JPH01247786A - Two-cylinder type rotary compressor - Google Patents

Two-cylinder type rotary compressor

Info

Publication number
JPH01247786A
JPH01247786A JP7308588A JP7308588A JPH01247786A JP H01247786 A JPH01247786 A JP H01247786A JP 7308588 A JP7308588 A JP 7308588A JP 7308588 A JP7308588 A JP 7308588A JP H01247786 A JPH01247786 A JP H01247786A
Authority
JP
Japan
Prior art keywords
cylinder
cylinder chamber
blade
compression
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7308588A
Other languages
Japanese (ja)
Inventor
Toshiaki Hitosugi
一杉 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7308588A priority Critical patent/JPH01247786A/en
Publication of JPH01247786A publication Critical patent/JPH01247786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To make fruitless compression work zero and improve capacity variable efficiency by a method wherein a blade of a cylinder chamber is forcedly kept off a roller and a high pressure feeding device which suspends compression function by making the pressure of a cylinder chamber high is provided. CONSTITUTION:Cylinder chambers 7a, 8a re equipped with compression mechanisms 9a, 9b. A high pressure feeding device 25 is provided only on the first cylinder 7a. A hole for feeding high pressure 26 is provided at a position which is closed by the upper end of a blade 11a during normal operation and which is opened when it is applied with force so that this blade 11a is forcedly separated from a roller 10a. This makes fruitless compression work zero, improving capacity variable efficiency.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、シリンダ室を2v備え、2室同時に圧縮作用
をなすとともに、いずれか一方のシリンダ室での圧縮作
用を中断して、圧縮仕事を低減し、いわゆる能力可変を
なすことができる2シリンダ型ロータリ式圧縮機に関す
る。
Detailed Description of the Invention (Objective of the Invention) (Industrial Field of Application) The present invention has a cylinder chamber of 2V, performs a compression action at the same time in both chambers, and interrupts the compression action in one of the cylinder chambers. The present invention relates to a two-cylinder rotary compressor that can reduce compression work and achieve so-called variable capacity.

(従来の技術) 密閉容器内に同−客員の2室のシリンダ室を備え、かつ
それぞれのシリンダ室に圧縮機構を備えて、同時に圧縮
作用をなす2シリンダ型ロータリ式圧縮機が多用される
傾向にある。すなわちこの種の圧縮機にあっては、1台
分のスペースで2台分の圧縮仕事ができて有利である。
(Prior art) There is a tendency for two-cylinder rotary compressors to be frequently used, which are equipped with two cylinder chambers, one for the passenger and one for the passenger, in a closed container, and each cylinder chamber is equipped with a compression mechanism to perform compression at the same time. It is in. That is, this type of compressor is advantageous because it can perform the compression work of two compressors in the space of one compressor.

しかも、いずれか一方のシリンダ室における圧縮作用を
中断し、かつ他方のシリンダ室の圧縮作用を継続すれば
、半分の圧縮仕事になり、いわゆる能力可変ができる。
Moreover, if the compression action in one of the cylinder chambers is interrupted and the compression action in the other cylinder chamber is continued, the compression work will be halved, making it possible to perform so-called variable capacity.

このような能力可変を可能とするため、この種の圧縮機
を備えた冷凍サイクルは従来、第4図に示すようにして
構成される。図中1は棲述する2シリンダ型ロータリ式
圧縮機(以下、単に圧縮機と称する)であり、この吐出
側には、凝縮器2゜絞り機構3.蒸発器4.気液分離器
5が冷媒管Pを介して順次連通する。上記圧縮機1は、
密閉容器6内に第1のシリンダ7と、第2のシリンダ8
を備える。これらシリンダ7.8は、実際には図示しな
い回転軸の周囲でかつ中間仕切板を介して互いに上下に
位置する。それぞれのシリンダ7゜8の内部である第1
のシリンダ室7aと第2のシリンダ室8aには、同一構
成の圧#I機構98゜9bが備えられる。すなわち、第
1.第2のシリンダ室7a、8aに上記回転軸の偏心部
に嵌着されるローラ10a、10bが収容され、かつそ
れぞれのローラ10a、10bの周面にはブレード11
a、11bの先端部が弾性的に当接して各シリンダ室7
a、8aを区画する。上記ブレード11a、Ilbを弾
性的に押圧付勢するスプリング12a、12bは、各シ
リンダ7.8に一体に設けられるブレード室13a、1
3b内に収容される。一方、第1.第2のシリンダ7.
8におけるブレード11a、llbの一側には吐出孔1
4a。
In order to make such variable capacity possible, a refrigeration cycle equipped with this type of compressor has conventionally been constructed as shown in FIG. 4. In the figure, reference numeral 1 denotes a two-cylinder rotary compressor (hereinafter simply referred to as a compressor), which includes a condenser, a 2° throttling mechanism, 3. Evaporator 4. The gas-liquid separator 5 is sequentially connected via the refrigerant pipe P. The compressor 1 is
A first cylinder 7 and a second cylinder 8 are placed in a closed container 6.
Equipped with. These cylinders 7.8 are actually located one above the other around an axis of rotation, which is not shown, with intermediate partitions interposed therebetween. The first, which is inside each cylinder 7°8
The cylinder chamber 7a and the second cylinder chamber 8a are provided with a pressure #I mechanism 98.9b having the same configuration. That is, 1st. The second cylinder chambers 7a, 8a accommodate rollers 10a, 10b that are fitted onto the eccentric portion of the rotating shaft, and blades 11 are provided on the circumferential surfaces of the respective rollers 10a, 10b.
The tips of a and 11b elastically abut each cylinder chamber 7.
a, partition 8a. Springs 12a, 12b that elastically press and bias the blades 11a, Ilb are blade chambers 13a, 1 integrally provided in each cylinder 7.8.
3b. On the other hand, the first. Second cylinder7.
A discharge hole 1 is provided on one side of the blades 11a and llb in 8.
4a.

14bが設けられ、これを吐出弁15a、15bがrM
l!Ilするようになっている。上記吐出弁15a。
14b is provided, and the discharge valves 15a and 15b are connected to rM.
l! Il is designed to do so. The discharge valve 15a.

15bが開放することにより、シリンダ室7a。By opening 15b, the cylinder chamber 7a is opened.

8a内で圧縮した冷媒ガスを密閉容器6内に吐出案内す
ることとなる。ブレード11a、11bの他側には吸込
孔16a、16bが開口し、それぞれ密閉容器6を貫通
する冷媒管P、Pが接続される。これら吸込側の冷媒管
P、Pは上記気液分離器5の冷媒導出側で合流するが、
上記第1のシリンダ室7aに連通ずる冷媒管Pのみ中途
部に1vA開閉弁17が設けられてなる。
The refrigerant gas compressed within 8a is discharged and guided into the closed container 6. Suction holes 16a and 16b are opened on the other side of the blades 11a and 11b, and refrigerant pipes P and P passing through the closed container 6 are connected to the suction holes 16a and 16b, respectively. These refrigerant pipes P and P on the suction side join together on the refrigerant outlet side of the gas-liquid separator 5,
Only the refrigerant pipe P communicating with the first cylinder chamber 7a is provided with a 1vA on-off valve 17 in the middle.

しかして通常の2シリンダ運転をなすには、電磁開閉弁
17を開放し、かつ圧縮機1の回転軸を回転駆動する。
To perform normal two-cylinder operation, the electromagnetic on-off valve 17 is opened and the rotating shaft of the compressor 1 is driven to rotate.

第1.第2のシリンダ室7a。1st. Second cylinder chamber 7a.

8a内のローラ10a、10bは同時に偏心回転し、こ
の動きにブレード11a、11bが追従してシリンダ室
7a、8a内を区画する。これらの作動により各シリン
ダ室7a、8aには吸込側の冷媒管P、Pを介して冷媒
ガスが吸込まれ、圧縮されて密閉容器6内に吐出される
。そして、高温高圧化した冷媒ガスは凝縮器2.絞り機
構3.蒸発器4.気液分離器5を順次連通して冷凍サイ
クル作用をなす。
Rollers 10a and 10b in roller 8a rotate eccentrically at the same time, and blades 11a and 11b follow this movement to partition the inside of cylinder chambers 7a and 8a. Through these operations, refrigerant gas is sucked into each cylinder chamber 7a, 8a via the refrigerant pipes P, P on the suction side, compressed, and discharged into the closed container 6. The high temperature and high pressure refrigerant gas is then transferred to the condenser 2. Aperture mechanism 3. Evaporator 4. The gas-liquid separators 5 are successively connected to perform a refrigeration cycle.

能力可変運転をなすには、電磁開閉弁17を閉成する。To perform variable capacity operation, the electromagnetic on-off valve 17 is closed.

冷媒ガスは第1のシリンダ室7aには吸込まれず、第2
のシリンダ室8aにのみ吸込まれて圧縮作用がなされる
。第1のシリンダ室7aではローラ10aの回転が継続
するが、圧縮作用はなく、いわゆるカラ運転をなす。結
局、圧縮1i11の運転を継続したまま圧縮仕事を半減
させた能力可変ができる。
Refrigerant gas is not sucked into the first cylinder chamber 7a, but is drawn into the second cylinder chamber 7a.
The compressed air is sucked only into the cylinder chamber 8a, and a compression action is performed. In the first cylinder chamber 7a, the roller 10a continues to rotate, but there is no compression action, resulting in so-called idle operation. In the end, it is possible to change the capacity by halving the compression work while continuing the operation of compression 1i11.

(発明が解決しようとする課題) しかるにこのような圧縮機では、通常運転や能力可変運
転に拘らず、常に密閉容器6内には圧縮された高圧の冷
媒ガスが吐出されるため、密閉容器6内は高圧化してい
る。これに対して、能力可変運転時にカラ運転をなすシ
リンダ室(ここでは第1のシリンダ室7a)内は低圧で
あるから、密閉容器6内の高圧になった冷媒ガスおよび
これに含まれる潤滑油分が吐出弁15aと吐出孔14a
との間、あるいはブレード11aの周囲から第1のシリ
ンダ室7a内に侵入する。このため第1のシリンダ室7
aにおいては圧縮仕事を完全にゼロにすることができず
、能力可変効率が悪いものであった。
(Problem to be Solved by the Invention) However, in such a compressor, compressed high-pressure refrigerant gas is always discharged into the closed container 6 regardless of normal operation or variable capacity operation. The pressure inside is high. On the other hand, since the pressure inside the cylinder chamber (here, the first cylinder chamber 7a) which operates empty during the variable capacity operation is low pressure, the high pressure refrigerant gas inside the closed container 6 and the lubricating oil contained therein The discharge valve 15a and the discharge hole 14a
or from around the blade 11a into the first cylinder chamber 7a. Therefore, the first cylinder chamber 7
In case a, the compression work could not be completely reduced to zero, and the capacity variable efficiency was poor.

本発明は、F記事情に着目してなされたものであり、能
力可変時にカラ運転をなすシリンダ室を高圧化すること
により、このシリンダ室における圧縮仕事を完全にゼロ
となし、能力可変効率の向上化を図れる2シリンダ型ロ
ータリ式圧縮機を提供することを目的とする。
The present invention has been made by focusing on the situation described in F. By increasing the pressure of the cylinder chamber that operates empty when the capacity is varied, the compression work in this cylinder chamber is completely reduced to zero, and the efficiency of the variable capacity is reduced. The purpose of the present invention is to provide a two-cylinder rotary compressor that can be improved.

(発明の構成〕 (課題を解決するための手段) すなわち本発明は、2室それぞれのシリンダ室に偏心回
転するローラおよびこのローラの周囲に弾性的に当接し
てシリンダ室を区画するブレード等からなる圧縮機構を
備えシリンダ室2室同時の圧縮作用をなすものにおいて
、必要に応じていずれか一方の上記シリンダ室のブレー
ドをローラから強制的に離間保持するとともにそのシリ
ンダ室を高圧化して圧縮作用を中断させる高圧導入手段
を具備したことを特徴とする2シリンダ型ロータリ式圧
縮機である。
(Structure of the Invention) (Means for Solving the Problems) That is, the present invention provides a roller that rotates eccentrically in each of the two cylinder chambers, and a blade that elastically abuts around the roller and partitions the cylinder chamber. In a device that is equipped with a compression mechanism that compresses two cylinder chambers at the same time, if necessary, the blade of one of the cylinder chambers is forcibly held apart from the roller, and the pressure of that cylinder chamber is increased to perform compression. This is a two-cylinder rotary compressor characterized by being equipped with a high-pressure introducing means for interrupting.

(作用) 上記高圧導入手段の作用によりブレードがローラから離
反し、かつシリンダ室が高圧化するので、このシリンダ
室における圧縮仕事が完全にゼロになる。
(Function) The blade is separated from the roller by the action of the high pressure introduction means, and the pressure in the cylinder chamber is increased, so that the compression work in the cylinder chamber becomes completely zero.

〈実施例) 以下、本発明の一実施例を第1図および第2図にもとづ
いて説明する。図中Rは後述する2シリンダ型ロータリ
式圧縮8!(以下、単に圧縮機と称する)であり、この
吐出側には、凝縮器2,2段型絞り機構21.蒸発器4
.気液分離器5が冷媒管Pを介して順次連通する。上記
圧縮機Rは、従来と同様、密閉容器6内に中間仕切板2
2を介して第1のシリンダ7および第2のシリンダ8が
互いに上下に位置して設けられる。第1のシリンダ7の
上面開口部は主軸受23で閉塞され、第2のシリンダ8
の下面開口部は副軸受24で閉塞される。また、それぞ
れのシリンダ室7a、8aは、従来と同様の圧縮機構9
a、9bを備えているところから、それぞれの構成部品
に同番号を付して説明を省略する。
<Example> Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2. R in the figure is a 2-cylinder type rotary compression 8! (hereinafter simply referred to as a compressor), which includes a condenser 2, a two-stage throttling mechanism 21. Evaporator 4
.. The gas-liquid separator 5 is sequentially connected via the refrigerant pipe P. The compressor R has an intermediate partition plate 2 in a closed container 6, as in the conventional case.
2, a first cylinder 7 and a second cylinder 8 are provided above and below each other. The upper surface opening of the first cylinder 7 is closed by the main bearing 23, and the upper surface opening of the first cylinder 7 is closed by the main bearing 23.
The lower opening of is closed by a sub bearing 24. In addition, each cylinder chamber 7a, 8a has a compression mechanism 9 similar to the conventional one.
9a and 9b, the same numbers are given to the respective constituent parts and the explanation thereof will be omitted.

上記第1のシリンダ室7aのみに、高圧導入手段25が
設けられる。すなわち、上記主軸受23の一部であり、
かつ通常の運転状態ではブレード11aの上端面で閉塞
され、このブレード11aが強制的にローラ10aから
離間するよう付勢されたとき開口する位置に高圧導入孔
26が設けられる。この高圧導入孔26が開口すること
により、第1のシリンダ室7aと密閉容器6内とは直接
連通することになる。また上記ブレード11aに弾性力
を付与するスプリング12aは従来と同様、ブレード室
り3a内に収容されるが、このブレード室13aと上記
2段絞り機構21を構成する第1の絞り機構21aと第
2の絞り機構21bとの中間部とは、バイパス冷媒管p
aによって連通される。このバイパス冷媒管Paの中途
部には電磁開閉弁27が設けられる。さらにまた、第1
のシリンダ7に接続される吸込側冷媒管Pの中途部には
、第1のシリンダ室7aから気液分離器5への冷媒の流
れを阻止する逆止弁28が設けられてなる。
High pressure introducing means 25 is provided only in the first cylinder chamber 7a. That is, it is a part of the main bearing 23,
A high pressure introduction hole 26 is provided at a position that is closed at the upper end surface of the blade 11a under normal operating conditions and opens when the blade 11a is forcibly urged away from the roller 10a. By opening this high pressure introduction hole 26, the first cylinder chamber 7a and the inside of the closed container 6 are brought into direct communication. Further, the spring 12a that imparts elastic force to the blade 11a is housed in the blade chamber 3a as in the conventional case, but this blade chamber 13a and the first throttle mechanism 21a constituting the two-stage throttle mechanism 21 are connected to each other. The intermediate part between the throttle mechanism 21b and the bypass refrigerant pipe p
communicated by a. An electromagnetic on-off valve 27 is provided in the middle of this bypass refrigerant pipe Pa. Furthermore, the first
A check valve 28 for blocking the flow of refrigerant from the first cylinder chamber 7a to the gas-liquid separator 5 is provided in the middle of the suction side refrigerant pipe P connected to the cylinder 7.

しかして通常の2シリンダ運転をなすには、電磁開閉弁
27を閉成し、かつ圧縮IIRを駆動すればよい。第1
.第2のシリンダ室7a、8a内のローラ10a、10
bは同時に偏心回転し、この動きにブレード118.1
1bが追従してシリンダ室7a、Ba内を区画する。こ
れらの作動により各シリンダ室7a、、8aには吸込側
の冷媒管P。
For normal two-cylinder operation, it is sufficient to close the electromagnetic on-off valve 27 and drive the compression IIR. 1st
.. Rollers 10a, 10 in second cylinder chambers 7a, 8a
b rotates eccentrically at the same time, and this movement causes the blade 118.1
1b follows and partitions the inside of the cylinder chambers 7a and Ba. These operations cause a refrigerant pipe P on the suction side to each cylinder chamber 7a, 8a.

Pを介して冷媒ガスが吸込まれ、圧縮されて密閉容器6
内に吐出される。そして、高1高圧化した冷媒ガスは凝
縮器2,2段型絞り機構21.蒸発器4.気液分離器5
を順次連通して冷凍サイクル作用をなし、再び各シリン
ダ室7a、8aに吸込まれる。
Refrigerant gas is sucked in through P and compressed into a closed container 6.
discharged inside. The high-pressure refrigerant gas is then transferred to a condenser 2, a two-stage throttling mechanism 21. Evaporator 4. Gas-liquid separator 5
are sequentially communicated to perform a refrigeration cycle, and then sucked into each cylinder chamber 7a, 8a again.

能力可変運転をなすには、高圧導入手段25を作動する
。すなわち、電磁開閉弁27を開放しバイパス冷媒管p
aを介してブレード室13aに冷媒を導入する。ここに
導入される冷媒は2段型絞り機構21の第1の絞り機構
218を導通した冷媒の一部であり、完全に減圧してい
ない中間圧P2である。これに対して、シリンダ室7a
において圧縮作用が継続しているところから、シリンダ
室7aは高圧P1である。これらの圧力差(ΔP−P1
−P2 ) k:よってブレード11aは強制的にブレ
ード室13a側に押し込まれ、高圧導入孔26が開口す
る。すると、密閉容器6内に吐出された高圧の冷媒ガス
が高圧導入孔26を介して第1のシリンダ室7aに導入
され高圧化を継続する。ブレード11aはローラ10a
がら離間したままであり、ローラ10aの回転は継続す
るが圧縮作用はなく、いわゆるカラ運転をなす。このシ
リンダ17aの高圧冷媒ガスは吸込側冷媒管Pから気液
分離器5に向って導出するが、その途中に設けられる逆
止弁28により流れを阻止される。結局、圧縮機Rの運
転を継続したままで圧縮仕事を半減させた能力可変がで
きる。
To achieve variable capacity operation, the high pressure introduction means 25 is activated. That is, the electromagnetic on-off valve 27 is opened and the bypass refrigerant pipe p
A refrigerant is introduced into the blade chamber 13a through a. The refrigerant introduced here is a part of the refrigerant that passed through the first throttle mechanism 218 of the two-stage throttle mechanism 21, and has an intermediate pressure P2 that has not been completely reduced in pressure. On the other hand, the cylinder chamber 7a
Since the compression action continues in , the cylinder chamber 7a is at high pressure P1. These pressure differences (ΔP-P1
-P2) k: Therefore, the blade 11a is forcibly pushed into the blade chamber 13a side, and the high pressure introduction hole 26 is opened. Then, the high-pressure refrigerant gas discharged into the closed container 6 is introduced into the first cylinder chamber 7a through the high-pressure introduction hole 26 and continues to be pressurized. Blade 11a is roller 10a
Although the rollers 10a continue to rotate, there is no compression effect, resulting in so-called idle operation. The high-pressure refrigerant gas in the cylinder 17a is led out from the suction-side refrigerant pipe P toward the gas-liquid separator 5, but its flow is blocked by a check valve 28 provided in the middle. In the end, it is possible to change the capacity by reducing the compression work by half while the compressor R continues to operate.

なお、第3図に示すような高圧導入手段25Aであって
もよい。すなわち、圧縮11Rそのものは上記実施例と
全く同様であり、同番号を付して新たな説明は省略する
。さらに、このブレード室13aと2段絞りm楕を構成
する第1の絞り!I構21aと第2の絞り灘構21bと
の中間品とは、バイパス冷媒管paによって連通され、
かつこの中途部に電磁開閉弁27が設けられることも同
様である。一方、このシリンダ7に接続する吸込側冷媒
管Pの中途部には第2の電磁開閉弁31を設ける。さら
に、この第2の電磁開閉弁31と圧縮機Rとの間から高
圧導入冷媒管pbが分岐し、この端部は上記圧縮tII
Rと凝縮器2とを連通ずる吐出側冷媒管Pに接続する。
Note that a high pressure introducing means 25A as shown in FIG. 3 may be used. That is, the compression 11R itself is completely the same as in the above embodiment, and the same numbers will be given and new explanation will be omitted. Furthermore, this blade chamber 13a and the first aperture forming a two-stage aperture m-ellipse! An intermediate product between the I structure 21a and the second throttle structure 21b is communicated with by a bypass refrigerant pipe pa,
Similarly, an electromagnetic on-off valve 27 is provided in the middle of the valve. On the other hand, a second electromagnetic on-off valve 31 is provided in the middle of the suction side refrigerant pipe P connected to the cylinder 7. Further, a high pressure introduction refrigerant pipe pb branches from between this second electromagnetic on-off valve 31 and the compressor R, and this end is connected to the compression tII.
R and the condenser 2 are connected to a discharge side refrigerant pipe P that communicates with the condenser 2.

上記高圧導入冷媒管Pbの中途部には第3の電磁開閉弁
32が設けてなる。
A third electromagnetic on-off valve 32 is provided in the middle of the high-pressure introduction refrigerant pipe Pb.

しかして、通常運転時には第2の*11i閉弁31を開
放し、第3の電磁開閉弁32は閉成する。
Thus, during normal operation, the second *11i closing valve 31 is opened and the third electromagnetic opening/closing valve 32 is closed.

電磁開閉弁27は閉成すること勿論であり、上記実施例
と全く同様の冷凍サイクル作用をなす。
Of course, the electromagnetic on-off valve 27 is closed, and performs the same refrigeration cycle operation as in the above embodiment.

能力可変運転をなすには、^圧導入手段27を作動する
。すなわち、電磁開閉弁27を開放して第1の絞り機構
21aを導通した後の中間圧の冷媒をブレード室13a
に導入するとともに、第2のN!&開閉弁31を閉成し
、第3の電磁開閉弁32は開放する。このことから、吐
出側冷媒管Pから吐出される高圧の冷媒ガスの一部を第
3の電磁開閉弁32を介して第1のシリンダ室7aに導
入し、このシリンダ室7atfi^圧化して高圧導入孔
26を開放させ、上記実施例と同様の作用効果を得る。
To achieve variable capacity operation, the pressure introduction means 27 is operated. That is, after opening the electromagnetic on-off valve 27 and conducting the first throttling mechanism 21a, the intermediate pressure refrigerant is transferred to the blade chamber 13a.
In addition to introducing the second N! & The on-off valve 31 is closed, and the third electromagnetic on-off valve 32 is opened. Therefore, a part of the high-pressure refrigerant gas discharged from the discharge-side refrigerant pipe P is introduced into the first cylinder chamber 7a via the third electromagnetic on-off valve 32, and this cylinder chamber 7atfi^ pressure is increased to high pressure. The introduction hole 26 is opened to obtain the same effect as in the above embodiment.

(なお上記実施例と同一部品は同番号を付して新たな説
明は省略する。) この他、高圧導入手段の構成は種々前えられ、本発明の
要旨を越えない範囲内で変形実施可能である。
(Parts that are the same as those in the above embodiment are given the same numbers and new explanations are omitted.) In addition, the configuration of the high pressure introducing means can be prepared in various ways, and modifications can be made within the scope of the gist of the present invention. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、高圧導入手段によ
り一方のシリンダ室を高圧化した状態でカラ運転ができ
、このシリンダ室に冷媒ガスや潤滑油分がリークせず、
無駄な圧縮仕事を全くゼロにして能力可変効率の向上を
図れるという効果を奏する。
As explained above, according to the present invention, empty operation can be performed with one cylinder chamber under high pressure by the high pressure introduction means, and refrigerant gas and lubricating oil do not leak into this cylinder chamber.
This has the effect of completely eliminating unnecessary compression work and improving variable capacity efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
は2シリンダ型ロータリ式圧縮機の概略構造およびこの
圧縮機を備えた冷凍サイクルの構成図、第2図は2シリ
ンダ型ロータリ式圧縮機の要部縦断面図、第3図は本発
明の他の実施例を示す2シリンダ型ロータリ式圧縮機の
概略構造およびこの圧縮機を備えた冷凍サイクルの構成
図、第4図は本発明の従来例を示す2シリンダ型ロータ
リ式圧縮機の概略構造およびこの圧縮機を備えた冷凍サ
イクルの構成図である。 7a・・・(第1の)シリンダ室、8a・・・(第2の
)シリンダ室、10a、10b・・ローラ、11a。 11b・・・ブレード、9a、9b・・・圧縮機構、2
5・・・高圧導入手段。 出願人代理人 弁理士 鈴 江 武 彦第 1図
1 and 2 show an embodiment of the present invention, FIG. 1 is a schematic structure of a two-cylinder rotary compressor and a block diagram of a refrigeration cycle equipped with this compressor, and FIG. 2 is a two-cylinder rotary compressor. FIG. 3 is a longitudinal cross-sectional view of a main part of a two-cylinder rotary compressor showing another embodiment of the present invention, and a block diagram of a refrigeration cycle equipped with this compressor. The figure is a schematic structure of a two-cylinder rotary compressor and a configuration diagram of a refrigeration cycle equipped with this compressor, showing a conventional example of the present invention. 7a... (first) cylinder chamber, 8a... (second) cylinder chamber, 10a, 10b... roller, 11a. 11b...Blade, 9a, 9b...Compression mechanism, 2
5... High pressure introduction means. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] シリンダ室を2室備え、それぞれのシリンダ室に偏心回
転するローラおよびこのローラの周面に弾性的に当接し
てシリンダ室を区画するブレード等からなる圧縮機構を
備えシリンダ室2室同時の圧縮作用をなすものにおいて
、必要に応じていずれか一方の上記シリンダ室のブレー
ドをローラから強制的に離間保持するとともにそのシリ
ンダ室を高圧化して圧縮作用を中断させる高圧導入手段
を具備したことを特徴とする2シリンダ型ロータリ式圧
縮機。
Equipped with two cylinder chambers, each cylinder chamber is equipped with a compression mechanism consisting of a roller that rotates eccentrically and a blade that elastically contacts the circumferential surface of this roller to partition the cylinder chambers, which simultaneously compresses the two cylinder chambers. characterized by comprising high pressure introducing means for forcibly holding the blades of one of the cylinder chambers apart from the rollers and increasing the pressure of the cylinder chamber to interrupt the compression action as necessary. A 2-cylinder rotary compressor.
JP7308588A 1988-03-29 1988-03-29 Two-cylinder type rotary compressor Pending JPH01247786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7308588A JPH01247786A (en) 1988-03-29 1988-03-29 Two-cylinder type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7308588A JPH01247786A (en) 1988-03-29 1988-03-29 Two-cylinder type rotary compressor

Publications (1)

Publication Number Publication Date
JPH01247786A true JPH01247786A (en) 1989-10-03

Family

ID=13508142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308588A Pending JPH01247786A (en) 1988-03-29 1988-03-29 Two-cylinder type rotary compressor

Country Status (1)

Country Link
JP (1) JPH01247786A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131826A (en) * 1989-11-28 1992-07-21 Elf Sanofi Rolling piston rotary machine with vane control
JPH06280766A (en) * 1993-03-15 1994-10-04 Ford Motor Co Multistage rotary compressor
US6716007B2 (en) * 2002-07-09 2004-04-06 Samsung Electronics Co., Ltd. Variable capacity rotary compressor
WO2004083642A1 (en) 2003-03-18 2004-09-30 Toshiba Carrier Corporation Rotary sealed compressor and refrigeration cycle apparatus
WO2004113731A1 (en) * 2003-06-20 2004-12-29 Toshiba Carrier Corporation Rotary-type enclosed compressor and refrigeration cycle apparatus
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2005171847A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
WO2005061901A1 (en) * 2003-12-03 2005-07-07 Toshiba Carrier Corporation Freezing cycle device
JP2005256614A (en) * 2004-03-09 2005-09-22 Toshiba Kyaria Kk Multi-cylinder type rotary compressor
WO2005121558A1 (en) * 2004-06-11 2005-12-22 Toshiba Carrier Corporation Hermetic rotary compressor
EP1614902A2 (en) * 2004-07-08 2006-01-11 Sanyo Electric Co., Ltd. Compression System
JP2006022723A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Compression system and refrigerating apparatus using the same
WO2006016763A1 (en) * 2004-08-12 2006-02-16 Lg Electronics Inc. Capacity variable type twin rotary compressor and driving method thereof and airconditioner with this and driving method thereof
JP2006052693A (en) * 2004-08-12 2006-02-23 Sanyo Electric Co Ltd Multi-cylinder rotary compressor and compression system in which the compressor is used
EP1577557A3 (en) * 2004-03-15 2006-03-08 Sanyo Electric Co., Ltd. Multicylinder rotary compressor and compressing system and refrigerating unit provided with same
JP2006105039A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Multiple cylinder compressor
JP2006169978A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Multi-cylinder rotary compressor
JP2006300048A (en) * 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd Hermetic compressor
KR100677525B1 (en) * 2005-07-29 2007-02-02 엘지전자 주식회사 Modulation apparatus for rotary compressor
KR100680620B1 (en) * 2005-10-13 2007-02-08 삼성전자주식회사 Variable capacity rotary compressor
WO2007023904A1 (en) * 2005-08-25 2007-03-01 Toshiba Carrier Corporation Hermetic compressor and refrigeration cycle device
KR100724452B1 (en) * 2005-12-30 2007-06-04 엘지전자 주식회사 Modulation type rotary compressor
KR100724451B1 (en) * 2005-12-30 2007-06-04 엘지전자 주식회사 Modulation type rotary compressor
US7282827B2 (en) 2003-09-19 2007-10-16 Kabushiki Kaisha Toshiba Permanent magnet motor
EP1851434A1 (en) * 2005-02-23 2007-11-07 LG Electronics, Inc. Capacity varying type rotary compressor and refrigeration system having the same
EP1851437A1 (en) * 2005-02-23 2007-11-07 LG Electronics Inc. Capacity varying type rotary compressor
CN100386523C (en) * 2003-09-02 2008-05-07 东芝开利株式会社 Air conditioner
CN100395452C (en) * 2004-07-21 2008-06-18 三星电子株式会社 Variable capacity rotation compressor
US7399170B2 (en) 2005-04-08 2008-07-15 Matsushita Electric Industrial Co., Ltd. Hermetic rotary compressor and refrigerating cycle device using the same
CN100432441C (en) * 2004-07-21 2008-11-12 三星电子株式会社 Variable capacity rotation compressor
WO2010024409A1 (en) * 2008-08-29 2010-03-04 東芝キヤリア株式会社 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
US7775782B2 (en) * 2007-01-19 2010-08-17 Samsung Electronics Co., Ltd. Variable capacity rotary compressor having vane controller
US7780426B2 (en) * 2007-02-14 2010-08-24 Samsung Electronics Co., Ltd. Rotary compressor defining gaps of different sizes
JP2012247097A (en) * 2011-05-26 2012-12-13 Panasonic Corp Refrigerating cycle apparatus
EP2243960A3 (en) * 2002-06-05 2013-05-08 Sanyo Electric Co., Ltd. International Intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
CN103321907A (en) * 2012-03-22 2013-09-25 广东美芝制冷设备有限公司 Rotary compressor
JP2014190224A (en) * 2013-03-27 2014-10-06 Toshiba Carrier Corp Rotary compressor and refrigeration cycle device
WO2014189093A1 (en) 2013-05-24 2014-11-27 三菱電機株式会社 Heat pump device
CN104251552A (en) * 2013-06-26 2014-12-31 广东美的暖通设备有限公司 Heat pump water heater and control method thereof
EP2980410A4 (en) * 2013-03-27 2016-11-02 Toshiba Carrier Corp Rotary compressor and refrigeration cycle device
WO2017031669A1 (en) * 2015-08-24 2017-03-02 广东美芝制冷设备有限公司 Rotary compressor and freezing circulation device having same
CN107218740A (en) * 2016-03-21 2017-09-29 珠海格力电器股份有限公司 Refrigerant circulation system and air conditioner with same
EP3150758A4 (en) * 2014-05-29 2017-11-29 Qingdao Haier Drum Washing Machine Co., Ltd. Heat pump clothes dryer with dual-exhaust compressor system and control method thereof

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131826A (en) * 1989-11-28 1992-07-21 Elf Sanofi Rolling piston rotary machine with vane control
JPH06280766A (en) * 1993-03-15 1994-10-04 Ford Motor Co Multistage rotary compressor
EP2243960A3 (en) * 2002-06-05 2013-05-08 Sanyo Electric Co., Ltd. International Intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
US6716007B2 (en) * 2002-07-09 2004-04-06 Samsung Electronics Co., Ltd. Variable capacity rotary compressor
EP1605167A4 (en) * 2003-03-18 2011-03-16 Toshiba Carrier Corp Rotary sealed compressor and refrigeration cycle apparatus
US7841838B2 (en) 2003-03-18 2010-11-30 Toshiba Carrier Corporation Rotary closed type compressor and refrigerating cycle apparatus
EP1605167A1 (en) * 2003-03-18 2005-12-14 Toshiba Carrier Corporation Rotary sealed compressor and refrigeration cycle apparatus
WO2004083642A1 (en) 2003-03-18 2004-09-30 Toshiba Carrier Corporation Rotary sealed compressor and refrigeration cycle apparatus
US7290994B2 (en) 2003-06-20 2007-11-06 Toshiba Carrier Corporation Rotary hermetic compressor and refrigeration cycle system
WO2004113731A1 (en) * 2003-06-20 2004-12-29 Toshiba Carrier Corporation Rotary-type enclosed compressor and refrigeration cycle apparatus
CN100451340C (en) * 2003-06-20 2009-01-14 东芝开利株式会社 Rotary-type enclosed compressor and refrigeration cycle apparatus
CN100386523C (en) * 2003-09-02 2008-05-07 东芝开利株式会社 Air conditioner
US7282827B2 (en) 2003-09-19 2007-10-16 Kabushiki Kaisha Toshiba Permanent magnet motor
WO2005061901A1 (en) * 2003-12-03 2005-07-07 Toshiba Carrier Corporation Freezing cycle device
ES2319598A1 (en) * 2003-12-03 2009-05-08 Toshiba Carrier Corporation Freezing cycle device
US8206128B2 (en) 2003-12-03 2012-06-26 Toshiba Carrier Corporation Refrigeration cycle system
JP4523548B2 (en) * 2003-12-03 2010-08-11 東芝キヤリア株式会社 Refrigeration cycle equipment
JPWO2005061901A1 (en) * 2003-12-03 2007-07-12 東芝キヤリア株式会社 Refrigeration cycle equipment
KR100786438B1 (en) * 2003-12-03 2007-12-17 도시바 캐리어 가부시키 가이샤 Freezing cycle device
JP4504668B2 (en) * 2003-12-10 2010-07-14 東芝キヤリア株式会社 Refrigeration cycle equipment
JP4504667B2 (en) * 2003-12-10 2010-07-14 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2005171847A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP4663978B2 (en) * 2003-12-11 2011-04-06 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2005256614A (en) * 2004-03-09 2005-09-22 Toshiba Kyaria Kk Multi-cylinder type rotary compressor
EP1577557A3 (en) * 2004-03-15 2006-03-08 Sanyo Electric Co., Ltd. Multicylinder rotary compressor and compressing system and refrigerating unit provided with same
US7563085B2 (en) 2004-03-15 2009-07-21 Sanyo Electric Co., Ltd. Multicylinder rotary compressor and compressing system and refrigerating unit provided with same
WO2005121558A1 (en) * 2004-06-11 2005-12-22 Toshiba Carrier Corporation Hermetic rotary compressor
KR100758403B1 (en) * 2004-06-11 2007-09-14 도시바 캐리어 가부시키 가이샤 Hermetic rotary compressor
JP4594301B2 (en) * 2004-06-11 2010-12-08 東芝キヤリア株式会社 Hermetic rotary compressor
JPWO2005121558A1 (en) * 2004-06-11 2008-04-10 東芝キヤリア株式会社 Hermetic rotary compressor
CN100396935C (en) * 2004-06-11 2008-06-25 东芝开利株式会社 Hermetic rotary compressor
EP1813814A3 (en) * 2004-07-08 2007-10-17 Sanyo Electric Co., Ltd. Compression system
EP1813814A2 (en) 2004-07-08 2007-08-01 Sanyo Electric Co., Ltd. Compression system
EP1614902A2 (en) * 2004-07-08 2006-01-11 Sanyo Electric Co., Ltd. Compression System
EP1614902A3 (en) * 2004-07-08 2006-05-10 Sanyo Electric Co., Ltd. Compression System
JP2006022723A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Compression system and refrigerating apparatus using the same
CN100443725C (en) * 2004-07-08 2008-12-17 三洋电机株式会社 Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
CN100432441C (en) * 2004-07-21 2008-11-12 三星电子株式会社 Variable capacity rotation compressor
CN100395452C (en) * 2004-07-21 2008-06-18 三星电子株式会社 Variable capacity rotation compressor
WO2006016763A1 (en) * 2004-08-12 2006-02-16 Lg Electronics Inc. Capacity variable type twin rotary compressor and driving method thereof and airconditioner with this and driving method thereof
JP2006052693A (en) * 2004-08-12 2006-02-23 Sanyo Electric Co Ltd Multi-cylinder rotary compressor and compression system in which the compressor is used
US7976287B2 (en) 2004-08-12 2011-07-12 Lg Electronics Inc. Capacity variable type twin rotary compressor and driving method thereof
JP2006105039A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Multiple cylinder compressor
JP2006169978A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Multi-cylinder rotary compressor
US8186979B2 (en) 2005-02-23 2012-05-29 Lg Electronics Inc. Capacity varying type rotary compressor and refrigeration system having the same
EP1851437A4 (en) * 2005-02-23 2011-06-08 Lg Electronics Inc Capacity varying type rotary compressor
EP1851437A1 (en) * 2005-02-23 2007-11-07 LG Electronics Inc. Capacity varying type rotary compressor
EP1851434A1 (en) * 2005-02-23 2007-11-07 LG Electronics, Inc. Capacity varying type rotary compressor and refrigeration system having the same
EP1851434A4 (en) * 2005-02-23 2011-06-01 Lg Electronics Inc Capacity varying type rotary compressor and refrigeration system having the same
JP2006300048A (en) * 2005-03-24 2006-11-02 Matsushita Electric Ind Co Ltd Hermetic compressor
US7438541B2 (en) 2005-03-24 2008-10-21 Matsushita Electric Industrial Co., Ltd. Hermetic rotary compressor
US7399170B2 (en) 2005-04-08 2008-07-15 Matsushita Electric Industrial Co., Ltd. Hermetic rotary compressor and refrigerating cycle device using the same
KR100677525B1 (en) * 2005-07-29 2007-02-02 엘지전자 주식회사 Modulation apparatus for rotary compressor
US7607902B2 (en) 2005-08-25 2009-10-27 Toshiba Carrier Corporation Closed compressor and refrigerating cycle apparatus
WO2007023904A1 (en) * 2005-08-25 2007-03-01 Toshiba Carrier Corporation Hermetic compressor and refrigeration cycle device
KR100680620B1 (en) * 2005-10-13 2007-02-08 삼성전자주식회사 Variable capacity rotary compressor
KR100724452B1 (en) * 2005-12-30 2007-06-04 엘지전자 주식회사 Modulation type rotary compressor
KR100724451B1 (en) * 2005-12-30 2007-06-04 엘지전자 주식회사 Modulation type rotary compressor
US7775782B2 (en) * 2007-01-19 2010-08-17 Samsung Electronics Co., Ltd. Variable capacity rotary compressor having vane controller
US7780426B2 (en) * 2007-02-14 2010-08-24 Samsung Electronics Co., Ltd. Rotary compressor defining gaps of different sizes
WO2010024409A1 (en) * 2008-08-29 2010-03-04 東芝キヤリア株式会社 Enclosed compressor, two-cylinder rotary compressor, and refrigerating cycle apparatus
JP2012247097A (en) * 2011-05-26 2012-12-13 Panasonic Corp Refrigerating cycle apparatus
CN103321907B (en) * 2012-03-22 2016-07-06 广东美芝制冷设备有限公司 Rotary compressor
CN103321907A (en) * 2012-03-22 2013-09-25 广东美芝制冷设备有限公司 Rotary compressor
JP2014190224A (en) * 2013-03-27 2014-10-06 Toshiba Carrier Corp Rotary compressor and refrigeration cycle device
EP2980410A4 (en) * 2013-03-27 2016-11-02 Toshiba Carrier Corp Rotary compressor and refrigeration cycle device
US9664192B2 (en) 2013-03-27 2017-05-30 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle device
WO2014189093A1 (en) 2013-05-24 2014-11-27 三菱電機株式会社 Heat pump device
US10473367B2 (en) 2013-05-24 2019-11-12 Mitsubishi Electric Corporation Heat pump apparatus
CN104251552A (en) * 2013-06-26 2014-12-31 广东美的暖通设备有限公司 Heat pump water heater and control method thereof
EP3150758A4 (en) * 2014-05-29 2017-11-29 Qingdao Haier Drum Washing Machine Co., Ltd. Heat pump clothes dryer with dual-exhaust compressor system and control method thereof
US10633784B2 (en) 2014-05-29 2020-04-28 Qingdao Jiaonan Haier Washing Machine Co., Ltd. Heat pump dryer with dual-exhaust compressor system and control method thereof
WO2017031669A1 (en) * 2015-08-24 2017-03-02 广东美芝制冷设备有限公司 Rotary compressor and freezing circulation device having same
CN107218740A (en) * 2016-03-21 2017-09-29 珠海格力电器股份有限公司 Refrigerant circulation system and air conditioner with same
CN107218740B (en) * 2016-03-21 2023-12-12 珠海格力电器股份有限公司 Refrigerant circulation system and air conditioner with same

Similar Documents

Publication Publication Date Title
JPH01247786A (en) Two-cylinder type rotary compressor
CN100458166C (en) Capacity-changing unit of orbiting vane compressor
US20090104060A1 (en) Compressor
US7399170B2 (en) Hermetic rotary compressor and refrigerating cycle device using the same
CN101634500B (en) Refrigeration cycle system
JP2803456B2 (en) Multi-cylinder rotary compressor
JPH10266980A (en) Scroll type expander
JPH0218439B2 (en)
JPH0737796B2 (en) Rotary compressor
JPH0631629B2 (en) Rotary compressor
JP2005256614A (en) Multi-cylinder type rotary compressor
JP3584703B2 (en) Sliding vane compressor
JP2746664B2 (en) Rotary compressor
KR950007238Y1 (en) Rotary compressor
US5350280A (en) Fluid compressor
KR20060056801A (en) Rotary compressor and refrigerating cycle having the same
JPH0357889A (en) Diaphragm pump
JPH01294986A (en) Multi-cylinder type rotary compressor
JP3308986B2 (en) Hermetic rotary compressor
JPS60247082A (en) Scroll compressor
JPH06159239A (en) Refrigerant gas suction structure in piston type compressor
JPH08144974A (en) Rotary compressor
JP2000009069A (en) Rotary fluid machine
KR100507979B1 (en) Variable Capacity Rotary Compressor
JPH01232191A (en) Rotary compressor