JP4594301B2 - Hermetic rotary compressor - Google Patents

Hermetic rotary compressor Download PDF

Info

Publication number
JP4594301B2
JP4594301B2 JP2006514459A JP2006514459A JP4594301B2 JP 4594301 B2 JP4594301 B2 JP 4594301B2 JP 2006514459 A JP2006514459 A JP 2006514459A JP 2006514459 A JP2006514459 A JP 2006514459A JP 4594301 B2 JP4594301 B2 JP 4594301B2
Authority
JP
Japan
Prior art keywords
pressure
blade
cylinder chamber
cylinder
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006514459A
Other languages
Japanese (ja)
Other versions
JPWO2005121558A1 (en
Inventor
泉 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2005121558A1 publication Critical patent/JPWO2005121558A1/en
Application granted granted Critical
Publication of JP4594301B2 publication Critical patent/JP4594301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/56Number of pump/machine units in operation

Description

本発明は、例えば空気調和機の冷凍サイクルを構成する密閉型回転式圧縮機に関する。  The present invention relates to a hermetic rotary compressor constituting a refrigeration cycle of an air conditioner, for example.

一般的な密閉型回転式圧縮機の構成は、密閉ケース内に電動機部およびこの電動機部と連結される圧縮機構部を収容しており、圧縮機構部で圧縮したガスを一旦密閉ケース内に吐出する、ケース内高圧形となっている。  A general hermetic rotary compressor has a configuration in which an electric motor unit and a compression mechanism unit connected to the electric motor unit are accommodated in a hermetic case, and gas compressed by the compression mechanism unit is once discharged into the hermetic case. It is a high pressure type inside the case.

上記圧縮機構部は、シリンダに設けられるシリンダ室に偏心ローラが収容される。また、シリンダにはブレード室が設けられていて、ここにブレードが摺動自在に収納される。上記ブレードの先端縁は、常にシリンダ室側へ突出して偏心ローラの周面に弾性的に当接するよう圧縮ばねによって押圧付勢される。したがって、シリンダ室はブレードによって偏心ローラの回転方向に沿い、吸込み室と圧縮室に区画される。  In the compression mechanism section, an eccentric roller is accommodated in a cylinder chamber provided in the cylinder. The cylinder is provided with a blade chamber in which the blade is slidably accommodated. The tip edge of the blade is pressed and urged by a compression spring so as to always protrude toward the cylinder chamber and elastically contact the peripheral surface of the eccentric roller. Therefore, the cylinder chamber is divided into a suction chamber and a compression chamber along the rotation direction of the eccentric roller by the blade.

ところで、近年、上記圧縮機構部を上下に2セット備えた、2シリンダタイプの密閉型回転式圧縮機が標準化されつつある。そして、このような圧縮機において、常時圧縮作用をなす圧縮機構部と、必要に応じて圧縮−停止の切換えを可能とした圧縮機構部を備えることができれば、仕様が拡大されて有利となる。  By the way, in recent years, a two-cylinder hermetic rotary compressor provided with two sets of the compression mechanism section above and below is being standardized. If such a compressor can be provided with a compression mechanism part that always performs a compression action and a compression mechanism part that can be switched between compression and stop if necessary, the specifications are expanded and advantageous.

例えば、特開平1−247786号公報には、シリンダ室を2室備え、必要に応じていずれか一方のブレードの背面側を中間圧にするとともに、シリンダ室に高圧を導入する高圧導入手段を備え、ブレード先端側と背面側の圧力差によりブレードを偏心ローラから強制的に離間保持して圧縮作用を中断させる技術が開示されている。  For example, Japanese Patent Application Laid-Open No. 1-247786 includes two cylinder chambers, and includes a high-pressure introduction unit that introduces a high pressure into the cylinder chamber while setting the back side of one of the blades to an intermediate pressure as necessary. A technique is disclosed in which the compression action is interrupted by forcibly holding the blade away from the eccentric roller due to a pressure difference between the blade tip side and the back surface side.

この種の圧縮機は機能的に極めて優れるが、高圧導入手段を構成するために、一方のシリンダ室と密閉ケース内とを連通する高圧導入孔を設け、また、ブレードの背面側を中間圧にするために密閉するとともに、冷凍サイクルに二段絞り機構を設け、この絞り機構の中間部から分岐して一方側のブレード室に連通し、中途部に電磁開閉弁を備えたバイパス冷媒管を設けてなる。  This type of compressor is extremely functionally superior, but in order to constitute a high-pressure introduction means, a high-pressure introduction hole that communicates one cylinder chamber and the inside of the sealed case is provided, and the back side of the blade is set to an intermediate pressure. The refrigeration cycle is provided with a two-stage throttle mechanism, branched from an intermediate portion of the throttle mechanism, communicated with the blade chamber on one side, and provided with a bypass refrigerant pipe having an electromagnetic on-off valve in the middle. It becomes.

すなわち、圧縮機に対して高圧導入手段をなすための孔明け加工が必要であるとともに、冷凍サイクル上の絞り装置を二段絞り機構としなければならず、さらにこの二段絞り機構とシリンダ室との間にバイパス冷媒管を接続するなど、配管長が長くなってしまう。そのため、構成が複雑化してコストに悪影響があるばかりでなく、通常運転時の吸込み抵抗が大きくなって効率が低下する虞れがある。  That is, it is necessary to make a hole for making a high-pressure introduction means for the compressor, and the throttle device on the refrigeration cycle must be a two-stage throttle mechanism. Further, the two-stage throttle mechanism, the cylinder chamber, The pipe length becomes long, such as connecting a bypass refrigerant pipe between. Therefore, not only does the structure become complicated and the cost is adversely affected, but also the suction resistance during normal operation may increase and the efficiency may decrease.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、複数の圧縮機構部を備えることを前提として、少なくとも1つの圧縮機構部は圧縮運転をなす通常運転と圧縮運転を行わない非圧縮運転とを切換え可能とし、かつ配管長を短縮して、配管の簡略化によるコストの抑制を図り、小型で高性能の密閉型回転式圧縮機を提供しようとするものである。  The present invention has been made on the basis of the above circumstances, and the purpose thereof is to provide at least one compression mechanism section for performing a normal operation and a compression operation on the assumption that a plurality of compression mechanism sections are provided. It is intended to provide a compact and high-performance hermetic rotary compressor that can switch between non-compressed operation and shorten the piping length to reduce the cost by simplifying the piping.

上記目的を満足するため、本発明の密閉型回転式圧縮機は、密閉ケース内に回転軸を介し電動機部と複数の圧縮機構部とを連結して収容し、少なくとも1つの圧縮機構部はブレードをブレード背面部に作用する密閉ケース内圧力とブレード先端部に作用するシリンダ室内の圧力との圧力差によって押圧付勢し、シリンダ室内に吸込み孔を介して低圧冷媒を導入し圧縮運転を行う通常運転と、シリンダ室内に高圧冷媒を導入し、ブレード背面部に作用する密閉ケース内圧力と上記シリンダ室に導かれた高圧冷媒の圧力とが均衡して上記ブレード前後端部で押圧が均衡し、上記ブレードの先端縁が上記偏心ローラの外周面から離間して圧縮運転を行わない非圧縮運転とを切換え可能とし、運転切換えを可能とする圧縮機構部のシリンダ室に一端が直接開口する開口部を備えるとともに、他端が密閉ケース内に連通する高圧導入通路を設け、この高圧導入通路の中途部に高圧導入通路を開閉する開閉手段を設ける。 In order to satisfy the above object, a hermetic rotary compressor of the present invention accommodates an electric motor unit and a plurality of compression mechanism units in a hermetic case via a rotary shaft, and at least one compression mechanism unit is a blade. The pressure is urged by the pressure difference between the pressure in the sealed case acting on the back of the blade and the pressure in the cylinder chamber acting on the blade tip, and the compression operation is performed by introducing low-pressure refrigerant into the cylinder chamber via the suction hole. High pressure refrigerant is introduced into the cylinder chamber, the pressure inside the sealed case acting on the back of the blade and the pressure of the high pressure refrigerant guided to the cylinder chamber are balanced, and the pressure is balanced at the front and rear ends of the blade, leading edge of the blade to allow switching between non-compression operation is not performed compression operation at a distance from the outer peripheral surface of the eccentric roller, one end in the cylinder chamber of the compression mechanism that enables operation select With an opening for contact opening, it provided a high pressure introduction passage and the other end communicates with the inside of the sealed casing, provided with closing means for opening and closing the high-pressure introduction passage in the middle portion of the high pressure introducing passage.

図1は、本発明の一実施の形態に係る、密閉型回転式圧縮機の縦断面図と、冷凍サイクル構成図である。FIG. 1 is a longitudinal sectional view and a refrigeration cycle configuration diagram of a hermetic rotary compressor according to an embodiment of the present invention. 図2は、同実施の形態に係る、第1の圧縮機構部と第2の圧縮機構部のそれぞれ一部を分解した斜視図である。FIG. 2 is a perspective view in which a part of each of the first compression mechanism portion and the second compression mechanism portion is exploded according to the same embodiment. 図3は、同実施の形態に係る、通常運転時の作用を説明するための図である。FIG. 3 is a diagram for explaining the operation during normal operation according to the embodiment. 図4は、同実施の形態に係る、特別運転時の作用を説明するための図である。FIG. 4 is a diagram for explaining the operation during special operation according to the embodiment. 図5は、同実施の形態に係る、高圧導入通路の接続位置を説明するための図である。FIG. 5 is a view for explaining the connection position of the high-pressure introduction passage according to the embodiment. 図6は、他の実施の形態に係る、高圧導入通路の接続位置を説明するための図である。FIG. 6 is a view for explaining the connection position of the high-pressure introduction passage according to another embodiment.

以下、本発明の一実施の形態を、図面にもとづいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、密閉型回転式圧縮機Rの断面構造と、この密閉型回転式圧縮機Rを備えた冷凍装置の冷凍サイクル構成図である。  FIG. 1 is a cross-sectional structure of a hermetic rotary compressor R and a refrigeration cycle configuration diagram of a refrigeration apparatus including the hermetic rotary compressor R.

はじめに密閉型回転式圧縮機Rから説明すると、1は密閉ケースであって、この密閉ケース1内の下部には後述する第1の圧縮機構部2Aと第2の圧縮機構部2Bが設けられ、上部には電動機部3が設けられる。これら電動機部3と第1、第2の圧縮機構部2A,2Bは、回転軸4を介して連結される。  First, the sealed rotary compressor R will be described. 1 is a sealed case, and a lower portion in the sealed case 1 is provided with a first compression mechanism 2A and a second compression mechanism 2B which will be described later. An electric motor unit 3 is provided at the upper part. The electric motor unit 3 and the first and second compression mechanism units 2 </ b> A and 2 </ b> B are connected via the rotating shaft 4.

上記電動機部3は、例えばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられていて、密閉ケース1の内面に固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、上記回転軸4に嵌着されるロータ6とから構成される。そして電動機部3は、運転周波数を可変するインバータ30に接続されるとともに、このインバータを介してインバータ制御する制御部40に電気的に接続される。  For example, a brushless DC synchronous motor (which may be an AC motor or a commercial motor) is used for the electric motor unit 3, and a stator 5 fixed to the inner surface of the sealed case 1 and a predetermined gap exist inside the stator 5. And a rotor 6 that is disposed on the rotary shaft 4. The electric motor unit 3 is connected to an inverter 30 that varies the operating frequency, and is electrically connected to a control unit 40 that performs inverter control via the inverter.

上記第1、第2の圧縮機構部2A,2Bは、それぞれが回転軸4の下部に中間仕切り板7を介して上下に配設される第1のシリンダ8Aと、第2のシリンダ8Bを備えている。これら第1、第2のシリンダ8A,8Bは、互いに外形形状寸法が相違し、かつ内径寸法が同一となるよう設定されている。第1のシリンダ8Aの外径寸法は密閉ケース1の内径寸法よりも僅かに大に形成され、密閉ケース1内周面に圧入されたうえに、密閉ケース1外部からの溶接加工によって位置決め固定される。  Each of the first and second compression mechanism portions 2A and 2B includes a first cylinder 8A and a second cylinder 8B, which are respectively disposed above and below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween. ing. The first and second cylinders 8A and 8B are set to have different outer shape dimensions and the same inner diameter dimension. The outer diameter of the first cylinder 8A is slightly larger than the inner diameter of the sealed case 1 and is press-fitted into the inner peripheral surface of the sealed case 1 and then positioned and fixed by welding from the outside of the sealed case 1. The

第1のシリンダ8Aの上面部には主軸受9が重ね合わされ、バルブカバーaとともに取付けボルト10を介してシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には副軸受11が重ね合わされ、バルブカバーbとともに取付けボルト12を介して第2のシリンダ8Bに取付け固定される。  A main bearing 9 is superimposed on the upper surface portion of the first cylinder 8A, and is fixed to the cylinder 8A via a mounting bolt 10 together with a valve cover a. The auxiliary bearing 11 is superimposed on the lower surface portion of the second cylinder 8B, and is fixed to the second cylinder 8B via the mounting bolt 12 together with the valve cover b.

上記中間仕切り板7および副軸受11の外径寸法は第2のシリンダ8Bの内径寸法よりもある程度大であり、しかもこのシリンダ8Bの内径位置がシリンダ中心からずれている。そのため、第2のシリンダ8Bの外周一部は中間仕切り板7および副軸受11の外径よりも径方向に突出している。  The outer diameter dimensions of the intermediate partition plate 7 and the auxiliary bearing 11 are somewhat larger than the inner diameter dimension of the second cylinder 8B, and the inner diameter position of the cylinder 8B is deviated from the center of the cylinder. Therefore, a part of the outer periphery of the second cylinder 8B protrudes in the radial direction from the outer diameters of the intermediate partition plate 7 and the auxiliary bearing 11.

一方、上記回転軸4は、中途部と下端部が主軸受9と副軸受11に回転自在に枢支される。さらに回転軸4は各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するよう組立てられる。各偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。  On the other hand, the rotary shaft 4 is pivotally supported by the main bearing 9 and the sub-bearing 11 at the midway portion and the lower end portion. Further, the rotary shaft 4 penetrates through the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of about 180 °. The eccentric portions 4a and 4b have the same diameter as each other, and are assembled so as to be located in the inner diameter portions of the cylinders 8A and 8B. Eccentric rollers 13a and 13b having the same diameter are fitted to the peripheral surfaces of the eccentric parts 4a and 4b.

上記第1のシリンダ8Aと第2のシリンダ8Bは、上記中間仕切り板7と主軸受9および副軸受11で上下面が区画され、それぞれの内部にシリンダ室14a,14bが形成される。各シリンダ室14a,14bは互いに同一直径および高さ寸法に形成され、各シリンダ室14a,14bに上記偏心ローラ13a,13bがそれぞれ偏心回転自在に収容される。  The first cylinder 8A and the second cylinder 8B have upper and lower surfaces defined by the intermediate partition plate 7, the main bearing 9 and the sub-bearing 11, and cylinder chambers 14a and 14b are formed in the respective interiors. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated in the cylinder chambers 14a and 14b so as to be eccentrically rotatable.

各偏心ローラ13a,13bの高さ寸法は、各シリンダ室14a,14bの高さ寸法と略同一に形成される。したがって、偏心ローラ13a,13bは互いに180°の位相差があるが、シリンダ室14a,14bで偏心回転することにより、シリンダ室において同一の排除容積に設定される。各シリンダ8A,8Bには、シリンダ室14a,14bと連通するブレード室22a,22bが設けられている。各ブレード室22a,22bには、ブレード15a,15bがシリンダ室14a,14bに対して突没自在に収容される。  The height of each eccentric roller 13a, 13b is formed substantially the same as the height of each cylinder chamber 14a, 14b. Accordingly, the eccentric rollers 13a and 13b have a phase difference of 180 ° from each other, but are set to the same excluded volume in the cylinder chamber by rotating eccentrically in the cylinder chambers 14a and 14b. Each cylinder 8A, 8B is provided with blade chambers 22a, 22b communicating with the cylinder chambers 14a, 14b. Blades 15a and 15b are accommodated in the respective blade chambers 22a and 22b so as to protrude and retract with respect to the cylinder chambers 14a and 14b.

図2は、第1の圧縮機構部2Aと第2の圧縮機構部2Bのそれぞれ一部を分解して示す斜視図である。  FIG. 2 is an exploded perspective view showing a part of each of the first compression mechanism portion 2A and the second compression mechanism portion 2B.

上記ブレード室22a,22bは、ブレード15a,15bの両側面が摺動自在に移動できるブレード収納溝23a,23bと、各ブレード収納溝23a,23b端部に一体に連設されブレード15a,15bの後端部が収容される縦孔部24a,24bとからなる。特に、上記第1のシリンダ8Aには、外周面とブレード室22aとを連通する横孔25が設けられ、ばね部材26が収容される。ばね部材26は、ブレード15aの背面側端面と密閉ケース1内周面との間に介在され、ブレード15aに弾性力(背圧)を付与して、この先端縁を偏心ローラ13aに接触させる圧縮ばねである。  The blade chambers 22a and 22b are integrally connected to the blade housing grooves 23a and 23b in which both side surfaces of the blades 15a and 15b are slidably movable and the ends of the blade housing grooves 23a and 23b. It consists of vertical hole parts 24a and 24b in which the rear end part is accommodated. In particular, the first cylinder 8A is provided with a lateral hole 25 that communicates the outer peripheral surface with the blade chamber 22a, and accommodates the spring member 26 therein. The spring member 26 is interposed between the back side end face of the blade 15a and the inner peripheral surface of the sealed case 1, and applies compression force to the blade 15a so that the tip edge contacts the eccentric roller 13a. It is a spring.

上記第2のシリンダ8B側のブレード室22bにはブレード15b以外に何らの部材も収容されていないが、後述するようにブレード室22bの設定環境と、後述する圧力切換え機構(手段)Kの作用に応じて、ブレード15bの先端縁を上記偏心ローラ13bに接触させるようになっている。  The blade chamber 22b on the second cylinder 8B side contains no members other than the blade 15b. However, as will be described later, the setting environment of the blade chamber 22b and the action of a pressure switching mechanism (means) K described later. Accordingly, the tip edge of the blade 15b is brought into contact with the eccentric roller 13b.

各ブレード15a,15bの先端縁は平面視で半円状に形成されており、平面視で円形状の偏心ローラ13a,13b周壁に、偏心ローラの回転角度にかかわらず線接触できる。そして、上記偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ブレード15a,15bはブレード収納溝23a,23bに沿って往復運動し、シリンダ室14a,14bを吸込み室と圧縮室に仕切る。そして、ブレード15a,15bの後端部は縦孔部24a,24bから進退自在となる。  The leading edges of the blades 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller. When the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the blades 15a and 15b reciprocate along the blade housing grooves 23a and 23b, and suck the cylinder chambers 14a and 14b. Partition the chamber and compression chamber. The rear end portions of the blades 15a and 15b can be moved forward and backward from the vertical hole portions 24a and 24b.

上述したように、上記第2のシリンダ8Bの外形形状寸法と、上記中間仕切板7および副軸受11の外形寸法との関係から、第2のシリンダ8Bの外形一部は密閉ケース1内に露出する。この密閉ケース1への露出部分が上記ブレード室22bに相当するように設計されており、したがってブレード室22bおよびブレード15b後端部はケース内圧力を直接的に受けることになる。  As described above, a part of the outer shape of the second cylinder 8B is exposed in the sealed case 1 from the relationship between the outer shape of the second cylinder 8B and the outer dimensions of the intermediate partition plate 7 and the auxiliary bearing 11. To do. The portion exposed to the sealed case 1 is designed to correspond to the blade chamber 22b. Therefore, the blade chamber 22b and the rear end portion of the blade 15b are directly subjected to the pressure in the case.

特に、第2のシリンダ8Bおよびブレード室22bは構造物であるからケース内圧力を受けても何らの影響もないが、ブレード15bはブレード室22bに摺動自在に収容され、かつ後端部がブレード室22bの縦孔部24bに位置するので、ケース内圧力を直接的に受ける。  In particular, since the second cylinder 8B and the blade chamber 22b are structures, there is no influence even if they are subjected to pressure inside the case, but the blade 15b is slidably accommodated in the blade chamber 22b and the rear end portion is Since it is located in the vertical hole 24b of the blade chamber 22b, it receives the pressure in the case directly.

さらに、ブレード15bの先端部が第2のシリンダ室14bに対向しており、ブレード先端部はシリンダ室14b内の圧力を受ける。結局、ブレード15bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。  Furthermore, the tip of the blade 15b faces the second cylinder chamber 14b, and the blade tip receives the pressure in the cylinder chamber 14b. Eventually, the blade 15b is configured to move in the direction from the higher pressure to the lower pressure according to the magnitude of the mutual pressure received by the front end and the rear end.

第2のシリンダ8Bに設けられるブレード室22bの縦孔部24bと隣設され、通常運転時にシリンダ室14bに導かれる吸込み圧力と、ブレード室22bに導かれる密閉ケース1内圧力との差圧よりも小さい力で、ブレード15bを偏心ローラ13aから引き離す方向に付勢する保持機構35が設けられる。上記保持機構35は、永久磁石、電磁石もしくは弾性体のいずれかを用いればよい。  From the differential pressure between the suction pressure that is provided adjacent to the vertical hole 24b of the blade chamber 22b provided in the second cylinder 8B and is guided to the cylinder chamber 14b during normal operation and the pressure in the sealed case 1 that is guided to the blade chamber 22b. A holding mechanism 35 that urges the blade 15b in the direction of pulling away from the eccentric roller 13a with a small force is provided. The holding mechanism 35 may be a permanent magnet, an electromagnet, or an elastic body.

なお説明すると、保持機構35は第2のシリンダ室14bにかかる吸込み圧力とブレード溝22にかかる密閉ケース1内圧力との差圧よりも小さい力で、上記ブレード15を偏心ローラ13から引き離す方向に付勢保持する。保持機構35として永久磁石を備えることにより、常に所定の力でブレード15を磁気吸引する。  In other words, the holding mechanism 35 moves the blade 15 away from the eccentric roller 13 with a force smaller than the differential pressure between the suction pressure applied to the second cylinder chamber 14 b and the pressure inside the sealed case 1 applied to the blade groove 22. Keep energized. By providing a permanent magnet as the holding mechanism 35, the blade 15 is always magnetically attracted with a predetermined force.

あるいは、永久磁石に代って電磁石を備え、必要に応じて磁気吸引するようにしてもよい。あるいは、保持機構35は弾性体である引張りばねとする。この引張りばねの一端部をブレード15の背面端部に掛止して、常に所定の弾性力で引張り付勢するようにしてもよい。  Alternatively, an electromagnet may be provided instead of the permanent magnet, and magnetic attraction may be performed as necessary. Alternatively, the holding mechanism 35 is a tension spring that is an elastic body. One end portion of the tension spring may be hooked on the rear end portion of the blade 15 so that the tension spring is always pulled with a predetermined elastic force.

各シリンダ8A,8Bには取付けボルト10,12が挿通するもしくは螺挿される取付け用孔もしくはねじ孔が設けられ、第1のシリンダ8Aのみ円弧状のガス通し用孔部27が設けられている。  Each cylinder 8A, 8B is provided with a mounting hole or screw hole through which the mounting bolts 10, 12 are inserted or screwed, and only the first cylinder 8A is provided with an arc-shaped gas passage hole 27.

再び図1に示すように、上記密閉型回転式圧縮機Rにおいてはパイプからなる高圧導入通路(高圧導入手段)Pを備えていて、この高圧導入通路の中途部には電磁開閉弁(開閉手段)28が設けられ、高圧導入通路Pを開閉自在となす。  As shown in FIG. 1 again, the hermetic rotary compressor R includes a high-pressure introduction passage (high-pressure introduction means) P formed of a pipe, and an electromagnetic on-off valve (opening-closing means) is provided in the middle of the high-pressure introduction passage. ) 28 is provided to open and close the high pressure introduction passage P.

上記高圧導入通路Pについてなお説明すると、この一端部は密閉ケース1を貫通して内部に臨ませられる。そして、高圧導入通路Pは密閉ケース1の外周面と並行して、軸方向に沿って下部側へ延出され、中途部には上記電磁開閉弁28が設けられる。  The high-pressure introduction passage P will be further described. One end of the high-pressure introduction passage P passes through the sealed case 1 and faces the inside. The high-pressure introduction passage P extends to the lower side along the axial direction in parallel with the outer peripheral surface of the sealed case 1, and the electromagnetic on-off valve 28 is provided in the middle portion.

高圧導入通路Pの他端部は密閉ケース1の下部において、再び密閉ケース1を貫通して内部に延出され、さらに第2の圧縮機構部2Bを構成する第2のシリンダ8Bに形成される開口部である孔部eに接続され、第2のシリンダ室14b内に直接開口している。  The other end portion of the high-pressure introduction passage P extends through the sealing case 1 again in the lower portion of the sealing case 1 and is further formed in the second cylinder 8B constituting the second compression mechanism portion 2B. It is connected to the hole e, which is an opening, and directly opens into the second cylinder chamber 14b.

図5は、吸込み管16bが接続される吸込み孔dと高圧導入通路Pの開口部を構成する上記孔部eの第2のシリンダ8Bに対する接続位置の設定条件を示す図である。すなわち、高圧導入通路Pの開口部を構成する孔部eは、偏心ローラ13bが上記吸込み孔dを閉じる位置(圧縮開始位置)から、さらに90度回転する範囲で偏心ローラ13bによって閉じられる位置(孔部eが圧縮室と分断される位置)に設けられる。  FIG. 5 is a diagram showing the setting conditions of the connection position of the hole e that constitutes the opening of the high-pressure introduction passage P and the suction hole d to which the suction pipe 16b is connected to the second cylinder 8B. That is, the hole e constituting the opening of the high-pressure introduction passage P is closed by the eccentric roller 13b within a range in which the eccentric roller 13b rotates 90 degrees from the position where the suction hole d closes (the compression start position) ( The hole e is provided at a position where the hole e is separated from the compression chamber.

再び図1に示すように、このようにして構成される密閉型回転式圧縮機Rは冷凍サイクル装置の冷凍サイクル回路に組み込まれている。すなわち、密閉ケース1の上端部には、吐出管18が接続される。この吐出管18は、凝縮器19と、膨張機構20および蒸発器21を介してアキュームレータ17に接続される。  As shown in FIG. 1 again, the hermetic rotary compressor R configured as described above is incorporated in the refrigeration cycle circuit of the refrigeration cycle apparatus. That is, the discharge pipe 18 is connected to the upper end portion of the sealed case 1. The discharge pipe 18 is connected to the accumulator 17 via a condenser 19, an expansion mechanism 20 and an evaporator 21.

上記アキュームレータ17底部には、圧縮機Rに対する吸込み管16a,16bが接続される。一方の吸込み管16aは密閉ケース1を貫通し、第1のシリンダ8Aに形成された吸込み孔を介して第1のシリンダ室14a内に直接連通する。他方の吸込み管16bは中途部に逆止弁29を備えて密閉型回転式圧縮機Rに接続される。すなわち、吸込み管16bは密閉ケース1を貫通し、第2のシリンダ8Bに形成された上記吸込み孔dを介して第2のシリンダ室14b内に直接連通する。図5のみに示すように、上記高圧導入通路Pの第2のシリンダ室14bに開口する孔部eは、上記吸込み管16bの近傍位置に接続されている。  Suction pipes 16 a and 16 b for the compressor R are connected to the bottom of the accumulator 17. One suction pipe 16a penetrates the sealed case 1 and directly communicates with the first cylinder chamber 14a through a suction hole formed in the first cylinder 8A. The other suction pipe 16b includes a check valve 29 in the middle and is connected to the hermetic rotary compressor R. That is, the suction pipe 16b passes through the sealed case 1 and directly communicates with the second cylinder chamber 14b through the suction hole d formed in the second cylinder 8B. As shown only in FIG. 5, the hole e opened to the second cylinder chamber 14b of the high pressure introduction passage P is connected to a position near the suction pipe 16b.

上記電磁開閉弁28を中途部に備えた高圧導入通路Pと、第2のシリンダ室14bに接続され中途部に逆止弁29を備えた吸込み管16bとで圧力切換え機構Kが構成される。この圧力切換え機構Kの切換え作動である電磁開閉弁28の開閉操作に応じて、後述するように第2のシリンダ室14bに密閉ケース1内に吐出される高圧ガスが導かれ、もしくはアキュームレータ17を通過した低圧ガスが導かれるようになっている。
つぎに、上述の密閉型回転式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。
(1) 通常運転(全能力運転)を選択した場合:
図3は、このときの作用を説明する図であり、同図の上段は密閉型回転式圧縮機Rとアキュームレータ17における作用と冷媒の流れを概略的に示し、同図の下段は第2の圧縮機構部2Bにおける作用を概略的に示している。
通常運転(全能力運転)を選択すると、上記制御部40は、高圧導入通路Pに設けられる電磁開閉弁28を閉成するよう制御し、さらに制御部40はインバータ30を介して電動機部3のインバータ回路に運転信号を送る。回転軸4が回転駆動され、第1の圧縮機構部2Aと第2の圧縮機構部2Bが同時に作用する。
A pressure switching mechanism K is constituted by the high-pressure introduction passage P provided with the electromagnetic on-off valve 28 in the middle part and the suction pipe 16b connected to the second cylinder chamber 14b and provided with the check valve 29 in the middle part. In response to the opening / closing operation of the electromagnetic switching valve 28, which is the switching operation of the pressure switching mechanism K, the high pressure gas discharged into the sealed case 1 is introduced into the second cylinder chamber 14b as described later, or the accumulator 17 is turned on. The low-pressure gas that has passed through is guided.
Next, the operation of the refrigeration cycle apparatus provided with the above-described hermetic rotary compressor R will be described.
(1) When normal operation (full capacity operation) is selected:
FIG. 3 is a diagram for explaining the operation at this time. The upper part of FIG. 3 schematically shows the action and the flow of refrigerant in the hermetic rotary compressor R and the accumulator 17, and the lower part of FIG. The operation | movement in the compression mechanism part 2B is shown roughly.
When normal operation (full capacity operation) is selected, the control unit 40 controls to close the electromagnetic on-off valve 28 provided in the high pressure introduction passage P, and the control unit 40 further controls the motor unit 3 via the inverter 30. Send an operation signal to the inverter circuit. The rotary shaft 4 is rotationally driven, and the first compression mechanism 2A and the second compression mechanism 2B act simultaneously.

すなわち、偏心ローラ13a,13bは各シリンダ室14a,14b内で偏心回転を行う。第1の圧縮機構部2Aにおいては、ブレード15aがばね部材26によって常に弾性的に押圧付勢されるところから、ブレード15aの先端縁が偏心ローラ13a周壁に摺接して第1のシリンダ室14a内を吸込み室と圧縮室に二分する。偏心ローラ13aのシリンダ室14a内周面転接位置とブレード収納溝23aが一致し、ブレード15aが最も後退した状態で、このシリンダ室14aの空間容量が最大となる。冷媒ガスはアキュームレータ17から第1の吸込み管16aを介して第1のシリンダ室14aに吸込まれ、充満する。  That is, the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b. In the first compression mechanism portion 2A, since the blade 15a is always elastically pressed and biased by the spring member 26, the tip edge of the blade 15a is slidably contacted with the peripheral wall of the eccentric roller 13a so as to be in the first cylinder chamber 14a. Is divided into a suction chamber and a compression chamber. When the position of the inner circumferential surface of the eccentric roller 13a in contact with the blade housing groove 23a coincides with the blade housing groove 23a, the space capacity of the cylinder chamber 14a is maximized. The refrigerant gas is sucked into the first cylinder chamber 14a from the accumulator 17 through the first suction pipe 16a and is filled.

偏心ローラ13aの偏心回転にともなって、偏心ローラの第1のシリンダ室14a内周面に対する転接位置が移動し、シリンダ室14aの区画された圧縮室の容積が減少する。すなわち、先にシリンダ室14aに導かれたガスが徐々に圧縮される。回転軸4が継続して回転され、第1のシリンダ室14aにおける圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで図示しない吐出弁が開放する。高圧ガスはバルブカバーaを介して密閉ケース1内に吐出され充満する。そして、密閉ケース上部の吐出管18から吐出される。  With the eccentric rotation of the eccentric roller 13a, the rolling contact position of the eccentric roller with respect to the inner peripheral surface of the first cylinder chamber 14a moves, and the volume of the compression chamber partitioned by the cylinder chamber 14a decreases. That is, the gas previously introduced into the cylinder chamber 14a is gradually compressed. The rotating shaft 4 is continuously rotated, the capacity of the compression chamber in the first cylinder chamber 14a is further reduced, the gas is compressed, and when the pressure rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed case 1 through the valve cover a and is filled. And it discharges from the discharge pipe 18 of an airtight case upper part.

また、高圧導入通路Pに設けられる電磁開閉弁28が閉成されているので、密閉ケース1内に充満する高圧ガスが高圧導入通路Pの一端部からに侵入しても、中途部で遮断され他端部である第2のシリンダ室14bへ吐出圧(高圧)が導かれることはない。  Further, since the electromagnetic on-off valve 28 provided in the high pressure introduction passage P is closed, even if the high pressure gas filling the sealed case 1 enters from one end portion of the high pressure introduction passage P, it is shut off in the middle. The discharge pressure (high pressure) is not led to the second cylinder chamber 14b which is the other end.

その一方で、蒸発器21で蒸発しアキュームレータ17で気液分離された低圧の蒸発冷媒は、第2の吸込み管16bから逆止弁29を介して第2の圧縮機構部2Bである第2のシリンダ室14bに導かれる。第2のシリンダ室14bは吸込み圧(低圧)雰囲気となる一方で、このブレード室22bが密閉ケース1内に露出して吐出圧(高圧)下にある。上記ブレード15bにおいては、先端部が低圧条件となり、かつ後端部が高圧条件となって、前後端部で差圧が存在する。  On the other hand, the low-pressure evaporative refrigerant evaporated by the evaporator 21 and gas-liquid separated by the accumulator 17 is supplied to the second compression mechanism portion 2B from the second suction pipe 16b via the check valve 29. It is guided to the cylinder chamber 14b. While the second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, the blade chamber 22b is exposed in the sealed case 1 and is under a discharge pressure (high pressure). In the blade 15b, the front end portion is under a low pressure condition and the rear end portion is under a high pressure condition, and there is a differential pressure at the front and rear end portions.

この差圧の影響で、ブレード15bの先端部が偏心ローラ13bに摺接するように押圧付勢される。すなわち、第1のシリンダ室14a側のブレード15aがばね部材26により押圧付勢され圧縮作用が行われるのと全く同様の圧縮作用が、第2のシリンダ室14bにおいても行われる。結局、密閉型回転式圧縮機Rにおいては、第1の圧縮機構部2Aと、第2の圧縮機構部2Bとの両方で圧縮作用がなされる、全能力運転が行われることになる。  Due to the effect of this differential pressure, the tip of the blade 15b is pressed and urged so as to be in sliding contact with the eccentric roller 13b. That is, the same compression action is performed in the second cylinder chamber 14b as the blade 15a on the first cylinder chamber 14a side is pressed and urged by the spring member 26 to perform the compression action. Eventually, in the hermetic rotary compressor R, full capacity operation is performed in which the compression action is performed by both the first compression mechanism 2A and the second compression mechanism 2B.

密閉ケース1から吐出管18を介して吐出される高圧ガスは、凝縮器19に導かれて凝縮液化し、膨張機構20で断熱膨張し、蒸発器21で熱交換空気から蒸発潜熱を奪って冷房作用をなす。そして、蒸発したあとの冷媒はアキュームレータ17に導かれて気液分離され、再び各吸込み管16a,16bから圧縮機Rの第1、第2の圧縮機構部2A,2Bに吸込まれて上述の経路を循環する。  The high-pressure gas discharged from the sealed case 1 through the discharge pipe 18 is led to the condenser 19 to be condensed and liquefied, adiabatically expanded by the expansion mechanism 20, and the evaporator 21 takes away latent heat of evaporation from the heat exchange air and cools it. It works. The evaporated refrigerant is guided to the accumulator 17 for gas-liquid separation, and is again sucked into the first and second compression mechanism portions 2A and 2B of the compressor R from the suction pipes 16a and 16b. Circulate.

(2) 特別運転(能力半減運転)を選択した場合:
図4は、このときの作用を説明する図であり、同図の上段は密閉型回転式圧縮機Rとアキュームレータ17における作用と冷媒の流れを概略的に示し、同図の下段は第2の圧縮機構部2Bにおける作用を概略的に示している。
(2) When special operation (half-capacity operation) is selected:
FIG. 4 is a diagram for explaining the operation at this time. The upper part of the figure schematically shows the action and the refrigerant flow in the hermetic rotary compressor R and the accumulator 17, and the lower part of the figure shows the second part. The operation | movement in the compression mechanism part 2B is shown roughly.

特別運転(能力半減運転)を選択すると、制御部40は高圧導入通路Pに設けられた開閉弁28を開放するように切換え設定する。第1の圧縮機構部2Aにおいては上述したように通常の圧縮作用がなされ、密閉ケース1内に吐出された高圧ガスが充満してケース内高圧となる。  When the special operation (capability half operation) is selected, the control unit 40 switches and sets the on-off valve 28 provided in the high-pressure introduction passage P to be opened. In the first compression mechanism portion 2A, the normal compression action is performed as described above, and the high-pressure gas discharged into the sealed case 1 is filled to become the high pressure in the case.

密閉ケース1内に充満する高圧ガスは吐出管18から吐出されるのであるが、一部の高圧ガスは密閉ケース1から直接、高圧導入通路Pに導かれ、開放される電磁開閉弁28を介して第2のシリンダ室14b内に導入される。第2のシリンダ室14bが吐出圧(高圧)雰囲気にある一方で、ブレード室22bはケース内高圧と同一の状況下にあることには変りがない。  The high-pressure gas filling the sealed case 1 is discharged from the discharge pipe 18, but a part of the high-pressure gas is directly guided from the sealed case 1 to the high-pressure introduction passage P and opened via the electromagnetic on-off valve 28 that is opened. Are introduced into the second cylinder chamber 14b. While the second cylinder chamber 14b is in a discharge pressure (high pressure) atmosphere, the blade chamber 22b remains in the same situation as the high pressure in the case.

そのため、ブレード15bは前後端部とも高圧の影響を受けていて、前後端部において差圧が存在しない。ブレード15bは偏心ローラ13b外周面から離間した位置で移動することなく停止状態を保持し、第2のシリンダ室14bでの圧縮作用は行われず第2の圧縮機構部2Bは停止状態にある。結局、第1の圧縮機構部2Aでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。  Therefore, the blade 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The blade 15b maintains a stopped state without moving at a position separated from the outer peripheral surface of the eccentric roller 13b, and the second cylinder chamber 14b is not compressed and the second compression mechanism 2B is in a stopped state. Eventually, only the compression action in the first compression mechanism portion 2A is effective, and an operation with half the capacity is performed.

なお、第2のシリンダ室14bに充満した高圧ガスの一部は第2の吸込み管16bに逆流してアキュームレータ17に戻ろうとする。しかしながら、この吸込み管16bには逆止弁29が設けられているので、アキュームレータへの逆流が阻止される。また、第2のシリンダ室14bの内部は高圧となっているところから、密閉ケース1内から第2のシリンダ室14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。したがって、圧縮効率の低下なしに能力を半減した運転が可能となる。  A part of the high-pressure gas filled in the second cylinder chamber 14 b flows back to the second suction pipe 16 b and tries to return to the accumulator 17. However, since the check pipe 29 is provided in the suction pipe 16b, the backflow to the accumulator is prevented. Further, since the inside of the second cylinder chamber 14b is at a high pressure, no leakage of compressed gas from the sealed case 1 to the second cylinder chamber 14b occurs, and no loss is caused thereby. Therefore, it is possible to operate with half the capacity without lowering the compression efficiency.

従来の圧縮機のように、一方の圧縮機構部にブレードを上死点で固定する複雑な機構が不要となり、ブレードを付勢するばね部材を省略できる。しかも、中途部に電磁開閉弁29を設けた高圧導入通路Pを密閉ケース1と第2のシリンダ室14b間に連通し、吸込み管16bに逆止弁29を設けることで圧力切換え機構Kを構成でき、単純な構造で容量可変が可能となり、コスト的に有利であり、製造性に優れ、かつ高効率の密閉型回転式圧縮機を提供できる。  Unlike a conventional compressor, a complicated mechanism for fixing the blade to one compression mechanism at the top dead center is not required, and a spring member for biasing the blade can be omitted. Moreover, the pressure switching mechanism K is configured by communicating the high pressure introduction passage P provided with the electromagnetic opening / closing valve 29 in the middle between the sealed case 1 and the second cylinder chamber 14b and providing the check valve 29 in the suction pipe 16b. In addition, the capacity can be varied with a simple structure, which is advantageous in terms of cost, is excellent in manufacturability, and can provide a highly efficient hermetic rotary compressor.

なお、上記高圧導入通路Pの一端開口部である孔部eを、第2のシリンダ8Bに設けるようにしたが、これに限定されるものではない。  In addition, although the hole e which is one end opening part of the said high voltage | pressure introduction channel | path P was provided in the 2nd cylinder 8B, it is not limited to this.

図6は、本発明における他の実施の形態を示す圧縮機構部の側面図である。例えば図6に示すように、第1の圧縮機構部2Aと第2の圧縮機構部2Bとの間に介在される中間仕切り板7に孔部50を設け、ここに高圧導入通路Pの端部を接続するようにしてもよい。  FIG. 6 is a side view of a compression mechanism showing another embodiment of the present invention. For example, as shown in FIG. 6, a hole 50 is provided in the intermediate partition plate 7 interposed between the first compression mechanism 2 </ b> A and the second compression mechanism 2 </ b> B, and the end of the high pressure introduction passage P is provided here. May be connected.

中間仕切り板7に設けられる孔部50は、この周面に一端部が開口して高圧導入通路Pが接続され、第2のシリンダ室14bに他端部が開口する。中間仕切り板7周面に開口する孔部50の位置は、上記と同様に、偏心ローラ13bが第2のシリンダ室14bに開口する吸込み孔を閉じる位置(圧縮開始位置)からさらに90度回転する範囲で偏心ローラ13bによって閉じられるように、第1の圧縮機構部2Aに連通する吸込み管16aと第2の圧縮機構部2Bに接続される吸込み管16bの接続位置から所定の角度θの範囲内とすることは、言うまでもない。  The hole 50 provided in the intermediate partition plate 7 has one end opened to the peripheral surface and connected to the high pressure introduction passage P, and the other end opened to the second cylinder chamber 14b. The position of the hole 50 opened in the peripheral surface of the intermediate partition plate 7 is further rotated 90 degrees from the position (compression start position) where the eccentric roller 13b closes the suction hole opened in the second cylinder chamber 14b, as described above. Within a range of a predetermined angle θ from the connection position of the suction pipe 16a communicating with the first compression mechanism 2A and the suction pipe 16b connected to the second compression mechanism 2B so as to be closed by the eccentric roller 13b. Needless to say.

さらにまた、高圧導入通路Pの一端部が接続される孔部として、例えば副軸受11に設けるようにしてもよい。上記孔部の位置選択条件は、第2のシリンダ8Bに設ける場合や、中間仕切り板7に設ける場合と全く同様であるので、ここでは新たな説明を省略する。  Furthermore, for example, the auxiliary bearing 11 may be provided as a hole to which one end of the high pressure introduction passage P is connected. Since the hole position selection conditions are the same as those provided in the second cylinder 8B or the intermediate partition plate 7, a new description is omitted here.

いずれにしても、上述の密閉型回転式圧縮機Rを備えることにより、複数の圧縮機構部2A,2Bのうちの少なくとも一つの圧縮機構部(2B)を空運転(非圧縮運転)させるための高圧導入通路Pを、所定のシリンダ(8B)に直接開口して設けるので、複雑な配管構造にすることなしに通常運転と圧縮運転を行わない非圧縮運転とを切換えることができる。  In any case, by providing the above-described hermetic rotary compressor R, at least one compression mechanism part (2B) of the plurality of compression mechanism parts 2A, 2B is operated in an idle operation (non-compression operation). Since the high pressure introduction passage P is directly opened in the predetermined cylinder (8B), the normal operation and the non-compression operation in which the compression operation is not performed can be switched without using a complicated piping structure.

なお、高圧導入通路Pは通常運転時に再膨張損失を生じるデッドクリアランスボリュームとなるが、偏心ローラ13bが上記吸込み孔dを閉じる位置からさらに90度回転する範囲で偏心ローラ13bによって閉じられる位置に開口部である孔部eを設けることにより、この損失を極めて小さくすることができる。そして、高圧導入通路を短縮化できるので、密閉ケース1に吐出されたばかりのガスを圧力損失が生じることなくシリンダ室に導くことができ、ブレード先端部と背面部に作用する圧力差をほとんどなくすることができる。
また、第2の圧縮機構部2Bを空運転(非圧縮運転)状態とする特別運転(能力半減運転)時において、第2の圧縮機構部2Bのブレード15bを保持する保持機構35の保持力が小さくてすむ。すなわち、保持機構35として磁石を用いた場合は、磁気吸着力が小さくてすみ、磁石の小型化を図れる。磁気吸着力を小さくできるので、磁力と逆方向にかける圧力が小さくてすみ、通常運転(全能力運転)から特別運転(能力半減運転)への切換え性が向上する。
The high-pressure introduction passage P has a dead clearance volume that causes re-expansion loss during normal operation, but is opened at a position where the eccentric roller 13b is closed by the eccentric roller 13b within a range in which the eccentric roller 13b rotates 90 degrees from the position where the suction hole d is closed. By providing the hole e which is a portion, this loss can be made extremely small. Since the high-pressure introduction passage can be shortened, the gas just discharged to the sealed case 1 can be guided to the cylinder chamber without causing pressure loss, and the pressure difference acting on the blade tip and back is almost eliminated. be able to.
Further, during a special operation (a half-capacity operation) in which the second compression mechanism unit 2B is in the idling (non-compression operation) state, the holding force of the holding mechanism 35 that holds the blade 15b of the second compression mechanism unit 2B is It's small. That is, when a magnet is used as the holding mechanism 35, the magnetic attraction force is small, and the magnet can be miniaturized. Since the magnetic attractive force can be reduced, the pressure applied in the opposite direction to the magnetic force can be reduced, and the switching from normal operation (full capacity operation) to special operation (capability half operation) is improved.

さらに、冷凍サイクルを構成するアキュームレータ17と圧縮機Rとを連通する第2の吸込み管16bの中途部に分岐管を接続する必要がない。すなわち、第2のシリンダ室14bに直接高圧ガスを導入する手段として、密閉ケース1に接続される吐出管18に高圧導入通路の一端部を分岐接続し、他端部を第2の吸込み管16bに分岐接続して、冷凍サイクルの高圧圧力を第2の吸込み管に導くことが考えられる。  Furthermore, it is not necessary to connect a branch pipe to the midway part of the 2nd suction pipe 16b which connects the accumulator 17 and the compressor R which comprise a refrigerating cycle. That is, as a means for directly introducing the high pressure gas into the second cylinder chamber 14b, one end of the high pressure introduction passage is branched and connected to the discharge pipe 18 connected to the sealed case 1, and the other end is connected to the second suction pipe 16b. It is conceivable that the high pressure of the refrigeration cycle is led to the second suction pipe by branching to

この場合は、特に第2の圧縮機構部2Bにおける吸込み通路が長くなってしまい、通常運転時の吸込み抵抗が大きくなって、効率が低下することが考えられる。そのため、吸込み管16bを必要最小限の長さで設ければよく、吸込み損失がなく、圧縮機Rの背低化を図れる。  In this case, it is conceivable that the suction passage in the second compression mechanism portion 2B becomes particularly long, the suction resistance during normal operation increases, and the efficiency decreases. Therefore, the suction pipe 16b has only to be provided with a minimum length, there is no suction loss, and the height of the compressor R can be reduced.

上記構成を採用した場合、高圧導入通路も長くなってしまい、圧力損失によってシリンダ室内の圧力がブレードの背面に作用する密閉ケース内圧力よりも小さくなる。したがって、非圧縮運転時にブレードがガタつき易くなるが、その対策として、ブレードを保持する保持機構35の保持力をより大きくすると、特別運転から通常運転への切換えがスムーズに行われなくなる。そして、配管相互の接続箇所が多くなるので、製造性が悪いなどの不具合が生じてしまうことになる。  When the above configuration is adopted, the high-pressure introduction passage becomes longer, and the pressure in the cylinder chamber becomes smaller than the pressure in the sealed case acting on the back surface of the blade due to pressure loss. Therefore, although the blade is likely to rattle during non-compression operation, as a countermeasure, if the holding force of the holding mechanism 35 holding the blade is increased, switching from the special operation to the normal operation cannot be performed smoothly. And since the connection location of piping increases, malfunctions, such as bad manufacturability, will arise.

本発明によれば、複雑な配管構造にすることなしに通常運転と圧縮運転を行わない非圧縮運転とを切換えることができるとともに、吸込み通路抵抗を増大することがなく、通常運転時における圧縮仕事に影響を及ぼすことがないなどの効果を奏する。  According to the present invention, it is possible to switch between a normal operation and a non-compression operation in which a compression operation is not performed without using a complicated piping structure, and without increasing the suction passage resistance, the compression work during the normal operation There is an effect such as not affecting.

Claims (2)

密閉ケース内に、回転軸を介し電動機部と複数の圧縮機構部とを連結して収容し、
少なくとも1つの圧縮機構部は、
ブレードをブレード背面部に作用する密閉ケース内圧力とブレード先端部に作用するシリンダ室内の圧力との圧力差によって押圧付勢し、
上記シリンダ室内に吸込み孔を介して低圧冷媒を導入し圧縮運転を行う通常運転と、上記シリンダ室内に高圧冷媒を導入し、ブレード背面部に作用する密閉ケース内圧力と上記シリンダ室に導かれた高圧冷媒の圧力とが均衡して上記ブレード前後端部で押圧が均衡し、上記ブレードの先端縁が上記偏心ローラの外周面から離間して圧縮運転を行わない非圧縮運転とを切換え可能とした密閉型回転式圧縮機において、
上記運転切換えを可能とする圧縮機構部のシリンダ室に一端が直接開口する開口部を備えるとともに、他端が密閉ケース内に連通する高圧導入通路と、
この高圧導入通路の中途部に設けられ、この高圧導入通路を開閉する開閉手段と、
を具備することを特徴とする密閉型回転式圧縮機。
In the sealed case, the motor unit and the plurality of compression mechanism units are connected and accommodated via the rotating shaft,
At least one compression mechanism section is
The blade is pressed and biased by the pressure difference between the pressure in the sealed case that acts on the back surface of the blade and the pressure in the cylinder chamber that acts on the tip of the blade,
Normal operation in which low-pressure refrigerant is introduced into the cylinder chamber via a suction hole to perform compression operation, high-pressure refrigerant is introduced into the cylinder chamber, and the pressure in the sealed case acting on the back of the blade is guided to the cylinder chamber The pressure of the high-pressure refrigerant is balanced and the pressure is balanced at the front and rear ends of the blade, and the leading edge of the blade is separated from the outer peripheral surface of the eccentric roller and can be switched to a non-compression operation where the compression operation is not performed. In a hermetic rotary compressor,
A high-pressure introduction passage having one end directly opened in the cylinder chamber of the compression mechanism portion enabling the operation switching, and the other end communicating with the sealed case;
An opening / closing means provided in the middle of the high-pressure introduction passage, for opening and closing the high-pressure introduction passage;
A hermetic rotary compressor characterized by comprising:
上記高圧導入通路の一端開口部は、上記圧縮機構部を構成するシリンダ、もしくは上記複数の圧縮機構部間に介在される中間仕切り板、もしくは上記回転軸を軸支する軸受に形成され、かつ偏心ローラが上記吸込み孔を閉じる位置からさらに90度回転する範囲で偏心ローラによって閉じられる位置に設けられることを特徴とする請求項1記載の密閉型回転式圧縮機。One end opening of the high-pressure introduction passage is formed in a cylinder constituting the compression mechanism part, an intermediate partition plate interposed between the plurality of compression mechanism parts, or a bearing supporting the rotating shaft, and is eccentric. 2. The hermetic rotary compressor according to claim 1, wherein the roller is provided at a position that is closed by an eccentric roller within a range in which the roller is further rotated 90 degrees from a position at which the suction hole is closed.
JP2006514459A 2004-06-11 2005-05-31 Hermetic rotary compressor Expired - Fee Related JP4594301B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004174207 2004-06-11
JP2004174207 2004-06-11
PCT/JP2005/009923 WO2005121558A1 (en) 2004-06-11 2005-05-31 Hermetic rotary compressor

Publications (2)

Publication Number Publication Date
JPWO2005121558A1 JPWO2005121558A1 (en) 2008-04-10
JP4594301B2 true JP4594301B2 (en) 2010-12-08

Family

ID=35503125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514459A Expired - Fee Related JP4594301B2 (en) 2004-06-11 2005-05-31 Hermetic rotary compressor

Country Status (4)

Country Link
JP (1) JP4594301B2 (en)
KR (1) KR100758403B1 (en)
CN (1) CN100396935C (en)
WO (1) WO2005121558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175429A1 (en) * 2013-04-26 2014-10-30 三菱電機株式会社 Multi-cylinder rotary compressor and vapor compression refrigeration cycle device provided with multi-cylinder rotary compressor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012833A (en) * 2007-02-04 2007-08-08 美的集团有限公司 Control method of rotary compressor
KR101271272B1 (en) * 2008-08-29 2013-06-04 도시바 캐리어 가부시키가이샤 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
JP5360708B2 (en) * 2009-01-14 2013-12-04 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
CN102102669B (en) * 2009-12-16 2014-08-06 东芝开利株式会社 Multi-cylinder rotary compressor and refrigeration circulation device
JP5830671B2 (en) * 2011-01-27 2015-12-09 パナソニックIpマネジメント株式会社 Rotary compressor and method for manufacturing the same
CN105444474B (en) * 2014-07-30 2018-02-09 珠海格力节能环保制冷技术研究中心有限公司 Refrigerating circulatory device
CN108035880B (en) * 2017-12-15 2019-11-05 同济大学 A kind of variable speed becomes the more rotor compressors of discharge capacity and its becomes displacement control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877183U (en) * 1981-11-20 1983-05-25 株式会社富士通ゼネラル air conditioner
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JPH10259787A (en) * 1997-01-17 1998-09-29 Toshiba Corp Rotary type closed compressor and refrigerating cycle device
JP2004044571A (en) * 2002-07-09 2004-02-12 Samsung Electronics Co Ltd Variable displacement rotary compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059241C (en) * 1998-09-25 2000-12-06 孔令树 Process for efficiently extracting cobalt compound from leftover containing cobalt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877183U (en) * 1981-11-20 1983-05-25 株式会社富士通ゼネラル air conditioner
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JPH10259787A (en) * 1997-01-17 1998-09-29 Toshiba Corp Rotary type closed compressor and refrigerating cycle device
JP2004044571A (en) * 2002-07-09 2004-02-12 Samsung Electronics Co Ltd Variable displacement rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175429A1 (en) * 2013-04-26 2014-10-30 三菱電機株式会社 Multi-cylinder rotary compressor and vapor compression refrigeration cycle device provided with multi-cylinder rotary compressor
EP2990649A4 (en) * 2013-04-26 2016-12-07 Mitsubishi Electric Corp Multi-cylinder rotary compressor and vapor compression refrigeration cycle device provided with multi-cylinder rotary compressor
JPWO2014175429A1 (en) * 2013-04-26 2017-02-23 三菱電機株式会社 Multi-cylinder rotary compressor and vapor compression refrigeration cycle apparatus equipped with the multi-cylinder rotary compressor
US9879676B2 (en) 2013-04-26 2018-01-30 Mitsubishi Electric Corporation Multi-cylinder rotary compressor and vapor compression refrigeration cycle system including the multi-cylinder rotary compressor

Also Published As

Publication number Publication date
KR20070032944A (en) 2007-03-23
CN100396935C (en) 2008-06-25
CN1950612A (en) 2007-04-18
WO2005121558A1 (en) 2005-12-22
JPWO2005121558A1 (en) 2008-04-10
KR100758403B1 (en) 2007-09-14

Similar Documents

Publication Publication Date Title
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP4594301B2 (en) Hermetic rotary compressor
JP4700624B2 (en) Refrigeration cycle apparatus and rotary hermetic compressor
JP4769811B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
US20060225456A1 (en) Hermetic rotary compressor and refrigerating cycle device using the same
KR101738458B1 (en) High pressure compressor and refrigerating machine having the same
WO2005061901A1 (en) Freezing cycle device
JP2006207559A (en) Refrigerating cycle device and rotary compressor
JP2007146747A (en) Refrigerating cycle device
JP2007146663A (en) Sealed compressor and refrigerating cycle device
JP4398321B2 (en) Refrigeration cycle equipment
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
KR102403950B1 (en) High pressure compressor and refrigerating machine having the same
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP4663978B2 (en) Refrigeration cycle equipment
JP2007154680A (en) Refrigerating cycle device
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2005344683A (en) Hermetic compressor
JP2006207381A (en) Hermetic compressor and refrigeration cycle device
WO2006126399A1 (en) Hermetic compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees