JP4806552B2 - Hermetic compressor and refrigeration cycle apparatus - Google Patents

Hermetic compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
JP4806552B2
JP4806552B2 JP2005279434A JP2005279434A JP4806552B2 JP 4806552 B2 JP4806552 B2 JP 4806552B2 JP 2005279434 A JP2005279434 A JP 2005279434A JP 2005279434 A JP2005279434 A JP 2005279434A JP 4806552 B2 JP4806552 B2 JP 4806552B2
Authority
JP
Japan
Prior art keywords
vane
pressure
cylinder
compression
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005279434A
Other languages
Japanese (ja)
Other versions
JP2007092533A (en
Inventor
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005279434A priority Critical patent/JP4806552B2/en
Publication of JP2007092533A publication Critical patent/JP2007092533A/en
Application granted granted Critical
Publication of JP4806552B2 publication Critical patent/JP4806552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の圧縮機構部を備えたロータリ式の密閉型圧縮機と、この密閉型圧縮機を用いて冷凍サイクルを構成する、たとえば空気調和機である冷凍サイクル装置に関する。   The present invention relates to a rotary-type hermetic compressor including a plurality of compression mechanisms and a refrigeration cycle apparatus that is a refrigerating cycle using the hermetic compressor, for example, an air conditioner.

近年、圧縮機構部を構成するシリンダを上下に2セット備えた、2シリンダタイプのロータリ式密閉型圧縮機が標準化されつつある。この種の圧縮機において、常時圧縮作用をなすシリンダ室と、負荷の大小に応じて圧縮運転と運転停止である非圧縮運転(休筒運転)への切換えを可能とするシリンダ室を備えることができれば、仕様が拡大されて有利となる。
そこで本出願人は、[特許文献1]において、シリンダ室を2室備え、必要に応じて一方のシリンダ室における圧縮作用を停止する、もしくは圧縮作用を行わせる切換え手段を備えた密閉型圧縮機と、この圧縮機を備えて冷凍サイクル回路を構成する、たとえば空気調和機である冷凍サイクル装置を提供するに至った。
具体的には、一方のシリンダ室に備えたベーン(ブレード)をばね部材で押圧付勢し、常時圧縮作用を行わせる。他方のシリンダ室では、ベーンを収納するベーン室を密閉ケース内に露出し、ケース内圧力(高圧雰囲気)に晒す。そして、他方のシリンダ室に高圧もしくは低圧を導き、ベーンの先端と後端とで差圧を生じさせ、もしくは差圧が生じないように切換えて、ベーンを押圧付勢してローラに接触させる、もしくはローラから離間させる。
特開2004−301114号公報
In recent years, a two-cylinder rotary hermetic compressor including two sets of cylinders constituting a compression mechanism is being standardized. This type of compressor includes a cylinder chamber that always performs a compression action and a cylinder chamber that can be switched between a compression operation and a non-compression operation (cylinder operation) that is stopped according to the magnitude of the load. If possible, the specifications will be expanded and advantageous.
In view of this, the applicant of the present invention disclosed in [Patent Document 1] a hermetic compressor provided with two cylinder chambers and switching means for stopping the compression action in one cylinder chamber or performing the compression action as necessary. And it came to provide the refrigerating-cycle apparatus which is a refrigerating-cycle circuit provided with this compressor, for example which is an air conditioner.
Specifically, a vane (blade) provided in one of the cylinder chambers is pressed and urged by a spring member so as to always perform a compression action. In the other cylinder chamber, the vane chamber for storing the vane is exposed in the sealed case and exposed to the pressure in the case (high-pressure atmosphere). Then, a high pressure or a low pressure is introduced to the other cylinder chamber, a differential pressure is generated between the leading end and the trailing end of the vane, or switching is performed so that no differential pressure is generated, and the vane is pressed and urged to contact the roller. Alternatively, it is separated from the roller.
JP 2004-301114 A

このような構成を採用すれば、ベーンに対する押圧付勢構造の簡略化を図ったうえで、大能力運転から低能力運転への可変が容易化できる。しかしながら、その反面、シリンダ室に連通する冷媒吸込み通路に開閉弁等の圧力切換え装置が必要となる。その結果、吸込み通路に抵抗が生じて、圧縮性能の低下に繋がる虞れがある。
また、上述の[特許文献1]の技術は、圧縮機構部で圧縮した高圧ガスを一旦、密閉ケース内へ吐出し、ここで充満させてから密閉ケース外部へ導出する、いわゆるケース内高圧タイプの圧縮機を対象としている。そして、圧力切換えをなす側のベーン室をケース内圧力(高圧雰囲気)に晒している。
これに対して、ケース内低圧タイプの密閉型圧縮機も多用されている。すなわち、冷凍サイクルで低圧化した冷媒ガスを密閉ケース内に導き、充満させる。密閉ケース内と各シリンダ室とは吸込み管を介して直接連通されていて、密閉ケース内の低圧ガスは吸込み管から各シリンダ室に吸込まれ圧縮される。上記[特許文献1]には、この種のケース内低圧タイプの密閉型圧縮機について何ら言及されていない。
By adopting such a configuration, the pressure biasing structure for the vanes can be simplified, and the change from the large capacity operation to the low capacity operation can be facilitated. However, on the other hand, a pressure switching device such as an open / close valve is required in the refrigerant suction passage communicating with the cylinder chamber. As a result, resistance is generated in the suction passage, which may lead to a decrease in compression performance.
Moreover, the technique of the above-mentioned [Patent Document 1] is a so-called high pressure type in the case in which the high pressure gas compressed by the compression mechanism unit is once discharged into the sealed case and then filled out and then led out of the sealed case. Intended for compressors. The vane chamber on the pressure switching side is exposed to the case internal pressure (high pressure atmosphere).
On the other hand, in-case low pressure type hermetic compressors are often used. That is, the refrigerant gas whose pressure has been reduced in the refrigeration cycle is guided into the sealed case and filled. The inside of the sealed case and each cylinder chamber communicate directly with each other through a suction pipe, and the low-pressure gas in the sealed case is sucked into each cylinder chamber from the suction pipe and compressed. The above [Patent Document 1] makes no mention of this type of in-case low pressure type hermetic compressor.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、ケース内低圧タイプであり、特定の圧縮機構部におけるベーンの後端側を低圧または高圧として、大能力運転と低能力運転への切換えを確実に行える密閉型圧縮機と、この密閉型圧縮機を備えて冷凍サイクル性能の向上化を得る冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and the object thereof is a low pressure type in the case, and the rear end side of the vane in a specific compression mechanism portion is set to a low pressure or a high pressure so that a large capacity operation and a low capacity are achieved. It is an object of the present invention to provide a hermetic compressor that can reliably switch to operation and a refrigeration cycle apparatus that includes this hermetic compressor and obtains improved refrigeration cycle performance.

上記目的を満足するため本発明の密閉型圧縮機は、密閉ケース内に回転軸を介し電動機部と複数の圧縮機構部を連結して収容し、密閉ケース内を低圧雰囲気とし、
上記密閉ケース内を低圧雰囲気とし、
上記複数の圧縮機構部で圧縮された冷媒を、上記密閉ケースの外部に設けた油分離器を介して吐出し、
上記複数の圧縮機構部は、それぞれローラが偏心回転自在に収容されるシリンダ室を備えたシリンダと、このシリンダに設けられ先端がローラの周面に当接するよう押圧付勢されてローラの回転方向に沿ってシリンダ室を二分するベーンおよび、このベーンの後端側と油分離器の底部を連通し、油分離器底部から油分離器内の高圧の潤滑油をベーンの後端側に導く高圧導入通路を有し、
上記複数の圧縮機構部における少なくとも1つの圧縮機構部は、高圧導入通路の連通を制御し、ベーンの後端側を低圧もしくは高圧に切換える圧力切換え機構を有し、
負荷の大小に応じて圧力切換え機構を作用し、特定の圧縮機構部におけるベーン後端側を高圧として全ての圧縮機構部で圧縮運転を行う大能力運転と、低圧に切換えることによりベーンをローラから離間させ圧縮させない低能力運転とに切換え可能とした。
上記目的を満足するため本発明の冷凍サイクル装置は、上述の密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて、冷凍サイクル回路を構成する。
In order to satisfy the above object, the hermetic compressor of the present invention accommodates the motor unit and a plurality of compression mechanism units in a sealed case via a rotating shaft, and the sealed case has a low pressure atmosphere.
The inside of the sealed case has a low pressure atmosphere,
The refrigerant compressed by the plurality of compression mechanisms is discharged through an oil separator provided outside the sealed case,
The plurality of compression mechanisms are each provided with a cylinder chamber in which a roller is housed so as to be eccentrically rotatable, and the rotation direction of the roller is urged so that the tip is in contact with the circumferential surface of the roller. The vane that bisects the cylinder chamber along the line, and the rear end of the vane and the bottom of the oil separator communicate with each other, and the high pressure lubricating oil in the oil separator is guided from the bottom of the oil separator to the rear end of the vane. Has an introduction passage,
At least one compression mechanism portion in the plurality of compression mechanism portions has a pressure switching mechanism that controls communication of the high pressure introduction passage and switches the rear end side of the vane to low pressure or high pressure,
A high-capacity operation in which a compression switching operation is performed with all the compression mechanism sections using a pressure switching mechanism according to the size of the load, with the rear end side of the vane in a specific compression mechanism section being a high pressure, and the vane is removed from the roller by switching to a low pressure. It was possible to switch to low-capacity operation that was separated and not compressed.
In order to satisfy the above object, a refrigeration cycle apparatus of the present invention includes the above-described hermetic compressor, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle circuit.

本発明の密閉型圧縮機によれば、ケース内低圧タイプであって、負荷の大小に応じて確実に運転切換えができて、圧縮効率の向上化を得られる効果を奏する。
そして、本発明の密閉型圧縮機を用いて冷凍サイクル回路を構成する冷凍サイクル装置によれば、冷凍効率の向上を得られる効果を奏する。
According to the hermetic compressor of the present invention, it is a low pressure type in the case, and the operation can be reliably switched according to the magnitude of the load, and the effect of improving the compression efficiency can be obtained.
And according to the refrigerating-cycle apparatus which comprises a refrigerating-cycle circuit using the hermetic compressor of this invention, there exists an effect which can obtain the improvement of refrigerating efficiency.

以下、本発明の一実施の形態を、図面にもとづいて説明する。
図1は、ロータリ式の密閉型圧縮機Rの断面構造と、この密閉型圧縮機Rを備えた冷凍サイクル装置の冷凍サイクル回路Kの構成図である。
はじめに密閉型圧縮機Rから説明すると、1は密閉ケースであって、この密閉ケース1内の下部には後述する第1の圧縮機構部2Aと第2の圧縮機構部2Bが設けられ、上部には電動機部3が設けられる。これら電動機部3と第1、第2の圧縮機構部2A,2Bは、回転軸4を介して連結され、一体となって密閉ケース1内に収容される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a sectional structure of a rotary type hermetic compressor R and a refrigeration cycle circuit K of a refrigeration cycle apparatus including the hermetic compressor R.
First, the hermetic compressor R will be described. 1 is a hermetic case, and a lower part in the hermetic case 1 is provided with a first compression mechanism part 2A and a second compression mechanism part 2B, which will be described later. Is provided with an electric motor section 3. The electric motor unit 3 and the first and second compression mechanism units 2A and 2B are connected via the rotating shaft 4 and are integrally accommodated in the sealed case 1.

上記電動機部3は、密閉ケース1の内周壁に嵌着固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、上記回転軸4に嵌着されるロータ6とから構成される。
上記第1、第2の圧縮機構部2A,2Bは、それぞれが回転軸4の下部に中間仕切り板7を介して上下に配設され、それぞれが第1のシリンダ8A、第2のシリンダ8Bを備えている。これら第1、第2のシリンダ8A,8Bは、互いに外形形状寸法と内径寸法が同一に形成されていて、各シリンダ8A,8Bの外形周面は密閉ケース1内周壁に嵌合固着され、隙間がない。
The electric motor unit 3 includes a stator 5 that is fitted and fixed to the inner peripheral wall of the hermetic case 1, and a rotor 6 that is disposed inside the stator 5 with a predetermined gap and is fitted to the rotating shaft 4. Consists of
The first and second compression mechanism portions 2A and 2B are respectively disposed above and below the rotating shaft 4 via an intermediate partition plate 7, and each of the first and second compression mechanism portions 2A and 2B includes a first cylinder 8A and a second cylinder 8B. I have. The first and second cylinders 8A and 8B are formed to have the same outer shape and inner diameter, and the outer peripheral surfaces of the cylinders 8A and 8B are fitted and fixed to the inner peripheral wall of the hermetic case 1. There is no.

第1のシリンダ8Aの上面部には、フランジ部9aとボス部9bとからなる主軸受9が重ね合わされる。主軸受フランジ部9aが第1のシリンダ8Aに載り、さらにこのフランジ部9a上に主バルブカバーB1が重ねられ、互いに取付けボルトaを介して第1のシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部にはフランジ部10aとボス部10bとからなる副軸受10が重ね合わされる。この副軸受10のフランジ部9a下面に副バルブカバーB2が重ねられ、互いに取付けボルトbを介して第1のシリンダ8Aに取付け固定される。   A main bearing 9 composed of a flange portion 9a and a boss portion 9b is superimposed on the upper surface portion of the first cylinder 8A. The main bearing flange portion 9a is placed on the first cylinder 8A, and the main valve cover B1 is overlaid on the flange portion 9a, and is fixedly attached to the first cylinder 8A via the mounting bolts a. A sub bearing 10 composed of a flange portion 10a and a boss portion 10b is overlaid on the lower surface portion of the second cylinder 8B. The sub-valve cover B2 is overlaid on the lower surface of the flange portion 9a of the sub-bearing 10, and is attached and fixed to the first cylinder 8A via mounting bolts b.

上記主バルブカバーB1と主軸受フランジ部9aとの合せ面および、主バルブカバーB1に対する主軸受ボス部9bの貫通部に対してシール構造が採用される。上記副バルブカバーB2と副軸受フランジ部10aとの合せ面および、副バルブカバーB2に対する副軸受ボス部10bの貫通部に対してもシール構造が採用される。さらに、主軸受9と、第1のシリンダ8Aと、中間仕切り板7と、第2のシリンダ8Bおよび副軸受10との合せ面も、それぞれシール構造が採用されることは言うまでもない。   A seal structure is employed for the mating surface of the main valve cover B1 and the main bearing flange portion 9a and the through portion of the main bearing boss portion 9b with respect to the main valve cover B1. A seal structure is also adopted for the mating surface of the sub valve cover B2 and the sub bearing flange portion 10a and the through portion of the sub bearing boss portion 10b with respect to the sub valve cover B2. Furthermore, it goes without saying that sealing structures are also employed for the mating surfaces of the main bearing 9, the first cylinder 8A, the intermediate partition plate 7, the second cylinder 8B, and the auxiliary bearing 10, respectively.

上記第1のシリンダ8Aは上記主軸受9と中間仕切り板7によって上面と下面が区画されていて、内径部に第1のシリンダ室12aが形成される。上記第2のシリンダ8Bは上記副軸受10と中間仕切り板7によって上面と下面が区画され、内径部に第2のシリンダ室12bが形成される。
各シリンダ8A,8Bともに外周面から内径部に亘って吸込み孔13a,13bが設けられ、それぞれの吸込み孔13a,13bの一端は各シリンダ8A,8Bに形成される第1のシリンダ室12aと第2のシリンダ室12bに連通する。各吸込み孔13a,13bのシリンダ8A,8B外周面に開口する端部には、密閉ケース1を貫通して設けられる吸込み管Sの端部が接続される。各吸込み管Sは密閉ケース1外部で1本に合流していて、この合流吸込み管Sの端部は密閉ケース1上部に接続され、開口端部は密閉ケース1内に臨ませられる。
The upper surface and the lower surface of the first cylinder 8A are partitioned by the main bearing 9 and the intermediate partition plate 7, and a first cylinder chamber 12a is formed in the inner diameter portion. The second cylinder 8B is divided into an upper surface and a lower surface by the auxiliary bearing 10 and the intermediate partition plate 7, and a second cylinder chamber 12b is formed in the inner diameter portion.
Each of the cylinders 8A and 8B is provided with suction holes 13a and 13b extending from the outer peripheral surface to the inner diameter portion, and one end of each of the suction holes 13a and 13b is connected to the first cylinder chamber 12a formed in each cylinder 8A and 8B and the first cylinder chamber 12a. Communicates with the second cylinder chamber 12b. The end of each suction hole 13a, 13b that opens to the outer peripheral surface of the cylinder 8A, 8B is connected to the end of a suction pipe S provided through the sealed case 1. Each suction pipe S merges with the outside of the sealed case 1, the end of this combined suction pipe S is connected to the upper part of the sealed case 1, and the open end faces the sealed case 1.

一方、上記主軸受9のフランジ部9aには、上記主バルブカバーB1で覆われる第1の吐出弁機構Taが設けられる。また、上記副軸受10のフランジ部10aにも、上記副バルブカバーB2で覆われる第2の吐出弁機構Tbが設けられる。各吐出弁機構Ta,Tbは、主、副軸受フランジ部9a,10aに凹部が設けられ、凹部とフランジ部のシリンダ室対向面との間に残された薄肉部に吐出ポートが設けられる。上記凹部には吐出弁が取付けられ、この吐出弁は上記吐出ポートを開閉するようになっている。   On the other hand, the flange portion 9a of the main bearing 9 is provided with a first discharge valve mechanism Ta covered with the main valve cover B1. Further, the flange portion 10a of the auxiliary bearing 10 is also provided with a second discharge valve mechanism Tb covered with the auxiliary valve cover B2. Each discharge valve mechanism Ta, Tb is provided with a recess in the main and auxiliary bearing flange portions 9a, 10a, and a discharge port is provided in a thin portion left between the recess and the cylinder chamber facing surface of the flange portion. A discharge valve is attached to the recess, and the discharge valve opens and closes the discharge port.

したがって、上記第1の吐出弁機構Taは第1のシリンダ室12aに連通し、第2の吐出弁機構Tbは第2のシリンダ室12bに連通する。第1の吐出弁機構Taを覆う主バルブカバーB1には後述するように冷媒管Pが接続され、第2の吐出弁機構Tbを覆う副バルブカバーB2には何らの配管も接続されない。
ただし、特に図示していないが、副バルブカバーB2で覆われる副軸受フランジ部10aから第2のシリンダ8Bと、中間仕切り板7と、第1のシリンダ8Aおよび主軸受フランジ部9aとに亘ってガス案内孔が設けられ、副バルブカバーB2から主バルブカバーB1内は連通している。
Therefore, the first discharge valve mechanism Ta communicates with the first cylinder chamber 12a, and the second discharge valve mechanism Tb communicates with the second cylinder chamber 12b. As will be described later, a refrigerant pipe P is connected to the main valve cover B1 covering the first discharge valve mechanism Ta, and no piping is connected to the sub valve cover B2 covering the second discharge valve mechanism Tb.
However, although not shown in particular, it extends from the auxiliary bearing flange portion 10a covered by the auxiliary valve cover B2 to the second cylinder 8B, the intermediate partition plate 7, the first cylinder 8A and the main bearing flange portion 9a. A gas guide hole is provided, and the inside of the main valve cover B1 communicates with the sub valve cover B2.

上記回転軸4は、中途部と下端部が主軸受9と副軸受10それぞれのボス部9b、10bに回転自在に枢支される。さらに回転軸4は各シリンダ8A,8B内径部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ室12a,12bに位置するよう組立てられる。これら偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ14a,14bが嵌合される。   The rotating shaft 4 is pivotally supported at the midway portion and the lower end portion thereof on the boss portions 9b and 10b of the main bearing 9 and the sub bearing 10, respectively. Further, the rotary shaft 4 penetrates through the inner diameter portions of the cylinders 8A and 8B, and integrally includes two eccentric portions 4a and 4b formed with a phase difference of about 180 °. Each eccentric part 4a, 4b makes the same diameter mutually, and is assembled so that it may be located in each cylinder chamber 12a, 12b. Eccentric rollers 14a and 14b having the same diameter are fitted on the peripheral surfaces of the eccentric portions 4a and 4b.

上記偏心ローラ14aは第1のシリンダ室12aに偏心回転自在で、かつ軸方向に沿う周面一部がシリンダ室12a周面に転接(すなわち、線接触)するように収容されている。偏心ローラ14aがシリンダ室12a内で偏心回転することにより、偏心ローラ14aのシリンダ室12aに対する転接位置がシリンダ室12a周面に沿って漸次変わる。
上記偏心ローラ14bも第2のシリンダ室12bに偏心回転自在で、かつ軸方向に沿う周面一部がシリンダ室12b周面に転接(線接触)するように収容されている。したがって、偏心ローラ14bがシリンダ室12b内で偏心回転することにより、偏心ローラ14bのシリンダ室12bに対する転接位置がシリンダ室12b周面に沿って漸次変わる。
The eccentric roller 14a is accommodated in the first cylinder chamber 12a so as to be eccentrically rotatable, and a part of the circumferential surface along the axial direction is in rolling contact with the circumferential surface of the cylinder chamber 12a (that is, line contact). As the eccentric roller 14a rotates eccentrically in the cylinder chamber 12a, the rolling contact position of the eccentric roller 14a with respect to the cylinder chamber 12a gradually changes along the circumferential surface of the cylinder chamber 12a.
The eccentric roller 14b is also accommodated in the second cylinder chamber 12b so as to be eccentrically rotatable, and a part of the circumferential surface along the axial direction is in rolling contact (line contact) with the circumferential surface of the cylinder chamber 12b. Therefore, when the eccentric roller 14b rotates eccentrically in the cylinder chamber 12b, the rolling contact position of the eccentric roller 14b with respect to the cylinder chamber 12b gradually changes along the circumferential surface of the cylinder chamber 12b.

第1,第2のシリンダ室12a,12bは互いに同一直径および高さ寸法に形成され、各偏心ローラ14a,14bの高さ寸法は、第1,第2のシリンダ室12a,12bの高さ寸法と略同一に形成される。したがって、偏心ローラ14a,14bは互いに180°の位相差があるが、偏心回転することにより第1,第2のシリンダ室12a,12bにおいて同一の排除容積に設定される。   The first and second cylinder chambers 12a and 12b are formed to have the same diameter and height, and the height of each eccentric roller 14a and 14b is the same as the height of the first and second cylinder chambers 12a and 12b. Are formed substantially the same. Accordingly, the eccentric rollers 14a and 14b have a phase difference of 180 ° from each other, but are set to the same excluded volume in the first and second cylinder chambers 12a and 12b by rotating eccentrically.

第1のシリンダ8Aと第2のシリンダ8Bには、第1,第2のシリンダ室12a,12bと連通するベーン室15a,15bが設けられている。上記第1のシリンダ8Aに設けられるベーン室15aは主軸受フランジ部9aと中間仕切り板7によって閉塞され、上記第2のシリンダ8Bに設けられるベーン室15bは中間仕切り板7と副軸受フランジ部10aによって閉塞される。すなわち、それぞれのベーン室15a,15bは密閉空間となっている。   The first cylinder 8A and the second cylinder 8B are provided with vane chambers 15a and 15b communicating with the first and second cylinder chambers 12a and 12b. The vane chamber 15a provided in the first cylinder 8A is closed by the main bearing flange portion 9a and the intermediate partition plate 7, and the vane chamber 15b provided in the second cylinder 8B is provided by the intermediate partition plate 7 and the auxiliary bearing flange portion 10a. It is blocked by. That is, each vane chamber 15a, 15b is a sealed space.

各ベーン室15a,15bにはベーン16a,16bが摺動自在に収容される。各ベーン16a,16bの先端は第1,第2のシリンダ室12a,12bに対して突没自在である。特に、第1のシリンダ8Aに設けられるベーン室15aにはばね部材17が収容されている。このばね部材17はベーン16a後端とベーン室15a背面との間に介在され、ベーン16aに弾性力(背圧)を付与して、ベーン16a先端を偏心ローラ14a周面に弾性的に接触させる圧縮ばねである。   The vanes 16a and 16b are slidably accommodated in the respective vane chambers 15a and 15b. The tips of the vanes 16a and 16b can protrude and retract with respect to the first and second cylinder chambers 12a and 12b. In particular, a spring member 17 is accommodated in a vane chamber 15a provided in the first cylinder 8A. The spring member 17 is interposed between the rear end of the vane 16a and the back surface of the vane chamber 15a, and applies an elastic force (back pressure) to the vane 16a to elastically contact the tip of the vane 16a with the circumferential surface of the eccentric roller 14a. It is a compression spring.

上記第2のシリンダ8B側のベーン室15bに収容されるベーン16bは磁性材から形成される一方で、上記ベーン室15bの密閉ケース1内周壁と接触する後端側(すなわち、ベーン16bの後端側)には、永久磁石からなる保持部材18が取付けられている。このベーン室15bに高圧が付与されていない条件において、ベーン16b後端が保持部材18に接触すれば、保持部材18はベーン16bを磁気的に吸着して、ベーン16bの位置を固定保持できる。   While the vane 16b accommodated in the vane chamber 15b on the second cylinder 8B side is formed of a magnetic material, the rear end side that contacts the inner peripheral wall of the sealed case 1 of the vane chamber 15b (that is, the rear of the vane 16b). A holding member 18 made of a permanent magnet is attached to the end side. If the rear end of the vane 16b comes into contact with the holding member 18 under the condition that no high pressure is applied to the vane chamber 15b, the holding member 18 can magnetically attract the vane 16b to fix and hold the position of the vane 16b.

各ベーン16a,16bの先端は、それぞれが平面視で半円状に形成されており、後述するように押圧付勢されれば、先端は平面視で円形状の偏心ローラ14a,14bの軸方向に沿う周面に、偏心ローラ14a,14bの回転角度にかかわらず線接触できるようになっている。
上記密閉ケース1内底部には油溜り部19が形成され、潤滑油が貯留されている。上記第1の圧縮機構部2Aと第2の圧縮機構部2Bおよび中間仕切り板7には図示しない油案内孔が上下面に貫通して設けられていて、これらは油溜り部19の潤滑油中に浸漬状態にある。上記回転軸4の下端面は副軸受ボス部10bから露出していて、潤滑油に晒されている。図示していないが、回転軸4の下端面から給油通路が設けられていて、回転軸4の回転にともなって各圧縮機構部2A,2Bの各摺接部に給油するようになっている。
The tips of the vanes 16a and 16b are each formed in a semicircular shape in a plan view, and when pressed and biased as described later, the tips are axial directions of circular eccentric rollers 14a and 14b in a plan view. Can be brought into line contact regardless of the rotation angle of the eccentric rollers 14a, 14b.
An oil reservoir 19 is formed on the inner bottom of the sealed case 1 to store lubricating oil. The first compression mechanism portion 2A, the second compression mechanism portion 2B, and the intermediate partition plate 7 are provided with oil guide holes (not shown) penetrating in the upper and lower surfaces. It is in an immersion state. The lower end surface of the rotating shaft 4 is exposed from the auxiliary bearing boss 10b and is exposed to the lubricating oil. Although not shown, an oil supply passage is provided from the lower end surface of the rotating shaft 4, and oil is supplied to the sliding contact portions of the compression mechanism portions 2 </ b> A and 2 </ b> B as the rotating shaft 4 rotates.

上記密閉型圧縮機Rは、冷凍サイクル装置を構成する冷凍サイクル回路Kに組み込まれている。すなわち、上述したように主バルブカバーB1に接続される冷媒管Pは、密閉ケース1を貫通して外部へ延出され、密閉ケース1の側部に一体に取付けられる油分離器20の底部から内部へ挿入される。
上記油分離器20は、内部に所定間隔を存して多数の孔部cを備えた複数の多孔板21が並行に設けられている。上記冷媒管Pの上端は、最下部の多孔板21の下方部位で開口するよう取付けられる。上記多孔板21は孔部c位置が対向せず互いにずれるように取付けられていて、下部側多孔板21の孔部cを流通したガスを必ず上部側多孔板21の板面に衝突させ、それから孔部cを流通させる、いわゆる邪魔板を形成する。
The hermetic compressor R is incorporated in a refrigeration cycle circuit K constituting a refrigeration cycle apparatus. That is, as described above, the refrigerant pipe P connected to the main valve cover B1 extends from the bottom of the oil separator 20 that extends through the sealed case 1 to the outside and is integrally attached to the side of the sealed case 1. Inserted inside.
The oil separator 20 is provided with a plurality of perforated plates 21 provided in parallel with a large number of holes c at predetermined intervals. The upper end of the refrigerant pipe P is attached so as to open at a lower portion of the lowermost porous plate 21. The perforated plate 21 is attached so that the positions of the holes c do not oppose each other and are shifted from each other, and the gas flowing through the holes c of the lower side porous plate 21 always collides with the plate surface of the upper side porous plate 21, and then A so-called baffle plate that circulates the hole c is formed.

上記油分離器20の上端部にも冷媒管Pが接続されている。上記冷媒管Pには、凝縮器22と、膨張機構(膨張装置)23および蒸発器24が順次設けられる。そして、冷媒管Pは蒸発器24から密閉型圧縮機Rの密閉ケース1上端部に接続されていて、開口端部は密閉ケース1内部に臨ませられる。
このようにして構成される冷凍サイクル回路Kと上記密閉型圧縮機Rに亘って圧力切換え機構25が設けられる。上記圧力切換え機構25は、高圧導入管(高圧導入通路)26と、この高圧導入管26の所定部位に設けられる電磁開閉弁27とからなる。
A refrigerant pipe P is also connected to the upper end of the oil separator 20. The refrigerant pipe P is sequentially provided with a condenser 22, an expansion mechanism (expansion device) 23, and an evaporator 24. The refrigerant pipe P is connected from the evaporator 24 to the upper end portion of the hermetic case 1 of the hermetic compressor R, and the open end portion faces the inside of the hermetic case 1.
A pressure switching mechanism 25 is provided across the refrigeration cycle circuit K configured in this manner and the hermetic compressor R. The pressure switching mechanism 25 includes a high-pressure introduction pipe (high-pressure introduction passage) 26 and an electromagnetic opening / closing valve 27 provided at a predetermined portion of the high-pressure introduction pipe 26.

なお説明すると、上記高圧導入管26の一端部が油分離器20の底部に接続され、油分離器20内の高圧ガスもしくは油分離器20内の多孔板21によって高圧ガスから分離された潤滑油を導けるようになっている。高圧導入管26は、油分離器20の外部に2本に分岐され、第1の分岐高圧導入管26aは密閉ケース1を貫通して第1のシリンダ8A外周面からベーン室15aに連通する。上述したように、第1のシリンダ室12aのベーン16aを弾性的に押圧付勢するばね部材17がベーン室15aに備えられていて、上記第1の分岐高圧導入管26aの開口端部はばね部材17に対向して開口している。   In other words, one end of the high-pressure introduction pipe 26 is connected to the bottom of the oil separator 20, and the lubricating oil separated from the high-pressure gas by the high-pressure gas in the oil separator 20 or the perforated plate 21 in the oil separator 20. Can be led. The high pressure introduction pipe 26 is branched into two outside the oil separator 20, and the first branch high pressure introduction pipe 26a penetrates the sealed case 1 and communicates with the vane chamber 15a from the outer peripheral surface of the first cylinder 8A. As described above, the spring member 17 that elastically presses and biases the vane 16a of the first cylinder chamber 12a is provided in the vane chamber 15a, and the opening end of the first branch high-pressure introduction pipe 26a is a spring. It opens facing the member 17.

また、第2の分岐高圧導入管26bには上記電磁開閉弁27が設けられ、この端部は密閉ケース1を貫通して第2のシリンダ8B外周面からベーン室15bに連通するよう接続される。上述したように、第2のシリンダ8Bのベーン室15bを形成する端部には保持部材18が設けられ、上記第2の分岐高圧導入管26bの開口端部は保持部材18の径方向に沿って貫通する案内孔部dに開口している。   Further, the electromagnetic branch valve 27 is provided in the second branch high-pressure introduction pipe 26b, and this end portion is connected so as to penetrate the sealed case 1 and communicate with the vane chamber 15b from the outer peripheral surface of the second cylinder 8B. . As described above, the holding member 18 is provided at the end of the second cylinder 8B forming the vane chamber 15b, and the opening end of the second branch high-pressure introduction pipe 26b extends along the radial direction of the holding member 18. It opens to the guide hole part d penetrating through.

上述した圧力切換え機構25の構成により、油分離器20内の分離された潤滑油(一部高圧ガスが含まれることもある)は高圧導入管26に導かれ、第1の分岐高圧導入管26aから第1のシリンダ8Aに設けられるベーン室15aに常時導入される。また、第2の分岐高圧導入管26bに設けられる電磁開閉弁27が開放されていれば、油分離器20内の潤滑油が分岐高圧導入管26bから第2のシリンダ8Bに設けられるベーン室15bに導入される。電磁開閉弁27を閉成すれば、流通が遮断されてベーン室15bには導かれない。   Due to the configuration of the pressure switching mechanism 25 described above, the separated lubricating oil (some of which may contain high-pressure gas) in the oil separator 20 is guided to the high-pressure introduction pipe 26, and the first branch high-pressure introduction pipe 26a. To the vane chamber 15a provided in the first cylinder 8A. Further, if the electromagnetic on-off valve 27 provided in the second branch high-pressure introduction pipe 26b is opened, the lubricating oil in the oil separator 20 is supplied from the branch high-pressure introduction pipe 26b to the vane chamber 15b provided in the second cylinder 8B. To be introduced. If the electromagnetic on-off valve 27 is closed, the flow is cut off and is not led to the vane chamber 15b.

つぎに、上述の密閉型圧縮機Rを備えた冷凍サイクル装置の作用について説明する。後述するように、圧力切換え機構25の切換えにより密閉型圧縮機Rは大能力運転(ツイン運転)と、低能力運転(シングル運転)との切換えが可能である。
はじめに、大能力運転から説明すると、制御部は電動機部3ヘ運転開始信号を送るとともに、圧力切換え機構25の電磁開閉弁27に対して開放信号を送る。回転軸4が回転駆動され、第1の圧縮機構部2Aと第2の圧縮機構部2Bが同時に作用する。偏心ローラ14a,14bは第1,第2のシリンダ室12a,12b内で、それぞれ偏心回転を行う。
Next, the operation of the refrigeration cycle apparatus provided with the above-described hermetic compressor R will be described. As will be described later, the hermetic compressor R can be switched between a large capacity operation (twin operation) and a low capacity operation (single operation) by switching the pressure switching mechanism 25.
First, the high-capacity operation will be described. The control unit sends an operation start signal to the motor unit 3 and sends an open signal to the electromagnetic on-off valve 27 of the pressure switching mechanism 25. The rotary shaft 4 is rotationally driven, and the first compression mechanism 2A and the second compression mechanism 2B act simultaneously. The eccentric rollers 14a and 14b rotate eccentrically in the first and second cylinder chambers 12a and 12b, respectively.

第1の圧縮機構部2Aにおいて、ベーン16aがばね部材17によって常に弾性的に押圧付勢され、ベーン16a先端が偏心ローラ14a周面に摺接して第1のシリンダ室12a内を吸込み室と圧縮室に二分する。偏心ローラ14aの第1のシリンダ室12a内周面転接位置とベーン16a先端位置が一致し、ベーン16aが最も後退した状態で、第1のシリンダ室12aの空間容量が最大となる。   In the first compression mechanism portion 2A, the vane 16a is always elastically pressed and biased by the spring member 17, and the tip of the vane 16a is in sliding contact with the circumferential surface of the eccentric roller 14a to compress the inside of the first cylinder chamber 12a with the suction chamber. Divide into rooms. The first cylinder chamber 12a has a maximum space capacity in a state in which the inner circumferential surface rolling contact position of the eccentric roller 14a coincides with the vane 16a tip position, and the vane 16a is retracted most.

密閉ケース1内に充満している低圧の冷媒ガスは吸込み管Sを介して第1のシリンダ室12aと第2のシリンダ室12bに吸込まれる。第1のシリンダ室12aにおいて、偏心ローラ14aの偏心回転にともない、偏心ローラ14aのシリンダ室12a内周面に対する転接位置が移動して、ベーン16aによって区画される圧縮室の容積が減少する。すなわち、先にシリンダ室12aに導かれたガスが徐々に圧縮される。
回転軸4が継続して回転し、第1のシリンダ室12aにおける圧縮室の容量がさらに減少して冷媒ガスが圧縮され、所定圧まで上昇したところで第1の吐出弁機構Taが作用する。第1のシリンダ室12aで圧縮され高圧化した冷媒ガスは主バルブカバーB1内へ吐出され、さらに冷媒管Pを介して油分離器20へ導かれる。
The low-pressure refrigerant gas filled in the sealed case 1 is sucked into the first cylinder chamber 12a and the second cylinder chamber 12b through the suction pipe S. In the first cylinder chamber 12a, as the eccentric roller 14a rotates eccentrically, the rolling contact position of the eccentric roller 14a with respect to the inner peripheral surface of the cylinder chamber 12a moves, and the volume of the compression chamber partitioned by the vane 16a decreases. That is, the gas previously introduced into the cylinder chamber 12a is gradually compressed.
The rotary shaft 4 continues to rotate, the capacity of the compression chamber in the first cylinder chamber 12a further decreases, the refrigerant gas is compressed, and the first discharge valve mechanism Ta operates when the refrigerant gas rises to a predetermined pressure. The refrigerant gas compressed in the first cylinder chamber 12a and having a high pressure is discharged into the main valve cover B1 and further led to the oil separator 20 through the refrigerant pipe P.

上記油分離器20内において、高圧冷媒ガスは複数枚の多孔板21に形成される多数の孔部cを流通して冷媒ガスに含まれる潤滑油分が分離され、純粋なガス分のみが油分離器20から凝縮器22へ導かれる。高圧冷媒は、凝縮器22で凝縮液化し、膨張機構23で断熱膨張し、蒸発器24で熱交換空気から蒸発潜熱を奪って冷房(冷凍)作用をなす。
そして、蒸発器24で蒸発して低圧化した冷媒ガスは密閉ケース1内に導かれて充満し、再び吸込み管Sから第1、第2の圧縮機構部2A,2Bの第1、第2のシリンダ室12a,12bに吸込まれる。
In the oil separator 20, the high-pressure refrigerant gas flows through a large number of holes c formed in the plurality of perforated plates 21 to separate the lubricating oil contained in the refrigerant gas, and only the pure gas is oil. It is led from the separator 20 to the condenser 22. The high-pressure refrigerant is condensed and liquefied by the condenser 22, is adiabatically expanded by the expansion mechanism 23, and takes the latent heat of evaporation from the heat exchange air by the evaporator 24 to perform a cooling (refrigeration) action.
Then, the refrigerant gas evaporated and reduced in pressure by the evaporator 24 is guided and filled in the sealed case 1, and again from the suction pipe S, the first and second compression mechanism portions 2A and 2B are supplied with the first and second refrigerant gases. Sucked into the cylinder chambers 12a and 12b.

なお、密閉型圧縮機Rで圧縮され油分離器20に導かれる高圧化した冷媒ガスは、ここで分離されて内底部に潤滑油が溜る。高圧潤滑油は高圧導入管26から第1の分岐高圧導入管26aを介して第1のシリンダ8Aに設けられるベーン室15aに導かれる。上述したようにベーン室15aは密閉空間となっているので、ベーン室15aに高圧潤滑油が充満して高圧化する。
このベーン室15aにばね部材17が備えられ、ベーン16a後端に弾性力を付与しているが、高圧潤滑油が充満してベーン16a後端に対しさらに高圧の背圧をかけることとなる。ベーン16aの先端は確実に偏心回転するローラ14aの周面に接触し、常時安定した状態で第1のシリンダ室12aを二分する。
Note that the high-pressure refrigerant gas compressed by the hermetic compressor R and guided to the oil separator 20 is separated here, and lubricating oil accumulates in the inner bottom portion. The high-pressure lubricating oil is guided from the high-pressure introduction pipe 26 to the vane chamber 15a provided in the first cylinder 8A through the first branch high-pressure introduction pipe 26a. As described above, since the vane chamber 15a is a sealed space, the high-pressure lubricant is filled in the vane chamber 15a to increase the pressure.
Although the spring member 17 is provided in the vane chamber 15a and an elastic force is applied to the rear end of the vane 16a, the high-pressure lubricating oil is filled and a higher back pressure is applied to the rear end of the vane 16a. The tip of the vane 16a reliably contacts the circumferential surface of the roller 14a that rotates eccentrically, and bisects the first cylinder chamber 12a in a constantly stable state.

また、油分離器20から高圧導入管26を介して第2の分岐高圧導入管26bに導かれる高圧潤滑油は、電磁開閉弁27が開放されるところから第2のシリンダ8Bに設けられるベーン室15bに充満する。このベーン室15bも密閉空間となっているので、高圧潤滑油によって高圧化しベーン16b後端に高圧の背圧をかける。
上述したように、第2のシリンダ室12bには吸込み管Sから低圧冷媒が導かれて低圧雰囲気となる一方で、ベーン室15bは高圧潤滑油によって高圧化する。したがって、第2のシリンダ室12bに備えられるベーン16bの先端は低圧雰囲気となり、後端は高圧雰囲気となって、両端部で差圧が生じる。この差圧の影響で、ベーン16b先端が偏心ローラ14b周面に摺接するように押圧付勢される。ベーン16bは偏心回転するローラ14bの周面に確実に接触し、常時安定した状態でシリンダ室12bを二分する。
The high-pressure lubricating oil introduced from the oil separator 20 to the second branch high-pressure introduction pipe 26b through the high-pressure introduction pipe 26 is a vane chamber provided in the second cylinder 8B from the position where the electromagnetic on-off valve 27 is opened. It fills 15b. Since the vane chamber 15b is also a sealed space, the pressure is increased by high-pressure lubricating oil, and a high back pressure is applied to the rear end of the vane 16b.
As described above, the low-pressure refrigerant is introduced into the second cylinder chamber 12b from the suction pipe S to form a low-pressure atmosphere, while the vane chamber 15b is increased in pressure by the high-pressure lubricant. Therefore, the tip of the vane 16b provided in the second cylinder chamber 12b has a low pressure atmosphere, the rear end has a high pressure atmosphere, and differential pressure is generated at both ends. Under the influence of this differential pressure, the tip of the vane 16b is pressed and urged so as to be in sliding contact with the circumferential surface of the eccentric roller 14b. The vane 16b reliably contacts the circumferential surface of the eccentric rotating roller 14b and bisects the cylinder chamber 12b in a constantly stable state.

なお、上記保持部材18はベーン16b後端を磁気的に吸着するよう磁力を作用しているが、磁力は第2のシリンダ室12bの吸込み圧力とベーン室15bのベーン室内圧力との差圧よりも小さい。したがって、ベーン16bに対する保持部材18の影響力は全くない。
第1のシリンダ室12a側のベーン16aがばね部材17によって押圧付勢され圧縮作用が行われるのと全く同様の圧縮作用が、第2のシリンダ室12bにおいても行われる。結局、密閉型圧縮機Rでは、第1の圧縮機構部2Aと、第2の圧縮機構部2Bとの両方で圧縮作用をなす、大能力運転が行われる。
Note that the holding member 18 exerts a magnetic force so as to magnetically attract the rear end of the vane 16b, but the magnetic force is based on a differential pressure between the suction pressure of the second cylinder chamber 12b and the pressure of the vane chamber 15b. Is also small. Therefore, there is no influence of the holding member 18 on the vane 16b.
The same compression action is performed in the second cylinder chamber 12b as the vane 16a on the first cylinder chamber 12a side is pressed and urged by the spring member 17 and the compression action is performed. Eventually, in the hermetic compressor R, a large capacity operation is performed in which the compression action is performed by both the first compression mechanism 2A and the second compression mechanism 2B.

つぎに、低能力運転を説明する。
低能力運転開始信号が制御部に入ると、制御部は電磁開閉弁27に対して閉成信号を発し、電磁開閉弁27を閉成する。すなわち、油分離器20内の高圧潤滑油が第2のシリンダ8Bに設けられるベーン室15bに流入するのが遮断される。そして、電動機部3ヘ運転開始信号を送り、回転軸4を回転駆動させる。
第1のシリンダ室12aにおいてはベーン16aがばね部材17によって押圧付勢されるとともに、油分離器20内の高圧潤滑油が継続してベーン室15bに導かれ充満している。上記ベーン16a後端には充分に高い高圧の背圧がかけられ、ベーン16a先端は偏心回転するローラ14a周面に確実に接触する。第1のシリンダ室12aにおいては、先に説明した大能力運転時と同様の安定した圧縮運転が行われる。
Next, low-performance driving will be described.
When the low-capacity operation start signal enters the control unit, the control unit issues a closing signal to the electromagnetic opening / closing valve 27 to close the electromagnetic opening / closing valve 27. That is, the high-pressure lubricating oil in the oil separator 20 is blocked from flowing into the vane chamber 15b provided in the second cylinder 8B. Then, an operation start signal is sent to the electric motor unit 3 to drive the rotary shaft 4 to rotate.
In the first cylinder chamber 12a, the vane 16a is pressed and urged by the spring member 17, and the high-pressure lubricating oil in the oil separator 20 is continuously guided to the vane chamber 15b and filled. A sufficiently high back pressure is applied to the rear end of the vane 16a, and the front end of the vane 16a reliably contacts the circumferential surface of the roller 14a that rotates eccentrically. In the first cylinder chamber 12a, a stable compression operation similar to that in the large capacity operation described above is performed.

一方、上記電磁開閉弁27が閉成されることにより、第2のシリンダ8Bに設けられるベーン室15bには高圧潤滑油が導かれない。先の大能力運転時にベーン室15bに導かれて充満する高圧潤滑油はベーン16bの往復運動にともなって、ベーン16b両側面とベーン16bを収納するベーン室15b溝部との隙間から漏れる。
電磁開閉弁27が開放状態にあれば、ベーン室15bに油分離器20から高圧潤滑油が導かれ補充されるので高圧条件を保持できるが、供給を遮断されるのでベーン室15bは低圧に変わる。しかも、第2の圧縮機構部2Bは油溜り部19の潤滑油中に浸漬されているから、ベーン16bとベーン室15b溝部との隙間から油溜り部19の潤滑油が浸入してベーン室15bの低圧化を確実なものとする。
On the other hand, when the electromagnetic on-off valve 27 is closed, the high-pressure lubricating oil is not guided to the vane chamber 15b provided in the second cylinder 8B. The high-pressure lubricating oil that is led to and filled in the vane chamber 15b during the previous large-capacity operation leaks from the gap between the vane 16b side surfaces and the vane chamber 15b groove portion that stores the vane 16b as the vane 16b reciprocates.
If the electromagnetic on-off valve 27 is in the open state, the high pressure lubricating oil is introduced into the vane chamber 15b from the oil separator 20 and replenished, so that the high pressure condition can be maintained. However, since the supply is shut off, the vane chamber 15b changes to a low pressure. . Moreover, since the second compression mechanism 2B is immersed in the lubricating oil in the oil reservoir 19, the lubricating oil in the oil reservoir 19 enters through the gap between the vane 16b and the groove 15b and the vane chamber 15b. To ensure low pressure.

第1の圧縮機構部2Aの作用によって第1のシリンダ室12aとともに第2のシリンダ室12bには低圧の冷媒ガスが導かれ、第2のシリンダ室12bは低圧雰囲気となっている。したがって、ベーン16bの先端は低圧雰囲気となり、後端も低圧雰囲気となって、両端部が略等しい圧力条件となる。
上記ベーン16b後端に対する背圧付勢力が存在せず、ベーン16bは偏心ローラ14bの最初の回転で押し退けられ、ベーン16b先端は偏心ローラ14bの外周面から離間する。同時にベーン16b後端は保持部材18に接触し、かつ磁気的に吸着保持されて、ベーン16b先端が偏心ローラ14b周面と離間した状態を保持する。偏心ローラ14bに接触して第2のシリンダ室12bを二分するものが存在しないから、偏心ローラ14bは第2のシリンダ室12bにおいて空回転を行うこととなる。
By the action of the first compression mechanism portion 2A, the low pressure refrigerant gas is guided to the second cylinder chamber 12b together with the first cylinder chamber 12a, and the second cylinder chamber 12b is in a low pressure atmosphere. Therefore, the tip of the vane 16b is in a low pressure atmosphere, the rear end is also in a low pressure atmosphere, and both ends are under substantially equal pressure conditions.
There is no back pressure urging force against the rear end of the vane 16b, the vane 16b is pushed away by the first rotation of the eccentric roller 14b, and the tip of the vane 16b is separated from the outer peripheral surface of the eccentric roller 14b. At the same time, the rear end of the vane 16b comes into contact with the holding member 18 and is magnetically attracted and held so that the tip of the vane 16b is separated from the peripheral surface of the eccentric roller 14b. Since there is nothing that bisects the second cylinder chamber 12b in contact with the eccentric roller 14b, the eccentric roller 14b rotates idly in the second cylinder chamber 12b.

結局、第2のシリンダ室12bでの圧縮作用は行われず、第2の圧縮機構部2Bは非圧縮運転状態(休筒状態とも言う)になる。第1の圧縮機構部2Aでの圧縮作用のみが有効であり、上述した大能力運転を半減する低能力運転がなされる。
なお、図に二点鎖線で示すように、補助開閉弁30を設けた低圧導入管31を備えてもよい。この低圧導入管31の一端部は密閉ケース1内底部に接続され、他端部は上記電磁開閉弁27を備えた第2の分岐高圧導入管26bの中途部に接続される。上記補助開閉弁30は、大能力運転時には閉成し、低能力運転時には開放するよう制御される。
Eventually, the compression action in the second cylinder chamber 12b is not performed, and the second compression mechanism portion 2B enters a non-compression operation state (also referred to as a cylinder resting state). Only the compression action in the first compression mechanism 2A is effective, and the low-capacity operation that halves the large-capacity operation described above is performed.
In addition, you may provide the low pressure inlet pipe 31 which provided the auxiliary | assistant on-off valve 30 as shown with a dashed-two dotted line in a figure. One end of the low pressure introduction pipe 31 is connected to the inner bottom part of the sealed case 1 and the other end is connected to a midway part of the second branch high pressure introduction pipe 26 b provided with the electromagnetic switching valve 27. The auxiliary on-off valve 30 is controlled to be closed during high capacity operation and to be opened during low capacity operation.

特に、低能力運転時には第2の分岐高圧導入管26bの電磁開閉弁27が閉成しているところから、低圧導入管31から開放された補助開閉弁30を介して密閉ケース1内底部の油溜り部19に集溜する潤滑油がベーン室15bに導かれる。密閉ケース1内は低圧雰囲気であり、油溜り部19の潤滑油は低圧の潤滑油であって、ベーン室15bは短時間で低圧雰囲気になる。   In particular, when the low-capacity operation is performed, since the electromagnetic on-off valve 27 of the second branch high-pressure introduction pipe 26b is closed, the oil at the bottom of the sealed case 1 is passed through the auxiliary on-off valve 30 opened from the low-pressure introduction pipe 31. Lubricating oil collected in the reservoir 19 is guided to the vane chamber 15b. The sealed case 1 has a low-pressure atmosphere, the lubricating oil in the oil reservoir 19 is a low-pressure lubricating oil, and the vane chamber 15b becomes a low-pressure atmosphere in a short time.

すなわち、大能力運転から低能力運転に切換ると、電磁開閉弁27が閉成されベーン室15bへの高圧潤滑油の流通が遮断される。同時に、ベーン室15bに充満していた高圧潤滑油が、ベーン室15bから外部へ漏出する。その一方で、密閉ケース1内底部の油溜り部19に集溜する低圧の潤滑油が、開放された補助開閉弁30と低圧導入管31を介してベーン室15bに導入される。ベーン室15bは早期に低圧条件に代って、運転切換えがなされた直後にベーン16bの両端部に差圧が存在しなくなり、ベーン16b後端が保持部材18に保持固定される切換え時間の短縮化が得られる。   That is, when switching from the high-capacity operation to the low-capacity operation, the electromagnetic on-off valve 27 is closed and the flow of the high-pressure lubricating oil to the vane chamber 15b is blocked. At the same time, the high-pressure lubricant filled in the vane chamber 15b leaks out of the vane chamber 15b. On the other hand, low-pressure lubricating oil collected in the oil sump 19 at the bottom of the sealed case 1 is introduced into the vane chamber 15 b through the opened auxiliary on-off valve 30 and the low-pressure introduction pipe 31. In the vane chamber 15b, instead of the low pressure condition at an early stage, immediately after the operation is switched, there is no differential pressure at both ends of the vane 16b, and the switching time in which the rear end of the vane 16b is held and fixed to the holding member 18 is shortened. Is obtained.

このような密閉型圧縮機Rによれば、電動機部3の回転数を低減することなく循環冷媒の流量を低減でき、低流量域で圧縮効率向上を得られる。第1のシリンダ室12aと第2のシリンダ室12bに冷媒を導く吸込み管Sに対して上記圧力切換え機構25の構成部品は何ら必要としていないから、吸込み通路抵抗の発生がなく高性能の圧縮機を提供できる。
低能力運転時に、第2のシリンダ室12bは圧縮機Rの吸込み圧力(冷凍サイクルの低圧圧力)となる。これは、密閉ケース1内の圧力と同等であって、第2のシリンダ室12bと密閉ケース1内とに差圧が存在しない。したがって、第2のシリンダ室12bからの冷媒リークを防止でき、圧縮性能低下を防止する。
According to such a hermetic compressor R, the flow rate of the circulating refrigerant can be reduced without reducing the rotational speed of the electric motor unit 3, and the compression efficiency can be improved in a low flow rate region. Since no components of the pressure switching mechanism 25 are required for the suction pipe S that guides the refrigerant to the first cylinder chamber 12a and the second cylinder chamber 12b, there is no generation of suction passage resistance and a high performance compressor. Can provide.
During the low capacity operation, the second cylinder chamber 12b becomes the suction pressure of the compressor R (low pressure of the refrigeration cycle). This is equivalent to the pressure in the sealed case 1, and there is no differential pressure between the second cylinder chamber 12 b and the sealed case 1. Therefore, the refrigerant leak from the second cylinder chamber 12b can be prevented, and the compression performance is prevented from being lowered.

圧力切換え機構25の電磁開閉弁27を開閉することで第2のシリンダ室12bにおける圧縮運転と非圧縮運転との切換えが可能であり、簡素な構成で確実に作用して信頼性の向上を得られる。第1、第2のシリンダ8A,8Bに設けられる各ベーン室15a,15bに油分離器20で分離された高圧潤滑油を導くようにしたから、各ベーン16a,16bの後端に充分に高い背圧をかけることができ、各ベーンをより確実に作動させ得る。   By switching the electromagnetic on-off valve 27 of the pressure switching mechanism 25, it is possible to switch between the compression operation and the non-compression operation in the second cylinder chamber 12b, and the reliability is improved by acting reliably with a simple configuration. It is done. Since the high-pressure lubricating oil separated by the oil separator 20 is guided to the vane chambers 15a and 15b provided in the first and second cylinders 8A and 8B, it is sufficiently high at the rear ends of the vanes 16a and 16b. Back pressure can be applied and each vane can be operated more reliably.

さらに、上記ベーン室15a,15bに導かれた高圧潤滑油は、ベーン16a,16bとベーン室15a,15b溝部との隙間から漏れて出る。このことから、ベーン16a,16bの摺動部分への給油が確実に行われ、ベーン16a,16bはより円滑に動作する。換言すれば、ベーンクリアランス部のシール性が向上し、高効率で信頼性の高い密閉型圧縮機Rを提供できる。   Further, the high-pressure lubricant introduced into the vane chambers 15a and 15b leaks out from the gap between the vanes 16a and 16b and the groove portions of the vane chambers 15a and 15b. For this reason, oil supply to the sliding portions of the vanes 16a and 16b is reliably performed, and the vanes 16a and 16b operate more smoothly. In other words, the sealing performance of the vane clearance portion is improved, and a highly efficient and reliable hermetic compressor R can be provided.

なお、冷凍サイクル回路Kに用いられる冷媒として、たとえば、イソブタン、プロパン等の炭化水素あるいは二酸化炭素のいずれかを使用するとよい。すなわち、この密閉型圧縮機Rにおいては密閉ケース1内を低圧条件としたため、冷凍サイクル回路Kに封入冷媒を少なくすることができ、可燃性である炭化水素系冷媒を使用することで、より安全な装置を提供できる。二酸化炭素等の高圧冷媒を用いた場合においても、密閉ケース1の耐圧設計が容易になる等のメリットがある。
また、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階では要旨を逸脱しない範囲で構成要素を変形して具体化できるとともに、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。
In addition, as a refrigerant | coolant used for the refrigerating cycle circuit K, it is good to use either hydrocarbons, such as isobutane and a propane, or a carbon dioxide, for example. In other words, in the hermetic compressor R, since the hermetic case 1 is in a low-pressure condition, the refrigeration cycle circuit K can reduce the amount of enclosed refrigerant, and by using a flammable hydrocarbon-based refrigerant, it is safer. Equipment can be provided. Even when a high-pressure refrigerant such as carbon dioxide is used, there is an advantage that the pressure-resistant design of the sealed case 1 becomes easy.
In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage, and a plurality of components disclosed in the above-described embodiment. Various inventions can be formed by appropriately combining the components.

本発明における一実施の形態に係る、密閉型圧縮機の縦断面図および冷凍サイクル構成図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view and refrigeration cycle block diagram of a hermetic type compressor which concern on one embodiment in this invention.

符号の説明Explanation of symbols

1…密閉ケース、3…電動機部、4…回転軸、2A…第1の圧縮機構部、2B…第2の圧縮機構部、14a,14b…偏心ローラ、12a…第1のシリンダ室、12b…第2のシリンダ室、8A…第1のシリンダ、8B…第2のシリンダ、16a,16b…ベーン、25…圧力切換え機構、R…密閉型圧縮機、22…凝縮器、23…膨張機構(膨張装置)、24…蒸発器、K…冷凍サイクル回路。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 3 ... Electric motor part, 4 ... Rotary shaft, 2A ... 1st compression mechanism part, 2B ... 2nd compression mechanism part, 14a, 14b ... Eccentric roller, 12a ... 1st cylinder chamber, 12b ... Second cylinder chamber, 8A ... first cylinder, 8B ... second cylinder, 16a, 16b ... vane, 25 ... pressure switching mechanism, R ... closed compressor, 22 ... condenser, 23 ... expansion mechanism (expansion) Device), 24 ... evaporator, K ... refrigeration cycle circuit.

Claims (2)

密閉ケースと、この密閉ケース内に収容される電動機部と、この電動機部と回転軸を介して連結される複数の圧縮機構部とを具備する密閉型圧縮機において、
上記密閉ケース内を低圧雰囲気とし、
上記複数の圧縮機構部で圧縮された冷媒を、上記密閉ケースの外部に設けた油分離器を介して吐出し、
上記複数の圧縮機構部は、それぞれローラが偏心回転自在に収容されるシリンダ室を備えたシリンダと、このシリンダに設けられ先端が前記ローラの周面に当接するよう押圧付勢されてローラの回転方向に沿ってシリンダ室を二分するベーンおよび、このベーンの後端側と前記油分離器の底部を連通し、油分離器底部から油分離器内の高圧の潤滑油をベーンの後端側に導く高圧導入通路を有し、
上記複数の圧縮機構部における少なくとも1つの圧縮機構部は、前記高圧導入通路の連通を制御し、ベーンの後端側を低圧もしくは高圧に切換える圧力切換え機構を有し、
負荷の大小に応じて上記圧力切換え機構を作用し、上記特定の圧縮機構部におけるベーン後端側を高圧として全ての圧縮機構部で圧縮運転を行う大能力運転と、上記特定の圧縮機構部におけるベーンの後端側を低圧としてベーンをローラから離間させ圧縮させない低能力運転とに切換え可能としたことを特徴とする密閉型圧縮機。
In a hermetic compressor including a hermetic case, an electric motor unit accommodated in the hermetic case, and a plurality of compression mechanisms connected to the electric motor unit via a rotating shaft,
The inside of the sealed case has a low pressure atmosphere,
The refrigerant compressed by the plurality of compression mechanisms is discharged through an oil separator provided outside the sealed case,
The plurality of compression mechanisms are each provided with a cylinder chamber in which a roller is housed so as to be eccentrically rotatable, and the tip provided on the cylinder is pressed and urged so as to abut the circumferential surface of the roller to rotate the roller. A vane that bisects the cylinder chamber along the direction, and the rear end side of the vane and the bottom of the oil separator communicate with each other, and high-pressure lubricating oil in the oil separator is communicated from the oil separator bottom to the rear end side of the vane. A high-pressure introduction passage that leads,
At least one compression mechanism in the plurality of compression mechanisms has a pressure switching mechanism that controls communication of the high pressure introduction passage and switches the rear end side of the vane to low pressure or high pressure.
The above-described pressure switching mechanism is operated according to the magnitude of the load, and the high-capacity operation in which the compression operation is performed in all the compression mechanism parts with the vane rear end side in the specific compression mechanism part as a high pressure, and in the specific compression mechanism part A hermetic compressor characterized in that the rear end side of the vane is set to a low pressure and can be switched to a low-capacity operation in which the vane is separated from the roller and is not compressed.
上記請求項1記載の密閉型圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて、冷凍サイクル回路を構成することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the hermetic compressor according to claim 1, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle circuit.
JP2005279434A 2005-09-27 2005-09-27 Hermetic compressor and refrigeration cycle apparatus Expired - Fee Related JP4806552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279434A JP4806552B2 (en) 2005-09-27 2005-09-27 Hermetic compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279434A JP4806552B2 (en) 2005-09-27 2005-09-27 Hermetic compressor and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2007092533A JP2007092533A (en) 2007-04-12
JP4806552B2 true JP4806552B2 (en) 2011-11-02

Family

ID=37978555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279434A Expired - Fee Related JP4806552B2 (en) 2005-09-27 2005-09-27 Hermetic compressor and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4806552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029094A1 (en) * 2017-08-10 2019-02-14 珠海格力节能环保制冷技术研究中心有限公司 Compressor, air conditioner, and method for assembling compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508249B (en) * 2014-09-24 2017-09-22 珠海格力节能环保制冷技术研究中心有限公司 Air-conditioning system and its compressor
CN109723641A (en) * 2019-03-01 2019-05-07 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner and compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063093U (en) * 1983-10-06 1985-05-02 三洋電機株式会社 Capacity control device for multi-cylinder rotary compressor
JP2003172281A (en) * 2001-12-06 2003-06-20 Sanyo Electric Co Ltd Compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029094A1 (en) * 2017-08-10 2019-02-14 珠海格力节能环保制冷技术研究中心有限公司 Compressor, air conditioner, and method for assembling compressor

Also Published As

Publication number Publication date
JP2007092533A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5063673B2 (en) Refrigeration cycle equipment
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP4769811B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5360708B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2006207559A (en) Refrigerating cycle device and rotary compressor
JP6605140B2 (en) Rotary compressor and refrigeration cycle apparatus
JP4594301B2 (en) Hermetic rotary compressor
JP2007146747A (en) Refrigerating cycle device
JP4806552B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5005598B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP2007146663A (en) Sealed compressor and refrigerating cycle device
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
WO2018016364A1 (en) Hermetic rotary compressor and refrigeration and air-conditioning device
JP4018908B2 (en) Refrigeration air conditioner
JP4523902B2 (en) Two-cylinder rotary compressor and refrigeration cycle apparatus
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP2007154680A (en) Refrigerating cycle device
JP4766872B2 (en) Multi-cylinder rotary compressor
JP2005256614A (en) Multi-cylinder type rotary compressor
JP5738036B2 (en) Rotary compressor and refrigeration cycle apparatus
JP4726444B2 (en) Multi-cylinder rotary compressor
JP2006022766A (en) Multi-cylinder rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

R150 Certificate of patent or registration of utility model

Ref document number: 4806552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees