JP4398321B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4398321B2
JP4398321B2 JP2004225889A JP2004225889A JP4398321B2 JP 4398321 B2 JP4398321 B2 JP 4398321B2 JP 2004225889 A JP2004225889 A JP 2004225889A JP 2004225889 A JP2004225889 A JP 2004225889A JP 4398321 B2 JP4398321 B2 JP 4398321B2
Authority
JP
Japan
Prior art keywords
pressure
cylinder
valve
chamber
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225889A
Other languages
Japanese (ja)
Other versions
JP2006046114A (en
Inventor
康治 里舘
健 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004225889A priority Critical patent/JP4398321B2/en
Publication of JP2006046114A publication Critical patent/JP2006046114A/en
Application granted granted Critical
Publication of JP4398321B2 publication Critical patent/JP4398321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Description

本発明は、たとえば空気調和機である冷凍サイクル装置に係り、特に、冷凍サイクルを構成するロータリ式圧縮機の改良に関する。   The present invention relates to a refrigeration cycle apparatus that is, for example, an air conditioner, and more particularly to an improvement of a rotary compressor that constitutes a refrigeration cycle.

たとえば空気調和機である冷凍サイクル装置において、特に、冷凍サイクルを構成するロータリ式圧縮機は、密閉容器内に電動機部およびこの電動機部と連結される圧縮機構部を収容しており、圧縮機構部で圧縮したガスを一旦密閉容器内に吐出する、ケース内高圧形となっている。
ところで、近年、上記圧縮機構部を上下に2セット備えた、2シリンダタイプの密閉型回転式圧縮機が標準化されつつある。このような圧縮機において、常時圧縮作用をなす圧縮機構部と、必要に応じて圧縮−停止の切換えを可能とした圧縮機構部を備えることができれば、仕様が拡大されて有利となる。
たとえば、[特許文献1]には、シリンダ室を2室備え、必要に応じていずれか一方のブレードの背面側を中間圧にするとともに、シリンダ室に高圧を導入する高圧導入手段を備え、ブレード先端側と背面側の圧力差によりブレードを偏心ローラから強制的に離間保持して圧縮作用を中断させる技術が開示されている。
特開平1−247786号公報
For example, in a refrigeration cycle apparatus that is an air conditioner, in particular, a rotary compressor constituting the refrigeration cycle houses an electric motor unit and a compression mechanism unit connected to the electric motor unit in a sealed container, and the compression mechanism unit It is a high-pressure type in the case in which the gas compressed in step 1 is once discharged into a sealed container.
By the way, in recent years, a two-cylinder hermetic rotary compressor provided with two sets of the compression mechanism section above and below is being standardized. If such a compressor can be provided with a compression mechanism part that always performs a compression action and a compression mechanism part that can be switched between compression and stop if necessary, the specifications are expanded and advantageous.
For example, in [Patent Document 1], two cylinder chambers are provided, and if necessary, the back side of one of the blades is set to an intermediate pressure, and high pressure introducing means for introducing a high pressure into the cylinder chamber is provided. A technique is disclosed in which the compression action is interrupted by forcibly holding the blade away from the eccentric roller due to a pressure difference between the front end side and the back side.
JP-A-1-247786

この種のロータリ式圧縮機においては、能力低減運転時に上記シリンダ室から気液分離器側への高圧冷媒の流入を阻止するための逆止弁を備える必要がある。上記逆止弁は、圧縮機を構成する密閉容器に接続される吸込み側の冷媒管に設けられている。すなわち、上記逆止弁は圧縮機の密閉容器外部に取付けられることになる。
実際には、ロー付け加工により逆止弁を吸込み側冷媒管に接続しており、このロー付け時の熱が逆止弁を構成する弁体や弁座に伝熱し易い。その結果、弁体や弁座が熱変形する虞れがあって、逆止弁としてシール性の悪化が予想される。
さらに、ロータリ式圧縮機を構成する密閉容器の外部に逆止弁を備えることから、逆止弁配置のためのスペースが新たに必要となり、冷凍サイクル装置として大型化に繋がる。さらには、逆止弁が密閉容器の外部にあるから、逆止弁動作時の衝突音が装置外部へ漏れて、静粛運転化が損なわれる。
In this type of rotary compressor, it is necessary to provide a check valve for preventing the flow of high-pressure refrigerant from the cylinder chamber to the gas-liquid separator during the capacity reduction operation. The check valve is provided in a refrigerant pipe on the suction side connected to a sealed container constituting the compressor. That is, the check valve is attached outside the hermetic container of the compressor.
Actually, the check valve is connected to the suction side refrigerant pipe by brazing, and the heat at the time of brazing is likely to be transferred to the valve body and the valve seat constituting the check valve. As a result, there is a possibility that the valve body and the valve seat are thermally deformed, and the sealing performance is expected to deteriorate as a check valve.
Furthermore, since the check valve is provided outside the hermetic container constituting the rotary compressor, a space for the check valve arrangement is newly required, leading to an increase in size as a refrigeration cycle apparatus. Furthermore, since the check valve is outside the hermetic container, a collision sound at the time of the check valve operation leaks to the outside of the apparatus, and silent operation is impaired.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、複数の圧縮機構部を備えることを前提として、少なくとも1つの圧縮機構部は圧縮運転をなす通常運転と圧縮運転を行わない非圧縮運転とを切換え可能な圧力切換え手段を備え、かつ圧力切換え手段を構成する逆止弁機構のシール性を確保し、さらには装置の大型化を抑制するとともに、静粛運転化を得られるロータリ式圧縮機を備えた冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and the purpose thereof is to provide at least one compression mechanism section for performing a normal operation and a compression operation on the assumption that a plurality of compression mechanism sections are provided. It has pressure switching means that can switch between non-compression operation, and ensures the sealing performance of the check valve mechanism that constitutes the pressure switching means, and further suppresses the enlargement of the device and can achieve quiet operation An object of the present invention is to provide a refrigeration cycle apparatus including a rotary compressor.

上記目的を満足するため本発明は、密閉容器内に電動機部および電動機部と連結される複数の圧縮機構部を収容してなるロータリ式圧縮機を備え、このロータリ式圧縮機の一方の圧縮機構部のシリンダ室に対し冷凍サイクルの高圧側または低圧側への接続を切換える圧力切換え手段を有し、負荷の大きいときにはシリンダ室に低圧冷媒を導いて通常の圧縮運転を行わせ、負荷の小さいときにはシリンダ室に高圧冷媒を導いて非圧縮運転を行わせる冷凍サイクル装置において、上記圧力切換え手段は、冷凍サイクルの高圧側とシリンダ室とを連通し中途部に開閉弁を有する高圧導入手段と、冷凍サイクルの低圧側とシリンダ室とを連通し低圧冷媒をシリンダ室に案内する吸込み通路と、上記一方の圧縮機構部のシリンダに形成され高圧導入手段と吸込み通路とに接続される動作室と、この動作室内に移動可能に収容され高圧導入手段の開閉弁を開いたとき高圧導入手段によって導かれる高圧冷媒と吸込み通路に導かれる低圧冷媒との圧力差により吸込み通路を閉じる弁体と、この弁体が当接する弁座から構成される逆止弁機構とを具備する。 In order to satisfy the above-described object, the present invention includes a rotary compressor in which a motor unit and a plurality of compression mechanisms connected to the motor unit are housed in a sealed container, and one compression mechanism of the rotary compressor is provided. Pressure switching means for switching the connection of the refrigeration cycle to the high pressure side or low pressure side of the refrigeration cycle with respect to the cylinder chamber of the part. When the load is large, the low pressure refrigerant is led to the cylinder chamber to perform normal compression operation, and when the load is small In the refrigeration cycle apparatus in which high-pressure refrigerant is introduced into the cylinder chamber to perform non-compression operation, the pressure switching means includes a high-pressure introducing means having an on-off valve in communication with the high-pressure side of the refrigeration cycle and the cylinder chamber, suction passage and the high pressure introducing means formed on one of the compression mechanism portion of the cylinder the guide into the cylinder chamber to the low pressure refrigerant communication between the low pressure side and the cylinder chamber of the cycle The pressure difference between the working chamber connected to the suction passage and the high-pressure refrigerant guided by the high-pressure introduction means when the opening / closing valve of the high-pressure introduction means is movably accommodated in the operation chamber and the suction passage. The valve body which closes a suction passage by this, and the non- return valve mechanism comprised from the valve seat which this valve body contact | abuts .

本発明によれば、逆止弁機構のシール性を確保し、装置の大型化を抑制して静粛運転化を得られるなどの効果を奏する。   According to the present invention, it is possible to secure the sealing performance of the check valve mechanism, suppress the enlargement of the apparatus, and obtain a quiet operation.

以下、本発明の一実施の形態を、図面にもとづいて説明する。
図1は、ロータリ式圧縮機Rの断面構造と、このロータリ式圧縮機Rを備えた冷凍装置の冷凍サイクル回路図である。
はじめにロータリ式圧縮機Rから説明すると、1は密閉容器であって、この密閉容器1内の下部には後述する第1の圧縮機構部2Aと第2の圧縮機構部2Bが設けられ、上部には電動機部3が設けられる。これら電動機部3と第1、第2の圧縮機構部2A,2Bは、回転軸4を介して連結される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional structure of a rotary compressor R and a refrigeration cycle circuit diagram of a refrigeration apparatus provided with the rotary compressor R.
First, the rotary compressor R will be described. 1 is a sealed container, and a lower part in the sealed container 1 is provided with a first compression mechanism part 2A and a second compression mechanism part 2B, which will be described later, and an upper part. Is provided with an electric motor section 3. The electric motor unit 3 and the first and second compression mechanism units 2 </ b> A and 2 </ b> B are connected via the rotating shaft 4.

上記電動機部3は、たとえばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられていて、密閉容器1の内面に固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、上記回転軸4に嵌着されるロータ6とから構成される。そして電動機部3は、密閉容器1の上端部に設けられる入力端子部3aを介して運転周波数を可変するインバータに接続されるとともに、このインバータを介してインバータ制御する制御部(いずれも図示しない)に電気的に接続される。
上記第1、第2の圧縮機構部2A,2Bは、それぞれが回転軸4の下部に中間仕切り板7を介して上下に配設される第1のシリンダ8Aと、第2のシリンダ8Bを備えている。これら第1、第2のシリンダ8A,8Bは、互いに外形形状寸法が相違し、かつ内径寸法が同一となるよう設定されている。第1のシリンダ8Aの外径寸法は密閉容器1の内径寸法よりも僅かに大に形成され、密閉容器1内周面に圧入されたうえに、密閉容器1外部からの溶接加工によって位置決め固定される。
For example, a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used for the electric motor unit 3, and a stator 5 fixed to the inner surface of the hermetic container 1 and a predetermined gap exist inside the stator 5. And a rotor 6 that is disposed on the rotary shaft 4. The electric motor unit 3 is connected to an inverter that varies the operating frequency through an input terminal unit 3a provided at the upper end of the sealed container 1, and a control unit that controls the inverter through the inverter (not shown). Is electrically connected.
Each of the first and second compression mechanism portions 2A and 2B includes a first cylinder 8A and a second cylinder 8B, which are respectively disposed above and below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween. ing. The first and second cylinders 8A and 8B are set to have different outer shape dimensions and the same inner diameter dimension. The outer diameter of the first cylinder 8A is slightly larger than the inner diameter of the hermetic container 1 and is press-fitted into the inner peripheral surface of the hermetic container 1 and is positioned and fixed by welding from the outside of the hermetic container 1. The

第1のシリンダ8Aの上面部には主軸受9が重ね合わされ、バルブカバーとともに取付けボルトを介してシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には副軸受10が重ね合わされ、バルブカバーとともに取付けボルトを介してシリンダ8Bに取付け固定される。
一方、上記回転軸4は、中途部と下端部が主軸受9と副軸受10に回転自在に枢支される。さらに回転軸4は各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するよう組立てられる。各偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。
A main bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is fixed to the cylinder 8A via a mounting bolt together with a valve cover. The auxiliary bearing 10 is overlaid on the lower surface portion of the second cylinder 8B, and is fixed to the cylinder 8B via a mounting bolt together with a valve cover.
On the other hand, the rotating shaft 4 is pivotally supported by the main bearing 9 and the auxiliary bearing 10 at the midway portion and the lower end portion. Further, the rotary shaft 4 penetrates through the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of about 180 °. The eccentric portions 4a and 4b have the same diameter as each other, and are assembled so as to be located in the inner diameter portions of the cylinders 8A and 8B. Eccentric rollers 13a and 13b having the same diameter are fitted to the peripheral surfaces of the eccentric parts 4a and 4b.

上記第1のシリンダ8Aと第2のシリンダ8Bは、上記中間仕切り板7と主軸受9および副軸受10で上下面が区画され、それぞれの内部にシリンダ室14a,14bが形成される。各シリンダ室14a,14bは互いに同一直径および高さ寸法に形成され、各シリンダ室14a,14bに上記偏心ローラ13a,13bがそれぞれ偏心回転自在に収容される。
各偏心ローラ13a,13bの高さ寸法は、各シリンダ室14a,14bの高さ寸法と略同一に形成される。したがって、偏心ローラ13a,13bは互いに180°の位相差があるが、シリンダ室14a,14bで偏心回転することにより、シリンダ室において同一の排除容積に設定される。
このように、第1のシリンダ8Aを主にして、主軸受9、中間仕切り板7、第1のシリンダ室14a、およびシリンダ室内で偏心回転する偏心ローラ13aなどで第1の圧縮機構部2Aが構成される。また、第2のシリンダ8Bを主にして、副軸受10、中間仕切り板7、第2のシリンダ室14b、およびシリンダ室内で偏心回転する偏心ローラ13bなどで第2の圧縮機構部2Bが構成される。
The first cylinder 8A and the second cylinder 8B have upper and lower surfaces defined by the intermediate partition plate 7, the main bearing 9 and the sub-bearing 10, and cylinder chambers 14a and 14b are formed therein. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated in the cylinder chambers 14a and 14b so as to be eccentrically rotatable.
The height of each eccentric roller 13a, 13b is formed substantially the same as the height of each cylinder chamber 14a, 14b. Accordingly, the eccentric rollers 13a and 13b have a phase difference of 180 ° from each other, but are set to the same excluded volume in the cylinder chamber by rotating eccentrically in the cylinder chambers 14a and 14b.
As described above, the first compression mechanism 2A is composed mainly of the first cylinder 8A by the main bearing 9, the intermediate partition plate 7, the first cylinder chamber 14a, and the eccentric roller 13a that rotates eccentrically in the cylinder chamber. Composed. The second compression mechanism 2B is composed mainly of the second cylinder 8B, with the auxiliary bearing 10, the intermediate partition plate 7, the second cylinder chamber 14b, the eccentric roller 13b rotating eccentrically in the cylinder chamber, and the like. The

図2は、第1の圧縮機構部2Aおよび第2の圧縮機構部2Bのそれぞれ一部を分解して示す斜視図である。
各シリンダ8A,8Bには、シリンダ室14a,14bと連通するブレード室22a,22bが設けられている。各ブレード室22a,22bには、ブレード15a,15bがシリンダ室14a,14bに対して突没自在に収容される。
上記ブレード室22a,22bは、ブレード15a,15bの両側面が摺動自在に移動できるブレード収納溝23a,23bと、各ブレード収納溝端部に一体に連設されブレード15a,15bの後端部が収容される縦孔部24a,24bとからなる。特に、上記第1のシリンダ8Aには、外周面とブレード室22aとを連通する横孔25が設けられ、ばね部材26が収容される。このばね部材26は、ブレード15aの背面側端面と密閉容器1内周面との間に介在され、ブレード15aに弾性力(背圧)を付与して、この先端縁を偏心ローラ13aに接触させる圧縮ばねである。
FIG. 2 is an exploded perspective view showing a part of each of the first compression mechanism 2A and the second compression mechanism 2B.
Each cylinder 8A, 8B is provided with blade chambers 22a, 22b communicating with the cylinder chambers 14a, 14b. Blades 15a and 15b are accommodated in the respective blade chambers 22a and 22b so as to protrude and retract with respect to the cylinder chambers 14a and 14b.
The blade chambers 22a and 22b are integrally connected to the blade housing grooves 23a and 23b in which both side surfaces of the blades 15a and 15b are slidably movable, and the blade housing groove end portions. It consists of the vertical hole parts 24a and 24b accommodated. In particular, the first cylinder 8A is provided with a lateral hole 25 that communicates the outer peripheral surface with the blade chamber 22a, and accommodates the spring member 26 therein. The spring member 26 is interposed between the rear end surface of the blade 15a and the inner peripheral surface of the sealed container 1, and applies an elastic force (back pressure) to the blade 15a so that the tip edge contacts the eccentric roller 13a. It is a compression spring.

上記第2のシリンダ8B側のブレード室22bにはブレード15b以外に何らの部材も収容されていないが、後述するようにブレード室22bの設定環境と、後述する圧力切換え機構(手段)30の作用に応じて、ブレード15bの先端縁を上記偏心ローラ13bに接触させるようになっている。
各ブレード15a,15bの先端縁は平面視で半円状に形成されており、平面視で円形状の偏心ローラ13a,13b周壁に、偏心ローラの回転角度にかかわらず線接触できる。上記偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ブレード15a,15bはブレード収納溝23a,23bに沿って往復運動し、シリンダ室14a,14bを吸込み室と圧縮室に仕切る。ブレード15a,15bの後端部は、縦孔部24a,24bから進退自在となる。
The blade chamber 22b on the second cylinder 8B side does not contain any members other than the blade 15b. However, as will be described later, the setting environment of the blade chamber 22b and the operation of the pressure switching mechanism (means) 30 described later. Accordingly, the tip edge of the blade 15b is brought into contact with the eccentric roller 13b.
The leading edges of the blades 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller. When the eccentric rollers 13a, 13b are eccentrically rotated along the inner peripheral walls of the cylinder chambers 14a, 14b, the blades 15a, 15b reciprocate along the blade housing grooves 23a, 23b, and the cylinder chambers 14a, 14b are moved to the suction chamber. Partition into compression chambers. The rear end portions of the blades 15a and 15b can be moved forward and backward from the vertical hole portions 24a and 24b.

上述したように、上記第2のシリンダ8Bの外形形状寸法と、上記中間仕切板7および副軸受10の外形寸法との関係から、第2のシリンダ8Bの外形一部は密閉容器1内に露出する。この密閉容器1への露出部分が上記ブレード室22bに相当するように設計されており、したがってブレード室22bおよびブレード15b後端部はケース内圧力を直接的に受けることになる。
第2のシリンダ8Bおよびブレード室22bは構造物であるからケース内圧力を受けても何らの影響もないが、ブレード15bはブレード室22bに摺動自在に収容され、かつ後端部がブレード室22bの縦孔部24bに位置するので、ケース内圧力を直接的に受ける。
As described above, a part of the outer shape of the second cylinder 8B is exposed in the sealed container 1 from the relationship between the outer shape of the second cylinder 8B and the outer dimensions of the intermediate partition plate 7 and the auxiliary bearing 10. To do. The portion exposed to the hermetic container 1 is designed to correspond to the blade chamber 22b. Therefore, the blade chamber 22b and the rear end portion of the blade 15b directly receive the pressure in the case.
Since the second cylinder 8B and the blade chamber 22b are structures, there is no effect even if the pressure in the case is applied, but the blade 15b is slidably accommodated in the blade chamber 22b, and the rear end portion is the blade chamber. Since it is located in the vertical hole part 24b of 22b, it receives the pressure in a case directly.

さらに、ブレード15bの先端部が第2のシリンダ室14bに対向しており、ブレード先端部はシリンダ室14b内の圧力を受ける。結局、ブレード15bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。
第2のシリンダ8Bに設けられるブレード室22bの縦孔部24bに隣設され、通常運転時にシリンダ室14bに導かれる吸込み圧力と、ブレード室22bに導かれる密閉容器1内圧力との差圧よりも小さい力で、ブレード15bを偏心ローラ13aから引き離す方向に付勢する保持機構28が設けられる。上記保持機構28は、永久磁石、電磁石もしくは、ばね等の弾性体のいずれかを用いればよい。
Furthermore, the tip of the blade 15b faces the second cylinder chamber 14b, and the blade tip receives the pressure in the cylinder chamber 14b. Eventually, the blade 15b is configured to move in the direction from the higher pressure to the lower pressure according to the magnitude of the mutual pressure received by the front end and the rear end.
Adjacent to the vertical hole 24b of the blade chamber 22b provided in the second cylinder 8B, and from the differential pressure between the suction pressure guided to the cylinder chamber 14b during normal operation and the internal pressure of the sealed container 1 guided to the blade chamber 22b. A holding mechanism 28 is provided that urges the blade 15b away from the eccentric roller 13a with a small force. The holding mechanism 28 may be a permanent magnet, an electromagnet, or an elastic body such as a spring.

なお説明すると、保持機構28は第2のシリンダ室14bにかかる吸込み圧力とブレード溝22にかかる密閉容器1内圧力との差圧よりも小さい力で、上記ブレード15を偏心ローラ13から引き離す方向に付勢保持する。保持機構28として永久磁石を備えることにより、常に所定の力でブレード15を磁気吸引する。
あるいは、永久磁石に代って電磁石を備え、必要に応じて磁気吸引するようにしてもよい。あるいは、保持機構28は弾性体である引張りばねとする。この引張りばねの一端部をブレード15の背面端部に掛止して、常に所定の弾性力で引張り付勢するようにしてもよい。
In other words, the holding mechanism 28 pulls the blade 15 away from the eccentric roller 13 with a force smaller than the differential pressure between the suction pressure applied to the second cylinder chamber 14b and the pressure inside the sealed container 1 applied to the blade groove 22. Keep energized. By providing a permanent magnet as the holding mechanism 28, the blade 15 is always magnetically attracted with a predetermined force.
Alternatively, an electromagnet may be provided instead of the permanent magnet, and magnetic attraction may be performed as necessary. Alternatively, the holding mechanism 28 is a tension spring that is an elastic body. One end portion of the tension spring may be hooked on the rear end portion of the blade 15 so that the tension spring is always pulled with a predetermined elastic force.

各シリンダ8A,8Bには、主軸受9もしくは副軸受10およびバルブカバー等を各シリンダに取付けるための取付けボルトが挿通する、もしくは螺挿される、取付け用孔もしくはねじ孔が設けられ、第1のシリンダ8Aのみ円弧状のガス通し用孔部27が設けられている。
再び図1に示すように、このようにして構成されるロータリ式圧縮機Rは冷凍サイクル装置の冷凍サイクル回路Kに組み込まれている。すなわち、密閉容器1の上端部には、吐出冷媒管18が接続される。この吐出冷媒管18は、凝縮器19と、膨張機構20および蒸発器21を介してアキュームレータ17に接続される。
上記アキュームレータ17底部には、ロータリ式圧縮機Rに低圧冷媒を吸込み案内するための吸込み冷媒管16a,16bが接続される。一方の吸込み冷媒管16aは密閉容器1を貫通し、第1のシリンダ8Aに設けられる吸込み孔aに接続され、第1のシリンダ室14a内に直接連通する。
Each cylinder 8A, 8B is provided with a mounting hole or screw hole into which a mounting bolt for mounting the main bearing 9 or the sub bearing 10 and the valve cover or the like to each cylinder is inserted or screwed. An arc-shaped gas passage hole 27 is provided only in the cylinder 8A.
As shown in FIG. 1 again, the rotary compressor R configured as described above is incorporated in the refrigeration cycle circuit K of the refrigeration cycle apparatus. That is, the discharge refrigerant pipe 18 is connected to the upper end portion of the sealed container 1. The discharged refrigerant pipe 18 is connected to the accumulator 17 via a condenser 19, an expansion mechanism 20 and an evaporator 21.
Suction refrigerant pipes 16a and 16b for sucking and guiding low pressure refrigerant into the rotary compressor R are connected to the bottom of the accumulator 17. One suction refrigerant pipe 16a penetrates the sealed container 1, is connected to a suction hole a provided in the first cylinder 8A, and communicates directly with the first cylinder chamber 14a.

他方の吸込み冷媒管16bは後述する吸込み通路を構成していて、密閉容器1を貫通し、第2のシリンダ8Bと、中間仕切り板7および副軸受10とに亘って設けられる逆止弁機構35に連通される。さらに、上記逆止弁機構35には、冷凍サイクル回路Kに分岐して設けられる高圧導入通路(高圧導入手段)45が連通される。
これら吸込み通路である上記吸込み冷媒管16bと、後述する逆止弁機構35および、高圧導入通路45で、上記圧力切換え機構(圧力切換え手段)30が構成される。
上記高圧導入通路45から先に説明すると、この一端部はロータリ式圧縮機Rの上端部に設けられる吐出冷媒管18の中途部から分岐され、水平方向に延出される分岐管46からなり、この分岐管46の中途部には電磁開閉弁47が設けられる。
The other suction refrigerant pipe 16b constitutes a suction passage, which will be described later, and passes through the hermetic container 1 and is provided across the second cylinder 8B, the intermediate partition plate 7 and the auxiliary bearing 10, and a check valve mechanism 35. Communicated with Further, the check valve mechanism 35 communicates with a high-pressure introduction passage (high-pressure introduction means) 45 provided to be branched to the refrigeration cycle circuit K.
The suction refrigerant pipe 16b , which is the suction passage, the check valve mechanism 35 and the high pressure introduction passage 45 described later constitute the pressure switching mechanism (pressure switching means) 30.
Explaining from the high-pressure introduction passage 45 first, this one end portion is made up of a branch pipe 46 branched from the middle portion of the discharge refrigerant pipe 18 provided at the upper end portion of the rotary compressor R and extending in the horizontal direction. An electromagnetic opening / closing valve 47 is provided in the middle of the branch pipe 46.

上記分岐管46は、電磁開閉弁47接続部から垂直下方に延出され、所定部位で再び水平方向に屈曲されてロータリ式圧縮機Rを構成する密閉容器1を貫通する。そして、上記副軸受10に設けられる吸込み孔cに接続されていて、この吸込み孔cは上記逆止弁機構35に連通する。
つぎに、上記逆止弁機構35について詳述する。
上記アキュームレータ17から延出される吸込み冷媒管16bは、密閉容器1を貫通して第1のシリンダ8Aと第2のシリンダ8Bとの間に介在される中間仕切り板7に設けられる吸込み孔bに接続される。
The branch pipe 46 extends vertically downward from the connection part of the electromagnetic on-off valve 47, is bent again in a horizontal direction at a predetermined portion, and passes through the sealed container 1 constituting the rotary compressor R. And, it is connected to a suction hole c provided in the auxiliary bearing 10, and this suction hole c communicates with the check valve mechanism 35.
Next, the check valve mechanism 35 will be described in detail.
The suction refrigerant pipe 16b extending from the accumulator 17 is connected to a suction hole b provided in the intermediate partition plate 7 that passes through the sealed container 1 and is interposed between the first cylinder 8A and the second cylinder 8B. Is done.

図3(A)は、中間仕切り板7の断面図と下面図である。
上記中間仕切り板7に設けられ吸込み冷媒管16bが接続される吸込み孔bは、中間仕切り板7の外周面から中心軸方向に向かって、上記回転軸4が挿通する孔部7aの手前側位置まで設けられている。そして、中間仕切り板7の下面から上記吸込み孔bに亘って、下面側がテーパー状に拡大された孔部からなる上部弁座36が設けられる。
再び図1に示すように、第2のシリンダ8Bにおける中間仕切り板7の上部弁座36と連通する部位には、動作室37が設けられる。
FIG. 3A is a cross-sectional view and a bottom view of the intermediate partition plate 7.
The suction hole b provided in the intermediate partition plate 7 and connected to the suction refrigerant pipe 16b is located on the near side of the hole portion 7a through which the rotary shaft 4 is inserted from the outer peripheral surface of the intermediate partition plate 7 toward the central axis direction. Is provided. And the upper valve seat 36 which consists of a hole by which the lower surface side was expanded in the taper shape is provided from the lower surface of the intermediate partition plate 7 to the said suction hole b.
As shown in FIG. 1 again, an operation chamber 37 is provided in a portion of the second cylinder 8B that communicates with the upper valve seat 36 of the intermediate partition plate 7.

図3(B)は、第2のシリンダ8Bの平面図と断面図である。特に、この第2のシリンダ8Bにおいては、先に図2において図示したものと形状構成に若干の相違があるが、基本的に同一物である。
第2のシリンダ8Bに設けられる上記動作室37は、中間仕切り板7における上部弁座36と対向する部位に設けられている。動作室37は、上部弁座36の拡大された孔部直径と同一直径であり、かつ第2のシリンダ8Bの上下面に亘って貫通する案内孔部38を備えている。この案内孔部38は、第2のシリンダ8Bの内径部に形成される第2のシリンダ室14bとは僅かな間隔を存して設けられていて、これら相互間の壁部分は下半分を残して上半分が切欠加工される。すなわち、案内孔部38と第2のシリンダ室14bとは、切欠された堰部39を介して連通状態になっている。
FIG. 3B is a plan view and a cross-sectional view of the second cylinder 8B. In particular, the second cylinder 8B is basically the same, although there is a slight difference in shape and configuration from that shown in FIG.
The operation chamber 37 provided in the second cylinder 8B is provided in a portion facing the upper valve seat 36 in the intermediate partition plate 7. The operation chamber 37 includes a guide hole 38 having the same diameter as the enlarged hole diameter of the upper valve seat 36 and penetrating over the upper and lower surfaces of the second cylinder 8B. The guide hole portion 38 is provided with a slight space from the second cylinder chamber 14b formed in the inner diameter portion of the second cylinder 8B, and the wall portion between them leaves the lower half. The upper half is notched. That is, the guide hole portion 38 and the second cylinder chamber 14 b are in communication with each other via the notched weir portion 39.

再び図1に示すように、第2のシリンダ8Bの下面に取付けられる副軸受10において、第2のシリンダ室14bに設けられる動作室37の案内孔部38と対向する部位に、副軸受10の上面から所定深さに設けられる(すなわち、副軸受を貫通しない)穴部である下部弁座40を備えている。   As shown in FIG. 1 again, in the auxiliary bearing 10 attached to the lower surface of the second cylinder 8B, the auxiliary bearing 10 has a portion facing the guide hole 38 of the operation chamber 37 provided in the second cylinder chamber 14b. The lower valve seat 40 which is a hole provided at a predetermined depth from the upper surface (that is, does not pass through the auxiliary bearing) is provided.

図3(C)は、副軸受10の平面図と断面図である。
上記副軸受10に設けられる下部弁座40は、上記中間仕切り板7に設けられる上部弁座36と同一形状で同一直径である。さらに、副軸受10の外周面から下部弁座40に連通するよう吸込み孔cが設けられる。上述したように、この吸込み孔cに上記高圧導入通路45の分岐管46が接続される。
再び図1に示すように、このようにして構成される逆止弁機構35において、上記動作室37には弁体43が収容される。上記弁体43は、ここでは球状をなし、直径は動作室37の案内孔部38直径よりも僅かに小さく、かつ第2のシリンダ8Bの板厚よりも小さい。このことから、弁体43は動作室37の案内孔部38内において自由に動き得る余裕がある。
FIG. 3C is a plan view and a cross-sectional view of the auxiliary bearing 10.
The lower valve seat 40 provided in the auxiliary bearing 10 has the same shape and the same diameter as the upper valve seat 36 provided in the intermediate partition plate 7. Further, a suction hole c is provided so as to communicate with the lower valve seat 40 from the outer peripheral surface of the auxiliary bearing 10. As described above, the branch pipe 46 of the high-pressure introduction passage 45 is connected to the suction hole c.
As shown in FIG. 1 again, in the check valve mechanism 35 configured as described above, a valve body 43 is accommodated in the operation chamber 37. Here, the valve body 43 is spherical and has a diameter slightly smaller than the diameter of the guide hole 38 of the operation chamber 37 and smaller than the plate thickness of the second cylinder 8B. For this reason, the valve body 43 has a margin to freely move in the guide hole 38 of the operation chamber 37.

しかも、弁体43は中間仕切り板7の上部弁座36および、副軸受10の下部弁座40において動作室37と対向して設けられるテーパ状の孔部に嵌り込むことが可能であり、この状態でそれぞれの弁座36,40を閉成し得るようになっている。
このようにして上記圧力切換え機構30は、電磁開閉弁47を中途部に備え、吐出冷媒管18と副軸受10とに亘って設けられる高圧導入通路45と、アキュームレータ17と中間仕切り板7とに亘って設けられる吸込み通路である吸込み冷媒管16bおよび、ロータリ式圧縮機R内部における高圧導入通路45接続端部と吸込み冷媒管16b接続端部との間に亘って設けられる逆止弁機構35とで構成される。
Moreover, the valve body 43 can be fitted into a tapered hole provided facing the operation chamber 37 in the upper valve seat 36 of the intermediate partition plate 7 and the lower valve seat 40 of the auxiliary bearing 10. The respective valve seats 36 and 40 can be closed in a state.
In this way, the pressure switching mechanism 30 includes the electromagnetic opening / closing valve 47 in the middle, and the high pressure introduction passage 45 provided across the discharge refrigerant pipe 18 and the auxiliary bearing 10, the accumulator 17, and the intermediate partition plate 7. A suction refrigerant pipe 16b which is a suction passage provided over the check valve mechanism 35 provided between the connection end of the high pressure introduction passage 45 and the connection end of the suction refrigerant pipe 16b in the rotary compressor R; Consists of.

そして、圧力切換え機構30は、電磁開閉弁47の開閉操作に応じて、後述するように圧縮機Rから吐出される高圧の冷媒ガスを第2のシリンダ室14bに導き、もしくはアキュームレータ17を通過した低圧ガスを第2のシリンダ室14bに導くことができる。
つぎに、上述のロータリ式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。
(1) 通常運転(全能力運転)を選択した場合:
通常運転(全能力運転)を選択すると、上記制御部は、高圧導入通路45に設けられる電磁開閉弁47を閉成するよう制御し、さらに制御部はインバータを介して電動機部3のインバータ回路に運転信号を送る。回転軸4が回転駆動され、第1の圧縮機構部2Aと第2の圧縮機構部2Bが同時に作用する。
すなわち、偏心ローラ13a,13bは各シリンダ室14a,14b内で偏心回転を行う。第1の圧縮機構部2Aにおいては、ブレード15aがばね部材26によって常に弾性的に押圧付勢されるところから、ブレード15aの先端縁が偏心ローラ13a周壁に摺接して第1のシリンダ室14a内を吸込み室と圧縮室に二分する。
Then, the pressure switching mechanism 30 guides the high-pressure refrigerant gas discharged from the compressor R to the second cylinder chamber 14b or passes through the accumulator 17, as will be described later, according to the opening / closing operation of the electromagnetic opening / closing valve 47. The low pressure gas can be guided to the second cylinder chamber 14b.
Next, the operation of the refrigeration cycle apparatus including the rotary compressor R described above will be described.
(1) When normal operation (full capacity operation) is selected:
When normal operation (full capacity operation) is selected, the control unit controls the electromagnetic on-off valve 47 provided in the high-pressure introduction passage 45 to be closed, and the control unit is connected to the inverter circuit of the motor unit 3 via the inverter. Send driving signal. The rotary shaft 4 is rotationally driven, and the first compression mechanism 2A and the second compression mechanism 2B act simultaneously.
That is, the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b. In the first compression mechanism portion 2A, since the blade 15a is always elastically pressed and biased by the spring member 26, the tip edge of the blade 15a is slidably contacted with the peripheral wall of the eccentric roller 13a so as to be in the first cylinder chamber 14a. Is divided into a suction chamber and a compression chamber.

偏心ローラ13aのシリンダ室14a内周面転接位置とブレード収納溝23aが一致し、ブレード15aが最も後退した状態で、このシリンダ室14aの空間容量が最大となる。冷媒ガスはアキュームレータ17から吸込み冷媒管16aを介して第1のシリンダ室14aに吸込まれ、充満する。
偏心ローラ13aの偏心回転にともなって、偏心ローラの第1のシリンダ室14a内周面に対する転接位置が移動し、シリンダ室14aの区画された圧縮室の容積が減少する。すなわち、先にシリンダ室14aに導かれたガスが徐々に圧縮される。回転軸4が継続して回転され、第1のシリンダ室14aにおける圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで図示しない吐出弁が開放する。高圧ガスはバルブカバーaを介して密閉容器1内に吐出され充満する。そして、密閉容器上部の吐出冷媒管18から吐出される。
When the position of the inner circumferential surface of the eccentric roller 13a in contact with the blade housing groove 23a coincides with the blade housing groove 23a, the space capacity of the cylinder chamber 14a is maximized. The refrigerant gas is sucked into the first cylinder chamber 14a from the accumulator 17 through the suction refrigerant pipe 16a and is filled.
With the eccentric rotation of the eccentric roller 13a, the rolling contact position of the eccentric roller with respect to the inner peripheral surface of the first cylinder chamber 14a moves, and the volume of the compression chamber partitioned by the cylinder chamber 14a decreases. That is, the gas previously introduced into the cylinder chamber 14a is gradually compressed. The rotating shaft 4 is continuously rotated, the capacity of the compression chamber in the first cylinder chamber 14a is further reduced, the gas is compressed, and when the pressure rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed container 1 through the valve cover a and is filled. And it discharges from the discharge refrigerant | coolant pipe | tube 18 of an airtight container upper part.

上記高圧導入通路45に設けられる電磁開閉弁47が閉成されているので、吐出冷媒管18に導かれる高圧ガスが高圧導入通路45の一端部から侵入しても、中途部で遮断され、他端部である第2のシリンダ室14bには吐出圧(高圧)が導かれることはない。
その一方で、蒸発器21で蒸発しアキュームレータ17で気液分離された低圧の蒸発冷媒は、吸込み冷媒管16bから第2の圧縮機構部2Bに設けられる逆止弁機構35に導かれる。高圧導入通路45が閉成されているから、副軸受10に設けられる下部弁座40には高圧がかかっていない。
図4(A)にも示すように、第2のシリンダ8Bに設けられる動作室37には、吸込み冷媒管16bを介して低圧の冷媒が導かれるのみであり、この動作室に収容される弁体43は低圧の冷媒に押されて副軸受10の下部弁座40に載り、これを閉成する。
Since the electromagnetic on-off valve 47 provided in the high-pressure introduction passage 45 is closed, even if the high-pressure gas guided to the discharge refrigerant pipe 18 enters from one end portion of the high-pressure introduction passage 45, it is shut off in the middle. The discharge pressure (high pressure) is not led to the second cylinder chamber 14b which is the end.
On the other hand, the low-pressure evaporative refrigerant evaporated by the evaporator 21 and gas-liquid separated by the accumulator 17 is guided from the suction refrigerant pipe 16b to the check valve mechanism 35 provided in the second compression mechanism portion 2B. Since the high pressure introduction passage 45 is closed, no high pressure is applied to the lower valve seat 40 provided in the auxiliary bearing 10.
As shown in FIG. 4A, only the low-pressure refrigerant is guided to the operation chamber 37 provided in the second cylinder 8B via the suction refrigerant pipe 16b, and the valve accommodated in this operation chamber. The body 43 is pushed by the low-pressure refrigerant and rests on the lower valve seat 40 of the auxiliary bearing 10 to close it.

したがって、アキュームレータ17から低圧の冷媒が動作室37を構成する案内孔部38と堰部39を介して第2のシリンダ室14bに導入される。そのため、第2のシリンダ室14bは吸込み圧(低圧)雰囲気となる一方で、このブレード室22bが密閉容器1内に露出して吐出圧(高圧)下にある。上記ブレード15bにおいては、先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で差圧が存在する。
この差圧の影響で、ブレード15bの先端部が偏心ローラ13bに摺接するように押圧付勢される。すなわち、第1のシリンダ室14a側のブレード15aがばね部材26により押圧付勢され圧縮作用が行われるのと全く同様の圧縮作用が、第2のシリンダ室14bにおいても行われる。結局、ロータリ式圧縮機Rにおいては、第1の圧縮機構部2Aと、第2の圧縮機構部2Bとの両方で圧縮作用がなされる、全能力運転が行われることになる。
密閉容器1から吐出冷媒管18を介して吐出される高圧ガスは、凝縮器19に導かれて凝縮液化し、膨張機構20で断熱膨張し、蒸発器21で熱交換空気から蒸発潜熱を奪って冷房作用をなす。そして、蒸発したあとの冷媒はアキュームレータ17に導かれて気液分離され、再び各吸込み冷媒管16a,16bから圧縮機Rの第1、第2の圧縮機構部2A,2Bに吸込まれて上述の経路を循環する。
Therefore, a low-pressure refrigerant is introduced from the accumulator 17 into the second cylinder chamber 14 b through the guide hole portion 38 and the weir portion 39 that constitute the operation chamber 37. Therefore, the second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, while the blade chamber 22b is exposed in the sealed container 1 and is under a discharge pressure (high pressure). In the blade 15b, the front end portion is under a low pressure condition and the rear end portion is under a high pressure condition, and there is a differential pressure at the front and rear end portions.
Due to the effect of this differential pressure, the tip of the blade 15b is pressed and urged so as to be in sliding contact with the eccentric roller 13b. That is, the same compression action is performed in the second cylinder chamber 14b as the blade 15a on the first cylinder chamber 14a side is pressed and urged by the spring member 26 to perform the compression action. Eventually, in the rotary compressor R, a full capacity operation is performed in which the compression action is performed by both the first compression mechanism portion 2A and the second compression mechanism portion 2B.
The high-pressure gas discharged from the sealed container 1 through the discharge refrigerant pipe 18 is led to the condenser 19 to be condensed and liquefied, adiabatically expanded by the expansion mechanism 20, and the evaporator 21 takes away the latent heat of evaporation from the heat exchange air. Makes a cooling effect. Then, the evaporated refrigerant is guided to the accumulator 17 and separated into gas and liquid, and again sucked into the first and second compression mechanism portions 2A and 2B of the compressor R from the suction refrigerant tubes 16a and 16b. Cycle through the path.

(2) 特別運転(能力半減運転)を選択した場合:
特別運転(能力半減運転)を選択すると、制御部は高圧導入通路45に設けられる電磁開閉弁47を開放するように切換え設定する。第1の圧縮機構部2Aにおいては上述したように通常の圧縮作用がなされ、密閉容器1内に吐出された高圧ガスが充満してケース内高圧となる。
密閉容器1内に充満する高圧ガスは吐出冷媒管18から吐出されるのであるが、一部の高圧ガスは吐出冷媒管から分岐管46に分流して高圧導入通路45に導かれ、開放されている電磁開閉弁47を介して圧縮機R内の逆止弁機構35に導入される。
(2) When special operation (half-capacity operation) is selected:
When a special operation (capability half operation) is selected, the control unit switches and sets the electromagnetic on-off valve 47 provided in the high-pressure introduction passage 45 to be opened. In the first compression mechanism portion 2A, the normal compression action is performed as described above, and the high-pressure gas discharged into the sealed container 1 is filled to become a high pressure in the case.
The high-pressure gas filling the hermetic container 1 is discharged from the discharge refrigerant pipe 18, but a part of the high-pressure gas is diverted from the discharge refrigerant pipe to the branch pipe 46 and led to the high-pressure introduction passage 45 and opened. It is introduced into the check valve mechanism 35 in the compressor R through the electromagnetic on-off valve 47.

図4(B)にも示すように、副軸受10に接続される分岐管46から導かれる高圧の冷媒ガスは下部弁座40を閉成していた弁体43を噴き上げて、中間仕切り板7に設けられる上部弁座36を閉成する。弁体43が上部弁座36を閉成することで、下部弁座40が開放される。そのため、高圧導入通路45を介して高圧の冷媒ガスが逆止弁機構35に導かれ、さらに第2のシリンダ室14bに充満する。
このようにして、第2のシリンダ室14bが吐出圧(高圧)雰囲気にある一方で、ブレード室22bはケース内高圧と同一の状況下にあることには変りがない。そのため、ブレード15bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。
As shown in FIG. 4B, the high-pressure refrigerant gas guided from the branch pipe 46 connected to the sub-bearing 10 blows up the valve body 43 that has closed the lower valve seat 40, and the intermediate partition plate 7. The upper valve seat 36 provided in is closed. When the valve body 43 closes the upper valve seat 36, the lower valve seat 40 is opened. For this reason, the high-pressure refrigerant gas is guided to the check valve mechanism 35 through the high-pressure introduction passage 45 and further fills the second cylinder chamber 14b.
Thus, while the second cylinder chamber 14b is in the discharge pressure (high pressure) atmosphere, the blade chamber 22b remains in the same situation as the high pressure in the case. Therefore, the blade 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends.

ブレード15bは偏心ローラ13b外周面から離間した位置で移動することなく停止状態を保持し、第2のシリンダ室14bでの圧縮作用は行われず第2の圧縮機構部2Bは停止状態にある。結局、第1の圧縮機構部2Aでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。
なお、第2のシリンダ室14bに充満する高圧ガスの一部は吸込み冷媒管16bからアキュームレータ17に逆流しようとする。しかしながら、動作室37内の弁体43は上部弁座36を閉成していて、吸込み通路である吸込み冷媒管16b側からアキュームレータ17への逆流を阻止する。また、第2のシリンダ室14bの内部は高圧となっているところから、密閉容器1内から第2のシリンダ室14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。したがって、圧縮効率の低下なしに能力を半減した運転が可能となる。
The blade 15b maintains a stopped state without moving at a position separated from the outer peripheral surface of the eccentric roller 13b, and the second cylinder chamber 14b is not compressed and the second compression mechanism 2B is in a stopped state. Eventually, only the compression action in the first compression mechanism portion 2A is effective, and an operation with half the capacity is performed.
A part of the high-pressure gas filling the second cylinder chamber 14b tends to flow backward from the suction refrigerant pipe 16b to the accumulator 17. However, the valve body 43 in the operation chamber 37 closes the upper valve seat 36 and prevents the backflow from the suction refrigerant pipe 16b side serving as the suction passage to the accumulator 17. Further, since the inside of the second cylinder chamber 14b is at a high pressure, no leakage of compressed gas from the sealed container 1 into the second cylinder chamber 14b occurs, and no loss is caused thereby. Therefore, it is possible to operate with half the capacity without lowering the compression efficiency.

従来の圧縮機のように、一方の圧縮機構部にブレードを上死点で固定する複雑な機構が不要となり、ブレードを付勢するばね部材を省略できる。しかも、中途部に電磁開閉弁47を設けた高圧導入通路45と、アキュームレータ17に連通する吸込み冷媒管16bとの接続部位に逆止弁機構35を設けることで圧力切換え機構30を構成でき、単純な構造で容量可変が可能となり、コスト的に有利であり、製造性に優れ、かつ高効率のロータリ式圧縮機を提供できる。
特に、逆止弁機構35をロータリ式圧縮機Rを構成する密閉容器1内部に備えることで、切換え音が外部に漏れずにすみ静粛運転をなすとともに、外観の簡素化を図り製造性の向上を得られる。さらに、装置の大型化を抑制し、コストの低減に寄与する。
Unlike a conventional compressor, a complicated mechanism for fixing the blade to one compression mechanism at the top dead center is not required, and a spring member for biasing the blade can be omitted. In addition, the pressure switching mechanism 30 can be configured by providing the check valve mechanism 35 at the connection portion between the high pressure introduction passage 45 provided with the electromagnetic on-off valve 47 in the middle and the suction refrigerant pipe 16b communicating with the accumulator 17. A variable structure is possible with a simple structure, which is advantageous in terms of cost, is excellent in manufacturability, and can provide a highly efficient rotary compressor.
In particular, the check valve mechanism 35 is provided inside the sealed container 1 constituting the rotary compressor R, so that the switching sound does not leak to the outside and the operation is quiet and the appearance is simplified and the productivity is improved. Can be obtained. Furthermore, the increase in the size of the apparatus is suppressed, contributing to cost reduction.

なお、逆止弁機構35は、弁体43に対して上部弁座36と下部弁座40を備えた構成とした。すなわち、弁体43は、その動作方向を鉛直方向に設定して、上部弁座36を閉成(下部弁座40を開放)した状態から、下部弁座40を閉成(上部弁座36を開放)する状態に移行する際には、弁体43の自重で容易、かつ確実に閉成できる。
図5は、第1の実施の形態における変形例を示している。
逆止弁機構35を構成する弁体43Aと、この弁体によって開閉される上下部弁座36A,40Aの形状構造が相違するのみで、他の構成は全て同一であるので、同一部品には同番号を付して新たな説明を省略する。
The check valve mechanism 35 includes an upper valve seat 36 and a lower valve seat 40 with respect to the valve body 43. That is, the valve body 43 sets the operation direction to the vertical direction, and closes the lower valve seat 40 (opens the upper valve seat 36 from the state where the upper valve seat 36 is closed (lower valve seat 40 is opened)). When shifting to the state of opening, the valve body 43 can be easily and reliably closed by its own weight.
FIG. 5 shows a modification of the first embodiment.
Since only the shape structure of the valve body 43A constituting the check valve mechanism 35 and the upper and lower valve seats 36A and 40A opened and closed by the valve body is different, all other structures are the same. The same number is attached and a new description is omitted.

ここでの弁体43Aは、図の上端部がテーパー状をなし、下端部が単純な円筒状をなす。弁体43Aの直径は動作室37の直径よりも僅かに小であり、かつ弁体の高さ寸法は動作室の高さ寸法よりも小に形成される。したがって、弁体43Aは動作室37内を上下方向には自由に動き得ることは、先に説明したものと同様である。
このような弁体43Aによって開閉される上部弁座36Aが上記中間仕切り板7に設けられ、下部弁座40Aが上記副軸受10の同一部位に設けられることも変りがない。そして、上部弁座36Aおよび下部弁座40Aは上記弁体43Aによって確実に開閉される形状構造をなしていることは言うまでもない。
Here, the valve body 43A has a tapered upper end portion and a simple cylindrical lower end portion. The diameter of the valve body 43A is slightly smaller than the diameter of the operation chamber 37, and the height dimension of the valve body is formed smaller than the height dimension of the operation chamber. Therefore, the valve body 43A can move freely in the up and down direction in the operation chamber 37, as described above.
The upper valve seat 36A that is opened and closed by the valve body 43A is provided in the intermediate partition plate 7, and the lower valve seat 40A is provided in the same portion of the auxiliary bearing 10. Needless to say, the upper valve seat 36A and the lower valve seat 40A have a shape structure that is reliably opened and closed by the valve body 43A.

いずれの弁体43,43Aであっても、これら弁体を構成する素材は、上下部弁座36,40を構成する素材よりも硬度の高い素材を選択する。このことで、弁体に対する弁座部の馴染み性を良くすることができ、逆止弁として高いシール性を確保し、高圧の圧縮ガスの逆流を確実に阻止して性能低下の防止を得られる。
図6は、第1の実施の形態における別な変形例を示している。
図6(A)(B)(C)は、中間仕切り板7と後述する上部弁座36Bの分割した断面図と、上部弁座36Bを中間仕切り板7に取付けた状態の断面図および、同状態における中間仕切り板7の下面図である。
In any of the valve bodies 43 and 43A, a material having higher hardness than a material constituting the upper and lower valve seats 36 and 40 is selected as the material constituting the valve bodies. As a result, the familiarity of the valve seat with respect to the valve body can be improved, high sealing performance can be secured as a check valve, and the backflow of high-pressure compressed gas can be reliably prevented to prevent performance degradation. .
FIG. 6 shows another modification of the first embodiment.
6A, 6B and 6C are sectional views of the intermediate partition plate 7 and an upper valve seat 36B which will be described later, a sectional view of the state in which the upper valve seat 36B is attached to the intermediate partition plate 7, and It is a bottom view of the intermediate partition plate 7 in a state.

すなわち、先に説明した上部弁座36,36Aは中間仕切り板7を直接孔明け加工してなるものであるが、ここでは中間仕切り板7には単純な孔部36C加工だけでよく、別途用意された弁座36Bが上記孔部36Cに嵌合固着される。また、特に図示していないが、上記副軸受10における下部弁座も同様にして、別ピースの弁座を嵌合固着するようにしてもよい。
この別ピース化した弁座36Bは、吸込み通路を形成する部品(本実施例においては中間仕切板7)に対して異質な材料、たとえば真鍮や銅等の非鉄金属材あるいは合成樹脂系材料を用いることとする。このような弁座36Bであれば、弁体43,43Aに対して馴染み性を良くすることができ、高いシール性を有する逆止弁機構35を得られ、高圧の圧縮ガスの逆流を確実に防止して性能向上を図れる。
That is, the upper valve seats 36 and 36A described above are formed by directly drilling the intermediate partition plate 7. Here, the intermediate partition plate 7 only needs to be processed by a simple hole 36C, and separately prepared. The valve seat 36B is fitted and fixed in the hole 36C. Further, although not specifically shown, the lower valve seat in the sub-bearing 10 may be similarly fitted and fixed to a separate valve seat.
This separate valve seat 36B uses a material different from the parts forming the suction passage (in the present embodiment, the intermediate partition plate 7), for example, a non-ferrous metal material such as brass or copper, or a synthetic resin material. I will do it. With such a valve seat 36B, the familiarity with the valve bodies 43, 43A can be improved, and a check valve mechanism 35 having high sealing performance can be obtained, and the backflow of high-pressure compressed gas can be ensured. To improve performance.

図7は、第2の実施の形態のロータリ式圧縮機を備えた冷凍サイクル回路の構成図である。ここでは、後述する逆止弁機構と高圧導入通路からなる圧力切換え機構を除いて、他の構成部品は同一であるので、同番号を付して新たな説明を省略する。
上記アキュームレータ17の底部から延出される吸込み冷媒管16aの一端部は密閉容器1を貫通して、主軸受9に設けられる吸込み孔dに接続される。他方の吸込み冷媒管16bは第2のシリンダ8Bに設けられる吸込み孔eを介して、第2のシリンダ室14bに連通される。
FIG. 7 is a configuration diagram of a refrigeration cycle circuit including the rotary compressor according to the second embodiment. Here, since the other components are the same except for a check valve mechanism and a pressure switching mechanism including a high-pressure introduction passage, which will be described later, the same reference numerals are given and a new description is omitted.
One end of the suction refrigerant pipe 16 a extending from the bottom of the accumulator 17 passes through the sealed container 1 and is connected to a suction hole d provided in the main bearing 9. The other suction refrigerant pipe 16b communicates with the second cylinder chamber 14b through a suction hole e provided in the second cylinder 8B.

上記高圧導入通路45は、一端部が吐出冷媒管18に接続され、中途部に電磁開閉弁47を備えた分岐管46からなることは変りがない。ただし、分岐管46の他端部は中間仕切り板7に設けられる吸込み孔fに接続される。
この中間仕切り板7の吸込み孔fには下部弁座40が設けられ、主軸受9の吸込み孔dには上部弁座36が設けられる。これら主軸受9と中間仕切り板7との間に介在される第1のシリンダ8Aには動作室37が設けられる。上記動作室37の上部は上部弁座36と対向し、動作室37の下部は下部弁座40と対向する。そして、動作室37には弁体43が変位自在に収容され、動作室37にかかる圧力の程度に応じて上下部弁座36,40を互いに開閉自在となす。
One end of the high-pressure introduction passage 45 is connected to the discharge refrigerant pipe 18 and is composed of a branch pipe 46 provided with an electromagnetic on-off valve 47 in the middle. However, the other end of the branch pipe 46 is connected to a suction hole f provided in the intermediate partition plate 7.
A lower valve seat 40 is provided in the suction hole f of the intermediate partition plate 7, and an upper valve seat 36 is provided in the suction hole d of the main bearing 9. An operation chamber 37 is provided in the first cylinder 8 </ b> A interposed between the main bearing 9 and the intermediate partition plate 7. The upper part of the operation chamber 37 faces the upper valve seat 36, and the lower part of the operation chamber 37 faces the lower valve seat 40. A valve body 43 is slidably accommodated in the operation chamber 37, and the upper and lower valve seats 36 and 40 can be opened and closed with respect to each other according to the degree of pressure applied to the operation chamber 37.

すなわち、第1の実施の形態では第2のシリンダ室14bを対象として圧力切換えをなすようにしたが、この第2の実施の形態では第1のシリンダ室14aを対象として圧力切換えをなすように、第1の圧縮機構部2Aに逆止弁機構35を備えている。
第1の圧縮機構部2Aと第2の圧縮機構部2Bにおける作用は、先に説明した第1の実施の形態とは正反対の作用をなすことで、実質的には全く同一であるので、新たな説明は省略する。
なお、上記分岐管46は密閉容器1に直接接続するようにしてもよい。また、本発明は、圧縮機構部を3つ以上備えたものにも適用可能である。
That is, in the first embodiment, the pressure is switched for the second cylinder chamber 14b, but in the second embodiment, the pressure is switched for the first cylinder chamber 14a. The first compression mechanism 2A is provided with a check valve mechanism 35.
Since the operation in the first compression mechanism portion 2A and the second compression mechanism portion 2B is substantially the same as the operation opposite to that of the first embodiment described above, Detailed explanation is omitted.
The branch pipe 46 may be directly connected to the sealed container 1. The present invention can also be applied to a device provided with three or more compression mechanisms.

本発明の第1の実施の形態に係る、ロータリ式圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the rotary compressor which concern on the 1st Embodiment of this invention. 同実施の形態に係る、第1の圧縮機構部と第2の圧縮機構部のそれぞれ一部を分解した斜視図。The perspective view which decomposed | disassembled each part of the 1st compression mechanism part and 2nd compression mechanism part based on the embodiment. 同実施の形態に係る、中間仕切り板の断面図と下面図、第2のシリンダの平面図と断面図、副軸受の平面図と断面図。Sectional drawing and bottom view of an intermediate partition plate according to the same embodiment, a plan view and a sectional view of a second cylinder, a plan view and a sectional view of a secondary bearing. 同実施の形態に係る、逆止弁機構の互いに異なる作用を説明する図。The figure explaining the mutually different effect | action of a non-return valve mechanism based on the embodiment. 同実施の形態の変形例に係る、逆止弁機構における異なる弁体の構成を説明する図。The figure explaining the structure of the different valve body in the non-return valve mechanism based on the modification of the embodiment. 同実施の形態のさらに異なる変形例に係る、中間仕切り板に対して別ピースの弁座の取付けを説明する図。The figure explaining the attachment of the valve seat of another piece with respect to the intermediate partition plate based on the further different modification of the embodiment. 本発明の第2の実施の形態に係る、ロータリ式圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the rotary compressor based on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…密閉容器、3…電動機部、2A…第1の圧縮機構部、2B…第2の圧縮機構部、R…ロータリ式圧縮機、14a…第1のシリンダ室、14b…第2のシリンダ室、30…圧力切換え機構(圧力切換え手段)、47…電磁開閉弁、45…高圧導入通路(高圧導入手段)、16b…吸込み冷媒管(吸込み通路)、36…上部弁座、40…下部弁座、43…弁体、35…逆止弁機構。   DESCRIPTION OF SYMBOLS 1 ... Sealed container, 3 ... Electric motor part, 2A ... 1st compression mechanism part, 2B ... 2nd compression mechanism part, R ... Rotary type compressor, 14a ... 1st cylinder chamber, 14b ... 2nd cylinder chamber 30 ... Pressure switching mechanism (pressure switching means), 47 ... Electromagnetic switching valve, 45 ... High pressure introduction passage (high pressure introduction means), 16b ... Suction refrigerant pipe (suction passage), 36 ... Upper valve seat, 40 ... Lower valve seat 43 ... Valve body, 35 ... Check valve mechanism.

Claims (3)

密閉容器内に、電動機部および、この電動機部と連結される複数の圧縮機構部を収容してなるロータリ式圧縮機を備え、
このロータリ式圧縮機の一方の圧縮機構部のシリンダ室に対し、冷凍サイクルの高圧側または低圧側への接続を切換える圧力切換え手段を有し、
負荷の大きいときには、上記シリンダ室に低圧冷媒を導いて通常の圧縮運転を行わせ、
負荷の小さいときには、上記シリンダ室に高圧冷媒を導いて非圧縮運転を行わせる冷凍サイクル装置において、
上記圧力切換え手段は、
冷凍サイクルの高圧側と上記シリンダ室とを連通し、中途部に開閉弁を有する高圧導入手段と、
冷凍サイクルの低圧側と上記シリンダ室とを連通し、低圧冷媒を上記シリンダ室に案内する吸込み通路と、
上記一方の圧縮機構部のシリンダに形成され、上記高圧導入手段と上記吸込み通路とに接続される動作室と、上記動作室内に移動可能に収容され、上記高圧導入手段の開閉弁を開いたとき高圧導入手段によって導かれる高圧冷媒と吸込み通路に導かれる低圧冷媒との圧力差により吸込み通路を閉じる弁体と、上記弁体が当接する弁座から構成される逆止弁機構と
を具備することを特徴とする冷凍サイクル装置。
In the sealed container, provided with a rotary compressor formed by housing an electric motor part and a plurality of compression mechanism parts connected to the electric motor part,
For the cylinder chamber of one compression mechanism of this rotary compressor, it has a pressure switching means for switching the connection to the high pressure side or the low pressure side of the refrigeration cycle,
When the load is large, low pressure refrigerant is introduced into the cylinder chamber to perform normal compression operation,
When the load is small, in the refrigeration cycle apparatus for guiding the high-pressure refrigerant to the cylinder chamber and performing the non-compression operation,
The pressure switching means is
A high-pressure introducing means that communicates the high-pressure side of the refrigeration cycle with the cylinder chamber, and has an on-off valve in the middle;
A suction passage that communicates the low pressure side of the refrigeration cycle with the cylinder chamber and guides the low pressure refrigerant to the cylinder chamber;
An operating chamber formed in the cylinder of the one compression mechanism section , connected to the high pressure introducing means and the suction passage; and movably accommodated in the operating chamber; and when the on / off valve of the high pressure introducing means is opened A valve body that closes the suction passage by a pressure difference between the high-pressure refrigerant guided by the high-pressure introduction means and the low-pressure refrigerant guided to the suction passage, and a check valve mechanism that includes a valve seat that contacts the valve body. A refrigeration cycle apparatus characterized by.
上記逆止弁機構を構成する弁体は、球状もしくは円錐状であり、上記逆止弁機構を構成する弁座よりも硬度の高い材料で形成されることを特徴とする請求項1記載の冷凍サイクル装置。   2. The refrigeration according to claim 1, wherein a valve body constituting the check valve mechanism has a spherical or conical shape and is formed of a material having a hardness higher than that of the valve seat constituting the check valve mechanism. Cycle equipment. 上記弁座は、上記一方の圧縮機構部の吸込み通路を形成する材料とは異なる材料を用いて、互いに別体に形成され、かつ吸込み通路に装着されることを特徴とする請求項1および請求項2のいずれかに記載の冷凍サイクル装置。   2. The valve seat according to claim 1, wherein the valve seat is formed separately from each other using a material different from a material forming the suction passage of the one compression mechanism, and is attached to the suction passage. Item 3. The refrigeration cycle apparatus according to any one of Items 2 to 3.
JP2004225889A 2004-08-02 2004-08-02 Refrigeration cycle equipment Expired - Fee Related JP4398321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225889A JP4398321B2 (en) 2004-08-02 2004-08-02 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225889A JP4398321B2 (en) 2004-08-02 2004-08-02 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2006046114A JP2006046114A (en) 2006-02-16
JP4398321B2 true JP4398321B2 (en) 2010-01-13

Family

ID=36025000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225889A Expired - Fee Related JP4398321B2 (en) 2004-08-02 2004-08-02 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4398321B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443385A (en) * 2014-05-27 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 Two-stage enthalpy-increase compressor and air conditioner
WO2016115901A1 (en) * 2015-01-23 2016-07-28 珠海格力节能环保制冷技术研究中心有限公司 Intermediate cavity structure and two-stage enthalpy-increasing rotor-type compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427583B2 (en) * 2009-12-16 2014-02-26 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle equipment
JP5489142B2 (en) * 2011-02-22 2014-05-14 株式会社日立製作所 Scroll compressor
CN105443382B (en) * 2014-06-09 2018-02-09 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner
JP6446542B2 (en) * 2016-02-02 2018-12-26 クワントン メイヂー コンプレッサー カンパニー リミテッド Variable capacity compressor and refrigeration apparatus including the same
CN106152342B (en) * 2016-07-04 2020-12-04 珠海格力电器股份有限公司 Variable-displacement-ratio two-stage compression air conditioning system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443385A (en) * 2014-05-27 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 Two-stage enthalpy-increase compressor and air conditioner
WO2016115901A1 (en) * 2015-01-23 2016-07-28 珠海格力节能环保制冷技术研究中心有限公司 Intermediate cavity structure and two-stage enthalpy-increasing rotor-type compressor

Also Published As

Publication number Publication date
JP2006046114A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5063673B2 (en) Refrigeration cycle equipment
JP4700624B2 (en) Refrigeration cycle apparatus and rotary hermetic compressor
KR100961301B1 (en) Hermetic compressor and refrigeration cycle device
JP4594301B2 (en) Hermetic rotary compressor
KR20060051710A (en) Compressor
JP2006207559A (en) Refrigerating cycle device and rotary compressor
JP4398321B2 (en) Refrigeration cycle equipment
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
US20080056925A1 (en) Vane room unit and rotary compressor having the same
JP4663978B2 (en) Refrigeration cycle equipment
JP5448927B2 (en) Hermetic compressor and refrigeration cycle equipment
JP4766872B2 (en) Multi-cylinder rotary compressor
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2005256614A (en) Multi-cylinder type rotary compressor
JP6324624B2 (en) Refrigerant compressor and vapor compression refrigeration cycle apparatus equipped with the same
JP2005344683A (en) Hermetic compressor
JP5703013B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
JP3863799B2 (en) Multi-stage rotary compressor
WO2006126399A1 (en) Hermetic compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees