism unit 3 </ b> B are connected to the electric motor unit 4 by the rotation shaft 5.
 第1の圧縮機構部3Aは第1のシリンダ6Aを備え、第2の圧縮機構部3Bは第2のシリンダ6Bを備えている。第1のシリンダ6Aの上面部に主軸受け7が取付け固定され、第2のシリンダ6Bの下面部に副軸受け8が取付け固定される。上記回転軸5は、各シリンダ6A、6B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部Xaと第2の偏心部Xbを一体に備えている。 The first compression mechanism portion 3A includes a first cylinder 6A, and the second compression mechanism portion 3B includes a second cylinder 6B. The main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 6A, and the auxiliary bearing 8 is attached and fixed to the lower surface portion of the second cylinder 6B. The rotating shaft 5 integrally includes a first eccentric portion Xa and a second eccentric portion Xb that penetrate the cylinders 6A and 6B and have a phase difference of about 180 °.
 各偏心部Xa、Xbは互いに同一直径をなし、各シリンダ6A、6Bの内径部に位置するように組立てられる。第1の偏心部Xaの周面には、第1の偏心ローラ9aが嵌合され、第2の偏心部Xbの周面には、第2の偏心ローラ9bが嵌合される。 Each eccentric part Xa, Xb has the same diameter as each other, and is assembled so as to be positioned at the inner diameter part of each cylinder 6A, 6B. The first eccentric roller 9a is fitted to the peripheral surface of the first eccentric portion Xa, and the second eccentric roller 9b is fitted to the peripheral surface of the second eccentric portion Xb.
 上記第1のシリンダ6Aの内径部に第1のシリンダ室Saが形成され、第2のシリンダ6Bの内径部に第2のシリンダ室Sbが形成される。各シリンダ室Sa、Sbは互いに同一直径及び高さ寸法に形成され、上記偏心ローラ9a、9bの周壁一部が各シリンダ室Sa、Sbの周壁一部に線接触しながら偏心回転自在に収容される。 The first cylinder chamber Sa is formed in the inner diameter portion of the first cylinder 6A, and the second cylinder chamber Sb is formed in the inner diameter portion of the second cylinder 6B. The cylinder chambers Sa and Sb are formed to have the same diameter and height, and a part of the peripheral wall of the eccentric rollers 9a and 9b is accommodated so as to be eccentrically rotatable while making line contact with a part of the peripheral wall of the cylinder chambers Sa and Sb. The
 第1のシリンダ6Aには、第1のシリンダ室Saと連通する第1のブレード室10aが設けられ、第1のブレード11aが移動自在に収容される。第2のシリンダ6Bには、第2のシリンダ室Sbと連通する第2のブレード室10bが設けられ、第2のブレード11bが移動自在に収容される。 The first cylinder 6A is provided with a first blade chamber 10a communicating with the first cylinder chamber Sa, and the first blade 11a is movably accommodated therein. The second cylinder 6B is provided with a second blade chamber 10b communicating with the second cylinder chamber Sb, and the second blade 11b is movably accommodated therein.
 第1、第2のブレード11a、11bの先端部は平面視で半円状に形成されており、対向するシリンダ室Sa、Sbに突出して平面視で円形状の上記第1、第2の偏心ローラ9a、9b周壁に、この回転角度にかかわらず線接触できる。 The tip portions of the first and second blades 11a and 11b are formed in a semicircular shape in a plan view, and project into the opposing cylinder chambers Sa and Sb so as to have a circular shape in a plan view. Line contact can be made with the peripheral walls of the rollers 9a and 9b regardless of the rotation angle.
 上記第1のシリンダ6Aのみ、第1のブレード室10aと、このシリンダ6Aの外周面とを連通する横孔が設けられ、圧縮ばねであるばね部材14が収容される。ばね部材14は第1のブレード11aの後端部端面と密閉容器1内周壁との間に介在され、このブレード11aに弾性力(背圧)を付与する。 Only the first cylinder 6A is provided with a lateral hole that communicates the first blade chamber 10a with the outer peripheral surface of the cylinder 6A, and accommodates a spring member 14 that is a compression spring. The spring member 14 is interposed between the rear end face of the first blade 11a and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the blade 11a.
 上記第2のシリンダ6Bに設けられる第2のブレード室10bには、第2のブレード11bと、後述する圧力切換え弁Kが設けられている。上記圧力切換え弁Kの切換え動作に応じてブレード11bに吐出圧(高圧)もしくは吸込み圧(低圧)の背圧を付与し、この先端縁を偏心ローラ9bに接触もしくは離間させることができる。 The second blade chamber 10b provided in the second cylinder 6B is provided with a second blade 11b and a pressure switching valve K described later. A discharge pressure (high pressure) or suction pressure (low pressure) back pressure can be applied to the blade 11b in accordance with the switching operation of the pressure switching valve K, and the leading edge can be brought into contact with or separated from the eccentric roller 9b.
 上記密閉容器1の内底部には、潤滑油を集溜する油溜り部15が形成される。図1において、上記主軸受け7のフランジ部を横切る破線は潤滑油の液面を示していて、第1の圧縮機構部3Aのほとんど全部と、第2の圧縮機構部3Bの全部が、上記油溜り部15の潤滑油中に浸漬される。 An oil reservoir 15 for collecting lubricating oil is formed at the inner bottom of the sealed container 1. In FIG. 1, the broken line crossing the flange portion of the main bearing 7 indicates the level of the lubricating oil, and almost all of the first compression mechanism portion 3A and all of the second compression mechanism portion 3B It is immersed in the lubricating oil of the reservoir 15.
 このようにして構成される密閉型圧縮機Rであり、上記密閉容器1の上端部には、吐出管Pが接続される。吐出管Pは、凝縮器17と、膨張装置18及び蒸発器19を介してアキュームレータ20の上端部に接続される。上記アキュームレータ20と密閉型圧縮機Rとは、第1の吸込み管Paと第2の吸込み管Pbを介して接続される。 A hermetic compressor R configured as described above, and a discharge pipe P is connected to the upper end of the hermetic container 1. The discharge pipe P is connected to the upper end of the accumulator 20 via the condenser 17, the expansion device 18 and the evaporator 19. The accumulator 20 and the hermetic compressor R are connected via a first suction pipe Pa and a second suction pipe Pb.
 上記第1の吸込み管Paは、密閉型圧縮機Rを構成する密閉容器1と第1のシリンダ6A側部を貫通し、第1のシリンダ室Saに連通している。上記第2の吸込み管Pbは、密閉容器1と第2のシリンダ6B側部を貫通し、第2のシリンダ室Sbに連通している。 The first suction pipe Pa penetrates the sealed container 1 constituting the hermetic compressor R and the side of the first cylinder 6A and communicates with the first cylinder chamber Sa. The second suction pipe Pb penetrates the sealed container 1 and the side of the second cylinder 6B and communicates with the second cylinder chamber Sb.
 以上説明した密閉型圧縮機Rと、凝縮器17と、膨張装置18と、蒸発器19及びアキュームレータ20を順次配管接続することで、冷凍サイクル装置が構成される。 The hermetic compressor R, the condenser 17, the expansion device 18, the evaporator 19, and the accumulator 20 described above are sequentially connected by piping to constitute a refrigeration cycle apparatus.
 次に、上記圧力切換え弁Kについて詳述する。図2は、第1の実施の形態における圧力切換え弁Kを備えた密閉型圧縮機Rの横断平面図。図3Aは、上記圧力切換え弁Kの模式的な正面図。図3Bと図3Cは、互いに異なる状態の圧力切換え弁Kの模式的な平面図である。 Next, the pressure switching valve K will be described in detail. FIG. 2 is a cross-sectional plan view of the hermetic compressor R provided with the pressure switching valve K in the first embodiment. 3A is a schematic front view of the pressure switching valve K. FIG. 3B and 3C are schematic plan views of the pressure switching valve K in different states.
 上記圧力切換え弁Kは、密閉容器1内底部に形成される油溜り部15の潤滑油中に浸漬されていて、弁本体21と、電磁コイル22と、磁性部材23が一体に連設されるスライダ24とから構成される。 The pressure switching valve K is immersed in the lubricating oil in the oil reservoir 15 formed at the inner bottom of the sealed container 1, and the valve main body 21, the electromagnetic coil 22, and the magnetic member 23 are integrally connected. And a slider 24.
 上記弁本体21は、図2,図3B及び図3Cで示す平面視では、内側部と外側部が湾曲成され、図3Aで示す正面視では、上端面と下端面が平坦状に形成された、略角柱状のものである。この弁本体21の左右両端面間に亘って、断面が真円状のスライダ用孔25が貫通して設けられる。 In the plan view shown in FIGS. 2, 3B and 3C, the valve body 21 has an inner portion and an outer portion curved, and in the front view shown in FIG. 3A, the upper end surface and the lower end surface are formed flat. The substantially prismatic shape. A slider hole 25 having a perfectly circular cross section is provided through the left and right end surfaces of the valve body 21.
 弁本体21の一方の端面から所定距離の部位に、孔部からなる吸込み連通路26と、ブレード室連通路27及び吐出連通路28が、互いに離間しかつ並んで設けられる。各連通路26~28は、弁本体21外周面からスライダ用孔25に亘って設けられていて、弁本体21外部とスライダ用孔25とを連通する。 The suction communication passage 26, the blade chamber communication passage 27, and the discharge communication passage 28, each of which is a predetermined distance from one end face of the valve body 21, are provided apart from each other and arranged side by side. Each of the communication passages 26 to 28 is provided from the outer peripheral surface of the valve body 21 to the slider hole 25, and communicates the outside of the valve body 21 and the slider hole 25.
 上記吸込み連通路26とブレード室連通路27は、弁本体21の同じ側面に開口され、吐出連通路28は吸込み連通路26とブレード室連通路27とは反対側の弁本体21の側面に開口される。 The suction communication path 26 and the blade chamber communication path 27 are opened on the same side surface of the valve body 21, and the discharge communication path 28 is opened on the side surface of the valve body 21 opposite to the suction communication path 26 and the blade chamber communication path 27. Is done.
 上記ブレード室連通路27を基準にして、吸込み連通路26との間の距離と、吐出連通路28との間の距離は、互いに同一に設定されている。ブレード室連通路27と吐出連通路28の直径は互いに同一に設定され、これらの直径よりも吸込み連通路26の直径は小に形成される。 The distance from the suction communication passage 26 and the distance from the discharge communication passage 28 are set to be the same with respect to the blade chamber communication passage 27 as a reference. The diameters of the blade chamber communication path 27 and the discharge communication path 28 are set to be the same, and the suction communication path 26 is formed to have a smaller diameter than these diameters.
 上記電磁コイル22は、上記弁本体21の吐出連通路28が設けられる側の端面に一体に連設されていて、上記スライダ用孔25と略同一直径の内周部29を有する。 The electromagnetic coil 22 is integrally connected to the end surface of the valve body 21 on the side where the discharge communication passage 28 is provided, and has an inner peripheral portion 29 having substantially the same diameter as the slider hole 25.
 上記スライダ24は、弁本体21に設けられるスライダ用孔25と、電磁コイル22の内周部29とに亘って移動自在に嵌め込まれた円柱状のものである。このスライダ24の周面で、かつ軸方向に沿う略中間部には、外径が一段と絞られた切欠き部30が設けられている。 The slider 24 has a cylindrical shape that is slidably fitted over the slider hole 25 provided in the valve body 21 and the inner peripheral portion 29 of the electromagnetic coil 22. A cutout portion 30 having a further reduced outer diameter is provided at a substantially intermediate portion along the axial direction on the peripheral surface of the slider 24.
 上記磁性部材23は、上記スライダ24の一方の端面に連結または一体成形されていて、図3Cでのみ示し、図3Bでは省略している。磁性部材23の外径はスライダ24の外径と同一に形成され、スライダ24とは反対側の端面には図示しない圧縮ばねが当接し、磁性部材23とスライダ24は軸方向に沿って弾性的に押圧付勢されている。 The magnetic member 23 is connected to or integrally formed with one end face of the slider 24, and is shown only in FIG. 3C and omitted in FIG. 3B. The outer diameter of the magnetic member 23 is formed to be the same as the outer diameter of the slider 24. A compression spring (not shown) abuts on the end surface opposite to the slider 24, and the magnetic member 23 and the slider 24 are elastic along the axial direction. Is urged to press.
 このことにより、電磁コイル22に通電し、圧縮ばねの弾性力に抗して磁性部材23を磁気的に吸引すると、図3Bに示すように、スライダ24は切欠き部30がブレード室連通路27及び吐出連通路28と対向する位置に変位する。このときのスライダ24の位置を、「第1の動作位置」と呼ぶ。 Thus, when the electromagnetic coil 22 is energized and the magnetic member 23 is magnetically attracted against the elastic force of the compression spring, the slider 24 has the notch 30 as shown in FIG. And it is displaced to a position facing the discharge communication passage 28. The position of the slider 24 at this time is referred to as a “first operation position”.
 電磁コイル22を断電すると、磁性部材23に対する磁気的な吸引作用が無くなる。代って、圧縮ばねの弾性力が作用し、図3Cに示すように、スライダ24は切欠き部30がブレード室連通路27及び吸込み連通路26と対向する位置に変位する。このときのスライダ24の位置を、「第2の動作位置」と呼ぶ。 When the electromagnetic coil 22 is turned off, the magnetic attraction to the magnetic member 23 is lost. Instead, the elastic force of the compression spring acts, and the slider 24 is displaced to a position where the notch 30 faces the blade chamber communication passage 27 and the suction communication passage 26 as shown in FIG. 3C. The position of the slider 24 at this time is referred to as a “second operation position”.
 再び図1に示すように、上記圧力切換え弁Kは第2のシリンダ6Bの下面に取付けられて、第2のブレード室10bの下側開放面を閉成する。なお、第2のブレード室10bの上側開放面は、第1のシリンダ6Aと第2のシリンダ6Bとの間に介在される上記中間仕切り板2によって閉成され、第2のブレード室10bの上下面は閉成状態にある。 As shown in FIG. 1 again, the pressure switching valve K is attached to the lower surface of the second cylinder 6B and closes the lower open surface of the second blade chamber 10b. The upper open surface of the second blade chamber 10b is closed by the intermediate partition plate 2 interposed between the first cylinder 6A and the second cylinder 6B, and the upper surface of the second blade chamber 10b is The lower surface is in a closed state.
 上記第2のシリンダ6Bには、上記第2の吸込み管Pbが接続される吸込み孔と、第2のシリンダ6Bの下面を連通する連通孔が設けられている。図2に概略的に示すように、圧力切換え弁にKおいて弁本体21に設けられる上記吸込み連通路26は、上記連通孔を介して上記第2の吸込み管Pbと連通するよう構成される。 The second cylinder 6B is provided with a suction hole to which the second suction pipe Pb is connected and a communication hole that communicates the lower surface of the second cylinder 6B. As schematically shown in FIG. 2, the suction communication passage 26 provided in the valve body 21 at the pressure switching valve K is configured to communicate with the second suction pipe Pb through the communication hole. .
 また、上記ブレード室連通路27は第2のブレード室10bに対して開口され、上記吐出連通路28は密閉容器1内の油溜り部15に対して開口される。 Further, the blade chamber communication passage 27 is opened to the second blade chamber 10b, and the discharge communication passage 28 is opened to the oil reservoir 15 in the sealed container 1.
 以上述べたような圧力切換え弁Kを内蔵した密閉型圧縮機Rと、この密閉型圧縮機Rを備えた冷凍サイクル装置において、圧力切換え弁Kの作用により通常運転(全能力運転)と、休筒運転(能力半減運転)との切換え選択が可能である。 In the hermetic compressor R including the pressure switching valve K as described above and the refrigeration cycle apparatus equipped with the hermetic compressor R, the operation of the pressure switching valve K causes normal operation (full capacity operation), Switching to cylinder operation (half-capacity operation) can be selected.
 通常運転を選択すると、圧力切換え弁Kの電磁コイル22に通電され、磁性部材23とスライダ24が圧縮ばねの弾性力に抗して磁気的に吸引される。スライダ24は、図3Bに示す第1の動作位置に移動変位され、切欠き部30に対してブレード室連通路27と吐出連通路28が連通される。したがって、第2のブレード室10bと油溜り部15が圧力切換え弁Kを介して連通される。 When the normal operation is selected, the electromagnetic coil 22 of the pressure switching valve K is energized, and the magnetic member 23 and the slider 24 are magnetically attracted against the elastic force of the compression spring. The slider 24 is moved and displaced to the first operating position shown in FIG. 3B, and the blade chamber communication path 27 and the discharge communication path 28 are communicated with the notch 30. Therefore, the second blade chamber 10b and the oil reservoir 15 are communicated with each other via the pressure switching valve K.
 電動機部4に運転信号が送られ、回転軸5が回転駆動されて、第1、第2の偏心ローラ9a、9bはそれぞれのシリンダ室Sa、Sb内で偏心回転を行う。第1のシリンダ6Aにおいてブレード11aがばね部材14に押圧付勢され、この先端縁が偏心ローラ9a周壁に摺接して第1のシリンダ室Sa内を二分する。 An operation signal is sent to the motor unit 4 and the rotary shaft 5 is driven to rotate, so that the first and second eccentric rollers 9a and 9b rotate eccentrically in the respective cylinder chambers Sa and Sb. In the first cylinder 6A, the blade 11a is pressed and urged against the spring member 14, and the leading edge thereof slidably contacts the peripheral wall of the eccentric roller 9a to bisect the inside of the first cylinder chamber Sa.
 冷媒ガスはアキュームレータ20から第1の吸込み管Paを介して第1のシリンダ室Saに吸込まれて充満する。偏心ローラ9aの偏心回転に伴ってシリンダ室Saの区画された一方の容積が減少し、吸込まれたガスが徐々に圧縮される。所定圧まで上昇すると吐出弁が開放され、高圧ガスはバルブカバーを介して密閉容器1内に導かれる。 The refrigerant gas is sucked into the first cylinder chamber Sa from the accumulator 20 through the first suction pipe Pa and is filled. With the eccentric rotation of the eccentric roller 9a, the volume of one of the compartments of the cylinder chamber Sa decreases, and the sucked gas is gradually compressed. When the pressure rises to a predetermined pressure, the discharge valve is opened, and the high-pressure gas is guided into the sealed container 1 through the valve cover.
 上記密閉容器1内に充満した高圧ガスは吐出管Pへ吐出され、凝縮器17に導かれる。高圧ガスは凝縮器17において凝縮液化して液冷媒に変り、膨張装置18に導かれて断熱膨張し、蒸発器19において蒸発して、蒸発器19を流通する空気から蒸発潜熱を奪う。 The high-pressure gas filled in the sealed container 1 is discharged to the discharge pipe P and led to the condenser 17. The high-pressure gas is condensed and liquefied in the condenser 17 to be converted into liquid refrigerant, guided to the expansion device 18 and expanded adiabatically, evaporated in the evaporator 19, and takes latent heat of evaporation from the air flowing through the evaporator 19.
 蒸発器19で蒸発した冷媒がアキュームレータ20に導かれて気液分離され、分離された低圧のガス冷媒がアキュームレータ20から第1の吸込み管Paを介して第1のシリンダ室Saに導かれる。再び圧縮されて密閉容器1内へ吐出され、上述のような冷凍サイクルを構成する。 The refrigerant evaporated in the evaporator 19 is led to the accumulator 20 for gas-liquid separation, and the separated low-pressure gas refrigerant is led from the accumulator 20 to the first cylinder chamber Sa via the first suction pipe Pa. It is compressed again and discharged into the sealed container 1 to constitute the refrigeration cycle as described above.
 一方、アキュームレータ20で気液分離された低圧のガス冷媒は、第1の吸込み管Paとともに、第2の吸込み管Pbを介して第2のシリンダ室Sbに導かれる。第2のシリンダ室Sbに低圧のガス冷媒が充満して、吸込み圧(低圧)雰囲気となっている。 On the other hand, the low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa. The second cylinder chamber Sb is filled with a low-pressure gas refrigerant to create a suction pressure (low pressure) atmosphere.
 上述したように、圧力切換え弁K内のスライダ24が第1の動作位置に保持され、油溜り部15と第2のブレード室10bが連通している。上記密閉容器1内には第1のシリンダ室Saで圧縮され吐出された高圧ガスが充満していて、密閉容器1内底部の油溜り部15にある潤滑油は高圧の影響を受ける。 As described above, the slider 24 in the pressure switching valve K is held at the first operating position, and the oil reservoir 15 and the second blade chamber 10b communicate with each other. The sealed container 1 is filled with the high-pressure gas compressed and discharged in the first cylinder chamber Sa, and the lubricating oil in the oil reservoir 15 at the bottom of the sealed container 1 is affected by high pressure.
 油溜り部15の潤滑油は圧力切換え弁Kの吐出連通路28に侵入し、さらにスライダ24の切欠き部30とスライダ用孔25との隙間を介してブレード室連通路27に導かれる。ブレード室連通路27は第2のブレード室10bに連通しているので、高圧化した潤滑油は第2のブレード室10bに充満し第2のブレード11bに背圧を付与する。 Lubricating oil in the oil reservoir 15 enters the discharge communication passage 28 of the pressure switching valve K, and is guided to the blade chamber communication passage 27 through a gap between the notch 30 of the slider 24 and the slider hole 25. Since the blade chamber communication passage 27 communicates with the second blade chamber 10b, the high-pressure lubricating oil fills the second blade chamber 10b and applies a back pressure to the second blade 11b.
 第2のブレード11bは後端部が吐出圧(高圧)下にある一方で、先端部は第2の吸込み管Pbから第2のシリンダ室Sbに導かれる低圧のガス冷媒により低圧雰囲気下にある。第2のブレード11bの先後端部で差圧が存在することとなり、この差圧の影響でブレード11bの先端部が第2の偏心ローラ9b周壁に摺接するように押圧付勢される。 The rear end portion of the second blade 11b is under a discharge pressure (high pressure), while the front end portion is in a low-pressure atmosphere by a low-pressure gas refrigerant guided from the second suction pipe Pb to the second cylinder chamber Sb. . A differential pressure exists at the front and rear end portions of the second blade 11b, and the tip portion of the blade 11b is pressed and biased so as to be in sliding contact with the peripheral wall of the second eccentric roller 9b due to the differential pressure.
 第1のシリンダ室Saと全く同様の圧縮作用が第2のシリンダ室Sbでも行われ、結局、第1のシリンダ室Sa及び第2のシリンダ室Sbとの両方で圧縮作用が行われる、全能力運転となる。 The full capacity in which the compression action exactly the same as that of the first cylinder chamber Sa is also performed in the second cylinder chamber Sb, and eventually the compression action is performed in both the first cylinder chamber Sa and the second cylinder chamber Sb. It becomes driving.
 休筒運転を選択すると、圧力切換え弁Kに対する通電が遮断され、電磁コイル22は消磁される。 When the idle cylinder operation is selected, the energization to the pressure switching valve K is cut off, and the electromagnetic coil 22 is demagnetized.
 磁性部材23とスライダ24が圧縮ばねの弾性力を受け、スライダ24は第2の動作位置に移動変位される。したがって、切欠き部30に対してブレード室連通路27と吸込み連通路26が連通され、第2のブレード室10bと第2の吸込み管Pbが圧力切換え弁Kを介して連通される。 The magnetic member 23 and the slider 24 receive the elastic force of the compression spring, and the slider 24 is moved and displaced to the second operating position. Therefore, the blade chamber communication passage 27 and the suction communication passage 26 are communicated with the notch 30, and the second blade chamber 10 b and the second suction pipe Pb are communicated with each other via the pressure switching valve K.
 第1のシリンダ室Saでは上述した通常の圧縮作用がなされ、吐出管Pから吐出される高圧ガスは凝縮器17と、膨張装置18と、蒸発器19に導かれて、冷凍サイクル作用をなす。そして、アキュームレータ20から第1の吸込み管Paを介して第1のシリンダ室Saに吸込まれて圧縮される。 In the first cylinder chamber Sa, the above-described normal compression action is performed, and the high-pressure gas discharged from the discharge pipe P is led to the condenser 17, the expansion device 18, and the evaporator 19 to perform a refrigeration cycle action. Then, the air is sucked into the first cylinder chamber Sa from the accumulator 20 through the first suction pipe Pa and compressed.
 アキュームレータ20で気液分離された低圧のガス冷媒は、第1の吸込み管Paとともに、第2の吸込み管Pbを介して第2のシリンダ室Sbに導かれる。第2のシリンダ室Sbに低圧のガス冷媒が充満して、吸込み圧(低圧)雰囲気となる。 The low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa. The second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
 上述したように、圧力切換え弁K内のスライダ24が第2の動作位置に保持され、第2の吸込み管Pbと第2のブレード室10bとが連通している。したがって、第2のブレード室10bには低圧のガス冷媒が充満することとなり、第2のブレード11bに低圧の背圧を付与する。 As described above, the slider 24 in the pressure switching valve K is held at the second operating position, and the second suction pipe Pb and the second blade chamber 10b communicate with each other. Accordingly, the second blade chamber 10b is filled with the low-pressure gas refrigerant, and a low-pressure back pressure is applied to the second blade 11b.
 第2のブレード11bは、後端部が吸込み圧(低圧)下にある一方で、先端部は第2の吸込み管Pbから第2のシリンダ室Sbに導かれるガス冷媒により低圧雰囲気下にある。したがって、第2のブレード11bの先後端部で差圧が存在せず、ブレード11bの先端部が偏心ローラ9b周壁に蹴られて後退した位置に保持される。 The rear end of the second blade 11b is under a suction pressure (low pressure), while the front end is in a low pressure atmosphere by a gas refrigerant guided from the second suction pipe Pb to the second cylinder chamber Sb. Accordingly, there is no differential pressure at the front and rear end portions of the second blade 11b, and the tip portion of the blade 11b is held by the kicked back by the peripheral wall of the eccentric roller 9b.
 結局、第1のシリンダ室Saのみで圧縮作用が行われ、第2のシリンダ室Sbでは圧縮作用が行われない、能力半減運転となる。 Eventually, the compression operation is performed only in the first cylinder chamber Sa, and the compression operation is not performed in the second cylinder chamber Sb.
 このように、圧力切換え弁Kを密閉容器1に内蔵したので、第2のブレード室10bに吐出圧及び吸込み圧を切換えて導入するための配管が不要となり、構造が簡素化されるとともに、部材の減少により、コストの低減化に寄与する。 Thus, since the pressure switching valve K is built in the sealed container 1, piping for switching and introducing the discharge pressure and the suction pressure into the second blade chamber 10b is not required, the structure is simplified, and the members This contributes to cost reduction.
 第2のシリンダ室Sbにおける圧縮作用時には、圧力切換え弁Kの切換え動作によって第2のブレード室10bに吐出圧が導入されるので、圧縮休止状態から圧縮作用への切換えが短時間ででき、冷凍サイクル効率の向上化を得られる。 During the compression operation in the second cylinder chamber Sb, the discharge pressure is introduced into the second blade chamber 10b by the switching operation of the pressure switching valve K, so that the switching from the compression pause state to the compression operation can be performed in a short time, and the refrigeration Improved cycle efficiency can be obtained.
 さらに、第2のシリンダ6Bに圧力切換え弁Kを取付けるために、取付けねじのねじ孔を設けるだけで良く、第1のシリンダ6Aとの標準化が容易である。 Furthermore, in order to attach the pressure switching valve K to the second cylinder 6B, it is only necessary to provide a screw hole for the mounting screw, and standardization with the first cylinder 6A is easy.
 第2のシリンダ室Sbにおける圧縮作用時には、第2のブレード11bの往復動によって第2のブレード室10bに潤滑油の出入があるため、ブレード室連通路27と吐出連通路28は断面積が大であるのが望ましい。また、吸込み連通路26は、第2のブレード室10bと連通後はガス冷媒もしくは潤滑油の出入が無いので、断面積は小さくてよい。 During the compression action in the second cylinder chamber Sb, since the lubricating oil flows in and out of the second blade chamber 10b due to the reciprocation of the second blade 11b, the blade chamber communication passage 27 and the discharge communication passage 28 have a large cross-sectional area. It is desirable that Further, the suction communication passage 26 may have a small cross-sectional area since there is no gas refrigerant or lubricating oil coming in and out after communicating with the second blade chamber 10b.
 そこで、図3A,図3B,図3Cに示すように、吸込み連通路26の直径を小に形成し、ブレード室連通路27と吐出連通路28の直径は、吸込み連通路26の直径よりも大に形成した。 Therefore, as shown in FIGS. 3A, 3B, and 3C, the diameter of the suction communication passage 26 is formed small, and the diameters of the blade chamber communication passage 27 and the discharge communication passage 28 are larger than the diameter of the suction communication passage 26. Formed.
 上記圧力切換え弁Kのスライダ用孔25に、第2のブレード室10bと連通するブレード室連通路27と、第2の吸込み管Pbを介して第2のシリンダ室Sbに連通する吸込み連通路26及び、油溜り部15である密閉容器1内に連通する吐出連通路28を接続し、スライダ24の周面一部に切欠き部30が設けられる。 A blade chamber communication passage 27 communicating with the second blade chamber 10b and a suction communication passage 26 communicating with the second cylinder chamber Sb via the second suction pipe Pb are connected to the slider hole 25 of the pressure switching valve K. Further, a discharge communication passage 28 communicating with the inside of the closed container 1 that is the oil reservoir 15 is connected, and a notch 30 is provided in a part of the peripheral surface of the slider 24.
 上記スライダ24を上記第1の動作位置に変位することより、切欠き部30を介してブレード室連通路27と吐出連通路28が連通する。スライダ24を第2の動作位置に変位することにより、切欠き部30を介してブレード室連通路27と吸込み連通路26が連通する。 
 すなわち、スライダ24を往復動させるだけの簡単な機構でありながら、第2のブレード室10bに導かれる吐出圧と吸込み圧を円滑に、かつ確実に切換えることができる。
By displacing the slider 24 to the first operating position, the blade chamber communication passage 27 and the discharge communication passage 28 communicate with each other through the notch 30. By displacing the slider 24 to the second operating position, the blade chamber communication path 27 and the suction communication path 26 communicate with each other through the notch 30.
That is, the discharge pressure and the suction pressure guided to the second blade chamber 10b can be switched smoothly and surely while being a simple mechanism that simply reciprocates the slider 24.
 上記密閉容器1内底部に潤滑油を集溜する油溜り部15を設け、圧力切換え弁Kを油溜り部15の潤滑油中に浸漬するようにした。 The oil reservoir 15 for collecting the lubricating oil is provided at the bottom of the sealed container 1 so that the pressure switching valve K is immersed in the lubricating oil in the oil reservoir 15.
 したがって、第2のブレード室10bに高圧の潤滑油を導くことができ、第2のブレード室10bと第2のブレード11bとの摺動面に潤滑油が効率良く導入されるので、第2のブレード11bの摺動性が良好に保たれる。 Accordingly, high-pressure lubricating oil can be guided to the second blade chamber 10b, and the lubricating oil is efficiently introduced into the sliding surface between the second blade chamber 10b and the second blade 11b. The slidability of the blade 11b is kept good.
 また、圧力切換え弁Kを油溜り部15の潤滑油中に浸漬することにより、吸込み連通路26にリークするのが潤滑油のみになり、吐出圧側から吸込み側への冷媒のリークが少なくなって、性能低下が抑制される。 Further, by immersing the pressure switching valve K in the lubricating oil in the oil reservoir 15, only the lubricating oil leaks into the suction communication passage 26, and the leakage of refrigerant from the discharge pressure side to the suction side is reduced. , Performance degradation is suppressed.
 第2のブレード室10bに高圧を導くのに、圧力切換え弁Kに設けられる吐出連通路28を潤滑油中に開口するようにした。圧縮作用時に往復動する第2のブレード11bにより第2のブレード室10bに潤滑油が出入するため、抵抗が少なくてすみ、第2のブレード11bの動きが滑らかで損失が少なくなる。 In order to introduce high pressure to the second blade chamber 10b, the discharge communication passage 28 provided in the pressure switching valve K is opened in the lubricating oil. Since the lubricating oil enters and exits the second blade chamber 10b by the second blade 11b reciprocating during the compression action, the resistance is reduced, and the movement of the second blade 11b is smooth and the loss is reduced.
 次に、第2の実施の形態における圧力切換え弁Kaについて説明する。 Next, the pressure switching valve Ka in the second embodiment will be described.
 図4は、圧力切換え弁Kaを備えた密閉型圧縮機R要部の縦断面図。図5と図6は、互いに異なる状態の圧力切換え弁Kaを拡大した縦断面図である。 FIG. 4 is a longitudinal sectional view of the main part of the hermetic compressor R provided with the pressure switching valve Ka. 5 and 6 are enlarged longitudinal sectional views of the pressure switching valve Ka in different states.
 後述する圧力切換え弁Kaを除く密閉型圧縮機Rの構成は先に図1に示したものと同一であるので、ここでは図1を適用し、図4において同じ構成部品については同番号を付して、新たな説明は省略する。 Since the configuration of the hermetic compressor R excluding the pressure switching valve Ka described later is the same as that shown in FIG. 1, FIG. 1 is applied here, and in FIG. Thus, a new description is omitted.
 また、図4は圧力切換え弁Kaの概略を示して、一部の構成部品にのみ符号を付し、図5、図6においては詳細を示し、全ての構成部品に符号を付している。 FIG. 4 shows an outline of the pressure switching valve Ka, in which only some components are denoted by reference numerals, details are shown in FIGS. 5 and 6, and all component parts are denoted by reference numerals.
 上記圧力切換え弁Kaは、弁本体21Aと、磁性部材23Aと、スライダ24Aと、電磁コイル22A及び、非磁性体からなる円筒部材31から構成される。 The pressure switching valve Ka includes a valve body 21A, a magnetic member 23A, a slider 24A, an electromagnetic coil 22A, and a cylindrical member 31 made of a nonmagnetic material.
 上記弁本体21Aは、上記第2のシリンダ6Bの下面に、第2のブレード室10bの下側開放面を閉成するよう取付けられる。弁本体21Aの左右両端面間に亘ってスライダ用孔25Aが貫通して設けられ、このスライダ用孔25Aにスライダ24Aが摺動自在に収容される。 The valve body 21A is attached to the lower surface of the second cylinder 6B so as to close the lower open surface of the second blade chamber 10b. A slider hole 25A is provided through the left and right end faces of the valve body 21A, and the slider 24A is slidably received in the slider hole 25A.
 上記スライダ用孔25Aの端面は密閉容器1内である油溜り部15に対して開放され、吐出連通路28Aが形成される。スライダ用孔25Aと第2のブレード室10bとは、ブレード室連通路27Aで連通される。第2のシリンダ室Sbに接続される第2の吸込み管Pbとスライダ用孔25Aとは、弁本体21Aと弁本体21Aに亘って形成された吸込み連通路26Aで連通される。 The end face of the slider hole 25A is opened to the oil reservoir 15 in the sealed container 1 to form a discharge communication path 28A. The slider hole 25A and the second blade chamber 10b communicate with each other through a blade chamber communication path 27A. The second suction pipe Pb connected to the second cylinder chamber Sb and the slider hole 25A communicate with each other through a suction communication passage 26A formed across the valve body 21A and the valve body 21A.
 ここでは、吸込み連通路26Aの直径は最も小さく形成され、ブレード室連通路27Aの直径は吸込み連通路26Aの直径よりも大に形成され、吐出連通路28Aの直径はブレード室連通路27Aの直径よりも大に形成される。 Here, the diameter of the suction communication path 26A is formed to be the smallest, the diameter of the blade chamber communication path 27A is formed larger than the diameter of the suction communication path 26A, and the diameter of the discharge communication path 28A is the diameter of the blade chamber communication path 27A. Than is formed.
 上記弁本体21Aの吐出連通路28Aが開口される端面とは反対側の端面で、かつスライダ用孔25Aに沿って溝部32が設けられていて、上記円筒部材31の端部が嵌合固定される。円筒部材31は密閉容器1に設けられる挿通用孔33に密閉容器1外部から挿通され、この先端開口が上記弁本体21Aの溝部32に掛合固定される。 A groove portion 32 is provided on the end surface opposite to the end surface where the discharge communication passage 28A of the valve body 21A is opened and along the slider hole 25A, and the end portion of the cylindrical member 31 is fitted and fixed. The The cylindrical member 31 is inserted from the outside of the sealed container 1 into an insertion hole 33 provided in the sealed container 1, and the tip opening is engaged and fixed to the groove 32 of the valve body 21A.
 弁本体21A端面と密閉容器1内周壁とは狭小の間隙が形成され、円筒部材31一部が露出する。この円筒部材31の露出部分に複数の小孔からなる油孔34が設けられ、円筒部材31の外面側と内部とが連通する。すなわち、油孔34から円筒部材31内に潤滑油が導かれ、後述するようにスライダ24の円滑な移動を確保する。 A narrow gap is formed between the end face of the valve body 21A and the inner peripheral wall of the sealed container 1, and a part of the cylindrical member 31 is exposed. An oil hole 34 composed of a plurality of small holes is provided in the exposed portion of the cylindrical member 31 so that the outer surface side and the inside of the cylindrical member 31 communicate with each other. That is, the lubricating oil is guided into the cylindrical member 31 from the oil hole 34, and the smooth movement of the slider 24 is ensured as will be described later.
 密閉容器1の挿通用孔33と、ここに挿通する円筒部材31周面は、ロウ材(シール材)を用いたロウ付け加工がなされていて(図中V参照)、完全なシールが施されている。円筒部材31の閉止された端面が密閉容器1外部に突出していて、この端部外周面に上記電磁コイル22Aが嵌め込まれ取付け固定される。 The insertion hole 33 of the sealed container 1 and the circumferential surface of the cylindrical member 31 inserted therethrough are brazed using a brazing material (seal material) (see V in the figure), and are completely sealed. ing. The closed end surface of the cylindrical member 31 protrudes to the outside of the sealed container 1, and the electromagnetic coil 22 </ b> A is fitted and fixed to the outer peripheral surface of the end portion.
 さらに、円筒部材31端部内に圧縮ばね35が挿入され、円筒部材31内部に挿入された磁性部材23Aの端面に接触する。磁性部材23Aは円筒部材31内に摺動自在な直径に形成され、上記スライダ24Aが一体に連設される。 Furthermore, the compression spring 35 is inserted into the end of the cylindrical member 31 and comes into contact with the end surface of the magnetic member 23A inserted into the cylindrical member 31. The magnetic member 23A is formed in a slidable diameter in the cylindrical member 31, and the slider 24A is integrally provided continuously.
 上記スライダ24Aは、磁性部材23Aと連設する基端部から、円筒部材31と弁本体21Aとの嵌合部に亘って、円筒部材31内径と間隙を存する小径に形成された杆部Xdを有する。この杆部Xdの先端には、切欠き部30Aを挟んで、この切欠き部30Aの両側に摺接部Xeが一体に連設される。 The slider 24A has a flange portion Xd formed in a small diameter having a gap between the inner diameter of the cylindrical member 31 and the gap between the base end portion connected to the magnetic member 23A and the fitting portion between the cylindrical member 31 and the valve main body 21A. Have. A sliding contact portion Xe is integrally connected to both ends of the notch portion 30A at the front end of the flange portion Xd with the notch portion 30A interposed therebetween.
 上記摺接部Xeはスライダ用孔25Aにスライド自在に嵌め込まれている。上記切欠き部30Aはスライダ用孔25Aの直径よりも小さく、上記杆部Xd直径と略同一直径に設計される。したがって、切欠き部30A周面とスライダ用孔25A周面との間と、杆部Xd周面と円筒部材31内周面との間には、狭小の隙間が形成される。 The sliding contact portion Xe is slidably fitted in the slider hole 25A. The notch 30A is designed to have a diameter smaller than the diameter of the slider hole 25A and substantially the same diameter as the flange Xd. Therefore, a narrow gap is formed between the peripheral surface of the cutout portion 30A and the peripheral surface of the slider hole 25A, and between the peripheral surface of the flange portion Xd and the inner peripheral surface of the cylindrical member 31.
 電磁コイル22Aに通電し圧縮ばね35の弾性力に抗して磁性部材23Aを磁気的に吸引すると、図5に示すように、切欠き部30Aが吸込み連通路26Aと対向するが、スライダ24Aの先端面が弁本体21Aのブレード室連通路27Aを開放する位置に後退する。このときのスライダ24Aの位置を、「第1の動作位置」と呼ぶ。 When the electromagnetic coil 22A is energized and the magnetic member 23A is magnetically attracted against the elastic force of the compression spring 35, as shown in FIG. 5, the notch 30A faces the suction communication path 26A, but the slider 24A The front end surface is retracted to a position where the blade chamber communication passage 27A of the valve body 21A is opened. The position of the slider 24A at this time is referred to as a “first operation position”.
 電磁コイル22Bを断電すると、磁性部材23Aに対する磁気的な吸引作用が無くなる。代って、圧縮ばね35の弾性力が作用し、図6に示すように、スライダ24Aの先端面がブレード室連通路27Aを越えて弁本体21Aの端面近傍位置まで移動する。 When the electromagnetic coil 22B is de-energized, the magnetic attractive action on the magnetic member 23A is lost. Instead, the elastic force of the compression spring 35 acts, and as shown in FIG. 6, the end surface of the slider 24A moves over the blade chamber communication passage 27A to a position near the end surface of the valve body 21A.
 このことにより、弁本体21Aの端面に形成される開口である吐出連通路28Aが閉成される。同時に、スライダ24Aの切欠き部30Aは、ブレード室連通路27Aと吸込み連通路26Aとの両方に対向する位置にある。 This closes the discharge communication path 28A, which is an opening formed in the end face of the valve body 21A. At the same time, the notch 30A of the slider 24A is at a position facing both the blade chamber communication path 27A and the suction communication path 26A.
 このときのスライダ24Aの位置を、「第2の動作位置」と呼ぶ。なお、スライダ24Aの位置移動に係らず円筒部材31に設けられる油孔34はスライダ24Aによって閉成されることなく、常に開放状態にある。 The position of the slider 24A at this time is referred to as a “second operating position”. Note that the oil hole 34 provided in the cylindrical member 31 is always closed without being closed by the slider 24A regardless of the position movement of the slider 24A.
 このようにして構成される圧力切換え弁Kaであって、通常運転を選択すると、圧力切換え弁Kaの電磁コイル22Aに通電され、磁性部材23Aとスライダ24Aが圧縮ばね35の弾性力に抗して磁気的に吸引される。 When the pressure switching valve Ka configured as described above is selected for normal operation, the electromagnetic coil 22A of the pressure switching valve Ka is energized, and the magnetic member 23A and the slider 24A resist the elastic force of the compression spring 35. Magnetically attracted.
 スライダ24Aは、図5に示す第1の動作位置に移動変位され、ブレード室連通路27Aと吐出連通路28Aが連通される。したがって、第2のブレード室10Bと油溜り部15が圧力切換え弁Kaを介して連通される。 The slider 24A is moved and displaced to the first operating position shown in FIG. 5, and the blade chamber communication path 27A and the discharge communication path 28A are communicated. Therefore, the second blade chamber 10B and the oil reservoir 15 are communicated with each other via the pressure switching valve Ka.
 電動機部4に運転信号が送られ、回転軸5が回転駆動されて、第1のシリンダ室Saにおいて圧縮作用が行われる。密閉容器1内には圧縮されたガス冷媒が充満し、さらに密閉型圧縮機Rから吐出管Pへ吐出されて冷凍サイクルを構成する。 An operation signal is sent to the electric motor unit 4, the rotary shaft 5 is driven to rotate, and a compression action is performed in the first cylinder chamber Sa. The sealed container 1 is filled with a compressed gas refrigerant and further discharged from the closed compressor R to the discharge pipe P to constitute a refrigeration cycle.
 アキュームレータ20で気液分離された低圧のガス冷媒は、第1の吸込み管Paとともに、第2の吸込み管Pbを介して第2のシリンダ室Sbに導かれる。第2のシリンダ室Sbに低圧のガス冷媒が充満して、吸込み圧(低圧)雰囲気となる。 The low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa. The second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
 その一方で、圧力切換え弁Ka内のスライダ24Aが第1の動作位置に保持され、油溜り部15の潤滑油は圧力切換え弁Kaの吐出連通路28Aからブレード室連通路27Aに導かれて第2のブレード室10bに充満し、第2のブレード11bに吐出圧(高圧)の背圧を付与する。 On the other hand, the slider 24A in the pressure switching valve Ka is held in the first operating position, and the lubricating oil in the oil reservoir 15 is guided from the discharge communication passage 28A of the pressure switching valve Ka to the blade chamber communication passage 27A. The second blade chamber 10b is filled, and a discharge pressure (high pressure) back pressure is applied to the second blade 11b.
 第2のブレード11bは、先後端部で差圧が存在し、この差圧の影響で、ブレード11bの先端部が偏心ローラ9b周壁に摺接するように押圧付勢される。第1のシリンダ室Saと全く同様の圧縮作用が第2のシリンダ室Sbでも行われ、結局、第1のシリンダ室Sa及び第2のシリンダ室Sbとの両方で圧縮作用が行われる、全能力運転となる。 The second blade 11b has a differential pressure at the front and rear end portions, and due to the differential pressure, the tip end portion of the blade 11b is pressed and urged so as to be in sliding contact with the peripheral wall of the eccentric roller 9b. The full capacity in which the compression action exactly the same as that of the first cylinder chamber Sa is also performed in the second cylinder chamber Sb, and eventually the compression action is performed in both the first cylinder chamber Sa and the second cylinder chamber Sb. It becomes driving.
 休筒運転を選択すると、電磁コイル22Aに対する通電が遮断され、磁性部材23Aとスライダ24Aが圧縮ばね35の弾性力を受ける。スライダ24Aは、図6に示す第2の動作位置にあるので切欠き部30Aを介してブレード室連通路27Aと吸込み連通路26Aが連通し、第2のブレード室10bと第2の吸込み管Pbが連通される。 When the idle cylinder operation is selected, the energization to the electromagnetic coil 22A is cut off, and the magnetic member 23A and the slider 24A receive the elastic force of the compression spring 35. Since the slider 24A is in the second operating position shown in FIG. 6, the blade chamber communication passage 27A and the suction communication passage 26A communicate with each other via the notch 30A, and the second blade chamber 10b and the second suction pipe Pb are connected. Is communicated.
 アキュームレータ20で気液分離された低圧のガス冷媒は、第1の吸込み管Paとともに、第2の吸込み管Pbを介して第2のシリンダ室Sbに導かれる。第2のシリンダ室Sbに低圧のガス冷媒が充満して、吸込み圧(低圧)雰囲気となる。 The low-pressure gas refrigerant separated from the gas and liquid by the accumulator 20 is guided to the second cylinder chamber Sb through the second suction pipe Pb together with the first suction pipe Pa. The second cylinder chamber Sb is filled with a low-pressure gas refrigerant, and a suction pressure (low-pressure) atmosphere is created.
 圧力切換え弁Ka内のスライダ24Aが第2の動作位置に保持され、第2の吸込み管Pbと第2のブレード室10bとが連通しているので、第2のブレード室10bには低圧のガス冷媒が充満して低圧の雰囲気下にあり、第2のブレード11bに吸込み圧(低圧)の背圧を付与する。 Since the slider 24A in the pressure switching valve Ka is held at the second operating position and the second suction pipe Pb and the second blade chamber 10b communicate with each other, the second blade chamber 10b has a low-pressure gas. The refrigerant is filled with a low-pressure atmosphere, and a suction pressure (low pressure) back pressure is applied to the second blade 11b.
 第2のブレード11bは後端部が吸込み圧(低圧)下にある一方で、先端部は第2のシリンダ室Sbの低圧雰囲気下にある。したがって、第2のブレード11bの先後端部で差圧が存在せず、偏心ローラ9bは空回転する。結局、第1のシリンダ室Saのみで圧縮作用が行われ、第2のシリンダ室Sbでは行われない能力半減運転となる。 The rear end of the second blade 11b is under the suction pressure (low pressure), while the front end is under the low pressure atmosphere of the second cylinder chamber Sb. Therefore, there is no differential pressure at the front and rear end portions of the second blade 11b, and the eccentric roller 9b rotates idly. Eventually, the compression action is performed only in the first cylinder chamber Sa, and the capacity half operation is not performed in the second cylinder chamber Sb.
 ここでも、磁性部材23A及び電磁コイル22Aとの組合せによる、比較的簡単な構成にて、スライダ24Aの往復移動が行える。電磁コイル22Aを密閉容器1の外部空間に取付けるので、通電のための密封端子を密閉容器1に取付ける必要がなく、配線構成の簡素化を図れる。 Also here, the slider 24A can be reciprocated with a relatively simple configuration by combining the magnetic member 23A and the electromagnetic coil 22A. Since the electromagnetic coil 22A is attached to the outer space of the sealed container 1, it is not necessary to attach a sealed terminal for energization to the sealed container 1, and the wiring configuration can be simplified.
 電磁コイル22Aを油溜り部15の潤滑油中に浸漬せずにすむので、電磁コイル22Aに耐油性と耐冷媒性を持たせる必要がない。磁性部材23A及びスライダ24Aを収容する円筒部材31が弁本体21Aに設けられた溝部32に嵌合固定されるので、スライダ用孔25Aとスライダ24Aとの芯出しが容易であり、組立性がよい。 Since the electromagnetic coil 22A need not be immersed in the lubricating oil in the oil reservoir 15, the electromagnetic coil 22A need not have oil resistance and refrigerant resistance. Since the cylindrical member 31 that accommodates the magnetic member 23A and the slider 24A is fitted and fixed in the groove portion 32 provided in the valve body 21A, the slider hole 25A and the slider 24A can be easily centered, and the assemblability is good. .
 なお、上述の実施の形態において密閉型圧縮機Rに圧力切換え弁Kaを組付けるには、先に、第2の圧縮機構部3Bに圧力切換え弁Kaの弁本体21Aのみを取付けた状態にして、密閉容器1内に収納する。 In order to assemble the pressure switching valve Ka to the hermetic compressor R in the above-described embodiment, first, only the valve main body 21A of the pressure switching valve Ka is attached to the second compression mechanism section 3B. And housed in a sealed container 1.
 そして、密閉容器1に設けられた挿通用孔33を介して、スライダ24Aと磁性部材23A及び圧縮ばね35を収容した円筒部材31を挿入し、この端部を弁本体21Aの溝部32に嵌合固定する。そのあと、密閉容器1の挿通用孔33と円筒部材31の挿通部分の周面をロウ付け加工により封止する。 Then, the cylindrical member 31 containing the slider 24A, the magnetic member 23A, and the compression spring 35 is inserted through the insertion hole 33 provided in the sealed container 1, and this end is fitted into the groove 32 of the valve body 21A. Fix it. Thereafter, the insertion hole 33 of the sealed container 1 and the peripheral surface of the insertion portion of the cylindrical member 31 are sealed by brazing.
 上記電磁コイル22Aは予め円筒部材31に取付けておいても良く、あるいは圧縮機組立後に取付けても良い。したがって、特別な組立工程や特殊な密閉容器を必要とせず、従来の圧縮機組立方法に付加するだけで圧力切換え弁Kaの組立ができ、工数の増大を最小限に抑えられる。 The electromagnetic coil 22A may be attached to the cylindrical member 31 in advance, or may be attached after the compressor is assembled. Therefore, the pressure switching valve Ka can be assembled only by adding to the conventional compressor assembling method without requiring a special assembling process or a special hermetic container, and the increase in man-hours can be minimized.
 上記円筒部材31は、電磁コイル22Aが磁性部材23Aを磁気吸着するために、非磁性体からなることが望ましいが、磁性部材23Aの動作が正常に行えるのであれば、多少の磁性を有していてもよい。 The cylindrical member 31 is preferably made of a nonmagnetic material so that the electromagnetic coil 22A magnetically attracts the magnetic member 23A. However, if the magnetic member 23A can operate normally, the cylindrical member 31 has some magnetism. May be.
 図7は、第3の実施の形態に係る圧力切換え弁Kaを説明するための、密閉型圧縮機Rの横断平面図である。 FIG. 7 is a cross-sectional plan view of the hermetic compressor R for explaining the pressure switching valve Ka according to the third embodiment.
 作用的には先に第2の実施の形態で説明したものと同様であるので、作用説明は省略し、構成についてのみ説明する。 Since the operation is the same as that described in the second embodiment, the description of the operation is omitted and only the configuration will be described.
 圧力切換え弁Kaは、第1のシリンダ6Aと第2のシリンダ6Bとの間に介在される中間仕切り板2に設けられる。すなわち、中間仕切り板2の外周面一部から第2のブレード室10bと対向する位置までスライダ用孔25Bが設けられ、上記スライダ24Aと磁性部材23A及び圧縮ばね35を収容した円筒部材31が取付けられる。 The pressure switching valve Ka is provided in the intermediate partition plate 2 interposed between the first cylinder 6A and the second cylinder 6B. That is, a slider hole 25B is provided from a part of the outer peripheral surface of the intermediate partition plate 2 to a position facing the second blade chamber 10b, and the slider 24A, the magnetic member 23A and the cylindrical member 31 containing the compression spring 35 are attached. It is done.
 スライダ用孔25Bには第2のブレード室10bと連通するブレード室連通路(図示を省略)と、第2の吸込み管Pbと連通する吸込み連通路26A及び、密閉容器1内に開口する吐出連通路(図示を省略)が設けられる。 The slider hole 25B has a blade chamber communication path (not shown) communicating with the second blade chamber 10b, a suction communication path 26A communicating with the second suction pipe Pb, and a discharge communication opening in the sealed container 1. A passage (not shown) is provided.
 上記第2のブレード室10bの上面は中間仕切り板2によって閉止されるが、下面は密閉容器1内に開放状態にあり吐出圧にさらされるので、何らかの閉止部材が必要である。 The upper surface of the second blade chamber 10b is closed by the intermediate partition plate 2, but the lower surface is open in the sealed container 1 and is exposed to the discharge pressure, so some kind of closing member is necessary.
 以上の構成であれば、本来、圧力切換え弁Kaに備えられる弁本体を、上記中間仕切り板2が兼用する。したがって、部品点数が減少するとともに、弁本体を取付けるための工数や、第2のシリンダ6Bに対する取付け用ねじ孔の加工が不要となり、さらにコストへの影響を抑制できる。 With the above configuration, the intermediate partition plate 2 also serves as a valve body originally provided in the pressure switching valve Ka. Therefore, the number of parts is reduced, the man-hours for attaching the valve body and the processing of the screw holes for attachment to the second cylinder 6B become unnecessary, and the influence on the cost can be suppressed.
 なお、上記密閉型圧縮機Rは、第1のシリンダ室Saと第2のシリンダ室Sbのそれぞれに、独立した第1の吸込み管Paと第2の吸込み管Pbを接続する構成としたが、これに限定されるものではない。 The hermetic compressor R is configured to connect the first suction pipe Pa and the second suction pipe Pb independent to each of the first cylinder chamber Sa and the second cylinder chamber Sb. It is not limited to this.
 図8は、第4の実施の形態として密閉型圧縮機Rの要部の縦断面図である。 FIG. 8 is a longitudinal sectional view of a main part of a hermetic compressor R as a fourth embodiment.
 上記第1、第2の吸込み管Pa、Pbに代って、1本の吸込み管Pを中間仕切り板2Aに設けられる吸込み案内路40に接続するタイプのものであってもよい。 Instead of the first and second suction pipes Pa and Pb, a type in which one suction pipe P is connected to a suction guide path 40 provided in the intermediate partition plate 2A may be used.
 上記吸込み案内路40は、中間仕切り板2A内部において2本の案内路40a、40bに分岐され、一方の分岐案内路40aが第1のシリンダ室Saに連通し、他方の分岐案内路40bが第2のシリンダ室Sbに連通するよう形成される。 The suction guide path 40 is branched into two guide paths 40a and 40b inside the intermediate partition plate 2A, one branch guide path 40a communicates with the first cylinder chamber Sa, and the other branch guide path 40b is the first. It is formed to communicate with the two cylinder chambers Sb.
 ここで用いられる圧力切換え弁Kaは、先に図4と図5及び図6にもとづき、第2の実施の形態で説明したものと同一構成であり、同位置に取付けられる。 The pressure switching valve Ka used here has the same configuration as that described in the second embodiment based on FIGS. 4, 5 and 6, and is attached at the same position.
 ただし、弁本体21Aに設けられる吸込み連通路26Aと、中間仕切り板2に設けられる吸込み案内路40とを連通するための孔部42を、第2のシリンダ6Bの上下端面を貫通して設けるとともに、中間仕切り板2Aにも設ける必要がある。 However, a hole 42 for communicating the suction communication path 26A provided in the valve main body 21A and the suction guide path 40 provided in the intermediate partition plate 2 is provided through the upper and lower end surfaces of the second cylinder 6B. Also, it is necessary to provide the intermediate partition plate 2A.
 また、上述した圧力切換え弁Kにおいて、電磁コイル22と、磁性部材23と、この磁性部材23に一体に連設されるスライダ24を備えて、スライダ24を軸方向に往復駆動するように構成したがこれに限定されるものではない。 The pressure switching valve K described above includes an electromagnetic coil 22, a magnetic member 23, and a slider 24 integrally connected to the magnetic member 23, and is configured to reciprocate the slider 24 in the axial direction. However, it is not limited to this.
 第5の実施の形態として、図9A及び図9Bに示すような圧力切換え弁Kであってもよい。 As a fifth embodiment, a pressure switching valve K as shown in FIGS. 9A and 9B may be used.
 すなわち、回動軸24Dの周面一部を切欠き加工した第1の切欠き部30Daが設けられるとともに、この第1の切欠き部30Daとは180°対向する周面部位で、かつ軸方向に位置をずらせて第2の切欠き部30Dbが設けられる。回動軸24Dの端部は、パルスモータ等のアクチュエータ50に連結される。 That is, a first cutout portion 30Da in which a part of the peripheral surface of the rotating shaft 24D is cut out is provided, and the first cutout portion 30Da is a peripheral surface portion that faces 180 ° and is axially The second notch 30Db is provided with the position shifted. The end of the rotation shaft 24D is connected to an actuator 50 such as a pulse motor.
 弁本体21Dには、吸込み連通路26Dとブレード室連通路27Dが互いに所定の間隔を存し、かつ同じ側面からスライダ用孔25Dに亘って設けられる。上記ブレード室連通路27Dと所定間隔を存し、反対側の側面からスライダ用孔25Dに亘って吐出連通路28Dが設けられる。 In the valve body 21D, a suction communication passage 26D and a blade chamber communication passage 27D are provided with a predetermined distance from each other and extending from the same side surface to the slider hole 25D. A discharge communication path 28D is provided from the opposite side surface to the slider hole 25D with a predetermined distance from the blade chamber communication path 27D.
 したがって、図9Aに示すように、回動軸24Dにおける第1の切欠き部30Daが吸込み連通路26Dとブレード室連通路27を連通することができる。さらに、回動軸24Dを180°回動させれば、第2の切欠き部30Dbがブレード室連通路27Dと吐出連通路28Dを連通する。 Therefore, as shown in FIG. 9A, the first notch 30Da in the rotation shaft 24D can communicate the suction communication path 26D and the blade chamber communication path 27. Further, if the rotation shaft 24D is rotated 180 °, the second notch 30Db communicates the blade chamber communication path 27D and the discharge communication path 28D.
 このような構成の圧力切換え弁Kaであれば、弁本体21Dからのアクチュエータ50の突出量を最小限に抑制できる。また、耐油・耐冷媒性を備えたアクチュエータであれば密閉容器1内に収容できて、外部スペースの確保が不要となる。 If the pressure switching valve Ka has such a configuration, the protrusion amount of the actuator 50 from the valve body 21D can be minimized. Further, an actuator having oil resistance and refrigerant resistance can be accommodated in the hermetic container 1, and it is not necessary to secure an external space.
 なお、上記した実施の形態において休筒運転(能力半減運転)をなすには、スライダ24を「第2の動作位置」に変位させる。そのために、電磁コイル22に対する通電を遮断して、スライダ24と磁性部材23に対する磁気的な吸引作用を無くし、代って圧縮ばね35の弾性力をスライダ24に作用させている。 In the above embodiment, the slider 24 is displaced to the “second operating position” in order to perform the cylinder resting operation (capacity half operation). For this purpose, the energization of the electromagnetic coil 22 is cut off, the magnetic attraction action on the slider 24 and the magnetic member 23 is eliminated, and the elastic force of the compression spring 35 is applied to the slider 24 instead.
 この第2の動作位置において、確実に、スライダ24の切欠き部30がブレード室連通路27及び吸込み連通路26と対向するよう、スライダ24の位置を変位させ、かつ停止しなければならない。 In this second operating position, the position of the slider 24 must be displaced and stopped so that the notch 30 of the slider 24 is surely opposed to the blade chamber communication path 27 and the suction communication path 26.
 第6の実施の形態として、スライダ24Aを第2の動作位置に変位したときの、スライダ24Aに対する位置決め手段について説明する。 As a sixth embodiment, positioning means for the slider 24A when the slider 24A is displaced to the second operating position will be described.
 図10A及び図10Bは、第6の実施の形態における圧力切換え弁Kbと、この圧力切換え弁Kbを備えた密閉型圧縮機一部の模式的な縦断面図である。図10Aは全能力運転時、図10Bは能力半減運転時の状態を示している。 FIGS. 10A and 10B are schematic longitudinal sectional views of the pressure switching valve Kb and a part of the hermetic compressor provided with the pressure switching valve Kb in the sixth embodiment. FIG. 10A shows a state during full capacity operation, and FIG. 10B shows a state during half capacity operation.
 この実施の形態に用いられる圧力切換え弁Kbの基本構成は、先に第2の実施の形態(図4~図6)で説明した圧力切換え弁Kaの基本構成を採用している。中間仕切り板2Aと、この中間仕切り板2Aに設けられる吸込み案内路40については、先に第4の実施の形態(図8)で説明したものを採用している。 The basic configuration of the pressure switching valve Ka used in this embodiment employs the basic configuration of the pressure switching valve Ka described in the second embodiment (FIGS. 4 to 6). The intermediate partition plate 2A and the suction guide path 40 provided in the intermediate partition plate 2A are the same as those described in the fourth embodiment (FIG. 8).
 圧力切換え弁Kbは、弁本体21Bと、磁性部材23Aと、磁性部材23Aと一体形成あるいは結合されたスライダ24Aと、電磁コイル22B、非磁性体からなる円筒部材31及び上記円筒部材31に固定されたスライダ保持部材としての永久磁石31Aから構成される。 The pressure switching valve Kb is fixed to the valve body 21B, the magnetic member 23A, the slider 24A integrally formed with or coupled to the magnetic member 23A, the electromagnetic coil 22B, the cylindrical member 31 made of a non-magnetic material, and the cylindrical member 31. The permanent magnet 31A as a slider holding member.
 ここで用いられる電磁コイル22Bは、これまで説明したような通電の有無により切換え制御するタイプのものではなく、逆極性に切換えることでその状態を保持する、いわゆる自己保持型である。 The electromagnetic coil 22B used here is not of the type that is controlled to be switched according to the presence or absence of energization as described above, but is a so-called self-holding type that maintains its state by switching to the reverse polarity.
 上記弁本体21Bは、第2のシリンダ6Bの下面に、第2のブレード室10bの下側開放面を閉成するよう取付けられ、この弁本体21Bに円筒部材31が連結される。弁本体21Bと円筒部材31とに亘ってスライダ用孔25Aが設けられ、このスライダ用孔25Aにスライダ24Aが摺動自在に収容される。 The valve body 21B is attached to the lower surface of the second cylinder 6B so as to close the lower open surface of the second blade chamber 10b, and the cylindrical member 31 is connected to the valve body 21B. A slider hole 25A is provided between the valve body 21B and the cylindrical member 31, and the slider 24A is slidably accommodated in the slider hole 25A.
 上記弁本体21Bの端面には、スライダ用孔25Aの直径よりも一段と小さな直径の孔部が設けられていて、ここを吐出連通路28Aとする。上記吐出連通路28Aの直径をスライダ用孔25Aの直径よりも小さく形成したので、弁本体21Bの端部にスライダ位置決め手段である段差部60が設けられることになる。 The end face of the valve main body 21B is provided with a hole having a diameter smaller than the diameter of the slider hole 25A, which is referred to as a discharge communication passage 28A. Since the diameter of the discharge communication passage 28A is smaller than the diameter of the slider hole 25A, the stepped portion 60, which is a slider positioning means, is provided at the end of the valve body 21B.
 上記スライダ24Aは、この中心軸位置に、軸方向に沿って貫通孔61が設けられていて、スライダ24Aの両端部は貫通孔61を介して同一の雰囲気となる。すなわち、貫通孔61を設けることにより、スライダ24Aの両端部は同一圧力を保持でき、圧力バランスを得られる。 The slider 24A is provided with a through hole 61 at the center axis position along the axial direction, and both ends of the slider 24A have the same atmosphere through the through hole 61. That is, by providing the through hole 61, both end portions of the slider 24A can maintain the same pressure, and a pressure balance can be obtained.
 先に説明した形態と同様、この実施の形態においても、第2のブレード室10bに吸込み圧を導き第2のシリンダ室Sbを対象とした休筒運転を可能としているが、特に第2のブレード室10bにおける第2のブレード11bが接離する周面に沿って、永久磁石Zが取付けられている。 Similar to the embodiment described above, in this embodiment, the suction pressure is introduced into the second blade chamber 10b to enable the cylinder resting operation for the second cylinder chamber Sb. A permanent magnet Z is attached along the peripheral surface of the chamber 10b where the second blade 11b contacts and is separated.
 以上説明した点のみが、先に第2の実施の形態で説明した構成と相違し、他の構成部位について基本的には同一であるので、同一符号を付して新たな説明を省略する。 Only the points described above are different from the configuration described in the second embodiment, and the other components are basically the same, so the same reference numerals are given and new descriptions are omitted.
 通常運転を選択すると、電磁コイル22Bに通電されスライダ付勢部材としての圧縮ばね35の弾性力に抗して磁性部材23Aが磁気的に吸引される。 When the normal operation is selected, the electromagnetic coil 22B is energized, and the magnetic member 23A is magnetically attracted against the elastic force of the compression spring 35 as the slider urging member.
 図10Aに示すように、スライダ24A端面が弁本体21Aのブレード室連通路27Aを開放する位置に後退し、ブレード室連通路27Aと吐出連通路28Aとを連通する「第1の動作位置」に変位する。この状態で電磁コイル22Bへの通電を中止しても、磁性部材23Aが永久磁石31Aに吸引され、スライダ24Aの位置は保持される。 As shown in FIG. 10A, the end surface of the slider 24A is retracted to a position where the blade chamber communication passage 27A of the valve body 21A is opened, and is in a “first operation position” where the blade chamber communication passage 27A communicates with the discharge communication passage 28A. Displace. Even if the energization of the electromagnetic coil 22B is stopped in this state, the magnetic member 23A is attracted to the permanent magnet 31A, and the position of the slider 24A is maintained.
 密閉容器1内の吐出圧(高圧)が、圧力切換え弁Kbの吐出連通路28Aからブレード室連通路27Aを介して第2のブレード室10bに導かれ、第2のブレード11bに対して高圧の背圧が付与される。したがって、第2のブレード11bの先後端部で差圧が生じ、第2のシリンダ室Sbでも圧縮作用をなす全能力運転が行われる。 The discharge pressure (high pressure) in the hermetic container 1 is guided from the discharge communication passage 28A of the pressure switching valve Kb to the second blade chamber 10b via the blade chamber communication passage 27A, and has a high pressure with respect to the second blade 11b. Back pressure is applied. Therefore, a differential pressure is generated at the front and rear end portions of the second blade 11b, and the full capacity operation that performs the compression action is performed also in the second cylinder chamber Sb.
 なお、このときスライダ24Aの切欠き部30Aが吸込み連通路26Aとの対向位置からずれていて、この点は第2の実施の形態(図5)と相違するが、基本的には吸込み連通路26Aがスライダ24Aによって閉成されることには変りがない。 At this time, the notch 30A of the slider 24A is displaced from the position facing the suction communication path 26A, and this point is different from that of the second embodiment (FIG. 5). 26A is closed by the slider 24A.
 休筒運転を選択すると、上記電磁コイル22Bが逆極性に切換えられ、磁性部材23Aとともにスライダ24Aに反発力が作用するとともに、圧縮ばね35の弾性力が作用し、永久磁石31Aに吸引力に打ち勝ってスライダ24Aが移動する。 When the idle cylinder operation is selected, the electromagnetic coil 22B is switched to the reverse polarity, the repulsive force acts on the slider 24A together with the magnetic member 23A, the elastic force of the compression spring 35 acts, and the permanent magnet 31A overcomes the attractive force. The slider 24A moves.
 図10Bに示すように、スライダ24Aの先端面がブレード室連通路27Aを越えて弁本体21Bの端面に設けられる段差部60に衝止される。この状態で電磁コイル22Bへの通電を中止しても圧縮ばね35の弾性力によりスライダ24Aの位置は保持される。 As shown in FIG. 10B, the front end surface of the slider 24A passes over the blade chamber communication passage 27A and is bumped by a stepped portion 60 provided on the end surface of the valve body 21B. In this state, even if energization of the electromagnetic coil 22B is stopped, the position of the slider 24A is held by the elastic force of the compression spring 35.
 スライダ24Aは段差部60によって位置決めされ、吐出連通路28Aと弁本体21B外周面との間を遮断し、それまで連通していた吐出連通路28Aとブレード室連通路27Aとの間を閉成する。その一方で、スライダ24Aの切欠き部30Aを介してブレード室連通路27Aと吸込み連通路26Aとを連通する、「第2の動作位置」に変位する。 The slider 24A is positioned by the step portion 60, blocks the discharge communication path 28A and the outer peripheral surface of the valve body 21B, and closes the discharge communication path 28A and the blade chamber communication path 27A that have been communicated so far. . On the other hand, the blade chamber communication passage 27A and the suction communication passage 26A communicate with each other through the notch 30A of the slider 24A, and the displacement is shifted to the “second operating position”.
 アキュームレータ20から導入される吸込み圧(低圧)が、圧力切換え弁Kbの吸込み連通路26Aとブレード室連通路27Aを介して第2のブレード室10bに導かれ、第2のブレード11bに対して低圧の背圧が付与される。 The suction pressure (low pressure) introduced from the accumulator 20 is guided to the second blade chamber 10b via the suction communication passage 26A and the blade chamber communication passage 27A of the pressure switching valve Kb, and is low in pressure with respect to the second blade 11b. The back pressure is applied.
 第2のブレード11bは先後端部が同じ低圧となり、先端部が偏心ローラ9bに蹴られて第2のブレード室10b内に後退し、後端部は永久磁石Zに磁気吸着されて、位置を保持する。第2のシリンダ室Sbでは圧縮作用が停止する能力半減運転が行われる。 The second blade 11b has the same low pressure at the front and rear ends, the front end is kicked by the eccentric roller 9b and retracted into the second blade chamber 10b, and the rear end is magnetically attracted to the permanent magnet Z, and the position thereof is increased. Hold. In the second cylinder chamber Sb, a half capacity operation is performed in which the compression action stops.
 このように、第2のブレード室10bに対する圧力調整を、圧力切換え弁Kbにより密閉容器1内で行うには、圧力切換え弁Kbのより小型化が求められる。そのため、スライダ24Aを常に正確に位置決めできれば、スライダ24Aの公差を含めた必要ストロークを小さくでき、圧力切換え弁Kbの小型化を実現できる。 Thus, in order to adjust the pressure with respect to the second blade chamber 10b in the sealed container 1 by the pressure switching valve Kb, the pressure switching valve Kb needs to be further downsized. Therefore, if the slider 24A can always be accurately positioned, the required stroke including the tolerance of the slider 24A can be reduced, and the pressure switching valve Kb can be downsized.
 しかるに、第2のブレード室10bと吸込み連通路26Aとが連通する位置では周囲が吐出圧力雰囲気であることもあり、高低圧シール部が多く、スライダ24Aを正確に位置決めしないと、リーク量が多くなり、性能低下を生じてしまう。 However, at the position where the second blade chamber 10b and the suction communication passage 26A communicate with each other, the surrounding area may be a discharge pressure atmosphere, and there are many high and low pressure seal portions, and if the slider 24A is not positioned accurately, the amount of leakage is large. As a result, performance is degraded.
 上述の実施の形態によれば、圧力切換え弁Kbのスライダ24Aが第2のブレード室10bと吸込み連通路26Aとを連通する位置で制止されるように、段差部(スライダ位置決め手段)60を備えたので、圧力切換え弁Kbの小型化が可能となる。併せて、リーク量の低減を図り、性能の向上を得られる。 According to the embodiment described above, the step portion (slider positioning means) 60 is provided so that the slider 24A of the pressure switching valve Kb is restrained at a position where the second blade chamber 10b and the suction communication passage 26A communicate with each other. Therefore, the pressure switching valve Kb can be downsized. In addition, the leakage amount can be reduced and the performance can be improved.
 さらに、密閉型圧縮機Rとして圧力切換え弁Kbの少なくとも一部を内蔵でき、外部配管を不要として、低コスト化を実現できる。なお、上記段差部60は、弁本体21Aにスライダ用孔25Aを設け、弁本体21Aの端部のみを加工して設けるか、別ピースで形成すればよい。 
 いずれにしても、スライダ24Aに対する位置決め手段として段差部60を備えたことにより、スライダ24Aの位置精度を確保し易く、より正確な位置決めを可能とする。
Further, at least a part of the pressure switching valve Kb can be incorporated as the hermetic compressor R, and no external piping is required, so that cost reduction can be realized. The step portion 60 may be formed by providing a slider hole 25A in the valve body 21A and processing only the end of the valve body 21A, or by using a separate piece.
In any case, the provision of the step portion 60 as the positioning means for the slider 24A makes it easy to ensure the positional accuracy of the slider 24A and enables more accurate positioning.
 この実施の形態では、電磁コイル22Bを、スライダ24Aの位置移動時のみに通電し、逆極性に切換える自己保持タイプのものを使用した。先の実施の形態で説明した通電の有無により制御するタイプのものに対して、切換え時のみの通電で同様の効果が得られ、消費電力を大幅に低減することができる。 In this embodiment, the self-holding type of the electromagnetic coil 22B, which is energized only when the position of the slider 24A is moved and switched to the reverse polarity, is used. In contrast to the type controlled by the presence / absence of energization described in the previous embodiment, the same effect can be obtained by energizing only at the time of switching, and the power consumption can be greatly reduced.
 スライダ24Aの軸方向に沿って貫通孔61を設けることで、スライダ24Aの両端部の圧力を常に同一に保つことができる。したがって、スライダ24Aの位置移動がスムーズに開始され、動作の信頼性向上を得られる。 By providing the through holes 61 along the axial direction of the slider 24A, the pressures at both ends of the slider 24A can always be kept the same. Therefore, the movement of the position of the slider 24A is smoothly started, and the operation reliability can be improved.
 図11は、第6の実施の形態における第1の変形例を示す、圧力切換え弁Kcと、この圧力切換え弁Kcを備えた密閉型圧縮機一部の模式的な縦断面図であり、通常運転(全能力運転)時の状態を示している。 FIG. 11 is a schematic longitudinal sectional view of a pressure switching valve Kc and a part of a hermetic compressor provided with the pressure switching valve Kc, showing a first modification example of the sixth embodiment. The state during operation (full capacity operation) is shown.
 弁本体21Cに設けられるスライダ用孔25Bは、弁本体21C端部においても同一直径で開口され吐出連通路28Aが形成される。弁本体21Cの端部fは、特に上側の一部のみ軸方向に突設され、副軸受8の鍔部8a周面に当接する。この突出部fの突出長さは、副軸受8の鍔部8a周面に嵌め込まれるバルブカバー12の板厚と略同一である。 
 スライダ24A自体の構造と、このスライダ24Aに取付けられる電磁コイル22Bと、磁性部材23Aと、圧縮ばね35については何ら変りがない。そして、他の構成は、先に図10A,図10Bで示したものと同一であるので、同番号を付して新たな説明を省略する。
The slider hole 25B provided in the valve main body 21C is opened with the same diameter at the end of the valve main body 21C to form a discharge communication path 28A. The end f of the valve main body 21 </ b> C protrudes in the axial direction, particularly in a part on the upper side, and abuts on the circumferential surface of the flange 8 a of the auxiliary bearing 8. The projecting length of the projecting portion f is substantially the same as the plate thickness of the valve cover 12 fitted into the peripheral surface of the flange portion 8a of the auxiliary bearing 8.
There is no change in the structure of the slider 24A itself, the electromagnetic coil 22B attached to the slider 24A, the magnetic member 23A, and the compression spring 35. Since the other configuration is the same as that shown in FIGS. 10A and 10B, the same number is assigned and a new description is omitted.
 休筒運転時は、電磁コイル22Bに対し逆極性に切換えることで、スライダ24Aが図の状態から左方向へ移動し、ついにはスライダ24A端部がバルブカバー12に衝止される。すなわち、ここではバルブカバー12がスライダ24Aの位置決め手段を構成して、スライダ24Aを第2の動作位置に位置決めする。 During cylinder resting operation, the polarity of the electromagnetic coil 22B is switched to the opposite polarity, so that the slider 24A moves leftward from the state shown in the figure, and finally the end of the slider 24A is stopped by the valve cover 12. That is, here, the valve cover 12 constitutes a positioning means for the slider 24A, and positions the slider 24A at the second operating position.
 このように、弁本体21Cにスライダ位置決め手段を設けるのではなく、既存の部品であるバルブカバー12で兼用させることができ、コストへの影響を抑制する。また、圧力切換え弁Kc自体を副軸受8の外周面に当接することで、第2のブレード室10bの閉塞性が向上する。 Thus, instead of providing the slider body positioning means in the valve main body 21C, the valve cover 12 which is an existing part can also be used, and the influence on the cost is suppressed. Further, by closing the pressure switching valve Kc itself against the outer peripheral surface of the sub-bearing 8, the closing performance of the second blade chamber 10b is improved.
 図12は、第6の実施の形態における第2の変形例を示す、圧力切換え弁Kdと、この圧力切換え弁Kdを備えた密閉型圧縮機一部の模式的な縦断面図であり、通常運転(全能力運転)時の状態を示している。 FIG. 12 is a schematic longitudinal sectional view of a pressure switching valve Kd and a part of a hermetic compressor provided with the pressure switching valve Kd, showing a second modification of the sixth embodiment. The state during operation (full capacity operation) is shown.
 本来の弁本体を備えた部位である密閉容器1内周壁近傍位置まで副軸受8Aの一部を延長化してなり、副軸受8Aは圧力切換え弁Kdの一部を兼用した構成となっている。副軸受8Aの延長部分外周面から軸芯に向ってスライダ用孔25Cが設けられていて、このスライダ用孔25C端部がスライダ位置決め手段となる。 A part of the auxiliary bearing 8A is extended to a position in the vicinity of the inner peripheral wall of the sealed container 1, which is a part provided with the original valve body, and the auxiliary bearing 8A is configured to also use a part of the pressure switching valve Kd. A slider hole 25C is provided from the outer peripheral surface of the extension portion of the auxiliary bearing 8A toward the axis, and the end of the slider hole 25C serves as a slider positioning means.
 さらに、副軸受8Aの延長部分に吸込み連通路26Aと、ブレード室連通路27A及び吐出連通路28Aが設けられる。 Furthermore, a suction communication path 26A, a blade chamber communication path 27A, and a discharge communication path 28A are provided in an extension of the auxiliary bearing 8A.
 スライダ24A自体の構造と、このスライダ24Aに取付けられる電磁コイル22Bと、磁性部材23Aと、圧縮ばね35については何ら変りがない。そして、他の構成は、先に図10A,図10Bで示したものと同一であるので、同番号を付して新たな説明を省略する。 The structure of the slider 24A itself, the electromagnetic coil 22B attached to the slider 24A, the magnetic member 23A, and the compression spring 35 are not changed. Since the other configuration is the same as that shown in FIGS. 10A and 10B, the same number is assigned and a new description is omitted.
 休筒運転時は、電磁コイル22Bに対して逆極性に切換えることで、スライダ24Aは図の状態から左方向へ移動し、ついにはスライダ24A端部がスライダ位置決め手段であるスライダ用孔25Cの端面に衝止され、第2の動作位置に位置決めされる。 During idle cylinder operation, the slider 24A moves to the left from the state shown in the figure by switching to the opposite polarity with respect to the electromagnetic coil 22B. Finally, the end of the slider 24A is the end face of the slider hole 25C which is the slider positioning means. And is positioned at the second operating position.
 ここでも、スライダ位置決め手段を既存の部品である副軸受8Aで兼用させることができ、コストへの影響を抑制する。スペース効率が良くなり、圧力切換え弁Kdの内蔵がより容易となり、設計自由度の向上を得られる。圧力切換え弁Kd自体を副軸受8Aのスライダ用孔24C端面に当接することで、第2のブレード室10bの閉塞性が向上する。 Also here, the slider positioning means can be shared by the auxiliary bearing 8A which is an existing part, and the influence on the cost is suppressed. The space efficiency is improved, the pressure switching valve Kd is easily built in, and the degree of freedom in design can be improved. By closing the pressure switching valve Kd itself against the end face of the slider hole 24C of the auxiliary bearing 8A, the closing performance of the second blade chamber 10b is improved.
 なお、上述した円筒部材31を備えた圧力切換え弁Ka~Kdにおいて、円筒部材31を密閉容器1にロウ付け加工により取付けるようにしたが、これに限定されるものではなく、以下に述べるようにしても良い。 In the pressure switching valves Ka to Kd including the cylindrical member 31 described above, the cylindrical member 31 is attached to the sealed container 1 by brazing, but the present invention is not limited to this and is described below. May be.
 図13A,図13B及び図14A,図14Bは、第7の実施の形態における圧力切換え弁Keと、この圧力切換え弁Keを備えた密閉型圧縮機一部の模式的な縦断面図と、概略の横断面図である。 FIGS. 13A, 13B, 14A, and 14B are a schematic longitudinal sectional view of a part of a hermetic compressor including the pressure switching valve Ke and the pressure switching valve Ke according to the seventh embodiment, and a schematic view. FIG.
 図13A,図13Bは能力半減運転時の状態を示し、図14A,図14Bは全能力運転時の状態を示している。 FIGS. 13A and 13B show a state during half-capacity operation, and FIGS. 14A and 14B show a state during full-capacity operation.
 そして、上記実施の形態では能力半減運転時において、全て第2のシリンダ室Sbを対象として休筒運転をなすようにしたが、ここでは第1のシリンダ室Saを対象として休筒運転をなすよう構成されている。 In the above-described embodiment, the idle cylinder operation is performed for the second cylinder chamber Sb at the time of half capacity operation. Here, the idle cylinder operation is performed for the first cylinder chamber Sa. It is configured.
 第2のシリンダ6Bに第2のブレード室10bが設けられ、第2のブレード11bと、この第2のブレード11bに常に背圧を付与する圧縮ばねであるばね部材14が収容される。したがって、第2のブレード11bの先端部は第2のシリンダ室Sbに収容される第2の偏心ローラ9bに常に接触状態にある。 A second blade chamber 10b is provided in the second cylinder 6B, and a second blade 11b and a spring member 14 which is a compression spring that always applies a back pressure to the second blade 11b are accommodated. Therefore, the tip of the second blade 11b is always in contact with the second eccentric roller 9b accommodated in the second cylinder chamber Sb.
 中間仕切り板2Aの外周面から回転軸が挿通する孔部に亘ってスライダ用孔25Dが設けられていて、スライダ24Aが挿入される。具体的には、密閉容器1に取付け用孔が設けられ、ガイドパイプ70の一端部が取付けられる。ガイドパイプ70の他端部は、密閉容器1から外部に必要最小限の長さで突出している。 A slider hole 25D is provided from the outer peripheral surface of the intermediate partition plate 2A to the hole through which the rotation shaft is inserted, and the slider 24A is inserted. Specifically, the airtight container 1 is provided with an attachment hole, and one end of the guide pipe 70 is attached. The other end of the guide pipe 70 protrudes from the sealed container 1 to the outside with a necessary minimum length.
 上記ガイドパイプ70に非磁性体からなる円筒部材31が挿通されていて、ガイドパイプ70に対して円筒部材31は高周波誘導加熱により接合固着されている。 A cylindrical member 31 made of a non-magnetic material is inserted into the guide pipe 70, and the cylindrical member 31 is bonded and fixed to the guide pipe 70 by high frequency induction heating.
 上述のような密閉容器1(あるいはガイドパイプ70)に円筒部材31をロウ付け加工するのと比較して、高周波誘導加熱は、短時間で、均一な加熱加工が行える。したがって、円筒部材31の熱変形を確実に阻止した取付け固定をなして、スライダ用孔25Dと円筒部材31の同芯度を確保できる。 As compared with the case where the cylindrical member 31 is brazed to the closed container 1 (or the guide pipe 70) as described above, the high frequency induction heating can perform uniform heating in a short time. Accordingly, it is possible to secure the concentricity between the slider hole 25 </ b> D and the cylindrical member 31 by performing mounting and fixing that reliably prevents thermal deformation of the cylindrical member 31.
 円筒部材31の一端部は密閉容器1の内部に挿入され、上記中間仕切り板2Aのスライダ用孔25D周面に設けられる段部に圧入嵌合される。円筒部材31の他端部は密閉容器1から外部に突出し、この端部に電磁コイル22Bが取付けられて、円筒部材31端部は電磁コイル22Bにより閉止される。 One end of the cylindrical member 31 is inserted into the sealed container 1 and press-fitted into a step provided on the peripheral surface of the slider hole 25D of the intermediate partition plate 2A. The other end of the cylindrical member 31 protrudes outside from the sealed container 1, and an electromagnetic coil 22B is attached to this end, and the end of the cylindrical member 31 is closed by the electromagnetic coil 22B.
 上記スライダ用孔25Dから円筒部材31内部に亘って、スライダ24Aと、このスライダ24Aと一体に設けられ、もしくは別部品として連結される磁性部材23Aと、圧縮ばね35が収容される。スライダ用孔25Dの所定部位にストッパピン72が、スライダ用孔25Dを横断して設けられる。 The slider 24A, the magnetic member 23A provided integrally with the slider 24A or connected as a separate part, and the compression spring 35 are accommodated from the slider hole 25D to the inside of the cylindrical member 31. A stopper pin 72 is provided at a predetermined portion of the slider hole 25D across the slider hole 25D.
 アキュームレータ20から延出される吸込み管Pが密閉容器1を貫通し、中間仕切り板2Aに設けられる吸込み案内路40に接続される。吸込み案内路40は、2本の案内路40a,40bに分岐され、一方の分岐案内路40aが第1のシリンダ室Saに連通し、他方の分岐案内路40bが第2のシリンダ室Sbに連通することは上述した通りである。 A suction pipe P extending from the accumulator 20 passes through the sealed container 1 and is connected to a suction guide path 40 provided in the intermediate partition plate 2A. The suction guide path 40 is branched into two guide paths 40a and 40b. One branch guide path 40a communicates with the first cylinder chamber Sa, and the other branch guide path 40b communicates with the second cylinder chamber Sb. This is as described above.
 この実施の形態では、中間仕切り板2Aの側面部から横孔73が設けられていて、上記スライダ用孔25Dの周面部位から軸芯を介して対向する周面部位に貫通し、さらに上記吸込み案内路40に連通するように設けられる。 In this embodiment, a lateral hole 73 is provided from the side surface portion of the intermediate partition plate 2A, penetrates from the peripheral surface portion of the slider hole 25D to the opposing peripheral surface portion via the shaft core, and further the suction It is provided so as to communicate with the guide path 40.
 なお、横孔73の中間仕切り板2A部位は栓体74にて閉塞されている。したがって、横孔73はスライダ用孔25Dと吸込み案内路40とを連通する吸込み連通路26Bを形成することになる。 It should be noted that the intermediate partition plate 2 </ b> A portion of the lateral hole 73 is closed with a plug 74. Accordingly, the lateral hole 73 forms a suction communication path 26B that allows the slider hole 25D and the suction guide path 40 to communicate with each other.
 この吸込み連通路26Bは、図に二点鎖線で示すように、中間仕切り板2Aの反対側の側面部から、吸込み案内路40を介してスライダ用孔25Dまで設けられる横孔73aから構成してもよい。 The suction communication path 26B is composed of a lateral hole 73a provided from the side surface on the opposite side of the intermediate partition plate 2A to the slider hole 25D via the suction guide path 40, as shown by a two-dot chain line in the figure. Also good.
 ただし、横孔73aの中間仕切り板2A側面部から吸込み案内路40に至るまでの部分は、吸込み案内路40に挿入し接続される吸込み管Pの周面部にて閉塞される位置を選択する必要がある。結局、この横孔73aによっても、スライダ用孔25Dと吸込み案内路40とを連通する吸込み連通路26Bが形成される。 However, it is necessary to select a position where the portion from the side surface portion of the intermediate partition plate 2A to the suction guide path 40 of the horizontal hole 73a is blocked by the peripheral surface portion of the suction pipe P that is inserted into and connected to the suction guide path 40. There is. Eventually, the suction hole 26 </ b> B that connects the slider hole 25 </ b> D and the suction guide path 40 is also formed by the lateral hole 73 a.
 上記中間仕切り板2Aには、スライダ用孔25Dと、第1のブレード室10aとを連通するブレード室連通路27Bが設けられ、さらに、中間仕切り板2Aと第1のシリンダ6Aには、スライダ用孔25Dと密閉容器1内部とを連通する吐出連通路28Bが設けられる。 The intermediate partition plate 2A is provided with a blade chamber communication passage 27B that communicates the slider hole 25D with the first blade chamber 10a. Further, the intermediate partition plate 2A and the first cylinder 6A include a slider chamber. A discharge communication path 28 </ b> B that communicates the hole 25 </ b> D and the inside of the sealed container 1 is provided.
 このようにして構成されており、図13A,図13Bでは、スライダ24Aが第2の動作位置にあって、スライダ24Aの切欠き部30Aとスライダ用孔25Dを介して吸込み連通路26Bとブレード室連通路27Bが連通する。第1のブレード室10aに吸込み圧(低圧)が導かれ、第1のシリンダ室Saでは休筒運転(能力半減運転)となる。 13A and 13B, the slider 24A is in the second operating position, and the suction communication path 26B and the blade chamber are provided via the notch 30A of the slider 24A and the slider hole 25D. The communication path 27B communicates. The suction pressure (low pressure) is guided to the first blade chamber 10a, and the cylinder resting operation (capacity half operation) is performed in the first cylinder chamber Sa.
 図14A,図14Bに示すように電磁コイル22Bへの通電を遮断すると、圧縮ばね35の弾性力が作用して、スライダ24Aは中間仕切り板2Aの中心軸方向にスライド付勢される。スライダ24Aの先端部がストッパピン72に衝止され、第1の動作位置に位置決めされる。 14A and 14B, when the energization to the electromagnetic coil 22B is interrupted, the elastic force of the compression spring 35 acts, and the slider 24A is slid and biased in the direction of the central axis of the intermediate partition plate 2A. The tip of the slider 24A is stopped by the stopper pin 72 and positioned at the first operating position.
 この状態で、スライダ24Aの切欠き部30Aとスライダ用孔25Dを介してブレード室連通路27Bと吐出連通路28Bが連通し、密閉容器1内の吐出圧(高圧)が第1のブレード室10aに導かれる。したがって、第2のシリンダ室Sbとともに第1のシリンダ室Saにおいても圧縮作用が行われる通常運転(全能力運転)となる。 In this state, the blade chamber communication passage 27B and the discharge communication passage 28B communicate with each other through the notch 30A of the slider 24A and the slider hole 25D, and the discharge pressure (high pressure) in the hermetic container 1 is changed to the first blade chamber 10a. Led to. Accordingly, the normal operation (full capacity operation) is performed in which the compression action is performed in the first cylinder chamber Sa together with the second cylinder chamber Sb.
 上述したように、密閉容器1にガイドパイプ70を設け、このガイドパイプ70に圧力切換え弁Keを構成する円筒部材31を高周波誘導加熱により接合固着したので、ロウ付け加工と比較して、短時間で、均一な加熱加工が行える。円筒部材31の熱変形を確実に阻止して、スライダ用孔25Dと円筒部材31の同芯度を確保できる。 As described above, the guide pipe 70 is provided in the hermetic container 1, and the cylindrical member 31 constituting the pressure switching valve Ke is bonded and fixed to the guide pipe 70 by high-frequency induction heating. Thus, uniform heating can be performed. The thermal deformation of the cylindrical member 31 can be reliably prevented, and the concentricity between the slider hole 25D and the cylindrical member 31 can be ensured.
 したがって、円筒部材31に収容されるスライダ24Aの動作不良を防ぎ、信頼性の向上を得られる。また、密閉容器1にガイドパイプ70を設けたので、円筒部材31の密閉容器への取付を加熱量を大きくすることなしに容易に行うことができる。 Therefore, the malfunction of the slider 24A accommodated in the cylindrical member 31 can be prevented and the reliability can be improved. Moreover, since the guide pipe 70 is provided in the sealed container 1, the cylindrical member 31 can be easily attached to the sealed container without increasing the heating amount.
 図15は、第7の実施の形態における変形例である。第7の実施の形態とは相違する構成についてのみ記載し、同一部品と同一構成については図13及び図14を適用し、同番号を付して説明を省略する。 FIG. 15 shows a modification of the seventh embodiment. Only the configuration different from the seventh embodiment will be described, and FIGS. 13 and 14 will be applied to the same components and the same configurations, and the description will be omitted by assigning the same numbers.
 密閉容器1に設けられるガイドパイプ70を、密閉容器1よりもヤング率の小さい(剛性が小さい材質あるいは形態)素材を選択する。円筒部材31には補助パイプ73が固着されていて、この補助パイプ73は円筒部材31よりもヤング率の小さい素材(剛性が小さい材質あるいは形態)で構成する。 For the guide pipe 70 provided in the sealed container 1, a material having a Young's modulus smaller than that of the sealed container 1 (material or form having low rigidity) is selected. An auxiliary pipe 73 is fixed to the cylindrical member 31, and the auxiliary pipe 73 is made of a material having a Young's modulus smaller than that of the cylindrical member 31 (a material or a form having low rigidity).
 そして、ガイドパイプ70と補助パイプ73をロウ付け加工により接合固着することで、円筒部材31は密閉容器1に取付けられる。 The cylindrical member 31 is attached to the sealed container 1 by joining and fixing the guide pipe 70 and the auxiliary pipe 73 by brazing.
 すなわち、ガイドパイプ70と補助パイプ73はロウ付け加工の際に加熱されるが、これらは剛性が小さい材質のものが選択されていて、密閉容器1に取付けられる円筒部材31の変形を防止できる。したがって、円筒部材31の内部に収容されるスライダ24Aの動作不良を防ぎ、信頼性の向上を得られる。 That is, the guide pipe 70 and the auxiliary pipe 73 are heated during the brazing process, but these are made of a material having low rigidity, and can prevent the cylindrical member 31 attached to the sealed container 1 from being deformed. Therefore, the malfunction of the slider 24A accommodated in the cylindrical member 31 can be prevented, and the reliability can be improved.
 また、ガイドパイプ70と補助パイプ73は、ともに銅パイプを選択してなり、これらガイドパイプ70と補助パイプ73を銅ロウ付け加工により接合固定しても、上述した作用効果が得られることは言うまでもない。 The guide pipe 70 and the auxiliary pipe 73 are both selected from copper pipes, and it goes without saying that the above-described effects can be obtained even if the guide pipe 70 and the auxiliary pipe 73 are joined and fixed by copper brazing. Yes.
 なお、第7の実施の形態では休筒運転をなす対象を第1のシリンダ室Saとし、これ以外の実施の形態では第2のシリンダ室Sbとして、それぞれに作用するブレード室10a,10bに永久磁石Zを取付けて、休筒運転の際にはブレード室10a,10bに収容されるブレード11a,11bの後端部を磁気吸着する。 In the seventh embodiment, the target of the cylinder resting operation is the first cylinder chamber Sa, and in the other embodiments, the second cylinder chamber Sb is permanently attached to the blade chambers 10a and 10b acting on the cylinder chamber Sa. The magnet Z is attached, and the rear end portions of the blades 11a and 11b accommodated in the blade chambers 10a and 10b are magnetically attracted during the cylinder resting operation.
 本来、圧縮作用を休止する休筒運転中の時のブレードには、吐出圧と吸込み圧の差圧による力は作用せず、偏心ローラによって外径側に押しやられている。しかしながら、シリンダ室におけるガス撹拌による圧力脈動などによって微動することがあり、騒音発生に繋がるので、これを防止するため永久磁石でブレードを磁気吸着している。 Originally, the blade during the idle cylinder operation that stops the compression action does not act on the blade due to the differential pressure between the discharge pressure and the suction pressure, and is pushed to the outer diameter side by the eccentric roller. However, there may be slight movement due to pressure pulsation caused by gas agitation in the cylinder chamber, leading to noise generation. To prevent this, the blade is magnetically adsorbed by a permanent magnet.
 たとえば特開2004-301114号公報には、シリンダの側面部からブレード室に亘って永久磁石取付け用の横孔が設けられている。この横孔に挿入される永久磁石は、一端面がシリンダ側面部と同一面をなし、他端面はブレード室に突出して、取付け固定される構成が開示されている。 For example, in Japanese Patent Application Laid-Open No. 2004-301114, a lateral hole for attaching a permanent magnet is provided from the side surface of the cylinder to the blade chamber. A configuration is disclosed in which one end surface of the permanent magnet inserted into the horizontal hole is flush with the cylinder side surface, and the other end surface protrudes into the blade chamber and is fixedly mounted.
 ブレードは縦長の板状をなしているのに対して、永久磁石はブレードを確実に磁気吸着するとともに、確実にシリンダに取付け固定するために、軸方向をシリンダ端面からブレード室に向けた円柱状のものが用いられる。 The blade has a vertically long plate shape, whereas the permanent magnets are magnetically attracted to the blade, and in order to securely attach and fix to the cylinder, the cylindrical shape with the axial direction from the cylinder end face toward the blade chamber Is used.
 上述の開示技術によると、シリンダの肉厚内に直径の大きな横孔を設けるので、残されたシリンダの肉厚が薄くなり、剛性が降下して、加工や組立ての際に変形が生じ易い。 
 円柱状に成形される永久磁石は、径方向に磁化されているが、外周側に磁性部材が無い。そのため、磁気回路の抵抗が大きくて磁束が少なく、充分な磁力を発生できない。所定の磁力を得るためには、さらに永久磁石を大型化せざるを得ない他の不具合がある。
According to the above disclosed technique, since the large-diameter lateral hole is provided in the thickness of the cylinder, the remaining thickness of the cylinder is reduced, the rigidity is lowered, and deformation is likely to occur during processing and assembly.
The permanent magnet formed into a cylindrical shape is magnetized in the radial direction, but there is no magnetic member on the outer peripheral side. Therefore, the resistance of the magnetic circuit is large, the magnetic flux is small, and a sufficient magnetic force cannot be generated. In order to obtain a predetermined magnetic force, there is another problem that the permanent magnet must be enlarged.
 第8の実施の形態においては、上記不具合を勘案して、ブレード室における永久磁石の取付け構造の改良化を図っている。 In the eighth embodiment, the permanent magnet mounting structure in the blade chamber is improved in consideration of the above problems.
 以下、たとえば第2のブレード室10bを対象として説明するが、第1のブレード室10aに対象を変えても何ら支障がない。 Hereinafter, for example, the second blade chamber 10b will be described as an object, but there is no problem even if the object is changed to the first blade chamber 10a.
 図16に示すように、第2のシリンダ6Bに第2のブレード室10bが設けられる。このブレード室10bは、第2のシリンダ6Bの内径部に形成される第2のシリンダ室Sbに対して開口され、第2のシリンダ6Bの外径方向に沿って設けられる溝部10b1と、この溝部10b1の端部に設けられる縦孔部10b2とからなる。 As shown in FIG. 16, the second blade chamber 10b is provided in the second cylinder 6B. The blade chamber 10b is opened to the second cylinder chamber Sb formed in the inner diameter portion of the second cylinder 6B, and a groove portion 10b1 provided along the outer diameter direction of the second cylinder 6B. It consists of the vertical hole part 10b2 provided in the edge part of 10b1.
 第2のブレード室10bを構成する溝部10b1及び縦孔部10b2ともに、第2のシリンダ6Bの上面から下面に亘って、シリンダ6Bの板厚方向である上下両面を貫通して設けられるものである。 Both the groove portion 10b1 and the vertical hole portion 10b2 constituting the second blade chamber 10b are provided through the upper and lower surfaces in the thickness direction of the cylinder 6B from the upper surface to the lower surface of the second cylinder 6B. .
 上記溝部10b1と縦孔部10b2とに亘って第2のブレード11bが、移動自在に収容される。すなわち、第2のシリンダ室Sbからのガス漏れ防止のため、第2のブレード11bの両側面は溝部10b1の両側面に対してほとんど隙間の無い状態で嵌め込まれ、摺接状態で移動する。 The second blade 11b is movably accommodated across the groove 10b1 and the vertical hole 10b2. In other words, in order to prevent gas leakage from the second cylinder chamber Sb, both side surfaces of the second blade 11b are fitted into the both side surfaces of the groove 10b1 with almost no gap and move in a sliding contact state.
 第2のブレード室10bにおける縦孔部10b2で、溝部10b1と対向する周面部位に、シリンダ6Bの板厚方向に沿って、ブレード11bの幅寸法と略同一の幅寸法の永久磁石Zが取付けられる。永久磁石Zの縦孔部10b2への取付けは、接着剤を用いてもよく、あるいは後述するように保持部材を用いてもよい。 A permanent magnet Z having a width dimension substantially the same as the width dimension of the blade 11b is attached along the plate thickness direction of the cylinder 6B to a peripheral surface portion facing the groove section 10b1 in the vertical hole section 10b2 in the second blade chamber 10b. It is done. The permanent magnet Z may be attached to the vertical hole portion 10b2 using an adhesive, or using a holding member as described later.
 第2のブレード11bは、この先端部が第2のシリンダ室Sbの周面からわずかに没入する位置にあるとき、後端部は永久磁石Zに接着する長さに形成される。紙面の前後方向である縦方向の長さは、第2のシリンダの肉厚と同一である。 The rear end of the second blade 11b is formed to have a length that adheres to the permanent magnet Z when the front end is in a position where it is slightly recessed from the peripheral surface of the second cylinder chamber Sb. The length in the longitudinal direction, which is the front-rear direction of the paper surface, is the same as the thickness of the second cylinder.
 このようにブレード室10b内に永久磁石Zを取付けてブレード11bを磁気吸着することにより、シリンダ6B~永久磁石Z~ブレード11bに至る磁気回路が形成され、永久磁石Zの磁力が効率よく利用でき、これによって永久磁石Zの使用量の抑制化が可能となる。 Thus, by attaching the permanent magnet Z in the blade chamber 10b and magnetically attracting the blade 11b, a magnetic circuit extending from the cylinder 6B to the permanent magnet Z to the blade 11b is formed, and the magnetic force of the permanent magnet Z can be used efficiently. As a result, the amount of permanent magnet Z used can be reduced.
 永久磁石Zを取付けるために、シリンダ6Bやブレード室10bに加工を施す必要がなく、加工工数が削減するとともに、シリンダ6Bが削られることがないので、シリンダ6Bの剛性低下を避けることができる。 Since it is not necessary to process the cylinder 6B and the blade chamber 10b in order to attach the permanent magnet Z, the number of processing steps is reduced, and the cylinder 6B is not scraped, so that a reduction in rigidity of the cylinder 6B can be avoided.
 図17A,図17Bと図18A,図18B,図18Cは、第8の実施の形態における変形例である。 FIGS. 17A and 17B and FIGS. 18A, 18B, and 18C are modified examples of the eighth embodiment.
 図17Aは、第2のブレード11bを第2のブレード室10bに保持する第1の保持部材80Aの平面図、図17Bは、第2のブレード11bを第2のブレード室10bに保持する第2の保持部材80Bの平面図である。 FIG. 17A is a plan view of the first holding member 80A that holds the second blade 11b in the second blade chamber 10b, and FIG. 17B shows the second blade that holds the second blade 11b in the second blade chamber 10b. It is a top view of holding member 80B.
 図18Aは第1の保持部材の斜視図、図18Bは第1の保持部材の正面図、図18Cは第1の保持部材の側面図である。 18A is a perspective view of the first holding member, FIG. 18B is a front view of the first holding member, and FIG. 18C is a side view of the first holding member.
 第1の保持部材80Aは、上下方向に離間する一対の水平片と、これら一対の水平片の中央部相互を連結する縦片とから略Hの字状に形成されるとともに、下部側の水平片中央から下方に突出する片部が設けられる基体部Xgと、基体部Xgの水平片両端から一体に湾曲成される曲成部Xmと、基体部Xgに設けられる後述する保持用突部Xhとからなる。 The first holding member 80A is formed in a substantially H-shape from a pair of horizontal pieces that are spaced apart in the vertical direction and a vertical piece that connects the central portions of the pair of horizontal pieces, and a lower horizontal piece. A base portion Xg provided with a piece projecting downward from the center of the piece, a bent portion Xm integrally bent from both ends of the horizontal piece of the base portion Xg, and a holding projection Xh described later provided on the base portion Xg It consists of.
 保持用突部Xhは、基体部Xgの縦片中央部で上下方向に所定間隔を存し、曲成部Xmの曲成方向とは逆方向に切り起される一対の突部と、突部相互間に対向する部位で基体部Xgの両側縁に沿い、曲成部Xmの曲成方向とは逆方向に折曲される折曲片とから構成される。保持用突部Xhの突出(折曲)高さは、永久磁石Zの厚さよりも大とする。 The holding protrusion Xh has a pair of protrusions that are cut in a direction opposite to the bending direction of the bending portion Xm, with a predetermined interval in the vertical direction at the center of the vertical piece of the base portion Xg, and the protrusion It is composed of bent pieces that are bent in opposite directions to the bending direction of the bent portion Xm along the both side edges of the base portion Xg at portions facing each other. The protrusion (folding) height of the holding projection Xh is made larger than the thickness of the permanent magnet Z.
 保持用突部Xhを構成する一対の突部と折曲片との間に永久磁石Zを挿入し、保持する。より信頼性を確保するには、保持用突部Xhと永久磁石Zとの間に接着剤を塗布しておくと良い。保持用突部hの突出高さの設定により、この端縁は永久磁石Zの面から突出することになる。 The permanent magnet Z is inserted and held between the pair of protrusions constituting the holding protrusion Xh and the bent piece. In order to ensure reliability, it is preferable to apply an adhesive between the holding projection Xh and the permanent magnet Z. The end edge protrudes from the surface of the permanent magnet Z by setting the protrusion height of the holding protrusion h.
 そして、永久磁石Zを保持した第1の保持部材80Aを第2のブレード室10bに挿入し取付ける。このときも予め、第1の保持部材80Aの曲成部Xm取付け面に接着剤を塗布すると良い。 Then, the first holding member 80A holding the permanent magnet Z is inserted and attached to the second blade chamber 10b. Also at this time, it is preferable to apply an adhesive to the bent portion Xm mounting surface of the first holding member 80A in advance.
 あるいは、曲成部Xmの曲率半径を、縦孔部10b2の曲率半径よりも大に形成し、曲成部Xmを縮めた状態で縦孔部10b2に挿入し、曲成部Xmの弾性反発力を利用しての取付けであっても良い。いずれにしても、永久磁石Zは第1の保持部材80Aによって第2のブレード室10bに取付けられる。 Alternatively, the radius of curvature of the bent portion Xm is formed larger than the radius of curvature of the vertical hole portion 10b2, and the bent portion Xm is inserted into the vertical hole portion 10b2 in a contracted state, and the elastic repulsive force of the bent portion Xm. It is also possible to use an attachment. In any case, the permanent magnet Z is attached to the second blade chamber 10b by the first holding member 80A.
 第1の保持80Aは、板金のプレス成形で得られ、高精度でありながら廉価に製作できる。永久磁石のブレード室10bへの取付けは、保持部材80Aに取付けたあとブレード室10bに挿入すればよく、容易に行える。 The first holding 80A is obtained by press forming a sheet metal and can be manufactured at a low cost while being highly accurate. The permanent magnet can be easily attached to the blade chamber 10b by inserting the permanent magnet into the blade chamber 10b after being attached to the holding member 80A.
 第1の保持部材80Aを構成する保持用突部Xhの突出(折曲)高さを、永久磁石Zの厚さよりも大としたので、永久磁石Zがブレード11bを磁気吸着した状態での衝撃を保持部材80Aが受ける。したがって、永久磁石Zの損傷を防止でき、信頼性の向上を得られる。 Since the protrusion (bending) height of the holding protrusion Xh constituting the first holding member 80A is made larger than the thickness of the permanent magnet Z, the impact when the permanent magnet Z magnetically attracts the blade 11b. 80A receives the holding member. Therefore, damage to the permanent magnet Z can be prevented, and reliability can be improved.
 次に、図17Bに示す、第2の保持部材80Bについて説明する。 
 第2の保持部材80Bは、第2のブレード室10bの周面一部に沿うよう湾曲成されるとともに、この一面に保持用突部Xnが一体に設けられてなる。第2のブレード室10bの軸方向長さと、第2の保持部材80Bの長さが一致する。
Next, the second holding member 80B shown in FIG. 17B will be described.
The second holding member 80B is curved so as to be along a part of the peripheral surface of the second blade chamber 10b, and a holding projection Xn is integrally provided on the one surface. The axial length of the second blade chamber 10b matches the length of the second holding member 80B.
 第2の保持部材80Bを第2のブレード室10bに取付けるのに、予め第2の保持部材80Bに永久磁石Zを取付けたうえで、ブレード室10bに挿入する。保持部材80Bに接着剤を塗布しておくか、保持部材80Bの曲率半径をブレード室10bの曲率半径よりも大とし、収縮状態で挿入し、反発力をブレード室10bに作用させてもよい。 In order to attach the second holding member 80B to the second blade chamber 10b, the permanent magnet Z is attached to the second holding member 80B in advance and then inserted into the blade chamber 10b. An adhesive may be applied to the holding member 80B, or the radius of curvature of the holding member 80B may be larger than the radius of curvature of the blade chamber 10b and inserted in a contracted state, and the repulsive force may be applied to the blade chamber 10b.
 保持用突部Xmの突出高さは永久磁石Zの板厚よりもわずかに高く形成されていて、ブレード11bを磁気吸着したとき、永久磁石Zにブレード11bが接触しない。したがって、永久磁石Zの損傷を防止でき、信頼性の向上を得られる。 
 永久磁石Zがブレード11bに直接対面するので、永久磁石Zの磁力がブレード11bに確実に作用して、より信頼性の向上を得られる。
The protrusion height of the holding protrusion Xm is slightly higher than the plate thickness of the permanent magnet Z, and the blade 11b does not contact the permanent magnet Z when the blade 11b is magnetically attracted. Therefore, the permanent magnet Z can be prevented from being damaged, and the reliability can be improved.
Since the permanent magnet Z directly faces the blade 11b, the magnetic force of the permanent magnet Z acts on the blade 11b with certainty, thereby improving the reliability.
 なお、以上説明した実施の形態においては、通常運転である両方のシリンダ室で圧縮作用を行う全能力運転に対して、一方のシリンダ室において休筒運転を行う、全能力の半分の能力半減運転をなすようにしたが、これに限定されるものではない。 
 すなわち、休筒運転をなす側のシリンダ室の排除容積を適宜変更することで、全能力運転と、任意の圧縮能力での運転切換えが可能となる。
In the embodiment described above, the half capacity operation that is half of the full capacity is performed in which the cylinder resting operation is performed in one cylinder chamber in contrast to the full capacity operation in which the compression operation is performed in both cylinder chambers in the normal operation. However, the present invention is not limited to this.
That is, it is possible to switch between full capacity operation and operation with an arbitrary compression capacity by appropriately changing the displacement volume of the cylinder chamber on the side where cylinder resting is performed.
 図19は2気筒回転式圧縮機Qの縦断面図及び冷凍サイクル装置の冷凍サイクル構成を示す図。図20は2気筒回転式圧縮機Qの要部を拡大した縦断面。図21は2気筒回転式圧縮機Qの一部を分解した斜視図である。(なお、図面上の煩雑さを避けるために、説明しても符号を付していない部品があり、図示しても説明しない部品もある。以下同)
 はじめに2気筒回転式圧縮機Qから説明すると、101は密閉容器であって、この密閉容器101内の下部には圧縮機構部103が設けられ、上部には電動機部104が設けられる。これら圧縮機構部103と電動機部104は、回転軸105によって連結される。
FIG. 19 is a longitudinal sectional view of a two-cylinder rotary compressor Q and a diagram showing a refrigeration cycle configuration of a refrigeration cycle apparatus. FIG. 20 is an enlarged longitudinal section of the main part of the two-cylinder rotary compressor Q. FIG. 21 is an exploded perspective view of a part of the two-cylinder rotary compressor Q. (In order to avoid complications in the drawings, there are parts that are not denoted by reference numerals even if they are explained, and there are parts that are not explained even if they are shown. The same applies hereinafter).
First, the two-cylinder rotary compressor Q will be described. 101 is a hermetic container, and a compression mechanism 103 is provided in the lower part of the hermetic container 101, and an electric motor part 104 is provided in the upper part. The compression mechanism unit 103 and the electric motor unit 104 are connected by a rotating shaft 105.
 上記圧縮機構部103は中間仕切り板102を介して、この中間仕切り板102の上面部に第1のシリンダ106Aを備え、下面部に第2のシリンダ106Bを備えている。さらに、第1のシリンダ106Aの上面部に主軸受7が取付け固定され、第2のシリンダ106Bの下面部に副軸受108が取付け固定される。 The compression mechanism section 103 includes a first cylinder 106A on the upper surface portion of the intermediate partition plate 102 and a second cylinder 106B on the lower surface portion via the intermediate partition plate 102. Further, the main bearing 7 is attached and fixed to the upper surface portion of the first cylinder 106A, and the auxiliary bearing 108 is attached and fixed to the lower surface portion of the second cylinder 106B.
 上記主軸受107は回転軸105の主軸部105aを軸支し、副軸受108は回転軸105の副軸部105bを軸支する。さらに、上記回転軸105は、第1、第2のシリンダ106A、106B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部Yaと第2の偏心部Ybを一体に備えている。 The main bearing 107 supports the main shaft portion 105 a of the rotating shaft 105, and the auxiliary bearing 108 supports the auxiliary shaft portion 105 b of the rotating shaft 105. Further, the rotating shaft 105 penetrates through the first and second cylinders 106A and 106B, and integrally forms the first eccentric portion Ya and the second eccentric portion Yb formed with a phase difference of about 180 °. I have.
 第1、第2の偏心部Ya、bは互いに同一軸径をなし、第1、第2のシリンダ106A、106Bの内径部に位置するように組立てられる。第1の偏心部Yaの周面には、第1の偏心ローラ109aが嵌合され、第2の偏心部Ybの周面には、第2の偏心ローラ109bが嵌合される。 The first and second eccentric portions Ya and b have the same shaft diameter and are assembled so as to be positioned at the inner diameter portions of the first and second cylinders 106A and 106B. A first eccentric roller 109a is fitted to the circumferential surface of the first eccentric portion Ya, and a second eccentric roller 109b is fitted to the circumferential surface of the second eccentric portion Yb.
 上記第1のシリンダ106Aの内径部は、主軸受107と中間仕切り板102によって囲まれていて、第1のシリンダ室Taが形成される。第2のシリンダ106Bの内径部は、副軸受108と中間仕切り板102によって囲まれていて、第2のシリンダ室Tbが形成される。 The inner diameter portion of the first cylinder 106A is surrounded by the main bearing 107 and the intermediate partition plate 102 to form a first cylinder chamber Ta. An inner diameter portion of the second cylinder 106B is surrounded by the auxiliary bearing 108 and the intermediate partition plate 102, and a second cylinder chamber Tb is formed.
 各シリンダ室Ta、Tbは互いに同一軸径及び高さ寸法に形成され、上記偏心ローラ109a、109bの周壁一部が各シリンダ室Ta、Tbの周壁一部に線接触しながら偏心回転自在に収容される。 The cylinder chambers Ta and Tb are formed to have the same shaft diameter and height dimension, and the eccentric rollers 109a and 109b are partly accommodated so that they can be eccentrically rotated while being in line contact with the peripheral walls of the cylinder chambers Ta and Tb. Is done.
 特に図21に示すように、第1のシリンダ106Aには、第1のシリンダ室Taと連通する第1のベーン室110aが設けられ、第1のベーン111aが移動自在に収容される。第2のシリンダ106Bには、第2のシリンダ室Tbと連通する第2のベーン室110bが設けられ、第2のベーン111bが移動自在に収容される。 In particular, as shown in FIG. 21, the first cylinder 106A is provided with a first vane chamber 110a communicating with the first cylinder chamber Ta, and the first vane 111a is movably accommodated therein. The second cylinder 106B is provided with a second vane chamber 110b communicating with the second cylinder chamber Tb, and the second vane 111b is movably accommodated therein.
 第1、第2のベーン111a、111bの先端部は平面視で半円状に形成されており、対向するシリンダ室Ta、Tbに突出して平面視で円形状の上記第1、第2の偏心ローラ109a、109b周壁に、この回転角度にかかわらず線接触できる。 The tip ends of the first and second vanes 111a and 111b are formed in a semicircular shape in a plan view, and project into the opposing cylinder chambers Ta and Tb and have a circular shape in the plan view. Line contact can be made with the peripheral walls of the rollers 109a and 109b regardless of the rotation angle.
 上記第1のシリンダ106Aのみ、第1のベーン室110aと、このシリンダ106Aの外周面とを連通する横孔fが設けられ、圧縮ばねであるばね部材112が収容される。ばね部材112は第1のベーン111aの後端側端面と密閉容器101内周壁との間に介在され、このベーン111aに弾性力(背圧)を付与する。 Only the first cylinder 106A is provided with a lateral hole f that communicates the first vane chamber 110a with the outer peripheral surface of the cylinder 106A, and accommodates a spring member 112 that is a compression spring. The spring member 112 is interposed between the rear end side end face of the first vane 111a and the inner peripheral wall of the sealed container 101, and applies an elastic force (back pressure) to the vane 111a.
 上記第2のベーン室110bには、第2のベーン111b以外に何らの部材も収容されていないが、後述するように第2のベーン室110bの設定環境及び、切換え機構Mの作用に応じて、第2のベーン111bの先端縁を上記第2の偏心ローラ109b周面に接触できるようになっている。 The second vane chamber 110b does not contain any members other than the second vane 111b. However, depending on the setting environment of the second vane chamber 110b and the operation of the switching mechanism M as described later. The tip edge of the second vane 111b can come into contact with the peripheral surface of the second eccentric roller 109b.
 すなわち、第2のシリンダ106Bの外形寸法形状と、中間仕切り板102及び副軸受108の外径寸法との関係から、第2のシリンダ106Bの外形一部は密閉容器101内に露出する。この密閉容器101への露出部分が、ベーン室110bに相当するように設計されており、したがってベーン室110b及びベーン111b後端部はケース内圧力を直接的に受ける。 That is, a part of the outer shape of the second cylinder 106B is exposed in the sealed container 101 from the relationship between the outer dimension of the second cylinder 106B and the outer diameter of the intermediate partition plate 102 and the auxiliary bearing 108. The exposed portion of the hermetic container 101 is designed to correspond to the vane chamber 110b. Therefore, the rear end portions of the vane chamber 110b and the vane 111b directly receive the pressure in the case.
 特に、第2のシリンダ106B及び第2のベーン室110bは構造物であるからケース内圧力を受けても何らの影響もないが、第2のベーン111bは第2のベーン室110bに摺動自在に収容され、かつこの後端部が第2のベーン室110bに位置するので、密閉容器101内の圧力を直接的に受けることとなる。 In particular, since the second cylinder 106B and the second vane chamber 110b are structures, there is no influence even if they are subjected to the pressure in the case, but the second vane 111b is slidable in the second vane chamber 110b. And the rear end thereof is located in the second vane chamber 110b, so that the pressure in the sealed container 101 is directly received.
 そしてさらに、第2のベーン111bの先端部が第2のシリンダ室Tbに対向しており、ベーン111b先端部はこのシリンダ室Tb内の圧力を受ける。結局、第2のベーン111bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。 Further, the tip of the second vane 111b faces the second cylinder chamber Tb, and the tip of the vane 111b receives the pressure in the cylinder chamber Tb. Eventually, the second vane 111b is configured to move in a direction from a higher pressure to a lower pressure according to the mutual pressure received by the front end and the rear end.
 再び図19に示すように、密閉容器101の上端部には、冷媒管Gが接続される。冷媒管Gは、凝縮器115と、膨張装置116と、蒸発器117を介してアキュームレータ118に接続され、さらにアキュームレータ118から上記2気筒回転式圧縮機Qに接続されて冷凍サイクルが構成される。 As shown in FIG. 19 again, the refrigerant pipe G is connected to the upper end of the sealed container 101. The refrigerant pipe G is connected to an accumulator 118 through a condenser 115, an expansion device 116, and an evaporator 117, and is further connected from the accumulator 118 to the two-cylinder rotary compressor Q to constitute a refrigeration cycle.
 なお説明すると、上記アキュームレータ118底部から2気筒回転式圧縮機Qに対して2本の吸込み冷媒管Ga,Gbが接続される。一方の吸込み冷媒管Gaは密閉容器101と第1のシリンダ106A側部を貫通し、第1のシリンダ室Ta内に直接連通する。他方の吸込み冷媒管Gbは密閉容器101を介して第2のシリンダ106B側部を貫通し、第2のシリンダ室Tb内に直接連通する。 In other words, two suction refrigerant tubes Ga and Gb are connected to the two-cylinder rotary compressor Q from the bottom of the accumulator 118. One suction refrigerant pipe Ga penetrates the sealed container 101 and the side of the first cylinder 106A, and communicates directly with the first cylinder chamber Ta. The other suction refrigerant pipe Gb passes through the side of the second cylinder 106B via the hermetic container 101, and communicates directly with the second cylinder chamber Tb.
 また、2気筒回転式圧縮機Qと凝縮器115とを連通する冷媒管Gの中途部から分岐冷媒管Gcが分岐して設けられる。この分岐冷媒管Gcは、中途部に第1の開閉弁120が設けられ、アキュームレータ118と第2のシリンダ室Tbとを連通する吸込み冷媒管Gbの中途部に接続される。 Further, a branch refrigerant pipe Gc is branched from a middle portion of the refrigerant pipe G communicating with the two-cylinder rotary compressor Q and the condenser 115. The branch refrigerant pipe Gc is provided with a first on-off valve 120 in the middle, and is connected to the middle part of the suction refrigerant pipe Gb that communicates the accumulator 118 and the second cylinder chamber Tb.
 さらに、上記吸込み冷媒管Gbで、分岐冷媒管Gcの接続部よりも上流側には、第2の開閉弁121が設けられる。上記第1の開閉弁120及び第2の開閉弁121は、それぞれ電磁開閉弁である。 Furthermore, a second on-off valve 121 is provided upstream of the connection portion of the branch refrigerant pipe Gc in the suction refrigerant pipe Gb. Each of the first on-off valve 120 and the second on-off valve 121 is an electromagnetic on-off valve.
 このようにして、第2のシリンダ室Tbに接続される吸込み冷媒管Gb、分岐冷媒管Gc、第1の開閉弁120及び第2の開閉弁121とで、上記切換え機構Mが構成される。そして、切換え機構Mの切換え作動に応じて、第2のシリンダ106Bのシリンダ室Tbに吸込み圧もしくは吐出圧が導かれるようになっている。 Thus, the switching mechanism M is configured by the suction refrigerant pipe Gb, the branch refrigerant pipe Gc, the first on-off valve 120, and the second on-off valve 121 connected to the second cylinder chamber Tb. In accordance with the switching operation of the switching mechanism M, the suction pressure or the discharge pressure is guided to the cylinder chamber Tb of the second cylinder 106B.
 次に、上述の2気筒回転式圧縮機Qを備えた冷凍サイクル装置の作用について説明する。 Next, the operation of the refrigeration cycle apparatus provided with the above-described two-cylinder rotary compressor Q will be described.
a)通常運転(全能力運転)を選択した場合:
 通常運転の指示が入ると制御部は、切換え機構Mの第1の開閉弁120を閉成し、第2の開閉弁121を開放するよう制御し、かつインバータを介して電動機部104に運転信号を送る。回転軸105が回転駆動され、第1、第2の偏心ローラ109a,109bは同時に第1、第2のシリンダ室Ta,Tb内で偏心回転を行う。
a) When normal operation (full capacity operation) is selected:
When an instruction for normal operation is entered, the control unit controls the first on-off valve 120 of the switching mechanism M to close and the second on-off valve 121 to open, and also sends an operation signal to the motor unit 104 via the inverter. Send. The rotating shaft 105 is driven to rotate, and the first and second eccentric rollers 109a and 109b simultaneously perform eccentric rotation in the first and second cylinder chambers Ta and Tb.
 第1のシリンダ106Aにおいては、第1のベーン111aがばね部材112によって常に弾性的に押圧付勢されるところから、第1のベーン111aの先端縁が第1の偏心ローラ109a周壁に摺接して、第1のシリンダ室Ta内を吸込み室と圧縮室に二分する。 In the first cylinder 106A, since the first vane 111a is always elastically pressed and biased by the spring member 112, the leading edge of the first vane 111a is in sliding contact with the peripheral wall of the first eccentric roller 109a. The first cylinder chamber Ta is divided into a suction chamber and a compression chamber.
 第1の偏心ローラ109a周面が転接する第1のシリンダ室Ta内周面位置と第1のベーン111a先端とが一致し、第1のベーン111aが最も後退した状態で、第1のシリンダ室Taの空間容量が最大となる。冷媒ガスはアキュームレータ118から吸込み冷媒管Gaを介して第1のシリンダ室Taに吸込まれ充満する。 The position of the inner circumferential surface of the first cylinder chamber Ta where the circumferential surface of the first eccentric roller 109a is in rolling contact with the tip of the first vane 111a is the first cylinder chamber with the first vane 111a retracted most. The space capacity of Ta is maximized. The refrigerant gas is sucked from the accumulator 118 through the refrigerant pipe Ga into the first cylinder chamber Ta to be filled.
 さらに第1の偏心ローラ109aの偏心回転にともない、第1の偏心ローラ109a周面における第1のシリンダ室Ta内周面との転接位置が移動し、第1のシリンダ室Taの区画された圧縮室の容積が減少する。すなわち、先に第1のシリンダ室Taに導かれたガスが徐々に圧縮される。 Further, along with the eccentric rotation of the first eccentric roller 109a, the rolling contact position with the inner peripheral surface of the first cylinder chamber Ta on the peripheral surface of the first eccentric roller 109a moves, and the first cylinder chamber Ta is partitioned. The volume of the compression chamber is reduced. That is, the gas previously introduced into the first cylinder chamber Ta is gradually compressed.
 回転軸105が継続して回転され、第1のシリンダ室Taに区画された圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで吐出弁が開放する。高圧ガスはバルブカバーを介して密閉容器101内に吐出され充満する。そして、密閉容器101上部に接続される冷媒管Gから吐出される。 The rotating shaft 105 is continuously rotated, the capacity of the compression chamber partitioned into the first cylinder chamber Ta is further reduced, the gas is compressed, and the discharge valve is opened when the pressure rises to a predetermined pressure. The high-pressure gas is discharged into the sealed container 101 through the valve cover and is filled. And it discharges from the refrigerant | coolant pipe | tube G connected to the airtight container 101 upper part.
 一方、切換え機構Mを構成する第1の開閉弁120が閉成されているので、第2のシリンダ室Tbに吐出圧(高圧)が導かれることはない。そして、第2の開閉弁121が開放されているので、蒸発器117で蒸発しアキュームレータ118で気液分離された低圧の蒸発冷媒が第2のシリンダ室Tbに導かれる。 On the other hand, since the first on-off valve 120 constituting the switching mechanism M is closed, the discharge pressure (high pressure) is not guided to the second cylinder chamber Tb. Since the second on-off valve 121 is opened, the low-pressure evaporative refrigerant evaporated by the evaporator 117 and gas-liquid separated by the accumulator 118 is guided to the second cylinder chamber Tb.
 上記第2のシリンダ室Tbは吸込み圧(低圧)雰囲気となる一方で、第2のベーン室110bが密閉容器101内に露出して吐出圧(高圧)下にある。第2のベーン111bにおいては、その先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で差圧が存在する。 The second cylinder chamber Tb is in a suction pressure (low pressure) atmosphere, while the second vane chamber 110b is exposed in the sealed container 101 and is under a discharge pressure (high pressure). In the 2nd vane 111b, the front-end | tip part becomes a low pressure condition, and a rear-end part becomes a high pressure condition, and a differential pressure | voltage exists in a front-and-back end part.
 この差圧の影響で、第2のベーン111bの先端部が第2の偏心ローラ109bに摺接するように押圧付勢される。したがって、第2のシリンダ室Tbにおいても圧縮作用が行われることとなり、第1のシリンダ室Taと第2のシリンダ室Tbの両方で圧縮作用がなされる、全能力運転となる。 </ RTI> Under the influence of this differential pressure, the tip of the second vane 111b is pressed and urged so as to be in sliding contact with the second eccentric roller 109b. Therefore, the compression action is performed also in the second cylinder chamber Tb, and the full capacity operation is performed in which the compression action is performed in both the first cylinder chamber Ta and the second cylinder chamber Tb.
 密閉容器101から冷媒管Gを介して吐出される高圧ガスは、凝縮器115で外気もしくは水と熱交換して凝縮液化し、膨張装置116で断熱膨張し、蒸発器117で熱交換空気から蒸発潜熱を奪って冷凍作用をなす。 The high pressure gas discharged from the sealed container 101 through the refrigerant pipe G is condensed and liquefied by exchanging heat with the outside air or water in the condenser 115, adiabatically expanded in the expansion device 116, and evaporated from the heat exchange air in the evaporator 117. Takes out latent heat and freezes.
 そして、蒸発したあとの冷媒はアキュームレータ118に導かれて気液分離され、再び各吸込み冷媒管Ga,Gbから2気筒回転式圧縮機Qにおける第1のシリンダ室Taと第2のシリンダ室Tb2に吸込まれて、上述の作用がなされ、上述の経路を循環する。 Then, the evaporated refrigerant is guided to the accumulator 118 and separated into gas and liquid, and again from the suction refrigerant pipes Ga and Gb to the first cylinder chamber Ta and the second cylinder chamber Tb2 in the two-cylinder rotary compressor Q. Inhaled, the above-mentioned action is performed, and the above-mentioned route is circulated.
b)特別運転(能力半減運転)を選択した場合:
 特別運転(圧縮能力を半減する運転)を選択すると、切換え機構Mは第1の開閉弁120を開放し、第2の開閉弁121を閉成するように切換え設定する。第1のシリンダ室Taにおいては上述したように通常の圧縮作用がなされ、密閉容器101内に吐出された高圧ガスが充満してケース内高圧となる。
b) When special operation (capability half operation) is selected:
When the special operation (operation that halves the compression capacity) is selected, the switching mechanism M switches and sets so that the first on-off valve 120 is opened and the second on-off valve 121 is closed. In the first cylinder chamber Ta, the normal compression action is performed as described above, and the high-pressure gas discharged into the hermetic container 101 is filled to become a high pressure in the case.
 冷媒管Gから吐出される高圧ガスの一部が分岐冷媒管Gcに分流され、開放された第1の開閉弁120と吸込み冷媒管Gbを介して第2のシリンダ室Tb内に導入される。上記第2のシリンダ室Tbが吐出圧(高圧)雰囲気となる一方で、第2のベーン室110bはケース内高圧と同一の状況下にあることには変りがない。 A part of the high-pressure gas discharged from the refrigerant pipe G is divided into the branch refrigerant pipe Gc and introduced into the second cylinder chamber Tb through the opened first on-off valve 120 and the suction refrigerant pipe Gb. While the second cylinder chamber Tb becomes a discharge pressure (high pressure) atmosphere, the second vane chamber 110b remains in the same situation as the high pressure in the case.
 そのため、第2のベーン111bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。第2のベーン111bは偏心ローラ109bの回転に伴って蹴られ、この周面から離間した位置で停止状態を保持する。 Therefore, the second vane 111b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The second vane 111b is kicked along with the rotation of the eccentric roller 109b, and maintains a stopped state at a position separated from the peripheral surface.
 第2の偏心ローラ109bは空回転をなしたままであり、第2のシリンダ室Tbでの圧縮作用は行われない(非圧縮運転状態)。結局、第1のシリンダ室Taでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。 The second eccentric roller 109b remains idling, and no compression action is performed in the second cylinder chamber Tb (non-compression operation state). Eventually, only the compression action in the first cylinder chamber Ta is effective, and an operation with half the capacity is performed.
 なお、第2のシリンダ室Tbにおいて圧縮運転と非圧縮運転を切換える切換え機構Mは、上記実施の形態で示したものに限られない。たとえば、第2のベーン室110bの圧力を高圧と低圧に切換え、第2のベーン室110bの圧力を高圧にしたときに第2のシリンダ室Tbで圧縮運転をなし、低圧にしたときには非圧縮運転を行うようにしても良い。 Note that the switching mechanism M that switches between the compression operation and the non-compression operation in the second cylinder chamber Tb is not limited to that shown in the above embodiment. For example, the pressure in the second vane chamber 110b is switched between high pressure and low pressure, the compression operation is performed in the second cylinder chamber Tb when the pressure in the second vane chamber 110b is high, and the non-compression operation is performed when the pressure is low. May be performed.
 このように、副軸受108側のシリンダ室、すなわち第2のシリンダ室Tbで圧縮運転と非圧縮運転との切換を可能とした2気筒回転式圧縮機Qにおいて、副軸受108に軸支される回転軸105の副軸部105b軸径φDbは、以下の(1)式が成立するように設定される。
Figure JPOXMLDOC01-appb-M000003
Thus, in the two-cylinder rotary compressor Q that enables switching between the compression operation and the non-compression operation in the cylinder chamber on the side of the auxiliary bearing 108, that is, the second cylinder chamber Tb, the auxiliary bearing 108 is pivotally supported. The subshaft portion 105b shaft diameter φDb of the rotating shaft 105 is set so that the following equation (1) is established.
Figure JPOXMLDOC01-appb-M000003
 ここで、φDa:主軸受107に軸支される回転軸105の主軸部105a軸径。 Here, φDa: the diameter of the main shaft portion 105 a of the rotary shaft 105 supported by the main bearing 107.
 L1:第1のシリンダ106Aの軸方向中心位置から回転軸主軸部105aの軸負荷位置(主軸部105aにおける第1のシリンダ室Ta側端部から主軸部105a軸径φDaの半分の距離Da/2)までの軸方向距離。 L1: From the axial center position of the first cylinder 106A to the axial load position of the rotary shaft main shaft portion 105a (the distance Da / 2 from the end of the main shaft portion 105a on the first cylinder chamber Ta side to the half of the main shaft portion 105a shaft diameter φDa). Axial distance to).
 L2:第1のシリンダ106Aの軸方向中心位置から第2のシリンダ106Bの軸方向中心位置までの軸方向距離。 L2: An axial distance from the axial center position of the first cylinder 106A to the axial center position of the second cylinder 106B.
 L3:第2のシリンダ106Bの軸方向中心位置から回転軸副軸部105bの軸負荷位置(副軸部105bにおける第2のシリンダ室Ta側端部から副軸部105b軸径φDbの半分の距離Db/2)までの軸方向距離。 L3: The axial load position of the rotary shaft countershaft portion 105b from the axial center position of the second cylinder 106B (the distance half the shaft diameter 105D of the subshaft portion 105b from the end of the subshaft portion 105b on the second cylinder chamber Ta side) Axial distance to Db / 2).
 L4:回転軸105の偏心部Ybと偏心ローラ109bとの摺動長さ。 L4: sliding length between the eccentric portion Yb of the rotating shaft 105 and the eccentric roller 109b.
 E:回転軸105の偏心部Ybの偏心量。 E: Eccentricity of the eccentric part Yb of the rotating shaft 105.
 すなわち、上述した2気筒回転式圧縮機Qにおいては、回転軸105の回転数が低くなると電動機部104であるモータの効率が低下する。そのため、低能力域では第2のシリンダ室Tbにおいて非圧縮運転状態(以下、「休筒運転」と呼ぶ)となし、かつ回転数を2倍に上げることでモータ効率を上げるよう制御している。 That is, in the above-described two-cylinder rotary compressor Q, the efficiency of the motor that is the motor unit 104 decreases when the rotational speed of the rotary shaft 105 decreases. Therefore, in the low capacity region, the second cylinder chamber Tb is in an uncompressed operation state (hereinafter referred to as “cylinder operation”), and the motor efficiency is controlled to be increased by doubling the rotational speed. .
 しかしながら、この場合は回転数を上げることによる軸摺動損失の増加を招き、軸摺動損失割合の大きい設計仕様においては、休筒運転によるモータ効率の向上が得られない。特に、2気筒回転式圧縮機Qにおいて最も軸摺動損失の大きい箇所は回転軸105に形成される偏心部Ya,Ybであるので、これら偏心部Ya,Ybでの摺動損失を低減させる必要がある。 However, in this case, the shaft sliding loss is increased by increasing the number of revolutions, and in the design specification having a large shaft sliding loss ratio, the motor efficiency cannot be improved by the cylinder resting operation. In particular, in the two-cylinder rotary compressor Q, the portions with the largest shaft sliding loss are the eccentric portions Ya and Yb formed on the rotating shaft 105. Therefore, it is necessary to reduce the sliding loss at these eccentric portions Ya and Yb. There is.
 図20に拡大して示すように、回転軸5に形成される第1の偏心部Yaと第2の偏心部Ybの、第1の偏心ローラ109aと第2の偏心ローラ109bに対する摺動長さをL4とし、第1の偏心部Yaと第2の偏心部Ybの軸径をφDcrとする。 As shown in an enlarged view in FIG. 20, the sliding lengths of the first eccentric portion Ya and the second eccentric portion Yb formed on the rotating shaft 5 with respect to the first eccentric roller 109a and the second eccentric roller 109b. Is L4, and the shaft diameters of the first eccentric portion Ya and the second eccentric portion Yb are φDcr.
 図22は、横軸に(L4/φDcr)をとり、縦軸に偏心部摺動損失[W]をとった場合の、L4/φDcrと偏心部摺動損失の特性図であり、2気筒運転時及び休筒運転時それぞれについて同能力下で比較して示す。 FIG. 22 is a characteristic diagram of L4 / φDcr and eccentric part sliding loss when (L4 / φDcr) is taken on the horizontal axis and eccentric part sliding loss [W] is taken on the vertical axis. Comparisons are shown under the same capacity for both hour and idle cylinder operation.
 なお、偏心部摺動損失[W]の値は、第1、第2の偏心部Ya,Ybの第1、第2の偏心ローラ109a,109bに対する摺動長さL4を一定とし、第1、第2の偏心部軸径φDcrを変化させて導いている。また、休筒運転時の回転数は2気筒運転時の2倍とし、休筒側偏心部である第2の偏心部Ybの摺動損失は「0」と仮定している。 The value of the eccentric portion sliding loss [W] is set such that the sliding length L4 of the first and second eccentric portions Ya and Yb with respect to the first and second eccentric rollers 109a and 109b is constant, The second eccentric portion shaft diameter φDcr is changed and led. Further, it is assumed that the number of revolutions during the cylinder resting operation is twice that during the two cylinder operation, and the sliding loss of the second eccentric portion Yb that is the cylinder resting side eccentric portion is “0”.
 2気筒運転時の変化を破線で示し、休筒運転時の変化を実線で示す。この図から、L4/φDcr値の減少とともに損失差が大きくなるのが分る。 The change during 2-cylinder operation is indicated by a broken line, and the change during idle cylinder operation is indicated by a solid line. From this figure, it can be seen that the loss difference increases as the L4 / φDcr value decreases.
 図23は、空気調和機としての冷房中間条件における同能力時のL4/φDcrと総合効率の特性図である。ここでも、横軸にL4/φDcrをとり、偏心部摺動長さL4を一定とし、偏心部軸径φDcrを変化させて導いている。縦軸は総合効率である。 FIG. 23 is a characteristic diagram of L4 / φDcr and total efficiency at the same capacity under the cooling intermediate condition as an air conditioner. Also here, L4 / φDcr is taken on the horizontal axis, the eccentric portion sliding length L4 is constant, and the eccentric portion shaft diameter φDcr is changed. The vertical axis is the overall efficiency.
 この図から休筒運転による効率向上を得るには、
 L4/φDcr≧0.43…(2)
(2)式を満足する必要がある。
From this figure, in order to obtain the efficiency improvement due to idle cylinder operation,
L4 / φDcr ≧ 0.43 (2)
It is necessary to satisfy the formula (2).
 上述の冷房中間条件を得るための測定条件を、以下に示す。
Figure JPOXMLDOC01-appb-T000004
Measurement conditions for obtaining the above-mentioned cooling intermediate conditions are shown below.
Figure JPOXMLDOC01-appb-T000004
 なお、表1中の、kPaAは絶対圧である。 In Table 1, kPaA is an absolute pressure.
 再び図20に示すように、第1、第2の偏心部Ya,Ybの軸径φDcrと、副軸部105bの軸径φDbとの間には、特に第1の偏心部Yaに第1の偏心ローラ109aを副軸部105b側から組み込むために 
 φDcr≧φDb+2×E…(3)
(3)式を満足する必要がある。
As shown in FIG. 20 again, the first eccentric portion Ya has the first eccentric portion Ya between the shaft diameter φDcr of the first and second eccentric portions Ya and Yb and the shaft diameter φDb of the auxiliary shaft portion 105b. In order to incorporate the eccentric roller 109a from the auxiliary shaft portion 105b side
φDcr ≧ φDb + 2 × E (3)
It is necessary to satisfy the formula (3).
 したがって、(2)式と(3)式を展開し、休筒運転による効率向上が得られる条件として、
 φDb≦L4/0.43-2×E…(4)
(4)式を満足しなければならない。
Therefore, as a condition for expanding the expressions (2) and (3) and obtaining the efficiency improvement by the idle cylinder operation,
φDb ≦ L4 / 0.43-2 × E (4)
(4) Formula must be satisfied.
 一方、上記副軸部105bの軸径φDbを小さくするにしたがって、軸面に対する面圧が上がり、特に低回転域(低能力域)において潤滑油の油膜が形成され難くなって信頼性が悪化する。 On the other hand, as the shaft diameter φDb of the auxiliary shaft portion 105b is reduced, the surface pressure with respect to the shaft surface increases, and it becomes difficult to form an oil film of a lubricating oil particularly in a low rotation region (low performance region), and the reliability deteriorates. .
 上述した2気筒回転式圧縮機Qにおいては、低能力域で副軸部105b側である第2のシリンダ室Tbを休筒させるため、回転軸105の主軸部105aにかかるガス負荷Faと、副軸部105bにかかるガス負荷Fbとの比は、図20に示すように、
 Fa:Fb=(L2+L3):1…(5)
となる。
In the above-described two-cylinder rotary compressor Q, in order to rest the second cylinder chamber Tb on the side of the auxiliary shaft portion 105b in the low capacity region, the gas load Fa applied to the main shaft portion 105a of the rotating shaft 105, The ratio with the gas load Fb applied to the shaft portion 105b is as shown in FIG.
Fa: Fb = (L2 + L3): 1: (5)
It becomes.
 また、主軸部105aに対する面圧Naと、副軸部105bに対する面圧Nbとの比は、負荷を受ける摺動長比が軸径比と同等とすると、
 Na:Nb=(L2+L3)/φDa2:L1/φDb2…(6)
となる。
Further, the ratio of the surface pressure Na to the main shaft portion 105a and the surface pressure Nb to the sub shaft portion 105b is such that the sliding length ratio under load is equal to the shaft diameter ratio.
Na: Nb = (L2 + L3) / φDa2: L1 / φDb2 (6)
It becomes.
 ここで、回転軸105の副軸部105bにおいて主軸部105aと同等以上の面圧を確保するためには、
Figure JPOXMLDOC01-appb-M000005
Here, in order to ensure a surface pressure equal to or higher than that of the main shaft portion 105a in the sub shaft portion 105b of the rotating shaft 105,
Figure JPOXMLDOC01-appb-M000005
(7)式を満たす必要がある。 It is necessary to satisfy the formula (7).
 したがって、これらのことから
Figure JPOXMLDOC01-appb-M000006
So from these things
Figure JPOXMLDOC01-appb-M000006
(1)式が導き出される。 Equation (1) is derived.
 すなわち、上述した(1)式を満足することで、信頼性を確保しつつ、休筒運転による効率向上が充分に得られる。 That is, by satisfying the above-described expression (1), it is possible to sufficiently improve the efficiency by the idle cylinder operation while ensuring the reliability.
 以下に示すものは、(1)式を具体的に表現した設計例である。
Figure JPOXMLDOC01-appb-T000007
What is shown below is a design example that specifically expresses the expression (1).
Figure JPOXMLDOC01-appb-T000007
 そして、このような2気筒回転式圧縮機Qを備えて冷凍サイクルを構成する冷凍サイクル装置は、さらに冷凍効率の向上を得られる。 And the refrigeration cycle apparatus which comprises such a two-cylinder rotary compressor Q and constitutes a refrigeration cycle can further improve the refrigeration efficiency.
 さらに、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 Furthermore, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
 本発明によれば、2シリンダタイプで、圧縮能力の可変をなすことを前提として、構成の簡素化と、部品数を低減して工数の削減化を図り、コストへの影響を抑制するとともに、運転切換えに必要な時間の短縮化を図れる密閉型圧縮機と、この密閉型圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供できる。 According to the present invention, on the assumption that the compression capacity is variable with a two-cylinder type, the structure is simplified and the number of parts is reduced to reduce the number of man-hours. It is possible to provide a hermetic compressor that can shorten the time required for operation switching, and a refrigeration cycle apparatus that includes this hermetic compressor and can improve refrigeration cycle efficiency.
 また、2シリンダタイプで、全能力運転と能力半減運転との能力可変をなすことを前提として、信頼性を確保しつつ能力半減運転時のモータ効率の向上を確実に得られるようにした2気筒回転式圧縮機と、この2気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供できる。 The 2-cylinder type is a two-cylinder engine that ensures the improvement of motor efficiency during half-capacity operation while ensuring reliability, assuming that the capacity can be varied between full-capacity operation and half-capacity operation. It is possible to provide a rotary compressor and a refrigeration cycle apparatus that includes this two-cylinder rotary compressor and can improve the efficiency of the refrigeration cycle.

Claims (12)

  1.  密閉容器内に、電動機部と圧縮機構部とを収容し、
     上記圧縮機構部は、
     中間仕切り板を介在して設けられ、それぞれの内径部にシリンダ室が形成されるとともに、それぞれのシリンダ室に連通するブレード室を備えた第1のシリンダ及び第2のシリンダと、
     上記第1のシリンダと第2のシリンダのシリンダ室にそれぞれに収容され、第1の偏心部と第2の偏心部を有し、上記電動機部に連結される回転軸と、
     この回転軸の上記第1の偏心部と第2の偏心部それぞれに嵌合された第1の偏心ローラ及び第2の偏心ローラと、
     上記ブレード室に移動自在に収容され、上記第1の偏心ローラと第2の偏心ローラそれぞれに当接してシリンダ室を区画する第1のブレード及び第2のブレードとを具備し、
     上記第2のブレードは、上記第2のブレード室に導かれる吐出圧によって、上記第2の偏心ローラに接触するよう押圧付勢されるとともに、第2のブレード室に導かれる吸込み圧によって第2の偏心ローラから離間保持され、
     上記密閉容器に、第2のシリンダに設けられる第2のブレード室の圧力を吐出圧と吸込み圧に切換える圧力切換え弁の少なくとも一部を内蔵し、
     上記圧力切換え弁は、スライダ用孔を有する弁本体と、この弁本体の上記スライダ用孔に配置されるスライダとを有し、
     上記スライダは、
     上記第2のブレード室と、密閉容器内空間とを連通する第1の動作位置と、
     上記第2のブレード室と、第2のシリンダ室の吸込み側とを連通する第2の動作位置とに切換え可能とした
    ことを特徴とする密閉型圧縮機。
    The motor part and the compression mechanism part are accommodated in the sealed container,
    The compression mechanism is
    A first cylinder and a second cylinder provided with an intermediate partition plate, each having a cylinder chamber formed in an inner diameter portion thereof, and a blade chamber communicating with each cylinder chamber;
    A rotating shaft that is housed in each of the cylinder chambers of the first cylinder and the second cylinder, has a first eccentric portion and a second eccentric portion, and is connected to the electric motor portion;
    A first eccentric roller and a second eccentric roller fitted to the first eccentric portion and the second eccentric portion of the rotating shaft,
    A first blade and a second blade which are movably accommodated in the blade chamber and abut against each of the first eccentric roller and the second eccentric roller to define a cylinder chamber;
    The second blade is pressed and urged to come into contact with the second eccentric roller by the discharge pressure guided to the second blade chamber, and the second blade by the suction pressure guided to the second blade chamber. Is held away from the eccentric roller of
    In the closed container, at least a part of a pressure switching valve for switching the pressure of the second blade chamber provided in the second cylinder to the discharge pressure and the suction pressure is incorporated,
    The pressure switching valve has a valve body having a slider hole, and a slider disposed in the slider hole of the valve body,
    The slider
    A first operating position communicating the second blade chamber and the space in the sealed container;
    A hermetic compressor characterized in that it can be switched to a second operating position that communicates the second blade chamber and the suction side of the second cylinder chamber.
  2.  上記圧力切換え弁のスライダ用孔に、
     上記第2のブレード室と連通するブレード室連通路と、
     上記第2のシリンダ室の吸込み側と連通する吸込み連通路及び、上記密閉容器内に連通する吐出連通路が接続され、
     上記スライダの周面一部に、スライダの位置に応じて、ブレード室連通路に対し吸込み連通路もしくは吐出連通路が連通するよう切欠き部が設けられる
    ことを特徴とする請求項1記載の密閉型圧縮機。
    In the slider hole of the pressure switching valve,
    A blade chamber communication passage communicating with the second blade chamber;
    A suction communication path communicating with the suction side of the second cylinder chamber and a discharge communication path communicating with the inside of the sealed container are connected;
    2. A hermetic seal according to claim 1, wherein a notch portion is provided in a part of the peripheral surface of the slider so that the suction communication path or the discharge communication path communicates with the blade chamber communication path according to the position of the slider. Mold compressor.
  3.  上記圧力切換え弁のスライダが、上記ブレード室連通路と上記吸込み連通路が連通する位置に制止されるように、圧力切換え弁にスライダ位置決め手段を備えた
    ことを特徴とする請求項2記載の密閉型圧縮機。
    3. The hermetic seal according to claim 2, wherein the pressure switching valve is provided with slider positioning means so that the slider of the pressure switching valve is restrained at a position where the blade chamber communication passage and the suction communication passage communicate with each other. Mold compressor.
  4.  上記密閉容器内底部に、潤滑油を集溜する油溜り部が設けられ、
     上記圧力切換え弁は、上記油溜り部の潤滑油中に浸漬される
    ことを特徴とする請求項1記載の密閉型圧縮機。
    An oil reservoir for collecting lubricating oil is provided at the bottom of the sealed container,
    2. The hermetic compressor according to claim 1, wherein the pressure switching valve is immersed in the lubricating oil in the oil reservoir.
  5.  上記圧力切換え弁は、
     上記スライダと一体形成またはスライダに連結される磁性部材と、上記磁性部材の周面に設けられる電磁コイルとの組合せにより、スライダを往復駆動し、
     上記磁性部材と電磁弁との間に、一端が閉止され、他端が開口される円筒部材が上記密閉容器を貫通して介設され、
     上記円筒部材の開口端は上記弁本体に固着され、円筒部材の閉止端は上記密閉容器外部に突出され、上記電磁コイルは円筒部材の閉止端外周面に取付けられる
    ことを特徴とする請求項1記載の密閉型圧縮機。
    The pressure switching valve
    The slider is reciprocally driven by a combination of a magnetic member integrally formed with the slider or coupled to the slider and an electromagnetic coil provided on the peripheral surface of the magnetic member,
    Between the magnetic member and the solenoid valve, a cylindrical member having one end closed and the other end opened is interposed through the sealed container,
    The open end of the cylindrical member is fixed to the valve body, the closed end of the cylindrical member protrudes outside the sealed container, and the electromagnetic coil is attached to the outer peripheral surface of the closed end of the cylindrical member. The hermetic compressor as described.
  6.  上記円筒部材は、密閉容器に設けられるガイドパイプに、高周波誘導加熱加工により接着される
    ことを特徴とする請求項5記載の密閉型圧縮機。
    6. The hermetic compressor according to claim 5, wherein the cylindrical member is bonded to a guide pipe provided in the hermetic container by high frequency induction heating.
  7.  上記圧力切換え弁の弁本体を、上記中間仕切り板で兼用させた
    ことを特徴とする請求項1記載の密閉型圧縮機。
    2. The hermetic compressor according to claim 1, wherein the valve main body of the pressure switching valve is also used as the intermediate partition plate.
  8.  上記圧力切換え弁に設けられ、第2のブレード室と第2のシリンダ室とを連通する吸込み連通路は、上記中間仕切り板に設けられる横孔にて形成される
    ことを特徴とする請求項7記載の密閉型圧縮機。
    8. The suction communication passage provided in the pressure switching valve and communicating between the second blade chamber and the second cylinder chamber is formed by a lateral hole provided in the intermediate partition plate. The hermetic compressor as described.
  9.  上記ブレード室に、圧縮運転停止時にブレードをローラから離間保持する永久磁石を備えた
    ことを特徴とする請求項1記載の密閉型圧縮機。
    2. The hermetic compressor according to claim 1, wherein the blade chamber includes a permanent magnet that holds the blade away from the roller when the compression operation is stopped.
  10.  上記請求項1ないし請求項9のいずれかに記載の密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する
    ことを特徴とする冷凍サイクル装置。
    A refrigeration cycle apparatus comprising the hermetic compressor according to any one of claims 1 to 9, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
  11.  密閉容器内に、電動機部と圧縮機構部とを収容し、
     上記圧縮機構部は、
     中間仕切り板を介在して設けられ、それぞれが内径部を有する第1のシリンダ及び第2のシリンダと、
     上記第1のシリンダの上記電動機部側に取付けられ、上記中間仕切り板とともに第1のシリンダの内径部を覆って第1のシリンダ室を形成する主軸受と、
     上記第2のシリンダの反電動機部側に取付けられ、上記中間仕切り板とともに第2のシリンダの内径部を覆って第2のシリンダ室を形成する副軸受と、
     上記第1のシリンダ室と第2のシリンダ室それぞれに収容され、互いに回転角を180°ずらせた2つの偏心部と、上記主軸受に軸支される主軸部及び、上記副軸受に軸支される副軸部を有し、上記電動機部に連結される回転軸と、
     この回転軸の上記偏心部それぞれに嵌合され、上記第1のシリンダ室と第2のシリンダ室内で回転駆動される偏心ローラと、
     上記第2のシリンダ室において、圧縮運転と非圧縮運転との切換をなす切換え機構と、
    を具備する2気筒回転式圧縮機において、
     上記副軸受に軸支される上記回転軸の副軸部の軸径φDbは、
    Figure JPOXMLDOC01-appb-M000001
     φDa:主軸受に軸支される回転軸の主軸部軸径
     L1:第1のシリンダの軸方向中心位置から回転軸主軸部の軸負荷位置(主軸部における第1のシリンダ室側端部から主軸部軸径の半分の距離)までの軸方向距離
     L2:第1のシリンダの軸方向中心位置から第2のシリンダの軸方向中心位置までの軸方向距離
     L3:第2のシリンダの軸方向中心位置から回転軸副軸部の軸負荷位置(副軸部における第2のシリンダ室側端部から副軸部軸径の半分の距離)までの軸方向距離
     L4:回転軸の偏心部と偏心ローラとの摺動長さ
     E:回転軸の偏心部の偏心量
     上記(1)式が成立するように構成されることを特徴とする2気筒回転式圧縮機。
    The motor part and the compression mechanism part are accommodated in the sealed container,
    The compression mechanism is
    A first cylinder and a second cylinder each provided with an intermediate partition plate, each having an inner diameter;
    A main bearing attached to the motor part side of the first cylinder and covering the inner diameter part of the first cylinder together with the intermediate partition plate to form a first cylinder chamber;
    A sub-bearing attached to the anti-motor part side of the second cylinder and covering the inner diameter part of the second cylinder together with the intermediate partition plate to form a second cylinder chamber;
    Two eccentric portions housed in the first cylinder chamber and the second cylinder chamber, respectively, whose rotation angles are shifted from each other by 180 °, a main shaft portion that is supported by the main bearing, and a sub-bearing. A rotating shaft connected to the electric motor part,
    An eccentric roller fitted into each of the eccentric portions of the rotating shaft and driven to rotate in the first cylinder chamber and the second cylinder chamber;
    A switching mechanism for switching between compression operation and non-compression operation in the second cylinder chamber;
    A two-cylinder rotary compressor comprising:
    The shaft diameter φDb of the auxiliary shaft portion of the rotary shaft supported by the auxiliary bearing is:
    Figure JPOXMLDOC01-appb-M000001
    φDa: shaft diameter of the main shaft portion of the rotating shaft supported by the main bearing L1: axial load position of the rotating shaft main shaft portion from the axial center position of the first cylinder (from the first cylinder chamber side end of the main shaft portion to the main shaft L2: Axial distance from the axial center position of the first cylinder to the axial center position of the second cylinder L3: Axial center position of the second cylinder Axial distance from the shaft load position of the rotating shaft subshaft portion (distance from the second cylinder chamber side end of the subshaft portion to half the shaft diameter of the subshaft portion) L4: Eccentric portion and eccentric roller of the rotating shaft Sliding length E: Eccentric amount of the eccentric portion of the rotating shaft A two-cylinder rotary compressor characterized in that the above formula (1) is established.
  12.  上記請求項11記載の2気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising the two-cylinder rotary compressor according to claim 11, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
PCT/JP2009/065114 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus WO2010024409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980133645.XA CN102132046B (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
KR1020117003688A KR101271272B1 (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-222301 2008-08-29
JP2008222301 2008-08-29
JP2008243161A JP5286010B2 (en) 2008-09-22 2008-09-22 2-cylinder rotary compressor and refrigeration cycle equipment
JP2008-243161 2008-09-22
JP2009074713A JP5360709B2 (en) 2008-08-29 2009-03-25 Hermetic compressor and refrigeration cycle equipment
JP2009-074713 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010024409A1 true WO2010024409A1 (en) 2010-03-04

Family

ID=41721572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065114 WO2010024409A1 (en) 2008-08-29 2009-08-28 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus

Country Status (1)

Country Link
WO (1) WO2010024409A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH0249994A (en) * 1988-08-12 1990-02-20 Mitsubishi Heavy Ind Ltd Rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor
JP2004132353A (en) * 2002-06-11 2004-04-30 Tecumseh Products Co Lubricant for sealed carbon dioxide compressor
JP2004360476A (en) * 2003-06-02 2004-12-24 Mitsubishi Electric Corp Piping connection structure of compressor
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
WO2005061901A1 (en) * 2003-12-03 2005-07-07 Toshiba Carrier Corporation Freezing cycle device
JP2006316965A (en) * 2005-05-16 2006-11-24 Denso Corp Solenoid valve
JP2008509326A (en) * 2004-08-06 2008-03-27 エルジー エレクトロニクス インコーポレイティド Capacity changing device for rotary compressor and operation method of air conditioner provided with the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH0249994A (en) * 1988-08-12 1990-02-20 Mitsubishi Heavy Ind Ltd Rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JP2004132353A (en) * 2002-06-11 2004-04-30 Tecumseh Products Co Lubricant for sealed carbon dioxide compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor
JP2004360476A (en) * 2003-06-02 2004-12-24 Mitsubishi Electric Corp Piping connection structure of compressor
WO2005061901A1 (en) * 2003-12-03 2005-07-07 Toshiba Carrier Corporation Freezing cycle device
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2008509326A (en) * 2004-08-06 2008-03-27 エルジー エレクトロニクス インコーポレイティド Capacity changing device for rotary compressor and operation method of air conditioner provided with the same
JP2006316965A (en) * 2005-05-16 2006-11-24 Denso Corp Solenoid valve

Similar Documents

Publication Publication Date Title
KR100716850B1 (en) Rotary sealed compressor and refrigeration cycle apparatus
JP5433354B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5303651B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
KR101271272B1 (en) Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
JP5427583B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
CN103906928A (en) Sealed rotary compressor and refrigeration cycle device
JP2010163927A (en) Multicylinder rotary compressor and refrigerating cycle apparatus
JP4594301B2 (en) Hermetic rotary compressor
JP2007077825A (en) Hermetic rotary compressor and refrigeration cycle device
JP5360709B2 (en) Hermetic compressor and refrigeration cycle equipment
JP5481298B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
WO2010024409A1 (en) Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
JP5448927B2 (en) Hermetic compressor and refrigeration cycle equipment
JP4398321B2 (en) Refrigeration cycle equipment
EP1808602A1 (en) Muffler installation structure for compressor
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP3354783B2 (en) Fluid compressor and heat pump refrigeration cycle
WO2012086637A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP2000065221A (en) Change-over valve, fluid compressor and heat pump type refrigeration cycle
JP7466692B2 (en) Compressor and refrigeration cycle device
JP7466693B2 (en) Compressor and refrigeration cycle device
WO2023100345A1 (en) Oil feed component, compressor, and refrigeration cycle device
JP2005344683A (en) Hermetic compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133645.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117003688

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810057

Country of ref document: EP

Kind code of ref document: A1