JP2005256614A - Multi-cylinder type rotary compressor - Google Patents

Multi-cylinder type rotary compressor Download PDF

Info

Publication number
JP2005256614A
JP2005256614A JP2004065458A JP2004065458A JP2005256614A JP 2005256614 A JP2005256614 A JP 2005256614A JP 2004065458 A JP2004065458 A JP 2004065458A JP 2004065458 A JP2004065458 A JP 2004065458A JP 2005256614 A JP2005256614 A JP 2005256614A
Authority
JP
Japan
Prior art keywords
compression mechanism
cylinder
compression
blade
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065458A
Other languages
Japanese (ja)
Inventor
Hisataka Katou
久尊 加藤
Kazu Takashima
和 高島
Takeshi Tominaga
健 富永
Izumi Onoda
泉 小野田
Shoichiro Kitaichi
昌一郎 北市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004065458A priority Critical patent/JP2005256614A/en
Publication of JP2005256614A publication Critical patent/JP2005256614A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-cylinder type rotary compressor improvable in compressing performance ensuring the smooth motion of blades in the multi-cylinder type rotary compressor provided with a compression mechanism part for always performing compressing operation, and a compression mechanism part capable of performing cylinder cut off operation. <P>SOLUTION: A motor part 3 and the first and second compression mechanism parts 2A, 2B are stored in a sealed casing 1. The respective compression mechanism parts are provided with cylinders 8A, 8B provided with cylinder chambers 14a, 14b storing eccentric rollers 13a, 13b; blades 15a, 15b with the tip edges abutting on the peripheral surfaces of the rollers to bisect the cylinder chambers; discharge passages 50A, 50B for guiding compressed gas to be discharged into the sealed casing; and discharge valve devices 70A, 70B. The second compression mechanism part separates the blades from the peripheral surface of the roller to allow cylinder cut off operation when load is small, and the first compression mechanism part always performs compressing operation. The respective compression mechanism parts are differentiated in at least one of the size of clearance between the respective components, the discharge passages and the discharge valve devices. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、たとえば常時圧縮運転を行う第1の圧縮機構部に対して、休筒運転が可能な第2の圧縮機構部を備えた多シリンダ形ロータリ圧縮機に関する。   The present invention relates to a multi-cylinder rotary compressor provided with a second compression mechanism that can perform a cylinder resting operation, for example, with respect to a first compression mechanism that performs a constant compression operation.

一般的なロータリ圧縮機の圧縮機構部は、シリンダのシリンダ室に偏心ローラが収容されるとともに、シリンダにブレード室が設けられブレードが摺動自在に収納される。ブレードの先端縁は偏心ローラの周面に弾性的に当接するよう圧縮ばねによって押圧付勢され、シリンダ室はブレードによって二室に区分される。一室側が吸込み室となり、他室側は吐出弁装置を備えた圧縮室になる。
なお、近年、上記圧縮機構部を上下に2セット備えた、2シリンダ形ロータリ圧縮機が標準化されつつある。このような圧縮機において、常時圧縮作用をなす圧縮機構部と、必要に応じて圧縮−停止の切換えを可能とした圧縮機構部を備えることができれば、仕様が拡大されて有利である。
In a compression mechanism of a general rotary compressor, an eccentric roller is accommodated in a cylinder chamber of a cylinder, and a blade chamber is provided in the cylinder so that the blade is slidably accommodated. The leading edge of the blade is pressed and urged by a compression spring so as to elastically contact the peripheral surface of the eccentric roller, and the cylinder chamber is divided into two chambers by the blade. One chamber side is a suction chamber, and the other chamber side is a compression chamber equipped with a discharge valve device.
In recent years, a two-cylinder rotary compressor provided with two sets of the compression mechanism section above and below is being standardized. If such a compressor can be provided with a compression mechanism part that always performs a compression action and a compression mechanism part that can be switched between compression and stop if necessary, the specifications are advantageously expanded.

たとえば、[特許文献1]には、シリンダ室を2室備え、必要に応じていずれか一方のシリンダ室のブレードをローラから強制的に離間保持するとともに、そのシリンダ室を高圧化して圧縮作用を中断させる高圧導入手段を備えたことを特徴とする2シリンダ形ロータリ圧縮機が開示されている。
特開平1−247786号公報
For example, in [Patent Document 1], two cylinder chambers are provided, and if necessary, the blades of either one of the cylinder chambers are forcibly separated from the rollers, and the cylinder chamber is pressurized and compressed. A two-cylinder rotary compressor characterized in that it is provided with high-pressure introduction means for interrupting is disclosed.
JP-A-1-247786

ところで、常時圧縮作用をなす圧縮機構部と圧縮−停止の切換えを可能とした圧縮機構部を備えたロータリ圧縮機においては、全ての圧縮機構部を動作させる全能力運転と常時圧縮作用をなす圧縮機構部のみを動作させる能力低減運転の運転切換えをスムーズに行わせるとともに、各運転時の圧縮性能の向上を図ることが重要である。   By the way, in a rotary compressor having a compression mechanism part that always performs a compression action and a compression mechanism part that enables switching between compression and stop, full capacity operation that operates all the compression mechanism parts and compression that always performs a compression action. It is important to smoothly switch the operation of the ability reduction operation that operates only the mechanism part and to improve the compression performance at each operation.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、常時圧縮運転を行う圧縮機構部と休筒運転が可能な圧縮機構部を備えることを前提として、運転切換えをスムーズに行うことができるとともに、各運転時の圧縮性能の向上を図れる多シリンダ形ロータリ圧縮機を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and the purpose of the present invention is to smoothly switch between operations on the premise that a compression mechanism portion that always performs a compression operation and a compression mechanism portion that can perform a cylinder resting operation are provided. An object of the present invention is to provide a multi-cylinder rotary compressor that can be performed and can improve the compression performance during each operation.

上記目的を満足するため本発明の多シリンダ形ロータリ圧縮機は、密閉ケース内に、電動機部と、この電動機部と連結される複数の圧縮機構部を収容してなり、それぞれの圧縮機構部は、ローラが偏心回転自在に収容されるシリンダ室を備えたシリンダと、それぞれのシリンダに設けられ先端縁がローラの周面に当接しローラの回転方向に沿ってシリンダ室を二分するブレードと、シリンダ室で圧縮されたガスを密閉ケース内に吐出案内する吐出通路および、この吐出通路に設けられ吐出通路の開閉制御をなす吐出弁装置とを具備し、負荷が小さいときに、少なくとも一つの圧縮機構部においてブレードをローラの周面から離間させてシリンダ室における圧縮運転を休止する休筒運転を可能とする圧縮機構部を備え、常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部において、各構成部品間の隙間の大きさ、吐出通路および吐出弁装置のうちの、少なくともいずれか1つの構成を相違させた。   In order to satisfy the above object, a multi-cylinder rotary compressor according to the present invention includes an electric motor part and a plurality of compression mechanism parts connected to the electric motor part in a sealed case, and each compression mechanism part is A cylinder provided with a cylinder chamber in which the roller is eccentrically rotatable, a blade provided in each cylinder, the tip edge of which is in contact with the circumferential surface of the roller, and halves the cylinder chamber along the rotation direction of the roller; A discharge passage for discharging and guiding the gas compressed in the chamber into the sealed case; and a discharge valve device provided in the discharge passage for controlling opening and closing of the discharge passage, and at least one compression mechanism when the load is small The compressor is equipped with a compression mechanism that enables a cylinder resting operation that stops the compression operation in the cylinder chamber by separating the blade from the peripheral surface of the roller, and performs a compression operation at all times In 構部 and cylinder deactivation operation is the compression mechanism unit capable, the size of the gap between the components, of the discharge passage and the discharge valve system was different from the one constituting at least one.

本発明の多シリンダ形ロータリ圧縮機によれば、常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部を備えることを前提として、運転切換えをスムーズに行うことができ圧縮性能の向上を図れる等の効果を奏する。   According to the multi-cylinder rotary compressor of the present invention, it is possible to smoothly perform operation switching on the premise that a compression mechanism portion that performs constant compression operation and a compression mechanism portion that can perform idle cylinder operation are provided. There are effects such as improvement.

以下、本発明の多シリンダ形ロータリ圧縮機における実施の形態を、2シリンダ形ロータリ圧縮機に適用し、図面にもとづいて説明する。
図1は、2シリンダ形ロータリ圧縮機Tの断面構造と、この2シリンダ形ロータリ圧縮機Tを備えた冷凍サイクルRの構成を示す図である。
はじめに2シリンダ形ロータリ圧縮機Tから説明すると、1は密閉ケースであって、この密閉ケース1内の下部には後述する複数の圧縮機構部、ここでは第1の圧縮機構部2Aと第2の圧縮機構部2Bから構成される圧縮機構組立2が設けられ、この圧縮機構組立2の上部には電動機部3が設けられる。これら電動機部3と、圧縮機構組立2を構成する第1、第2の圧縮機構部2A,2Bは、互いに回転軸4を介して連結される。
Hereinafter, embodiments of the multi-cylinder rotary compressor of the present invention are applied to a two-cylinder rotary compressor and described with reference to the drawings.
FIG. 1 is a diagram illustrating a cross-sectional structure of a two-cylinder rotary compressor T and a configuration of a refrigeration cycle R including the two-cylinder rotary compressor T.
First, a description will be given of a two-cylinder rotary compressor T. Reference numeral 1 denotes a hermetic case, and a lower portion in the hermetic case 1 has a plurality of compression mechanism parts described later, here, a first compression mechanism part 2A and a second compression mechanism part. A compression mechanism assembly 2 including a compression mechanism portion 2B is provided, and an electric motor portion 3 is provided on the compression mechanism assembly 2. The electric motor unit 3 and the first and second compression mechanism units 2A and 2B constituting the compression mechanism assembly 2 are connected to each other via a rotating shaft 4.

上記電動機部3は、密閉ケース1の内面に固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、かつ上記回転軸4が介挿されるロータ6とから構成される。上記電動機部3は、運転周波数を可変するインバータ30に接続されるとともに、インバータ30を介して、この電動機部3を制御する制御部40と電気的に接続される。
上記第1、第2の圧縮機構部2A,2Bは、回転軸4の下部に、中間仕切り板7を介して上下に配設される第1のシリンダ8Aと、第2のシリンダ8Bをそれぞれ備えている。これら第1、第2のシリンダ8A,8Bは、互いに外形形状寸法が相違し、かつ内径寸法が同一となるよう設定されている。第1のシリンダ8Aの外径寸法は密閉ケース1の内径寸法よりも僅かに大に形成され、密閉ケース1内周面に圧入されたうえに、密閉ケース1外部からの溶接加工によって位置決め固定される。
The electric motor unit 3 includes a stator 5 that is fixed to the inner surface of the sealed case 1 and a rotor 6 that is disposed inside the stator 5 with a predetermined gap and in which the rotating shaft 4 is inserted. The The electric motor unit 3 is connected to an inverter 30 that varies the operating frequency, and is electrically connected to a control unit 40 that controls the electric motor unit 3 via the inverter 30.
The first and second compression mechanism portions 2A and 2B include a first cylinder 8A and a second cylinder 8B, which are disposed below the rotation shaft 4 with an intermediate partition plate 7 interposed therebetween. ing. The first and second cylinders 8A and 8B are set to have different outer shape dimensions and the same inner diameter dimensions. The outer diameter of the first cylinder 8A is slightly larger than the inner diameter of the sealed case 1 and is press-fitted into the inner peripheral surface of the sealed case 1 and then positioned and fixed by welding from the outside of the sealed case 1. The

第1のシリンダ8Aの上面部には主軸受9が重ね合わされ、バルブカバーaとともに取付けボルト10を介してシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には副軸受11が重ね合わされ、バルブカバーbとともに取付けボルト12を介して第1のシリンダ8Aに取付け固定される。
一方、上記回転軸4は、中途部と下端部が上記主軸受9と上記副軸受11に回転自在に枢支される。さらに回転軸4は第1、第2のシリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するよう組立てられる。各偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。
A main bearing 9 is superimposed on the upper surface portion of the first cylinder 8A, and is fixed to the cylinder 8A via a mounting bolt 10 together with a valve cover a. The auxiliary bearing 11 is superimposed on the lower surface portion of the second cylinder 8B, and is fixed to the first cylinder 8A via the mounting bolt 12 together with the valve cover b.
On the other hand, the rotary shaft 4 is pivotally supported by the main bearing 9 and the sub-bearing 11 at a midway portion and a lower end portion. Furthermore, the rotary shaft 4 penetrates through the first and second cylinders 8A and 8B and is integrally provided with two eccentric portions 4a and 4b formed with a phase difference of about 180 °. The eccentric portions 4a and 4b have the same diameter as each other, and are assembled so as to be located in the inner diameter portions of the cylinders 8A and 8B. Eccentric rollers 13a and 13b having the same diameter are fitted to the peripheral surfaces of the eccentric parts 4a and 4b.

上記第1のシリンダ8Aと第2のシリンダ8Bは、上記中間仕切り板7と主軸受9および副軸受11で上下面が区画され、それぞれの内部に第1のシリンダ室14aと、第2のシリンダ室14bが形成される。各シリンダ室14a,14bは互いに同一直径および高さ寸法に形成され、各シリンダ室14a,14bに上記偏心ローラ13a,13bがそれぞれ偏心回転自在に収容される。   The first cylinder 8A and the second cylinder 8B are divided into upper and lower surfaces by the intermediate partition plate 7, the main bearing 9 and the auxiliary bearing 11, and a first cylinder chamber 14a and a second cylinder are provided inside each of them. A chamber 14b is formed. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated in the cylinder chambers 14a and 14b so as to be eccentrically rotatable.

図2は、第1の圧縮機構部2Aと、第2の圧縮機構部2Bのそれぞれ一部を分解して示す斜視図である。
各シリンダ8A,8Bには、シリンダ室14a,14bと連通するブレード室22a,22bが設けられている。各ブレード室22a,22bには、ブレード15a,15bがシリンダ室14a,14bに対して突没自在に収容される。なお、ブレード15bについては図1に示している。
FIG. 2 is an exploded perspective view showing a part of each of the first compression mechanism 2A and the second compression mechanism 2B.
Each cylinder 8A, 8B is provided with blade chambers 22a, 22b communicating with the cylinder chambers 14a, 14b. Blades 15a and 15b are accommodated in the respective blade chambers 22a and 22b so as to protrude and retract with respect to the cylinder chambers 14a and 14b. The blade 15b is shown in FIG.

上記ブレード室22a,22bは、ブレード15a,15bの両側面が摺動自在に移動できるブレード収納溝23a,23bと、各ブレード収納溝23a,23b端部に一体に連設されブレード15a,15bの後端部が収容される縦孔部24a,24bとからなる。上記第1のシリンダ8Aには、外周面とブレード室22aとを連通する横孔25が設けられ、ばね部材26が収容される。ばね部材26は、ブレード15aの背面側端面と密閉ケース1内周面との間に介在され、ブレード15aに弾性力(背圧)を付与して、この先端縁を上記偏心ローラ13aに接触させる圧縮ばねである。   The blade chambers 22a and 22b are integrally connected to the blade housing grooves 23a and 23b in which both side surfaces of the blades 15a and 15b are slidably movable and the ends of the blade housing grooves 23a and 23b. It consists of vertical hole parts 24a and 24b in which the rear end part is accommodated. The first cylinder 8A is provided with a lateral hole 25 that communicates the outer peripheral surface with the blade chamber 22a, and the spring member 26 is accommodated therein. The spring member 26 is interposed between the rear end surface of the blade 15a and the inner peripheral surface of the sealing case 1, and applies an elastic force (back pressure) to the blade 15a so that the tip edge contacts the eccentric roller 13a. It is a compression spring.

上記第2のシリンダ8B側のブレード室22bにはブレード15b以外に何らの部材も収容されていないが、後述するようにブレード室22bの設定環境と、圧力切換え機構Kの作用に応じて、ブレード15bの先端縁が上記偏心ローラ13bに接触する。各ブレード15a,15bの先端縁は平面視で半円状に形成されているので、偏心ローラ13a,13b周壁に偏心ローラ13aの回転角度にかかわらず線接触できる。偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ブレード15a,15bはブレード収納溝23a,23bに沿って往復運動し、ブレード後端部は縦孔部24a,24bから進退自在である。   No member other than the blade 15b is accommodated in the blade chamber 22b on the second cylinder 8B side. However, depending on the setting environment of the blade chamber 22b and the action of the pressure switching mechanism K as will be described later, The tip edge of 15b contacts the eccentric roller 13b. Since the leading edges of the blades 15a and 15b are formed in a semicircular shape in plan view, they can be in line contact with the peripheral walls of the eccentric rollers 13a and 13b regardless of the rotation angle of the eccentric roller 13a. When the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the blades 15a and 15b reciprocate along the blade housing grooves 23a and 23b, and the blade rear end portion has a vertical hole portion 24a, It is possible to advance and retreat from 24b.

なお、第2のシリンダ8Bの外形寸法形状と、中間仕切板7および副軸受11の外径寸法との関係から、第2のシリンダ8Bの外形一部は密閉ケース1内に露出する。この密閉ケース1への露出部分が上記ブレード室22bに相当するように設計されており、ブレード室22bとブレード15b後端部はケース内圧力を直接的に受けることになる。
特に、第2のシリンダ8Bおよびブレード室22bは構造物であるから、ケース内圧力を受けても何らの影響もないが、ブレード15bはブレード室22bに摺動自在に収容され、かつ後端部がブレード室22bの縦孔部24bに位置するので、ケース内圧力を直接的に受ける。
A part of the outer shape of the second cylinder 8B is exposed in the sealed case 1 because of the relationship between the outer dimension of the second cylinder 8B and the outer diameter of the intermediate partition plate 7 and the auxiliary bearing 11. The exposed portion of the sealed case 1 is designed to correspond to the blade chamber 22b, and the blade chamber 22b and the rear end portion of the blade 15b are directly subjected to the pressure in the case.
In particular, since the second cylinder 8B and the blade chamber 22b are structures, there is no influence even if they are subjected to pressure in the case, but the blade 15b is slidably accommodated in the blade chamber 22b and has a rear end portion. Is located in the vertical hole portion 24b of the blade chamber 22b, and thus receives the pressure inside the case directly.

そして、上記ブレード15bの先端部が第2のシリンダ室14bに対向しており、ブレード先端部はシリンダ室14b内の圧力を受ける。結局、上記ブレード15bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するよう構成されている。
各シリンダ8A,8Bには、上記取付けボルト10,12が挿通するもしくは螺挿される取付け用孔もしくはねじ孔と、第1のシリンダ8Aのみ複数の円弧状ガス通し用孔部27が設けられている。
The tip of the blade 15b faces the second cylinder chamber 14b, and the blade tip receives the pressure in the cylinder chamber 14b. Eventually, the blade 15b is configured to move in a direction from a higher pressure to a lower pressure in accordance with the magnitude of the pressure received by the front end and the rear end.
Each cylinder 8A, 8B is provided with a mounting hole or screw hole through which the mounting bolts 10, 12 are inserted or screwed, and a plurality of arc-shaped gas passage holes 27 only for the first cylinder 8A. .

つぎに、このような2シリンダ形ロータリ圧縮機Tを備えた冷凍サイクルRについて説明する。
再び図1に示すように、密閉ケース1の上端部には、吐出管18が接続される。この吐出管18は、凝縮器19と、膨張機構20および蒸発器21を介してアキュームレータ17に接続される。このアキュームレータ17底部には、圧縮機Tに対する吸込み管16a,16bが接続される。一方の吸込み管16aは密閉ケース1と第1のシリンダ8A側部を貫通し、第1のシリンダ室14a内に直接連通する。他方の吸込み管16bは密閉ケース1を介して第2のシリンダ8B側部を貫通し、第2のシリンダ室14b内に直接連通する。
Next, the refrigeration cycle R provided with such a two-cylinder rotary compressor T will be described.
As shown in FIG. 1 again, a discharge pipe 18 is connected to the upper end of the sealed case 1. The discharge pipe 18 is connected to the accumulator 17 via a condenser 19, an expansion mechanism 20 and an evaporator 21. Suction pipes 16 a and 16 b for the compressor T are connected to the bottom of the accumulator 17. One suction pipe 16a penetrates the sealed case 1 and the side of the first cylinder 8A, and communicates directly with the first cylinder chamber 14a. The other suction pipe 16b passes through the side of the second cylinder 8B through the sealed case 1 and communicates directly with the second cylinder chamber 14b.

また、圧縮機Tと凝縮器19とを連通する上記吐出管18の中途部から分岐して、上記第2のシリンダ室14bに接続される吸込み管16bの中途部に合流する分岐管Pが設けられる。この分岐管Pの中途部には、第1の開閉弁28が設けられ、かつ上記吸込み管16bで、分岐管Pの分岐部よりも上流側には第2の開閉弁29が設けられる。上記第1の開閉弁28と第2の開閉弁29は、それぞれ電磁弁であって、上記制御部40からの電気信号に応じて開閉制御されるようになっている。   Further, a branch pipe P is provided which branches from the middle part of the discharge pipe 18 communicating with the compressor T and the condenser 19 and joins the middle part of the suction pipe 16b connected to the second cylinder chamber 14b. It is done. A first opening / closing valve 28 is provided in the middle of the branch pipe P, and a second opening / closing valve 29 is provided upstream of the branch portion of the branch pipe P in the suction pipe 16b. The first on-off valve 28 and the second on-off valve 29 are electromagnetic valves, respectively, and are controlled to open and close according to an electrical signal from the control unit 40.

このようにして、第2のシリンダ室14bに接続される吸込み管16b、分岐管P、第1の開閉弁28および第2の開閉弁29とで圧力切換え機構Kが構成される。そして、圧力切換え機構Kの切換え作動に応じて、第2のシリンダ8Bのシリンダ室14bに吸込み圧もしくは吐出圧が導かれるようになっている。   In this way, the pressure switching mechanism K is configured by the suction pipe 16b, the branch pipe P, the first on-off valve 28, and the second on-off valve 29 connected to the second cylinder chamber 14b. In accordance with the switching operation of the pressure switching mechanism K, the suction pressure or the discharge pressure is guided to the cylinder chamber 14b of the second cylinder 8B.

つぎに、上述のロータリ式密閉形圧縮機Tと、この圧縮機を備えた冷凍サイクル装置Rの作用について説明する。
(1) 通常運転(全能力運転)を選択した場合:
制御部40は、圧力切換え機構Kの第1の開閉弁28を閉成し、第2の開閉弁29を開放するよう制御するとともに、インバータ30を介して電動機部3に運転信号を送る。回転軸4が回転駆動され、偏心ローラ13a,13bは各シリンダ室14a,14b内で偏心回転を行う。
Next, the operation of the above-described rotary-type hermetic compressor T and the refrigeration cycle apparatus R provided with this compressor will be described.
(1) When normal operation (full capacity operation) is selected:
The control unit 40 controls the first switching valve 28 of the pressure switching mechanism K to be closed and the second switching valve 29 to be opened, and sends an operation signal to the motor unit 3 through the inverter 30. The rotating shaft 4 is driven to rotate, and the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b.

第1の圧縮機構部2Aを構成する第1のシリンダ8Aにおいては、ブレード15aがばね部材26によって常に弾性的に押圧付勢されるところから、ブレード15aの先端縁が偏心ローラ13a周壁に摺接して第1のシリンダ室14a内を吸込み室と圧縮室に二分する。
偏心ローラ13aのシリンダ室14a内周面転接位置とブレード収納溝23aが一致し、ブレード15aが最も後退した状態で、このシリンダ室14aの空間容量が最大となる。冷媒ガスはアキュームレータ17から吸込管16aを介してシリンダ室14aに吸込まれ充満する。
In the first cylinder 8A constituting the first compression mechanism portion 2A, the blade 15a is always elastically pressed and biased by the spring member 26, so that the tip edge of the blade 15a is in sliding contact with the peripheral wall of the eccentric roller 13a. The first cylinder chamber 14a is divided into a suction chamber and a compression chamber.
When the position of the inner circumferential surface of the eccentric roller 13a in contact with the blade housing groove 23a coincides with the blade housing groove 23a, the space capacity of the cylinder chamber 14a is maximized. The refrigerant gas is sucked into the cylinder chamber 14a from the accumulator 17 through the suction pipe 16a and is filled.

偏心ローラ13aの偏心回転にともなって、偏心ローラの第1のシリンダ室14a内周面に対する転接位置が移動し、シリンダ室の区画された圧縮室容積が減少するので、先にシリンダ室14aに導かれたガスが徐々に圧縮される。回転軸4が継続して回転され、このシリンダ室14aでの圧縮室容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで図示しない吐出弁が開放する。高圧ガスはバルブカバーaを介して密閉ケース1内に吐出され充満する。そして、密閉ケース上部の吐出管18から吐出される。   Along with the eccentric rotation of the eccentric roller 13a, the rolling contact position of the eccentric roller with respect to the inner peripheral surface of the first cylinder chamber 14a is moved, and the volume of the compression chamber partitioned by the cylinder chamber is reduced. The introduced gas is gradually compressed. The rotating shaft 4 is continuously rotated, the compression chamber capacity in the cylinder chamber 14a is further reduced, the gas is compressed, and when the pressure rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed case 1 through the valve cover a and is filled. And it discharges from the discharge pipe 18 of an airtight case upper part.

一方、圧力切換え機構Kを構成する第1の開閉弁28が閉成されているので、第2のシリンダ室14bに吐出圧(高圧)が導かれることはない。蒸発器21で蒸発しアキュームレータ17で気液分離された低圧の蒸発冷媒が、開放された第2の開閉弁29を介して第2のシリンダ室14bに導かれる。このシリンダ室14bは吸込み圧(低圧)雰囲気となる一方で、ブレード室22bが密閉ケース1内に露出して吐出圧(高圧)下にある。上記ブレード15bを基準にしてみると、先端部が低圧条件となり、後端部が高圧条件となって、前後端部で差圧が存在する。   On the other hand, since the first on-off valve 28 constituting the pressure switching mechanism K is closed, the discharge pressure (high pressure) is not guided to the second cylinder chamber 14b. The low-pressure evaporative refrigerant evaporated by the evaporator 21 and gas-liquid separated by the accumulator 17 is guided to the second cylinder chamber 14b through the opened second on-off valve 29. The cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, while the blade chamber 22b is exposed in the sealed case 1 and is under a discharge pressure (high pressure). When the blade 15b is used as a reference, the tip end portion is under a low pressure condition, the rear end portion is under a high pressure condition, and a differential pressure exists at the front and rear end portions.

上記差圧の影響で、ブレード15bの先端部が偏心ローラ13bに摺接するよう押圧付勢される。すなわち、第1のシリンダ室14a側のブレード15aがばね部材26により押圧付勢され圧縮作用が行われるのと全く同様の圧縮作用が、第2のシリンダ室14bにおいても行われる。結局、2シリンダ形ロータリ圧縮機Tにおいては、第1のシリンダ室14aおよび第2のシリンダ室14bの両方で圧縮作用がなされる、全能力運転が行われることになる。   Under the influence of the differential pressure, the tip of the blade 15b is pressed and urged so as to be in sliding contact with the eccentric roller 13b. That is, the same compression action is performed in the second cylinder chamber 14b as the blade 15a on the first cylinder chamber 14a side is pressed and urged by the spring member 26 to perform the compression action. Eventually, in the two-cylinder rotary compressor T, full capacity operation is performed in which the compression action is performed in both the first cylinder chamber 14a and the second cylinder chamber 14b.

密閉ケース1から吐出管18を介して吐出される高圧ガスは、凝縮器19に導かれて凝縮液化し、膨張機構20で断熱膨張し、蒸発器21で熱交換空気から蒸発潜熱を奪って冷房作用をなす。そして、蒸発したあとの冷媒はアキュームレータ17に導かれて気液分離され、再び各吸込み管16a,16bから圧縮機Tの第1、第2の圧縮機構部2A,2Bに吸込まれて上述の経路を循環する。   The high-pressure gas discharged from the sealed case 1 through the discharge pipe 18 is led to the condenser 19 to be condensed and liquefied, adiabatically expanded by the expansion mechanism 20, and the evaporator 21 takes away latent heat of evaporation from the heat exchange air and cools it. It works. Then, the evaporated refrigerant is guided to the accumulator 17 and separated into gas and liquid, and is again sucked into the first and second compression mechanism portions 2A and 2B of the compressor T from the suction pipes 16a and 16b. Circulate.

(2) 特別運転(能力半減運転)を選択した場合:
特別運転(圧縮能力を半減する運転)を選択すると、制御部40は圧力切換え機構Kの第1の開閉弁28を開放し、第2の開閉弁29を閉成するように切換え設定する。第1のシリンダ室14aにおいては上述したように通常の圧縮作用がなされ、密閉ケース1内に吐出された高圧ガスが充満してケース内高圧となる。吐出管18から吐出される高圧ガスの一部が分岐管Pに分流され、開放状態の第1の開閉弁28と吸込み管16bを介して第2の圧縮機構部2Aを構成する第2のシリンダ室14b内に導入される。
(2) When special operation (half-capacity operation) is selected:
When the special operation (operation that halves the compression capacity) is selected, the control unit 40 switches and sets the first switching valve 28 of the pressure switching mechanism K to be opened and the second switching valve 29 to be closed. In the first cylinder chamber 14a, the normal compression action is performed as described above, and the high-pressure gas discharged into the sealed case 1 is filled to become a high pressure in the case. A part of the high-pressure gas discharged from the discharge pipe 18 is diverted to the branch pipe P, and the second cylinder constituting the second compression mechanism portion 2A via the opened first on-off valve 28 and the suction pipe 16b. It is introduced into the chamber 14b.

上記第2のシリンダ室14bが吐出圧(高圧)雰囲気にある一方で、ブレード室22bはケース内高圧と同一の状況下にあることには変りがない。そのため、ブレード15bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。ブレード15bはローラ13b外周面から離間した位置で移動することなく停止状態を保持し、第2のシリンダ室14bでの圧縮作用は行われない。結局、第1のシリンダ室14aでの圧縮作用のみが有効であり、能力を半減した運転がなされることになる。   While the second cylinder chamber 14b is in a discharge pressure (high pressure) atmosphere, the blade chamber 22b remains in the same situation as the high pressure in the case. Therefore, the blade 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The blade 15b does not move at a position away from the outer peripheral surface of the roller 13b and maintains a stopped state, and no compression action is performed in the second cylinder chamber 14b. Eventually, only the compression action in the first cylinder chamber 14a is effective, and an operation with half the capacity is performed.

第2のシリンダ室14bの内部は高圧となっているので、密閉ケース1内から第2のシリンダ室14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。したがって、圧縮効率の低下なしに能力を半分にした運転が可能となる。
このように、複数の圧縮機構部のうち、少なくとも一方の圧縮機構部においてブレードを付勢するばね部材を省略するだけの単純な構成で容量可変が可能となり、コスト的に有利で製造性に優れ、高効率の2シリンダ形ロータリ圧縮機を提供できる。
そしてここでは、常時圧縮運転を行う第1の圧縮機構部2Aと、休筒運転が可能な第2の圧縮機構部2Bにおいて、各構成部品間の隙間の大きさ、吐出通路55A,55Bおよび吐出弁装置70A,70Bのうちの、少なくともいずれか1つの構成を相違させたことを特徴としている。
Since the inside of the second cylinder chamber 14b is at a high pressure, there is no leakage of compressed gas from the sealed case 1 into the second cylinder chamber 14b, and no loss is caused thereby. Therefore, it is possible to operate with half the capacity without lowering the compression efficiency.
In this way, the capacity can be varied with a simple configuration that omits the spring member that biases the blade in at least one of the plurality of compression mechanism portions, which is advantageous in terms of cost and excellent in productivity. A highly efficient two-cylinder rotary compressor can be provided.
Here, in the first compression mechanism 2A that always performs the compression operation and the second compression mechanism 2B that can perform the cylinder resting operation, the size of the gap between the components, the discharge passages 55A and 55B, and the discharge It is characterized in that at least one of the configurations of the valve devices 70A and 70B is different.

以下、構成を具体的に説明する。
第1の圧縮機構部2Aのみの運転による能力可変は、第2の圧縮機構部2Bを構成するブレード15bを偏心ローラ13bから引き離し、第2のシリンダ室14bを休筒運転させることで可能となる。したがって、ブレード収納溝23a,23bの溝幅とブレード15a,15bの板厚との隙間または/及びシリンダ8A、8Bの高さとブレード15a,15bの高さの隙間をある程度確保し、ブレードの動きをスムーズ化することが必要となる。
The configuration will be specifically described below.
Capability variation by operation of only the first compression mechanism portion 2A is possible by pulling the blade 15b constituting the second compression mechanism portion 2B away from the eccentric roller 13b and causing the second cylinder chamber 14b to perform a cylinder-free operation. . Therefore, the clearance between the groove width of the blade housing grooves 23a and 23b and the plate thickness of the blades 15a and 15b and / or the clearance between the height of the cylinders 8A and 8B and the height of the blades 15a and 15b is secured to some extent, and the movement of the blade is controlled. It needs to be smooth.

特に、これまで説明してきたようにブレード15aを押圧付勢するばね部材26を用いない休筒運転が可能な第2の圧縮機構部2Bを備えた圧縮機Tでは、上記隙間をある程度大きくすることにより、休筒運転である特別運転から全能力運転への切換えがスムーズに行える。
しかしながら、第1の圧縮機構部2Aと第2の圧縮機構部2Bにおいて上記隙間を同じように大きく確保すると、休筒運転をしない側の第1の圧縮機構部2Aにおいて圧縮ガスの漏れ量が増大してしまい、圧縮性能低下を招くことになる。
そこで、本実施の形態では、常時圧縮運転を行う第1の圧縮機構部2Aと、休筒運転が可能な第2の圧縮機構部2Bにおいて、上記隙間の大きさを相違させることを基本としている。
すなわち、常時運転をなす第1の圧縮機構部2Aにおける隙間を従来通りの隙間と一致させ、休筒運転する側の第2の圧縮機構部2Bにおける隙間を、第1の圧縮機構部2Aの隙間よりも大きくすることで、運転切換えがスムーズに行え、性能低下を抑制できる。
In particular, as described above, in the compressor T including the second compression mechanism portion 2B capable of the cylinder resting operation without using the spring member 26 that presses and biases the blade 15a, the gap is increased to some extent. Thus, switching from special operation, which is a cylinder-free operation, to full capacity operation can be performed smoothly.
However, if the clearance is secured to be the same in the first compression mechanism portion 2A and the second compression mechanism portion 2B, the leakage amount of the compressed gas increases in the first compression mechanism portion 2A on the side where the cylinder resting operation is not performed. As a result, the compression performance is reduced.
Therefore, in the present embodiment, the size of the gap is basically different between the first compression mechanism 2A that always performs the compression operation and the second compression mechanism 2B that can perform the cylinder resting operation. .
That is, the gap in the first compression mechanism 2A that is always operated is matched with the conventional gap, and the gap in the second compression mechanism 2B on the side where the cylinder is rested is set as the gap in the first compression mechanism 2A. By making it larger than this, operation switching can be performed smoothly and performance degradation can be suppressed.

図3(A)は、ブレード収納溝23a,23bの幅寸法に対するブレード15a,15bの板厚寸法の差である、ブレードの側面隙間Saを説明している。そして、図3(B)は、シリンダ室14a,14bの高さ寸法に対するブレード15a,15bの高さ寸法の差である、ブレードの高さ方向隙間Sbを説明している。
少なくともいずれか一方の隙間Sa,Sbは、休筒運転が可能な第2の圧縮機構部2Bの方を常時圧縮運転を行う第1の圧縮機構部2Aよりも大に設定する。上述したように第1の圧縮機構部2Aでは、従来のこの種の圧縮機の圧縮機構部における隙間と同一とし、第2の圧縮機構部2Bにおける隙間をそれよりも大とする。
FIG. 3A illustrates the side gap Sa of the blade, which is the difference in the plate thickness dimension of the blades 15a and 15b with respect to the width dimension of the blade housing grooves 23a and 23b. FIG. 3B illustrates the blade height direction gap Sb, which is the difference in height between the blades 15a and 15b with respect to the height of the cylinder chambers 14a and 14b.
At least one of the gaps Sa and Sb is set so that the second compression mechanism 2B capable of cylinder resting operation is larger than the first compression mechanism 2A that always performs compression operation. As described above, in the first compression mechanism section 2A, the gap in the compression mechanism section of this type of conventional compressor is the same as that in the second compression mechanism section 2B.

実際に、ブレード15a,15bの側面隙間Saと、ブレード15a,15bの高さ方向隙間Sbの変化に対する圧縮途中のガスの漏れ量を測定すると、隙間Sa,Sbが大きくなるにともなってガスの漏れ量が増大する結果が得られる。そして、隙間Sa,Sbを変えたうえに圧縮性能を測定した結果を見ると、隙間が増大するのにともなって圧縮性能が低下する傾向にあることも判った。
そこで、常時圧縮運転を行う第1の圧縮機構部2Aにおけるブレード15aの側面隙間Saとブレードの高さ方向隙間Sbを従来と同一の設定をなし、休筒運転を行う第2の圧縮機構部2Bにおけるブレード15bの側面隙間Saとブレードの高さ方向隙間Sbを第1の圧縮機構部2Aよりも大に設定して、漏れ損失を半減させ圧縮性能の低下を最小限に抑制する。
Actually, when the amount of gas leakage during compression with respect to changes in the side surface gap Sa of the blades 15a and 15b and the height direction gap Sb of the blades 15a and 15b is measured, gas leakage occurs as the gaps Sa and Sb increase. The result is an increase in quantity. When the compression performance was measured after changing the gaps Sa and Sb, it was found that the compression performance tends to decrease as the gap increases.
Therefore, the second compression mechanism unit 2B that performs the cylinder resting operation is set by setting the side surface gap Sa of the blade 15a and the blade height direction clearance Sb in the first compression mechanism unit 2A that always performs the compression operation. The side clearance Sa of the blade 15b and the height clearance Sb of the blade are set to be larger than those of the first compression mechanism portion 2A, so that the leakage loss is reduced by half and the deterioration of the compression performance is minimized.

また、常時圧縮運転を行う第1の圧縮機構部2Aに対し、休筒運転が可能な第2の圧縮機構部2Bの構成部品における隙間の設定として、図3(C)のシリンダ8A,8Bの高さ寸法と偏心ローラ13a,13bの高さ寸法との隙間Scの設定と、図3(D)のシリンダ8A,8B内径と偏心ローラ13a,13b外径との隙間Sdの設定があり、少なくともいずれか一方の隙間Sc,Sdは、休筒運転が可能な第2の圧縮機構部2Bの方を、常時圧縮運転を行う第1の圧縮機構部2Aよりも大に設定する。   In addition, with respect to the first compression mechanism portion 2A that always performs the compression operation, as a setting of the gaps in the components of the second compression mechanism portion 2B that can perform the cylinder resting operation, the cylinders 8A and 8B in FIG. There is a setting of the clearance Sc between the height dimension and the height dimension of the eccentric rollers 13a and 13b, and a setting of a clearance Sd between the inner diameters of the cylinders 8A and 8B and the outer diameter of the eccentric rollers 13a and 13b in FIG. Either one of the gaps Sc and Sd is set so that the second compression mechanism 2B capable of cylinder resting operation is larger than the first compression mechanism 2A that always performs compression operation.

第2の圧縮機構部2Bが休筒運転をしている間は、偏心ローラ13bはいわゆる空回りしている状態にある。一方、特に図示していないが密閉ケース1の内底部には潤滑油を集溜する油溜り部が形成されていて、第2の圧縮機構部2Bは油溜り部の潤滑油に浸漬状態にある。偏心ローラ13bが空回りすると潤滑油をかき回すため、偏心ローラの遠心力によりシリンダ8B内壁との間で摺動抵抗が生じる。   While the second compression mechanism unit 2B is in the cylinder resting operation, the eccentric roller 13b is in a so-called idling state. On the other hand, although not particularly illustrated, an oil reservoir for collecting lubricating oil is formed at the inner bottom of the sealed case 1, and the second compression mechanism 2B is immersed in the lubricating oil in the oil reservoir. . When the eccentric roller 13b idles, the lubricating oil is stirred, so that a sliding resistance is generated between the eccentric roller and the inner wall of the cylinder 8B due to the centrifugal force of the eccentric roller.

よって、休筒運転が可能な第2の圧縮機構部2Bおけるシリンダ8Bの高さ寸法と偏心ローラ13bの高さ寸法との隙間Scもしくは、シリンダ8B内径と偏心ローラ13b外径で形成される隙間Sdを小さくし過ぎると摺動抵抗が大きくなるため、第2の圧縮機構部2Bの隙間Sc,Sdを第1の圧縮機構部2Aよりも大きくする。これにより、第2の圧縮機構部2Bの休筒運転時において空回りする偏心ローラ13bの摺動損失を最大限抑えることができる。   Therefore, the clearance Sc between the height dimension of the cylinder 8B and the height dimension of the eccentric roller 13b in the second compression mechanism section 2B capable of cylinder resting operation or the clearance formed by the inner diameter of the cylinder 8B and the outer diameter of the eccentric roller 13b. If Sd is too small, the sliding resistance increases, so that the gaps Sc and Sd of the second compression mechanism 2B are made larger than those of the first compression mechanism 2A. Thereby, the sliding loss of the eccentric roller 13b that rotates idly during the idle cylinder operation of the second compression mechanism portion 2B can be minimized.

図4(A)は、横軸に高さクリアランス比をとり、縦軸に成績係数(COP)をとって、休筒運転時の成績係数の変化を示している。高さクリアランス比は、(休筒運転側である第2の圧縮機構部2Bの高さクリアランス/常時圧縮運転側である第1の圧縮機構部2Aの高さクリアランス)から得られる。高さクリアランスとは、シリンダ8A,8Bの高さと偏心ローラの13a,13bの高さとの差を言う。
ここで、成績係数が最大限高くなった状態から所定の幅を高さクリアランス比の最適範囲に設定すると、この最適範囲は高さクリアランス比が、1.2〜1.8の範囲であることが判る。
In FIG. 4A, the horizontal axis represents the height clearance ratio, and the vertical axis represents the coefficient of performance (COP). The height clearance ratio is obtained from (height clearance of the second compression mechanism 2B on the cylinder resting operation side / height clearance of the first compression mechanism 2A on the constant compression operation side). The height clearance refers to the difference between the height of the cylinders 8A and 8B and the height of the eccentric rollers 13a and 13b.
Here, when the predetermined width is set as the optimum range of the height clearance ratio from the state where the coefficient of performance is maximized, the optimum range is that the height clearance ratio is in the range of 1.2 to 1.8. I understand.

図4(B)は、横軸にサイドクリアランス比をとり、縦軸に成績係数(COP)をとって、休筒運転時の成績係数の変化を示している。サイドクリアランス比は、(休筒運転する側である第2の圧縮機構部2Bのサイドクリアランス/常時圧縮運転する側である第1の圧縮機構部2Aのサイドクリアランス)から得られる。サイドクリアランスは、シリンダ8A,8B内径と偏心ローラ13a,13b外径で形成される差を言う。
先の例と同様に、成績係数が最大限高くなった状態から所定の幅をサイドクリアランス比の最適範囲に設定すると、この最適範囲はサイドクリアランス比が、1.2〜1.8の範囲であることが判る。
FIG. 4B shows the change in the coefficient of performance during the cylinder resting operation, with the side clearance ratio on the horizontal axis and the coefficient of performance (COP) on the vertical axis. The side clearance ratio is obtained from (the side clearance of the second compression mechanism 2B on the side where the cylinder is rested / the side clearance of the first compression mechanism 2A on the side where the constant compression is performed). The side clearance refers to the difference formed between the inner diameters of the cylinders 8A and 8B and the outer diameters of the eccentric rollers 13a and 13b.
As in the previous example, when the predetermined width is set as the optimum range of the side clearance ratio from the state where the coefficient of performance is maximized, this optimum range is such that the side clearance ratio is in the range of 1.2 to 1.8. I know that there is.

本発明の目的を満足する構成は、以下に述べるようであってもよい。
図5(A)は、第1の圧縮機構部2Aにおける主軸受9に設けられる吐出通路50Aの断面図と、吐出切欠52aを備えたシリンダ室14aの平面図と、吐出通路50A端部に開閉自在に設けられる吐出弁55Aの形状構造を示す図である。図5(B)は、第2の圧縮機構部2Bにおける副軸受11に設けられる吐出通路50Bの断面図と、吐出切欠52bを備えたシリンダ室14bの平面図と、吐出通路50B端部に開閉自在に設けられる吐出弁55Bの形状構造を示す図である。
A configuration that satisfies the object of the present invention may be as described below.
5A is a cross-sectional view of the discharge passage 50A provided in the main bearing 9 in the first compression mechanism portion 2A, a plan view of the cylinder chamber 14a provided with the discharge notch 52a, and opening and closing at the end of the discharge passage 50A. It is a figure which shows the shape structure of 55 A of discharge valves provided freely. 5B is a cross-sectional view of the discharge passage 50B provided in the auxiliary bearing 11 in the second compression mechanism portion 2B, a plan view of the cylinder chamber 14b provided with the discharge notch 52b, and opening and closing at the end of the discharge passage 50B. It is a figure which shows the shape structure of the discharge valve 55B provided freely.

第2の圧縮機構部2Bが休筒運転をなし、第1の圧縮機構部2Aのみ圧縮運転を行う際は、第1の圧縮機構部2Aにおいて低周波数運転を行うことでもある。このとき、冷媒の循環量が極く小さくなるため、吐出通路50Aや、吐出切欠52aによって形成されるデッドボリューム(死容積)を小さくすることが有効であり、特に運転時間が長い安定時に使用される側の第1の圧縮機構部2Aにおける圧縮効率を最大化させることができ、ランニングコストの低減に役立つ。
一方、休筒運転をなす第2の圧縮機構部2Bは、主に高周波数で運転されるため、デッドボリューム(死容積)による性能低下より、過圧縮による性能低下の割合が大きいため、吐出通路50Bや吐出切欠はある程度大きい方が良い。
When the second compression mechanism section 2B performs the cylinder resting operation and only the first compression mechanism section 2A performs the compression operation, the first compression mechanism section 2A performs the low frequency operation. At this time, since the circulation amount of the refrigerant becomes extremely small, it is effective to reduce the dead volume (dead volume) formed by the discharge passage 50A and the discharge notch 52a. The compression efficiency in the first compression mechanism portion 2A on the other side can be maximized, which helps to reduce the running cost.
On the other hand, since the second compression mechanism 2B that performs the cylinder resting operation is mainly operated at a high frequency, the rate of performance degradation due to overcompression is greater than the performance degradation due to dead volume, so that the discharge passage 50B and the discharge notch should be large to some extent.

そこで、具体的には、第1の圧縮機構部2Aにおける吐出通路50Aの長さをt1、吐出通路50Aの内径をφD1、吐出切欠52aの半径をR1とし、第2の圧縮機構部2Bにおける吐出通路50Bの長さをt2、吐出通路50Bの内径をφD2、吐出切欠52bの半径をR2とすると、
φD1 < φD2、 t1 < t2、 R1 < R2、
の少なくともいずれかに設定する。
結局、吐出通路50A,50Bの大きさを、
第2の圧縮機構部2B > 第1の圧縮機構部2A
の関係に設定することになる。
Therefore, specifically, the length of the discharge passage 50A in the first compression mechanism portion 2A is t1, the inner diameter of the discharge passage 50A is φD1, the radius of the discharge notch 52a is R1, and the discharge in the second compression mechanism portion 2B. When the length of the passage 50B is t2, the inner diameter of the discharge passage 50B is φD2, and the radius of the discharge notch 52b is R2,
φD1 <φD2, t1 <t2, R1 <R2,
Set to at least one of the following.
After all, the size of the discharge passage 50A, 50B,
2nd compression mechanism part 2B> 1st compression mechanism part 2A
Will be set to the relationship.

また、主に低周波数で運転される第1の圧縮機構部2Aと、主に高周波数で運転される第2の圧縮機構部2Bの運転条件の相違から、各圧縮機構部の吐出弁のばね定数を異ならせることも性能向上に有効である。
すなわち、第1の圧縮機構部2Aに用いられる吐出弁55Aの長さ寸法をN1、厚さ寸法をT1、幅寸法をL1とし、第2の圧縮機構部2Bに用いられる吐出弁55Bの長さ寸法をN2、厚さ寸法をT2、幅寸法をL2とすると、
N1 < N2、 T1 < T2、 L1 < L2、
の少なくともいずれかに設定する。
以上は、吐出弁55Aのばね定数を、
第2の圧縮機構部2B > 第1の圧縮機構部2A
の関係に設定するということになる。
これにより、主に低周波数で運転される第1の圧縮機構部2Aの吐出弁の応答性が良くなり、効率が向上する。一方、主に高周波数で運転される第2の圧縮機構部2Bは、ある程度ばね定数が高いため、信頼性の低下を防止できる。
Further, because of the difference in operating conditions between the first compression mechanism 2A that is mainly operated at a low frequency and the second compression mechanism 2B that is mainly operated at a high frequency, the spring of the discharge valve of each compression mechanism Different constants are also effective for improving performance.
That is, the length of the discharge valve 55A used in the second compression mechanism 2B is N1, the length of the discharge valve 55A used in the first compression mechanism 2A is N1, the thickness is T1, and the width is L1. If the dimension is N2, the thickness dimension is T2, and the width dimension is L2,
N1 <N2, T1 <T2, L1 <L2,
Set to at least one of the following.
The above is the spring constant of the discharge valve 55A.
2nd compression mechanism part 2B> 1st compression mechanism part 2A
It will be set to the relationship.
Thereby, the responsiveness of the discharge valve of the first compression mechanism portion 2A that is mainly operated at a low frequency is improved, and the efficiency is improved. On the other hand, the second compression mechanism portion 2B that is mainly operated at a high frequency has a high spring constant to some extent, and can prevent a decrease in reliability.

さらに、吐出弁55A,55Bとともに吐出弁装置70A,70Bを構成する弁座部60a、60bの形状構造の相違からも同様の効果を導き得る。すなわち、第1の圧縮機構部2Aに設けられる弁座部60aの断面形状をR状に湾曲成し、第2の圧縮機構部2Bに設けられる弁座部60bの断面をフラット状に形成するとよい。
特に、第1の圧縮機構部2Aのみが単独で低周波運転を行うと、冷媒循環量が極端に少なくなる。そこで、弁座部60aの断面形状を吐出弁55Aに対して応答性のよいR形状にすることで、シール性の向上につながり、圧縮効率の向上化を得られる。
Furthermore, the same effect can be derived from the difference in the shape structure of the valve seat portions 60a and 60b that constitute the discharge valve devices 70A and 70B together with the discharge valves 55A and 55B. That is, the cross-sectional shape of the valve seat portion 60a provided in the first compression mechanism portion 2A may be curved in an R shape, and the cross section of the valve seat portion 60b provided in the second compression mechanism portion 2B may be formed in a flat shape. .
In particular, when only the first compression mechanism portion 2A performs the low frequency operation alone, the refrigerant circulation amount is extremely reduced. Therefore, by making the cross-sectional shape of the valve seat portion 60a into an R shape with good responsiveness to the discharge valve 55A, the sealing performance is improved and the compression efficiency is improved.

一方、吐出弁55Aの衝突面積が減少することで、吐出弁55A自体の耐久性の低下が考えられるが、この点については第1の圧縮機構部2Aに用いられる吐出弁55Aの強度を、第2の圧縮機構部2Bに用いられる吐出弁55Bの強度よりも大とすることで回避できる。
図6は、横軸に冷凍能力をとり、縦軸に成績係数(COP)をとっている。そして、本発明の休筒運転が可能な第2の圧縮機構部2Bおよび常に圧縮運転をなす第1の圧縮機構部2Aを備えたうえで、上述した能力調整構造を備える圧縮機Rを実線変化Eとして示し、単に、休筒運転が可能な圧縮機構部および常に圧縮運転をなす圧縮機構部を備えただけの従来の圧縮機を一点鎖線変化Fとして示し、常に同時運転をなす2シリンダ構造を備えた圧縮機を破線変化Gとして示している。
On the other hand, a decrease in the durability of the discharge valve 55A itself can be considered by reducing the collision area of the discharge valve 55A. In this regard, the strength of the discharge valve 55A used in the first compression mechanism portion 2A is increased. This can be avoided by increasing the strength of the discharge valve 55B used in the second compression mechanism 2B.
In FIG. 6, the horizontal axis represents the refrigeration capacity, and the vertical axis represents the coefficient of performance (COP). Then, the second compression mechanism portion 2B capable of the cylinder resting operation of the present invention and the first compression mechanism portion 2A that always performs the compression operation are provided, and the compressor R having the capacity adjustment structure described above is changed in a solid line. A two-cylinder structure that is shown as E, and is simply shown as a one-dot chain line change F, showing a conventional compressor only having a compression mechanism capable of cylinder resting operation and a compression mechanism that always performs compression operation. The compressor provided is shown as a broken line change G.

同図のa範囲は本発明および従来の休筒運転が可能な圧縮機構部を備えた圧縮機の1シリンダのみの運転領域であり、b範囲は2シリンダ同時の運転領域である。b範囲においてF変化が本発明のE変化を上回る成績係数を得ているが、a範囲においては本発明のE変化がF変化およびG変化を上回る成績係数を得ている。a範囲とb範囲の全てに亘って平均的にみると、本発明のE変化が最も成績係数が高く、運転効率のよい2シリンダ形ロータリ圧縮機であることが判る。   The range a in the figure is the operation region of only one cylinder of the compressor provided with the compression mechanism unit capable of the present invention and the conventional cylinder-cylinder operation, and the range b is the operation region of two cylinders simultaneously. In the range b, the F coefficient is higher than the E change of the present invention. In the a range, the E change of the present invention is higher than the F change and the G change. From an average over all the a range and b range, it can be seen that the E change of the present invention has the highest coefficient of performance and is a two-cylinder rotary compressor with good operating efficiency.

なお、本発明の実施の形態においては、常時圧縮運転を行う第1の圧縮機構部2Aおよび休筒運転が可能な第2の圧縮機構部2Bの、2つの圧縮機構部を備えた2シリンダ形ロータリ圧縮機について説明したが、これに限定されるものではなく、3シリンダ形や4シリンダ形もしくはそれ以上の多シリンダ形のロータリ圧縮機にも適用できることは言うまでもない。
要は、複数の圧縮機構部を備えていて、負荷が小さいときに、少なくとも一つの圧縮機構部において、ブレードをローラの周面から離間させてシリンダ室における圧縮運転を休止する休筒運転を可能とした圧縮機構部を備える多シリンダ形ロータリ圧縮機であればよい。
In the embodiment of the present invention, a two-cylinder type having two compression mechanism portions, that is, a first compression mechanism portion 2A that always performs a compression operation and a second compression mechanism portion 2B that can perform a cylinder deactivation operation. Although the rotary compressor has been described, it is needless to say that the present invention is not limited to this and can be applied to a three-cylinder type, a four-cylinder type or a multi-cylinder type rotary compressor.
In short, it has a plurality of compression mechanisms, and when the load is small, at least one compression mechanism allows the blades to be separated from the peripheral surface of the roller and can perform a cylinder-resting operation that stops the compression operation in the cylinder chamber A multi-cylinder rotary compressor provided with the compression mechanism section described above may be used.

本発明の実施の形態に係る、ロータリ式密閉形圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the rotary type hermetic compressor based on embodiment of this invention. 同実施の形態に係る、第1の圧縮機構部と第2の圧縮機構部のそれぞれ一部を分解した斜視図。The perspective view which decomposed | disassembled each part of the 1st compression mechanism part and 2nd compression mechanism part based on the embodiment. 同実施の形態に係る、互いに異なる構成部品間の隙間を説明する図。The figure explaining the clearance gap between mutually different components based on the embodiment. 同実施の形態に係る、高さクリアランス比と成績係数の特性図と、サイドクリアランス比と成績係数の特性図。The characteristic figure of a height clearance ratio and a coefficient of performance, and the characteristic figure of a side clearance ratio and a coefficient of performance based on the embodiment. 同実施の形態に係る、第1、第2の圧縮機構部における吐出通路の断面図と、主軸受一部の平面図と、吐出弁の形状構造を示す図。Sectional drawing of the discharge passage in the 1st, 2nd compression mechanism part based on the embodiment, the top view of a part of main bearing, and the figure which shows the shape structure of a discharge valve. 同実施の形態に係る、本発明と他の構造の圧縮機を比較するための冷凍能力と成績係数の特性図。The characteristic view of the refrigerating capacity and a coefficient of performance for comparing the compressor of this invention and the compressor of another structure based on the embodiment.

符号の説明Explanation of symbols

1…密閉ケース、3…電動機部、2A…第1の圧縮機構部、2B…第2の圧縮機構部、13a,13b…偏心ローラ、14a…第1のシリンダ室、14b…第2のシリンダ室、8A…第1のシリンダ、8B…第2のシリンダ、15a,15b…ブレード、50A,50B…吐出通路、70A,70B…吐出弁装置。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 3 ... Electric motor part, 2A ... 1st compression mechanism part, 2B ... 2nd compression mechanism part, 13a, 13b ... Eccentric roller, 14a ... 1st cylinder chamber, 14b ... 2nd cylinder chamber , 8A ... first cylinder, 8B ... second cylinder, 15a, 15b ... blade, 50A, 50B ... discharge passage, 70A, 70B ... discharge valve device.

Claims (4)

密閉ケース内に、電動機部と、この電動機部と連結される複数の圧縮機構部を収容してなり、
それぞれの上記圧縮機構部は、ローラが偏心回転自在に収容されるシリンダ室を備えたシリンダと、それぞれのシリンダに設けられ先端縁が上記ローラの周面に当接し、ローラの回転方向に沿ってシリンダ室を二分するブレードと、シリンダ室で圧縮されたガスを密閉ケース内に吐出案内する吐出通路および、この吐出通路に設けられ吐出通路の開閉制御をなす吐出弁装置とを具備し、
負荷が小さいときに、少なくとも一つの圧縮機構部において、ブレードをローラの周面から離間させてシリンダ室における圧縮運転を休止する休筒運転を可能とする圧縮機構部を備えた多シリンダ形ロータリ圧縮機において、
常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部において、各構成部品間の隙間の大きさ、吐出通路および吐出弁装置のうちの、少なくともいずれか1つの構成を相違させたことを特徴とする多シリンダ形ロータリ圧縮機。
In the sealed case, the motor part and a plurality of compression mechanism parts connected to the motor part are accommodated,
Each of the compression mechanism sections includes a cylinder having a cylinder chamber in which the roller is eccentrically rotatable, and a tip edge provided in each cylinder abuts on the circumferential surface of the roller, along the rotation direction of the roller. A blade that bisects the cylinder chamber, a discharge passage that discharges and guides the gas compressed in the cylinder chamber into the sealed case, and a discharge valve device that is provided in the discharge passage and controls opening and closing of the discharge passage,
Multi-cylinder rotary compression with a compression mechanism that enables a cylinder resting operation in which the blade is separated from the peripheral surface of the roller and stops the compression operation in the cylinder chamber when the load is small In the machine
In the compression mechanism part that performs the compression operation at all times and the compression mechanism part that can perform the cylinder resting operation, the size of the gap between the components, the configuration of at least one of the discharge passage and the discharge valve device are made different. A multi-cylinder rotary compressor characterized by that.
常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部において、ブレードの側面隙間と、ブレードの高さ方向隙間と、ローラの高さ方向隙間およびローラの径方向隙間のうちの、少なくともいずれか1つの大きさを、
休筒運転が可能な圧縮機構部 > 常時圧縮運転を行う圧縮機構部
としたことを特徴とする請求項1記載の多シリンダ形ロータリ圧縮機。
In the compression mechanism part that performs the constant compression operation and the compression mechanism part that can perform the cylinder resting operation, among the side gap of the blade, the height direction gap of the blade, the height direction gap of the roller, and the radial direction gap of the roller, At least one size,
Compression mechanism section capable of idle cylinder operation> The multi-cylinder rotary compressor according to claim 1, wherein the compression mechanism section performs a constant compression operation.
常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部において、上記吐出通路の大きさを、
休筒運転が可能な圧縮機構部 > 常時圧縮運転を行う圧縮機構部
としたことを特徴とする請求項1記載の多シリンダ形ロータリ圧縮機。
In the compression mechanism part that performs the constant compression operation and the compression mechanism part that can perform the cylinder resting operation, the size of the discharge passage is set as follows:
Compression mechanism section capable of idle cylinder operation> The multi-cylinder rotary compressor according to claim 1, wherein the compression mechanism section performs a constant compression operation.
常時圧縮運転を行う圧縮機構部および休筒運転が可能な圧縮機構部において、上記吐出弁装置を構成する吐出弁のばね定数を、
休筒運転が可能な圧縮機構部 > 常時圧縮運転を行う圧縮機構部
としたことを特徴とする請求項1記載の多シリンダ形ロータリ圧縮機。
In the compression mechanism portion that performs the compression operation at all times and the compression mechanism portion that can perform the idle cylinder operation, the spring constant of the discharge valve that constitutes the discharge valve device,
Compression mechanism section capable of idle cylinder operation> The multi-cylinder rotary compressor according to claim 1, wherein the compression mechanism section performs a constant compression operation.
JP2004065458A 2004-03-09 2004-03-09 Multi-cylinder type rotary compressor Pending JP2005256614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065458A JP2005256614A (en) 2004-03-09 2004-03-09 Multi-cylinder type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065458A JP2005256614A (en) 2004-03-09 2004-03-09 Multi-cylinder type rotary compressor

Publications (1)

Publication Number Publication Date
JP2005256614A true JP2005256614A (en) 2005-09-22

Family

ID=35082610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065458A Pending JP2005256614A (en) 2004-03-09 2004-03-09 Multi-cylinder type rotary compressor

Country Status (1)

Country Link
JP (1) JP2005256614A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092534A (en) * 2005-09-27 2007-04-12 Toshiba Kyaria Kk Two-cylinder type rotary compressor and refrigeration cycle device
WO2008062789A1 (en) * 2006-11-22 2008-05-29 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle device
JP2009121317A (en) * 2007-11-14 2009-06-04 Daikin Ind Ltd Enclosed compressor
CN106930949A (en) * 2015-12-30 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Exhaust valve plate component, flange assembly and compressor
JP2018080612A (en) * 2016-11-15 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
CN109340119A (en) * 2018-11-15 2019-02-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of exhaust valve plate, compressor and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH0681786A (en) * 1992-09-04 1994-03-22 Toshiba Corp Two-stage compression type rotary compressor
JPH10103273A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Hermetic compressor
JPH10103223A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Sealed type compressor
JP2001153076A (en) * 1999-09-09 2001-06-05 Sanyo Electric Co Ltd Two-stage compression rotary compressor
JP2002005057A (en) * 2000-06-21 2002-01-09 Mitsubishi Heavy Ind Ltd Scroll compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH0681786A (en) * 1992-09-04 1994-03-22 Toshiba Corp Two-stage compression type rotary compressor
JPH10103273A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Hermetic compressor
JPH10103223A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Sealed type compressor
JP2001153076A (en) * 1999-09-09 2001-06-05 Sanyo Electric Co Ltd Two-stage compression rotary compressor
JP2002005057A (en) * 2000-06-21 2002-01-09 Mitsubishi Heavy Ind Ltd Scroll compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092534A (en) * 2005-09-27 2007-04-12 Toshiba Kyaria Kk Two-cylinder type rotary compressor and refrigeration cycle device
JP4523902B2 (en) * 2005-09-27 2010-08-11 東芝キヤリア株式会社 Two-cylinder rotary compressor and refrigeration cycle apparatus
WO2008062789A1 (en) * 2006-11-22 2008-05-29 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle device
JPWO2008062789A1 (en) * 2006-11-22 2010-03-04 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
JP2009121317A (en) * 2007-11-14 2009-06-04 Daikin Ind Ltd Enclosed compressor
CN106930949A (en) * 2015-12-30 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Exhaust valve plate component, flange assembly and compressor
JP2018080612A (en) * 2016-11-15 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
CN109340119A (en) * 2018-11-15 2019-02-15 珠海格力节能环保制冷技术研究中心有限公司 A kind of exhaust valve plate, compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5063673B2 (en) Refrigeration cycle equipment
EP1851434B1 (en) Capacity varying type rotary compressor and refrigeration system having the same
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
US20080003123A1 (en) Capacity Varying Type Rotary Compressor
US8602755B2 (en) Rotary compressor with improved suction portion location
JPWO2007023904A1 (en) Hermetic compressor and refrigeration cycle apparatus
US8517702B2 (en) Rotary compressor with enhanced sealing between mode switching device and chamber thereof
EP1923571A2 (en) Capacity-variable rotary compressor
JP4594301B2 (en) Hermetic rotary compressor
JP2007146747A (en) Refrigerating cycle device
JP2005256614A (en) Multi-cylinder type rotary compressor
JP5005598B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2005171847A (en) Refrigerating cycle device
JP2011117309A (en) Rotary compressor and refrigerating cycle device
JP4398321B2 (en) Refrigeration cycle equipment
US20080056925A1 (en) Vane room unit and rotary compressor having the same
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP4806552B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP6078393B2 (en) Rotary compressor, refrigeration cycle equipment
JP2009074445A (en) Two-cylinder rotary compressor and refrigerating cycle device
JPH0681786A (en) Two-stage compression type rotary compressor
JP2007154680A (en) Refrigerating cycle device
JP6007030B2 (en) Rotary compressor and refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Effective date: 20090814

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420