JPH04203387A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH04203387A
JPH04203387A JP32921690A JP32921690A JPH04203387A JP H04203387 A JPH04203387 A JP H04203387A JP 32921690 A JP32921690 A JP 32921690A JP 32921690 A JP32921690 A JP 32921690A JP H04203387 A JPH04203387 A JP H04203387A
Authority
JP
Japan
Prior art keywords
cylinder
suction
volumetric efficiency
rotary compressor
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32921690A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oshima
大嶋 靖浩
Yukio Serizawa
芹沢 幸男
Koichi Sekiguchi
浩一 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32921690A priority Critical patent/JPH04203387A/en
Publication of JPH04203387A publication Critical patent/JPH04203387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a volumetric efficiency, improve a capability of a compressor and improve a coefficient of performance by a method wherein an adjusting mechanism such as a nozzle is disposed near an output of a suction port and a spacing volume is disposed near an outlet of the suction port. CONSTITUTION:A suction passage of a cylinder 6 is provided with a tapered metering part 6a of which sectional rear is reduced toward an inner diameter part of a cylinder. A passage resistance difference between a flowing-in of refrigerant gas and a flowing-out of refrigerant gas is provided, an amount of refrigerant gas accumulated within the cylinder and compressed in it is increased, and thus a volumetric efficiency can be improved. A through-pass part 17 directed toward a height of the cylinder is disposed in the midway part of a cylinder suction passage, the suction passage is closed by one end surface of a main bearing 7a and another end surface of a sub-bearing 7b and a spacing volumetric part is formed. With such an arrangement, an amplitude of pressure pulsation is increased and at the same time even under a new number of rotation, a certain pressure pulsation may be generated and a volumetric efficiency can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ルームエアコン、冷蔵庫等に用いられるロー
タリ圧縮機における吸込側逆流防止、および体積効率の
向上に好適な構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure suitable for preventing backflow on the suction side and improving volumetric efficiency in rotary compressors used in room air conditioners, refrigerators, etc.

〔従来の技術〕[Conventional technology]

従来のロータリ圧縮機を第4図〜第6図により説明する
。第4図は従来のロータリ圧縮機の一種であるローリン
グビス1〜ン形の縦断面図である。
A conventional rotary compressor will be explained with reference to FIGS. 4 to 6. FIG. 4 is a longitudinal sectional view of a rolling screw type rotary compressor, which is a type of conventional rotary compressor.

密閉容器1内に、モータ部2とポンプ部3を収納し、モ
ータロータ2aとクランク軸4が一体に組立てられてい
る。クランク軸4の偏心部4aには、ローラ5が嵌合さ
れ、シリンダ6内に装備され、シリンダ6の両端面を主
軸受7a及び副軸受7bにより密閉されている。クラン
ク軸4の回転に伴ない、ローラ5はシリンダ6内を偏心
回転し、これに追従して、ベーン8が往復動して、シリ
ンダ6内を吸込室9と圧縮室10とに仕切り、クランク
軸4の回転とともに、吸込ボート]、1を通して、吸込
室9に冷媒ガスを吸引し、圧縮室10の容積を減少させ
て圧縮を行ない、吐出ボート12より吐出バルブを介し
て、密閉容器1内に吐出する。このようにローラ5が吸
込ボート11を通過すると、圧縮室は吸込ボートと連通
しなくなるため、吸込側に逆止弁のような吸込弁を必要
としないことが、ロータリ圧縮機の部品点数の削減によ
る信頼性向上、コスト低減の大きな特徴となっている。
A motor section 2 and a pump section 3 are housed in an airtight container 1, and a motor rotor 2a and a crankshaft 4 are integrally assembled. A roller 5 is fitted into the eccentric portion 4a of the crankshaft 4, and is installed inside a cylinder 6, and both end surfaces of the cylinder 6 are sealed by a main bearing 7a and a sub-bearing 7b. As the crankshaft 4 rotates, the roller 5 rotates eccentrically within the cylinder 6, and following this, the vane 8 reciprocates to partition the inside of the cylinder 6 into a suction chamber 9 and a compression chamber 10, and the crankshaft As the shaft 4 rotates, refrigerant gas is sucked into the suction chamber 9 through the suction boat 1 and compressed by reducing the volume of the compression chamber 10. Discharge into. When the roller 5 passes through the suction boat 11 in this way, the compression chamber no longer communicates with the suction boat, so there is no need for a suction valve such as a check valve on the suction side, which reduces the number of parts in the rotary compressor. This is a major feature of reliability improvement and cost reduction.

吸込側冷媒配管には、通常、冷凍サイクル(図示せず)
の蒸発器からの液戻り時の信頼性を確保するため、液冷
媒を一時貯溜するアキュームレータ13が設けられてい
る。アキュームレータ13の構造は外側ケース13aと
、このケースの内側に突出して設けられ、圧縮器吸込ポ
ート11に連通する吸込バイブ13bとから成る。アキ
ュームレータI3は、冷媒ガス圧力緩衝器としても働き
、主に吸込バイブ13bの長さL及びその断面積Aとク
ランク軸1回転中に押除けるシリンダ室理論体積Vによ
って決まる回転周波数゛fにおいて、シリンダ内圧力扉
動が大きくなる気柱共鳴現象を生じ、体積効率が増加す
ることが知られている。
The suction side refrigerant piping usually has a refrigeration cycle (not shown).
In order to ensure reliability when liquid is returned from the evaporator, an accumulator 13 is provided to temporarily store liquid refrigerant. The structure of the accumulator 13 consists of an outer case 13 a and a suction vibrator 13 b that is provided to protrude inside the case and communicates with the compressor suction port 11 . The accumulator I3 also works as a refrigerant gas pressure buffer, and at a rotational frequency f determined mainly by the length L of the suction vibrator 13b, its cross-sectional area A, and the theoretical volume V of the cylinder chamber that can be displaced during one rotation of the crankshaft, the accumulator I3 acts as a refrigerant gas pressure buffer. It is known that an air column resonance phenomenon occurs in which the internal pressure door movement increases, and the volumetric efficiency increases.

(「実用機械シリーズ容積形圧縮機」、(産業図書)、
p、83)このときの周波数は次式で与えられる。
("Practical machine series positive displacement compressor", (Sangyo Tosho),
p, 83) The frequency at this time is given by the following equation.

fl−□ 4・ (L+V/A) ここでaは冷媒の音速である。fl-□ 4. (L+V/A) Here, a is the sound speed of the refrigerant.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、クランク角QがQs以上において、実
際の圧縮行程を開始し、また、クランク角Qeにおいて
、圧縮行程を終了しており、Q。
In the above prior art, the actual compression stroke starts when the crank angle Q is equal to or greater than Qs, and ends at the crank angle Qe.

〜O0〜Q8の間においては、トップクリアランスボリ
ュームV、内の圧縮ガスの再膨張により、シリンダ内の
圧力が吸込圧力Psより高くなり、このときシリンダ室
内と連通している吸込みポートから吸込んだ冷媒ガスが
逆流して、体積効率η9が低下するという点について配
慮されておらず、圧縮機の能力低下、成績係数の低下を
招いていた。
Between ~O0 and Q8, the pressure inside the cylinder becomes higher than the suction pressure Ps due to the re-expansion of the compressed gas in the top clearance volume V, and at this time, the refrigerant sucked from the suction port communicating with the cylinder chamber No consideration was given to the fact that the gas flows backward and the volumetric efficiency η9 decreases, resulting in a decrease in compressor capacity and a decrease in the coefficient of performance.

この逆流を防止する方法としては、第6図のような逆止
弁を用いることが容易に考えられるが、この場合、可動
する弁体14やばね15を含む部品点数の増加を伴ない
、信頼性、コスト面で不利3 ・ となる。また、吸込弁による流通抵抗により、体積効率
が低下する場合を生じることがある。
One way to prevent this backflow is to use a check valve as shown in Fig. 6, but in this case, the number of parts including the movable valve body 14 and spring 15 increases, and reliability is reduced. 3. Disadvantages in terms of performance and cost. Further, the volumetric efficiency may be reduced due to the flow resistance caused by the suction valve.

本発明の目的は、シリンダ内から吸込側への逆流を防止
し、体積効率の向上、圧縮機の能力、成績係数の向上を
図ることにある。
An object of the present invention is to prevent backflow from inside the cylinder to the suction side, and to improve volumetric efficiency, compressor capacity, and coefficient of performance.

η9を上げる方法として、気柱共鳴現象を利用した、過
給効果が知られているが、本方法では共鳴を利用してい
るため、特定の狭い圧縮機回転数範囲でのみでしか効果
がなく、最近のインバータを使用した回転数可変形の圧
縮機においては、能力向上に寄与するところが小さいと
いう問題があった。
A supercharging effect using the air column resonance phenomenon is known as a method to increase η9, but since this method uses resonance, it is only effective within a specific narrow compressor rotational speed range. In recent variable speed compressors using inverters, there has been a problem in that the contribution to performance improvement is small.

本発明の他の目的としては、広い回転数域において過給
効果を得ることにある。
Another object of the present invention is to obtain a supercharging effect over a wide rotation speed range.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、吸込ボート出口近傍にノズ
ル部の如き絞り機構を設け、シリンダ流入冷媒ガスの流
出を防いだものである。
In order to achieve the above object, a throttle mechanism such as a nozzle portion is provided near the suction boat outlet to prevent refrigerant gas flowing into the cylinder from flowing out.

さらに、体積効率向上効果の増大の為に吸込ポート出口
近傍に、空間容積部を設け、圧力脈動を4 ・ 増幅させるとともに、また、他の周波数の圧力派動を生
じさせ、シリンダ内に冷媒ガスを押し込むようにしたも
のである。
Furthermore, in order to increase the effect of improving volumetric efficiency, a space volume section is provided near the suction port outlet to amplify the pressure pulsation and also generate pressure pulsations at other frequencies to increase the refrigerant gas inside the cylinder. It is designed to push the .

〔作用〕[Effect]

吸込ポート入口部にノズル部のような、流動方向により
、流通抵抗の異なる絞り機構部を設け、冷媒ガスがシリ
ンダ内に流入するときには抵抗が小さく、逆にアキュー
ムレータ側に流出するときの抵抗が太き(なるようにす
る。これによって、シリンダ室内に吸込まれた冷媒ガス
は、吸込側に逆流することなく、体積効率が上がる。
At the inlet of the suction port, a throttling mechanism part such as a nozzle part, which has different flow resistance depending on the flow direction, is installed, so that the resistance is small when the refrigerant gas flows into the cylinder, and the resistance is thick when it flows out to the accumulator side. As a result, the refrigerant gas sucked into the cylinder chamber does not flow back to the suction side, increasing volumetric efficiency.

また、絞り部の流入抵抗は、吸込バイブの断面積より、
絞り部出口面積を同等以上とすれば、流入抵抗は、絞り
を設けない場合と同等以下となり、絞り機構を設けるこ
とによる性能面の低下はない。
In addition, the inflow resistance of the throttle part is determined from the cross-sectional area of the suction vibrator.
If the exit area of the constriction part is equal to or greater than that, the inflow resistance will be equal to or less than that without the constriction, and there will be no deterioration in performance due to the provision of the constriction mechanism.

また、吸込ボート出口近傍に、空間容積部を設けること
により、通常圧力脈動を発生していた周波数f1の他に
、吸込パイプ長さと、空間容積部体積V。によって決ま
る周波数f2 f2− □ 4 (L十V。/A) においても、空間容積部が共鳴圧力脈動を生じ、シリン
ダ室との圧力差により、シリンダ室内に冷媒ガスが押込
まれ、体積効率が向上する。
In addition, by providing a space volume near the suction boat outlet, in addition to the frequency f1 that normally generates pressure pulsations, the length of the suction pipe and the volume V of the space volume. Even at the frequency f2 f2- □ 4 (L0V./A), which is determined by do.

さらに、空間容積部を設けることにより、吸込側体積が
増加し、圧力脈動の振幅が大きくなり、過給効果が増し
、体積効率が増大する。
Furthermore, by providing the space volume portion, the suction side volume increases, the amplitude of pressure pulsation increases, the supercharging effect increases, and the volumetric efficiency increases.

以上の如く、体積効率が増すことにより、圧縮機の能力
が向上し、成績係数を向上させることが出来る。
As described above, by increasing the volumetric efficiency, the capacity of the compressor can be improved and the coefficient of performance can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第3図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図はロータリ圧縮機の冷媒吸込部の要部縦断面図を
示す。シリンダ6部吸込通路はシリンダ内径側に向かっ
て、断面積が小さくなるテーパ加工絞り部6aを設け、
冷媒ガスの流入と、流出における流通抵抗差を設け、シ
リンダ内に吸込み停溜し、圧縮される冷媒ガス量を増加
させ、体積効率の向上を図ることができる。
FIG. 1 shows a longitudinal cross-sectional view of a main part of a refrigerant suction section of a rotary compressor. The cylinder 6 suction passage is provided with a tapered constricted part 6a whose cross-sectional area becomes smaller toward the inner diameter side of the cylinder.
By providing a difference in flow resistance between the inflow and outflow of refrigerant gas, the amount of refrigerant gas that is sucked into the cylinder, stored, and compressed can be increased, and the volumetric efficiency can be improved.

また、第2図の実施例では、シリンダに大径加工した吸
込穴を設け、その中にテーパ絞り部を持つ樹脂材等の別
体ピース16を挿入して、製作性を向上させている。ま
た、吸込バイブのシリンダ入口部は大径化して接続し、
吸込パイプの最小断面積S1より、シリンダ入口絞り部
の最小面積S。
Further, in the embodiment shown in FIG. 2, the cylinder is provided with a suction hole machined to a large diameter, and a separate piece 16 made of a resin material or the like having a tapered drawing portion is inserted into the suction hole to improve manufacturability. In addition, the cylinder inlet of the suction vibrator has a larger diameter and is connected to
From the minimum cross-sectional area S1 of the suction pipe, the minimum area S of the cylinder inlet throttle part.

を同等以上としており、吸込ボート近傍に絞り機構部を
設けたことによる流通抵抗の増加を無くしている。
is the same or higher, eliminating the increase in flow resistance due to the provision of the throttling mechanism near the suction boat.

第3図は本発明の他の実施例を示すロータリ圧縮機吸込
部要部を示す斜視図である。
FIG. 3 is a perspective view showing the main part of the suction section of a rotary compressor showing another embodiment of the present invention.

シリンダは鋳物等の型出し、又は、ブローチ加工等によ
り、シリンダ吸込通路途中に、シリンダ高さ方向に貫通
部17を設け、主軸受7a及び副軸受7bの端面により
閉塞し、空間容積部を形成している。これにより、圧力
脈動の振幅を大きくするとともに、新たな回転数におい
ても圧力脈動が発生し、体積効率の向上が図れる。また
、圧縮室入口近傍はテーバ形状に加工し、その最小断面
積は吸込管断面積と同等以上としており、実施例第2図
と同様の効果も得られる。
The cylinder has a through part 17 in the cylinder height direction in the middle of the cylinder suction passage by molding or broaching, etc., and is closed by the end faces of the main bearing 7a and the sub bearing 7b to form a space volume part. are doing. As a result, the amplitude of the pressure pulsations is increased, pressure pulsations occur even at a new rotation speed, and the volumetric efficiency can be improved. Further, the vicinity of the compression chamber entrance is processed into a tapered shape, and the minimum cross-sectional area thereof is equal to or greater than the cross-sectional area of the suction pipe, and the same effect as that of the embodiment shown in FIG. 2 can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シリンダ入口近傍に設けた絞り機構に
より、シリンダ圧縮室内に流入する通路抵抗に対し、吸
込側に逆流する通路抵抗を大きくすることができ、体積
効率を向上させることができる。
According to the present invention, with the throttle mechanism provided near the cylinder inlet, it is possible to increase the passage resistance for flowing back to the suction side with respect to the passage resistance for flowing into the cylinder compression chamber, and it is possible to improve the volumetric efficiency.

また、シリンダ入口絞り部の断面積を、吸込バイブの最
小断面積以上とすることにより、絞り部を設けたことに
よる損失の増加はない。
Further, by making the cross-sectional area of the cylinder inlet constricted portion equal to or larger than the minimum cross-sectional area of the suction vibrator, there is no increase in loss due to the provision of the constricted portion.

また、吸込通路の途中に容積部を設けることにより、圧
力脈動を大きくし、体積効率を向上させるとともに、新
たな共鳴回転数を設け、広い回転数域において、過給効
果を得ることができる。
In addition, by providing a volume part in the middle of the suction passage, pressure pulsation is increased and volumetric efficiency is improved, and a new resonance rotation speed is provided, so that a supercharging effect can be obtained in a wide rotation speed range.

以上の如く、体積効率を向上することにより、圧縮機の
能力向上、成績係数の向上が可能となる。
As described above, by improving the volumetric efficiency, it is possible to improve the capacity of the compressor and the coefficient of performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す吸込部要部断面図、第
2図は本発明の他の実施例を示す吸込部要部断面図、第
3図は本発明のもう一つの実施例を示す吸込部要部斜視
図、第4図は従来のロータリ圧縮機の縦断面図、第5図
は第4図のA−A線断面図、第6図は逆止弁を持つ従来
の吸込部要部断面図である。 1・・・密閉容器、2・・・モータ、3・・・ポンプ部
、4・・クランク軸、5・・・ローラ、6・・・シリン
ダ、7a・主軸受、7b・・・副軸受、8・・ベーン、
9・・・吸込室、10・・・圧縮室、11・・・吸込ボ
ー1−112・・・吐出ボート、13・・・アキューム
レータ、1.3 b・吸込パイプ、14・・・逆止弁、
15・ばね、16・・・ピース、17・・・貫通部。
Fig. 1 is a sectional view of the main part of the suction part showing one embodiment of the present invention, Fig. 2 is a sectional view of the main part of the suction part showing another embodiment of the invention, and Fig. 3 is another embodiment of the invention. FIG. 4 is a vertical sectional view of a conventional rotary compressor, FIG. 5 is a sectional view taken along line A-A in FIG. 4, and FIG. 6 is a conventional rotary compressor with a check valve. It is a sectional view of the main part of the suction part. DESCRIPTION OF SYMBOLS 1... Airtight container, 2... Motor, 3... Pump part, 4... Crankshaft, 5... Roller, 6... Cylinder, 7a... Main bearing, 7b... Sub bearing, 8. Vane,
9... Suction chamber, 10... Compression chamber, 11... Suction boat 1-112... Discharge boat, 13... Accumulator, 1.3 b. Suction pipe, 14... Check valve ,
15. Spring, 16. Piece, 17. Penetration part.

Claims (1)

【特許請求の範囲】 1、逆止装置を持たないロータリ圧縮機の吸込部におい
て、絞り機構部を設けたことにより、圧縮室内に流体が
流入する通路抵抗が、吸込側に逆流する通路抵抗より小
さくしたことを特徴とするロータリ圧縮機。 2、圧縮室入口の通路断面積が吸込側配管の通路断面積
と同等以上としたことを特徴とする請求項第1項のロー
タリ圧縮機。 3、アキュームレータと圧縮室内を吸込管にて結合した
ロータリ圧縮機において、吸込管の途中に空間容積部を
設けたことを特徴とするロータリ圧縮機。 4、請求項第1項、第2項または第3項を同時に実施し
たことを特徴とするロータリ圧縮機。
[Claims] 1. By providing a throttle mechanism in the suction section of a rotary compressor that does not have a check device, the passage resistance for fluid to flow into the compression chamber is greater than the passage resistance for fluid to flow back to the suction side. A rotary compressor characterized by its small size. 2. The rotary compressor according to claim 1, wherein the passage cross-sectional area of the compression chamber inlet is equal to or larger than the passage cross-sectional area of the suction side piping. 3. A rotary compressor in which an accumulator and a compression chamber are connected by a suction pipe, characterized in that a space volume portion is provided in the middle of the suction pipe. 4. A rotary compressor characterized in that the first, second, or third aspects of claim 1, 2, or 3 are implemented simultaneously.
JP32921690A 1990-11-30 1990-11-30 Rotary compressor Pending JPH04203387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32921690A JPH04203387A (en) 1990-11-30 1990-11-30 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32921690A JPH04203387A (en) 1990-11-30 1990-11-30 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH04203387A true JPH04203387A (en) 1992-07-23

Family

ID=18218953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32921690A Pending JPH04203387A (en) 1990-11-30 1990-11-30 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH04203387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829960A (en) * 1996-04-30 1998-11-03 Tecumseh Products Company Suction inlet for rotary compressor
JP2005171847A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
EP2169230A2 (en) * 2008-09-25 2010-03-31 Samsung Electronics Co., Ltd. Cylinder and rotary compressor having the same
JP2020153322A (en) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル Rotary compressor
JP2020153323A (en) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル Rotary compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5829960A (en) * 1996-04-30 1998-11-03 Tecumseh Products Company Suction inlet for rotary compressor
JP2005171847A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP4504667B2 (en) * 2003-12-10 2010-07-14 東芝キヤリア株式会社 Refrigeration cycle equipment
EP2169230A2 (en) * 2008-09-25 2010-03-31 Samsung Electronics Co., Ltd. Cylinder and rotary compressor having the same
EP2169230A3 (en) * 2008-09-25 2014-01-08 Samsung Electronics Co., Ltd. Cylinder and rotary compressor having the same
JP2020153322A (en) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル Rotary compressor
JP2020153323A (en) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル Rotary compressor

Similar Documents

Publication Publication Date Title
US4427351A (en) Rotary compressor with noise reducing space adjacent the discharge port
KR100305122B1 (en) Rotary compressor
JP3626443B2 (en) Silencer for compressor
KR200146151Y1 (en) Noise seminish device of airconditioner
KR20010111535A (en) Muffler
JP5429353B1 (en) Compressor
AU2005312690A1 (en) Compressor
US5829960A (en) Suction inlet for rotary compressor
US4884956A (en) Rotary compressor with clearance volumes to offset pulsations
CN1549899A (en) Closed compressor
JPH04203387A (en) Rotary compressor
US6336800B1 (en) Rotary compressor
US5004410A (en) High frequency noise suppressor for hermetic rotary compressors
JPS601396A (en) Low-discharge-pulsation compressor
JP3972548B2 (en) Rotary compressor
JP2876922B2 (en) Rolling piston type compressor
CN111059056A (en) Pump body assembly, rotary compressor and air conditioner
JPS6157478B2 (en)
JPH0474556B2 (en)
JPH01193095A (en) Rotary compressor
CN219911067U (en) Compressor and refrigeration cycle device
JPH0575915B2 (en)
JPH03182693A (en) Multiple stage rotary compressor
JPH04219488A (en) Closed rotary compressor
JPS59585A (en) Rotary compressor