JP4503583B2 - Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same - Google Patents

Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same Download PDF

Info

Publication number
JP4503583B2
JP4503583B2 JP2006338480A JP2006338480A JP4503583B2 JP 4503583 B2 JP4503583 B2 JP 4503583B2 JP 2006338480 A JP2006338480 A JP 2006338480A JP 2006338480 A JP2006338480 A JP 2006338480A JP 4503583 B2 JP4503583 B2 JP 4503583B2
Authority
JP
Japan
Prior art keywords
capacitor
electrode
layer
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006338480A
Other languages
Japanese (ja)
Other versions
JP2008153360A (en
Inventor
田 文 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2006338480A priority Critical patent/JP4503583B2/en
Priority to TW096141701A priority patent/TWI455662B/en
Priority to KR1020070130915A priority patent/KR20080055728A/en
Priority to CN2007103009309A priority patent/CN101207971B/en
Publication of JP2008153360A publication Critical patent/JP2008153360A/en
Application granted granted Critical
Publication of JP4503583B2 publication Critical patent/JP4503583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、キャパシタ用接着シートおよびこのシートを用いて製造するキャパシタ内蔵型プリント配線板の製造方法に係わり、特に、可撓性ケーブル部を有する多層フレキシブルプリント配線板にも適用可能なキャパシタ用接着シートおよびそれを用いたプリント配線板の製造方法に関する。   The present invention relates to a capacitor adhesive sheet and a method for manufacturing a capacitor built-in type printed wiring board manufactured using the sheet, and more particularly to a capacitor adhesive applicable to a multilayer flexible printed wiring board having a flexible cable portion. The present invention relates to a sheet and a method for producing a printed wiring board using the sheet.

近年、小型電子機器に搭載される実装基板の微細化、高密度化の要求が高まっている。この一環として、携帯電話などを中心にCSP(チップサイズパッケージ)やチップ抵抗、チップキャパシタ等の配線板の表面への高密度実装の要求が強くなっている。   In recent years, there has been an increasing demand for miniaturization and higher density of mounting substrates mounted on small electronic devices. As part of this, there is an increasing demand for high-density mounting on the surface of wiring boards such as CSP (chip size package), chip resistors, and chip capacitors, mainly in mobile phones.

CSPのような部品を搭載する多層プリント配線板においては、デカップリングキャパシタ等、様々な目的でキャパシタが設けられるが、実装コスト、部品コストの増加や高密度実装に対応するため、所謂、部品内蔵配線板が考案されている。   In multilayer printed wiring boards on which components such as CSP are mounted, capacitors are provided for various purposes such as decoupling capacitors, but so-called built-in components are required to cope with increased mounting costs, increased component costs, and high-density mounting. A wiring board has been devised.

例えば、表面実装部品の点数を削減する目的で、キャパシタを配線層の層間に設けている(特許文献1参照)。すなわち、隣接する薄膜配線パターンの間に誘電物フィラーを含む有機樹脂の絶縁層を設け、キャパシタを形成している。これにより、キャパシタを表面実装する数を低減できることから、実装部品の点数を減らすことができる。   For example, a capacitor is provided between the wiring layers in order to reduce the number of surface-mounted components (see Patent Document 1). That is, an insulating layer of an organic resin containing a dielectric filler is provided between adjacent thin film wiring patterns to form a capacitor. As a result, the number of capacitors mounted on the surface can be reduced, so that the number of mounted components can be reduced.

ただし、この特許文献1に記載の方法では、大容量が要求されるスイッチングノイズの低減用途には適さない(特許文献2参照)。この特許文献2には、電極となる金属箔を凹凸状に形成し電極面積を広くすることで、キャパシタの容量を増加させる方法についても記載されている。   However, the method described in Patent Document 1 is not suitable for switching noise reduction applications that require a large capacity (see Patent Document 2). This Patent Document 2 also describes a method of increasing the capacitance of a capacitor by forming a metal foil to be an electrode in an uneven shape and increasing the electrode area.

しかしながら、これらの方法においては、多層フレキシブルプリント配線板への適用に関する特段の配慮はなされていない。   However, in these methods, no special consideration is given regarding application to a multilayer flexible printed wiring board.

これに関連して、ベース絶縁材上に配線パターンとともに電極を形成し、その上に印刷や電着などの方法で誘電体を形成し、更にその上に対向する電極を形成する方法が提案されている(特許文献3参照)。   In this connection, a method has been proposed in which an electrode is formed on a base insulating material together with a wiring pattern, a dielectric is formed thereon by a method such as printing or electrodeposition, and an opposing electrode is further formed thereon. (See Patent Document 3).

しかし、この方法では、安定的に誘電体の膜厚を薄く形成することが難しく、工程的に煩雑であることが欠点として挙げられる。加えて、多層フレキシブルプリント配線板の内層コア基板に用いるには、基板平坦度が要求されるが、上述の方法では平坦性を確保することができないため、フレキシブルプリント配線板への適用は困難である。   However, this method has a drawback in that it is difficult to stably form a thin film of the dielectric and the process is complicated. In addition, the flatness of the substrate is required for use as the inner core substrate of the multilayer flexible printed wiring board. However, since the flatness cannot be ensured by the above method, it is difficult to apply to the flexible printed wiring board. is there.

さらに特許文献4には、誘電体粉末を含む絶縁樹脂層の両面に設けられた導体層がエッチングによりパターンの形成可能な両面銅張積層板が記載されている。この方法を用いることで、誘電率を安定化することが可能になる。   Further, Patent Document 4 describes a double-sided copper-clad laminate in which a conductor layer provided on both sides of an insulating resin layer containing dielectric powder can form a pattern by etching. By using this method, the dielectric constant can be stabilized.

しかし、有機樹脂層を厚さ50μm以下に形成すると、上述のパターン形成時に、樹脂層の形状を保持することが難しく、キャパシタの大容量化に有利な薄膜化が困難である。これらのことから、部品内蔵型の多層フレキシブルプリント配線板に適用可能な薄型のキャパシタが望まれている。   However, if the organic resin layer is formed to a thickness of 50 μm or less, it is difficult to maintain the shape of the resin layer during the above pattern formation, and it is difficult to reduce the thickness of the capacitor, which is advantageous for increasing the capacity of the capacitor. For these reasons, a thin capacitor applicable to a component-embedded multilayer flexible printed wiring board is desired.

図4は、特許文献4に記載のキャパシタの構造を示す断面図であって、図4に示すように、誘電体粉末を含む絶縁樹脂層21の両面に、電極となる銅箔22,23の導体層が接着材を介して接着されている両面銅張積層板である。   FIG. 4 is a cross-sectional view showing the structure of the capacitor described in Patent Document 4. As shown in FIG. 4, copper foils 22 and 23 serving as electrodes are formed on both surfaces of an insulating resin layer 21 containing dielectric powder. It is a double-sided copper-clad laminate in which a conductor layer is bonded via an adhesive.

しかし、絶縁樹脂層21は、厚さが約0.3mmであることから薄型化が望まれている多層フレキシブルプリント配線板に内蔵するには厚過ぎる。一方、絶縁樹脂層21を50μm以下の厚さにすると、エッチングによるパターン形成時に誘電体粉末を含む絶縁樹脂層10が形状を保持できず、安定的に工程を流動させることが困難である。   However, since the insulating resin layer 21 has a thickness of about 0.3 mm, it is too thick to be incorporated in a multilayer flexible printed wiring board that is desired to be thin. On the other hand, if the thickness of the insulating resin layer 21 is 50 μm or less, the insulating resin layer 10 containing the dielectric powder cannot retain its shape when forming a pattern by etching, and it is difficult to flow the process stably.

さらに、プリント配線板としては、配線パターン間に生じるクロストークの低減や共振周波数帯域の向上等の高周波特性を確保するため、配線間の絶縁樹脂層が低誘電率であることが望ましい。   Further, as a printed wiring board, it is desirable that the insulating resin layer between the wirings has a low dielectric constant in order to ensure high frequency characteristics such as reduction of crosstalk generated between the wiring patterns and improvement of the resonance frequency band.

しかし、絶縁樹脂層21には、キャパシタ形成のための誘電体粉末が含まれていて低誘電率化が難しい、という問題もある。
特開平10-93246号公報 特開2001-177004号公報 特開2001-15883号公報 特開平5-7063号公報(特許第3019541号公報)
However, the insulating resin layer 21 contains a dielectric powder for forming a capacitor, and there is a problem that it is difficult to reduce the dielectric constant.
Japanese Patent Laid-Open No. 10-93246 JP 2001-177004 A Japanese Patent Laid-Open No. 2001-15883 JP 5-7063 A (Patent No. 3019541)

上述のように、従来の部品内蔵型のプリント配線板用のキャパシタは、プリント配線板としての層間に配置された配線間の絶縁性および高周波特性に問題がある。   As described above, the conventional capacitor for a printed wiring board with a built-in component has a problem in insulation between wirings arranged between layers as a printed wiring board and high frequency characteristics.

本発明は上述の点を考慮してなされたもので、部品内蔵型の多層フレキシブルプリント
配線板に適用可能な薄型のキャパシタを構成するためのシートを用いた、キャパシタ内蔵型の多層フレキシブルプリント配線板を安価かつ安定的に製造する方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above points, and has a capacitor built-in multilayer flexible printed wiring board using a sheet for forming a thin capacitor applicable to a component built-in multilayer flexible printed wiring board. An object of the present invention is to provide a method for stably and inexpensively producing a product.

上記目的達成のため、本願では、次の各発明を提供する。   In order to achieve the above object, the present invention provides the following inventions.

第1の発明は、
誘電体層の両面に電極が接着されてなるキャパシタを、プリント配線板に内蔵して構成
するキャパシタ内蔵型プリント配線板の製造方法において、
誘電率が高く、前記誘電体層に前記電極を接着するためのプレスにおける所定の圧力お
よび温度では実質的な変形を生じない材料により構成され、接着性の両面を有する誘電体層と、前記電極の周囲を充填するための接着樹脂層とを有するキャパシタ用接着シートを用意し、
剥離除去可能な金属箔または可撓性樹脂フィルムの上に前記電極を形成した金属基材を
2枚用意し、
前記金属基材の前記電極側の面を前記キャパシタ用接着シートに向けて前記電極が対向
するように重ね合せ、
昇温および加圧により対向した前記電極と前記誘電体層とを接着して前記電極が前記接
着樹脂層に埋設された状態で前記誘電体層の表面に対向電極を形成し、
前記キャパシタの形成後に前記金属箔または前記可撓性樹脂フィルムを剥離除去し、
前記金属箔または前記可撓性樹脂フィルムを剥離除去した面に、シード層となる金属層を形成し、セミアディティブ法により配線パターンを形成する
ことを特徴とするキャパシタ内蔵型プリント配線板の製造方法
である。
The first invention is
In the method of manufacturing a capacitor - embedded printed wiring board, in which a capacitor having electrodes bonded to both surfaces of a dielectric layer is built in the printed wiring board ,
A dielectric layer having a high dielectric constant and made of a material that does not substantially deform at a predetermined pressure and temperature in a press for bonding the electrode to the dielectric layer, and has both adhesive surfaces; and the electrode preparing an adhesive sheet for a capacitor having an adhesive resin layer for filling the surrounding,
A metal substrate in which the electrode is formed on a metal foil or a flexible resin film that can be peeled and removed.
Prepare two,
The electrodes face each other with the electrode-side surface of the metal substrate facing the adhesive sheet for capacitors.
To overlap,
The electrode and the dielectric layer that are opposed to each other by heating and pressurizing are adhered to each other so that the electrode is in contact with the dielectric layer.
Forming a counter electrode on the surface of the dielectric layer in a state of being embedded in the resin layer;
After the capacitor is formed, the metal foil or the flexible resin film is peeled and removed,
A metal layer to be a seed layer is formed on the surface from which the metal foil or the flexible resin film is peeled and removed, and a wiring pattern is formed by a semi-additive method.
A method of manufacturing a printed wiring board with a built-in capacitor ,
It is.

第2の発明は、
誘電体層の両面に電極が接着されてなるキャパシタを、プリント配線板に内蔵して構成
するキャパシタ内蔵型プリント配線板の製造方法において、
誘電率が高く、前記誘電体層に前記電極を接着するためのプレスにおける所定の圧力お
よび温度では実質的な変形を生じない材料により構成され、接着性の両面を有する誘電体層と、前記電極の周囲を充填するための接着樹脂層とを有するキャパシタ用接着シートを用意し、
同種の金属による第1の導電層および第2の導電層、ならびにこれら両導電層の間に異種金属層を有する金属箔を用意し、
前記第1の導電層に前記異種金属層に対する選択エッチングによりキャパシタの電極を含む回路配線パターンを形成した金属基材を2枚用意し、
前記金属基材の前記電極側の面を前記キャパシタ用接着シートに向けて前記電極が対向
するように重ね合せ、
前記プレスにより対向した前記電極と前記誘電体層とを接着し前記電極を前記接着樹脂
層に埋設させて前記誘電体層の表面に対向電極を形成し、
前記キャパシタの形成後に前記第2の導電層を選択エッチングして配線パターンを形成する
ことを特徴とするキャパシタ内蔵型プリント配線板の製造方法、
である。
The second invention is
In the method of manufacturing a capacitor-embedded printed wiring board, in which a capacitor having electrodes bonded to both surfaces of a dielectric layer is built in the printed wiring board,
A dielectric layer having a high dielectric constant and made of a material that does not substantially deform at a predetermined pressure and temperature in a press for bonding the electrode to the dielectric layer, and has both adhesive surfaces; and the electrode Prepare an adhesive sheet for capacitors having an adhesive resin layer for filling the periphery of
Preparing a first conductive layer and a second conductive layer of the same kind of metal, and a metal foil having a dissimilar metal layer between the two conductive layers;
Two metal base materials on which a circuit wiring pattern including a capacitor electrode is formed by selective etching with respect to the different metal layer in the first conductive layer are prepared,
The electrode-side surface of the metal substrate is overlaid so that the electrode faces the adhesive sheet for capacitors,
Bonding the electrode and the dielectric layer facing each other by the press, and burying the electrode in the adhesive resin layer to form a counter electrode on the surface of the dielectric layer,
A method of manufacturing a printed wiring board with a built-in capacitor, wherein the wiring pattern is formed by selectively etching the second conductive layer after the formation of the capacitor;
It is.

第3の発明は、
請求項1または2記載のキャパシタ内蔵型プリント配線板の製造方法において、
前記電極の周囲を充填するための接着剤樹脂層は、液晶ポリマーであることを特徴とするキャパシタ内蔵型プリント配線板の製造方法
である。
The third invention is
In the manufacturing method of the printed wiring board with a built-in capacitor according to claim 1 or 2,
The method of manufacturing a capacitor-embedded printed wiring board, wherein the adhesive resin layer for filling the periphery of the electrode is a liquid crystal polymer ,
It is.

これらの特徴により、本発明は次のような効果を奏する。   Due to these features, the present invention has the following effects.

発明に係るキャパシタ内蔵型プリント配線板の製造方法によれば、キャパシタを構成するのに適したキャパシタ用接着シートを用いるため、従来の製造方法では困難であった、プリント配線板としての層間に配置された配線間の良好な絶縁性および高周波特性を有するキャパシタ内蔵型プリント配線板を安価かつ安定的に製造することができる。 According to the method of manufacturing a printed wiring board with a built-in capacitor according to the present invention, since an adhesive sheet for a capacitor suitable for constituting a capacitor is used, it is difficult to achieve with a conventional manufacturing method. A built-in capacitor type printed wiring board having good insulation between the arranged wirings and high frequency characteristics can be manufactured inexpensively and stably.

以下、図1ないし図3を参照して本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.

(実施例1)
図1は、本発明の実施例1におけるキャパシタ用接着シートの製造方法を示す断面工程図である。まず、図1(1)に示すように、誘電率が高く流動性が低い誘電体層1の両面に流動性が高い接着樹脂層2,3を有するベース材料を用意する。誘電体層1は、ここでは誘電率が約2000のチタン酸バリウムが60〜85重量%程度、溶剤分およびエポキシ樹脂が15〜40重量%程度含まれたフィルム状の成型物である。
(Example 1)
FIG. 1 is a cross-sectional process diagram illustrating a method for manufacturing a capacitor adhesive sheet in Example 1 of the present invention. First, as shown in FIG. 1 (1), a base material having adhesive resin layers 2 and 3 having high fluidity on both surfaces of a dielectric layer 1 having high dielectric constant and low fluidity is prepared. Here, the dielectric layer 1 is a film-like molded product containing about 60 to 85% by weight of barium titanate having a dielectric constant of about 2000 and about 15 to 40% by weight of a solvent and an epoxy resin.

このフィルム状の成形物の比誘電率は、20〜60程度となる。厚さについては、ピンホール等の膜欠陥を生じない範囲でできるだけ薄いものが好ましく、5〜30μm厚のものであれば、可撓性を有することからも好適である。ただし、単体では、脆いことや引き裂きが起き易いことから、このままでは各種工程流動や基板の絶縁樹脂としての機械的特性は十分ではない。   The relative dielectric constant of the film-like molded product is about 20 to 60. The thickness is preferably as thin as possible without causing film defects such as pinholes, and a thickness of 5 to 30 μm is also preferable because it has flexibility. However, since it is fragile or torn easily by itself, various process flows and mechanical characteristics as an insulating resin of the substrate are not sufficient as it is.

誘電材料としては、上述のチタン酸バリウム以外にも、チタン酸、酸化アルミニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム等の粉末を含むものを適用できる。樹脂分については、誘電材料粉末を分散できるとともに可撓性が必要で、後のプレス工程での変形が起き難い材料としては、熱硬化性接着材が好適であり、上述のエポキシ樹脂以外にも、熱硬化ポリイミド、アクリル樹脂等、およびこれらの混合物等が適用できる。   As the dielectric material, in addition to the above-mentioned barium titanate, a material containing powders of titanic acid, aluminum oxide, strontium titanate, calcium titanate, magnesium titanate and the like can be applied. As for the resin component, a dielectric material powder can be dispersed and flexibility is required, and as a material that is difficult to be deformed in a subsequent press process, a thermosetting adhesive is suitable. Thermosetting polyimide, acrylic resin, etc., and mixtures thereof can be applied.

接着樹脂層2,3は、後の工程での電極部の充填が可能な厚み、流動性および可撓性を有することが必要である。これらのことから、エポキシ樹脂、熱可塑および熱硬化のポリイミド、アクリル樹脂、液晶ポリマー等、さらにはこれらの混合物等を適用できる。誘電体層1を変形させずに電極部を充填させる必要があることから、接着樹脂層2,3は誘電体層1よりも軟化温度が低いことも必要となる。   The adhesive resin layers 2 and 3 are required to have a thickness, fluidity and flexibility that allow filling of the electrode part in a later step. From these, epoxy resins, thermoplastic and thermosetting polyimides, acrylic resins, liquid crystal polymers, etc., and mixtures thereof can be applied. Since it is necessary to fill the electrode portion without deforming the dielectric layer 1, the adhesive resin layers 2 and 3 are also required to have a softening temperature lower than that of the dielectric layer 1.

これらの要件を満たすためには、誘電体層1は熱硬化性で、接着樹脂層2,3は熱可塑性であることが望ましい。電極部の厚みを18μmと設定したことから、接着樹脂層2,3は厚さ20μmの熱可塑樹脂である液晶ポリマーを適用した。   In order to satisfy these requirements, it is desirable that the dielectric layer 1 is thermosetting and the adhesive resin layers 2 and 3 are thermoplastic. Since the thickness of the electrode part was set to 18 μm, the adhesive resin layers 2 and 3 were made of a liquid crystal polymer which is a thermoplastic resin having a thickness of 20 μm.

接着樹脂層2,3の厚みは、電極部を充填できる厚みであるとともに、誘電材料を含む誘電体層1の機械物性を補う役目もあることから、10μmを下回ると、複層材料としての機械物性を満足しなくなる場合もある。そこで、これらの点を考慮した上で厚みを設定する必要がある。   The thickness of the adhesive resin layers 2 and 3 is sufficient to fill the electrode part, and also serves to supplement the mechanical properties of the dielectric layer 1 including the dielectric material. The physical properties may not be satisfied. Therefore, it is necessary to set the thickness in consideration of these points.

このような複層構造とすることで、誘電率が高く、流動性が低い誘電体層の両面に流動性が高い接着樹脂層を配するから、単体では脆くプリント配線板の工程流動が困難な誘電材料を、特別な装置等を用いることなく流動させることができる。   By adopting such a multilayer structure, an adhesive resin layer having high fluidity and low fluidity is disposed on both sides of the dielectric layer, so that the process flow of the printed wiring board is difficult because it is fragile by itself. The dielectric material can be flowed without using a special device or the like.

実際の誘電体層1,2,3からなる3層材料の製造においては、離形可能な金属、樹脂等のキャリア上に接着性樹脂3を塗工し、その上に誘電材料を含む誘電体層1を塗工し、さらにその上に接着性樹脂2を塗工する方法等が採用できる。   In the actual production of a three-layer material composed of dielectric layers 1, 2, and 3, a dielectric material including a dielectric material is coated on an adhesive resin 3 on a carrier such as a releasable metal or resin. A method of applying the layer 1 and further applying the adhesive resin 2 thereon can be employed.

次に図1(2)に示すように、剥離可能な金属箔4の上に電極となる金属箔5を有する基材を用意し、フォトファブリケーション手法等により電極部5aを形成する。なお、図示しないが、対向する電極部5bを金属箔4上に形成する。金属箔4は、選択エッチングにより除去可能なニッケル箔等が選択できる。樹脂材料では、接着樹脂層2,3に対する離形性の高いテフロン(登録商標)系の樹脂に、スパッタ、蒸着等および電解めっきで電極部を形成したものなどを用いることができる。   Next, as shown in FIG. 1 (2), a base material having a metal foil 5 to be an electrode on a peelable metal foil 4 is prepared, and an electrode portion 5a is formed by a photofabrication method or the like. Although not shown, opposing electrode portions 5 b are formed on the metal foil 4. The metal foil 4 can be a nickel foil or the like that can be removed by selective etching. As the resin material, it is possible to use a Teflon (registered trademark) -based resin having high releasability with respect to the adhesive resin layers 2 and 3 and having an electrode portion formed by sputtering, vapor deposition, or electrolytic plating.

その他、接着樹脂層2,3をエポキシ系またはアクリル系とし、金属箔4の代わりにポリイミド樹脂を用いることで、選択樹脂エッチングによりポリイミド樹脂が除去できる。ここでは、電極部を18μm厚の銅で形成し、金属箔4には25μm厚のニッケル箔を用いることとする。   In addition, when the adhesive resin layers 2 and 3 are made of epoxy or acrylic and polyimide resin is used instead of the metal foil 4, the polyimide resin can be removed by selective resin etching. Here, the electrode part is formed of 18 μm thick copper, and the metal foil 4 is a 25 μm thick nickel foil.

次いで図1(3)に示すように、金属箔4上に電極5a,5bが形成された基材を、誘電率が高く流動性が低い誘電体層1の両面に対向するように位置合わせして重ね合せ、流動性が高い接着樹脂層2,3を有するベース材料に熱プレスにより積層する。   Next, as shown in FIG. 1 (3), the base material on which the electrodes 5a and 5b are formed on the metal foil 4 is aligned so as to face both surfaces of the dielectric layer 1 having a high dielectric constant and low fluidity. Then, they are laminated by hot pressing on the base material having the adhesive resin layers 2 and 3 having high fluidity.

まず、面精度が確保された真空平板プレスを用い、接着樹脂層2,3が流動し、誘電体層1が接着性を発現する高温領域に昇温し、加圧する。このとき、上下熱盤の平行度を保持し、基材厚みに応じた高さ制御を行い、電極5a,5bと誘電体層1とを接着する。その後、上下熱盤の高さを保持したまま、熱可塑樹脂である接着樹脂層2,3が硬化する温度まで冷却する。   First, using a vacuum flat plate press in which surface accuracy is ensured, the adhesive resin layers 2 and 3 are flowed, and the dielectric layer 1 is heated to a high temperature region where adhesiveness is expressed and pressed. At this time, the parallelism of the upper and lower heating plates is maintained, the height is controlled according to the thickness of the base material, and the electrodes 5a and 5b and the dielectric layer 1 are bonded. Then, it cools to the temperature which the adhesive resin layers 2 and 3 which are thermoplastic resins harden | cure, maintaining the height of an up-and-down heating board.

このようなプレスを真空中で行えば、接着剤2,3は流動性が高いから電極5a,5bの周囲を充填でき、他方、誘電率が高い誘電体層1は流動性が低いので、この両面に電極5aおよび5bが空隙なく配置される。これにより、電極間距離が誘電体層1の厚みに規定される。図示しないが、対向する電極の大きさを、積層時の位置ズレを考慮して異なる大きさにしておくと、小さい面積の電極でキャパシタの静電容量が規定できる。   If such a press is performed in a vacuum, the adhesives 2 and 3 can be filled around the electrodes 5a and 5b because the fluidity is high. On the other hand, the dielectric layer 1 having a high dielectric constant has a low fluidity. Electrodes 5a and 5b are arranged on both sides without a gap. As a result, the distance between the electrodes is defined by the thickness of the dielectric layer 1. Although not shown, if the size of the opposing electrodes is set to a different size in consideration of the positional deviation at the time of stacking, the capacitance of the capacitor can be defined by an electrode having a small area.

キャパシタの設計例として、下式(1)より誘電体層1すなわち誘電体層の厚さが5μmで100mm2の電極を形成した場合の静電容量は、およそ0.005μFとなる。
C=ε0×ε×s/d (1)
ここで、C:静電容量(F)、ε0:真空の誘電率8.85×1012(F/m)、ε:比誘電率(ここでは60とする。)、s:面積(m2)、d:厚さ(m)。
As a design example of the capacitor, the capacitance when the dielectric layer 1, that is, the electrode having a thickness of 5 μm and a thickness of 100 mm 2 is formed from the following formula (1) is approximately 0.005 μF.
C = ε 0 × ε × s / d (1)
Where C: capacitance (F), ε 0 : vacuum dielectric constant 8.85 × 10 12 (F / m), ε: relative dielectric constant (here 60), s: area (m 2 ) , D: thickness (m).

このサイズであれば、基板に搭載するQFP(クワッドフラットパッケージ:ICパッケージの4辺からリードピンを引き出した表面実装部品)などのチップ部品の直下に内蔵することや、多層基板の内層であればCSPの内層側への内蔵が可能となるために高密度化の妨げにならない。   If it is this size, it is built directly under the chip parts such as QFP (quad flat package: surface mount parts with lead pins pulled out from the four sides of the IC package) mounted on the board, or CSP if it is the inner layer of the multilayer board Since it can be built in the inner layer side, it does not hinder high density.

また誘電体の厚さ、面積を変更することにより、基板上の静電容量の値を任意に制御できる。例えば、携帯電話等に用いられる高周波用小型キャパシタの静電容量は0.1-1pF程度であるから、0402チップ(サイズが0.4mm長×0.2mm幅×0.2高)以下の大きさに製造することができる。例えば、誘電体層1、すなわち誘電体層の厚さが5μm、電極の径がφ50μmの大きさで0.2pFの静電容量を得ることができる。よって、実装面積を大きく削減することができる。   Further, the capacitance value on the substrate can be arbitrarily controlled by changing the thickness and area of the dielectric. For example, the capacitance of high-frequency small capacitors used in mobile phones and the like is about 0.1-1 pF, so it can be manufactured to a size of 0402 chips (size 0.4mm long x 0.2mm wide x 0.2 high) or less. it can. For example, a dielectric layer 1, that is, a dielectric layer having a thickness of 5 μm and an electrode diameter of φ50 μm can provide a capacitance of 0.2 pF. Therefore, the mounting area can be greatly reduced.

この後、図1(4)に示すように、金属箔4のニッケル箔を選択エッチングにより除去し、キャパシタ6を得る。このような構造とすることで、脆い誘電材料を用いたキャパシタにおいても、キャパシタ以外の樹脂部に対し、機器への組み込み時に曲げる程度の可撓性を付与することもできる。   Thereafter, as shown in FIG. 1 (4), the nickel foil of the metal foil 4 is removed by selective etching to obtain a capacitor 6. By adopting such a structure, even in a capacitor using a fragile dielectric material, the resin part other than the capacitor can be given flexibility enough to bend at the time of incorporation into a device.

図示しないが、キャパシタ6を複数積層することで、基板面積を増やすことなく、さらに静電容量を増加することもできる。加えて、接着樹脂層2,3は厚さが20μmであることから、層間の絶縁性も十分確保でき、従来の誘電材料を電極で挟んだだけの構造よりも電気的特性が優れたものとなる。   Although not shown, by stacking a plurality of capacitors 6, the capacitance can be further increased without increasing the substrate area. In addition, since the adhesive resin layers 2 and 3 have a thickness of 20 μm, the insulation between the layers can be sufficiently secured, and the electrical characteristics are superior to the conventional structure in which the dielectric material is sandwiched between the electrodes. Become.

また、キャパシタの電極以外の層間にある配線パターン間の高周波特性を確保するためには、その間の絶縁樹脂層が低誘電率であることが望ましいが、接着樹脂層2,3を、例えば液晶ポリマー等の低誘電率、低誘電正接の材料で構成することで対応できる。   Also, in order to ensure high frequency characteristics between wiring patterns between layers other than the electrodes of the capacitor, it is desirable that the insulating resin layer between them has a low dielectric constant. This can be achieved by using a material having a low dielectric constant and low dielectric loss tangent such as the above.

さらに、図示しないが、キャパシタ6に対し、無電解めっき、スパッタ、蒸着等の方法により金属層を形成して、これをシード層とする、所謂、セミアディティブ手法により、キャパシタを内蔵する微細プリント配線板を構成することができる。   Further, although not shown, a fine printed wiring containing the capacitor by a so-called semi-additive method in which a metal layer is formed on the capacitor 6 by a method such as electroless plating, sputtering, or vapor deposition, and this is used as a seed layer. A board can be constructed.

このような構造とすると、接着樹脂層1,2,3が配線層間に存在するため、誘電材料単体に比べ、高い絶縁特性を確保することができる。また、キャパシタ6を内層コア基板とし、この上に銅張積層板をビルドアップすることで、キャパシタ内蔵型の多層プリント配線板とすることもできる。   With such a structure, since the adhesive resin layers 1, 2, and 3 are present between the wiring layers, it is possible to ensure high insulating characteristics as compared with the dielectric material alone. Further, by using the capacitor 6 as an inner core substrate and building up a copper-clad laminate thereon, a capacitor-embedded multilayer printed wiring board can be obtained.

(実施例2)
図2は、本発明の実施例2におけるキャパシタの製造方法を示す断面工程図である。まず、図2(1)に示すように、図1(1)に示したと同様の、誘電率が高く流動性が低い誘電体層1の両面に、流動性が高い接着樹脂層2,3を有するベース材料を用意する。
(Example 2)
FIG. 2 is a cross-sectional process diagram illustrating a method of manufacturing a capacitor in Example 2 of the present invention. First, as shown in FIG. 2 (1), adhesive resin layers 2 and 3 having high fluidity are formed on both surfaces of a dielectric layer 1 having high dielectric constant and low fluidity, as shown in FIG. 1 (1). A base material is prepared.

次に図2(2)に示すように、銅箔4a(例えば厚さ18μm)/ニッケル箔7(例えば厚さ2μm)/銅箔5(例えば厚さ18μm)の3層構造を有する金属基材を用意し、フォトファブリケーション手法における選択エッチングにより電極部5aを形成する。   Next, as shown in FIG. 2 (2), a metal substrate having a three-layer structure of copper foil 4a (for example, 18 μm thick) / nickel foil 7 (for example 2 μm thick) / copper foil 5 (for example 18 μm thick). And the electrode portion 5a is formed by selective etching in the photofabrication method.

なお、図示しないが、対向する電極部5bを銅箔4a上に形成する。電極部以外の露出したニッケル箔を選択エッチングにより除去し、後の工程での銅箔と接着材との密着強度を上げるための粗化処理を行う。   Although not shown, the opposing electrode portion 5b is formed on the copper foil 4a. The exposed nickel foil other than the electrode part is removed by selective etching, and a roughening process is performed to increase the adhesion strength between the copper foil and the adhesive in a later step.

次いで図2(3)に示すように、銅箔4a上に電極5a,5bが形成された一対の器材を、誘電率が高く、流動性が低い誘電体層1の両面に対向するように位置合わせし、流動性が高い接着樹脂層2,3を有するベース材料に熱プレスにより積層する。具体的工程は、実施例1におけるものと同様である。   Next, as shown in FIG. 2 (3), the pair of devices having the electrodes 5a and 5b formed on the copper foil 4a are positioned so as to face both surfaces of the dielectric layer 1 having a high dielectric constant and low fluidity. These are laminated together by hot pressing on the base material having the adhesive resin layers 2 and 3 having high fluidity. Specific steps are the same as those in the first embodiment.

続いて図2(4)に示すように、銅箔4aをフォトファブリケーション手法による選択エッチングにより配線パターン4bを形成する。図示のように流動性が高い接着樹脂層で脆い誘電材料を挟んだ構造とすることで、配線パターンの形成工程中の搬送等による基材へのダメージはない。このときの選択エッチングとしては、ニッケルに対し銅をエッチングする薬液を用いる。   Subsequently, as shown in FIG. 2 (4), a wiring pattern 4b is formed on the copper foil 4a by selective etching using a photofabrication technique. By using a structure in which a brittle dielectric material is sandwiched between adhesive resin layers having high fluidity as shown in the figure, there is no damage to the substrate due to conveyance or the like during the formation process of the wiring pattern. As the selective etching at this time, a chemical solution for etching copper with respect to nickel is used.

これにより、電極部5a,5bにダメージを与えることなく、配線パターン4bを形成できる。必要に応じて、ニッケル箔を選択エッチングにより除去し、キャパシタを内蔵した両面プリント配線板8を得る。   Thereby, the wiring pattern 4b can be formed without damaging the electrode portions 5a and 5b. If necessary, the nickel foil is removed by selective etching to obtain a double-sided printed wiring board 8 incorporating a capacitor.

このような構造とすることで、脆い誘電材料を用いたキャパシタにおいても、キ
ャパシタ以外の樹脂部に対し、機器への組み込み時に曲げる程度の可撓性を付与することができる。このため、ケーブル部を有する可撓性プリント配線板とすることができる。加えて、接着樹脂層2,3は厚さ20μmであることから、層間の絶縁性も十分確保でき、従来の誘電材料を電極で挟んだだけの構造よりも電気的に優れたものとなる。
By adopting such a structure, even in a capacitor using a fragile dielectric material, it is possible to impart flexibility enough to bend the resin portion other than the capacitor when it is incorporated into a device. For this reason, it can be set as the flexible printed wiring board which has a cable part. In addition, since the adhesive resin layers 2 and 3 have a thickness of 20 μm, sufficient insulation between the layers can be secured, which is electrically superior to a conventional structure in which a dielectric material is simply sandwiched between electrodes.

なお、層間接続については、例えば、図2(3)の積層後にNCドリル等で所望の箇所に導通用孔を形成し、導電化処理を含むスルーホールのめっき処理により行うことができる。その他、図2(4)の両面に配線パターンを形成した後に、NCドリル等で所望の箇所に導通用孔を形成し、部分めっきを行ってもよい。   The interlayer connection can be performed, for example, by forming a conduction hole at a desired location with an NC drill or the like after stacking in FIG. In addition, after forming a wiring pattern on both surfaces of FIG. 2 (4), a conductive hole may be formed at a desired location with an NC drill or the like, and partial plating may be performed.

さらに、キャパシタを内蔵した両面プリント配線板8をコア基板とし、ビルドアップ層を積層した後に、NCドリル等で所望の箇所に導通用孔を形成し、導電化処理を含むスルーホールのめっき処理により行うことができる。このとき、表層から電極あるいは内層回路にビアホール接続を行うこともできる。   Furthermore, a double-sided printed wiring board 8 with a built-in capacitor is used as a core substrate, a build-up layer is laminated, a conduction hole is formed at a desired location with an NC drill or the like, and through-hole plating processing including conductive treatment is performed. It can be carried out. At this time, via-hole connection can also be made from the surface layer to the electrode or the inner layer circuit.

(実施例3)
図3は、本発明の実施例3におけるキャパシタの製造方法を示す断面工程図である。まず、図3(1)に示すように、図1(1)に示した誘電率が高く、流動性が低い誘電体層1の両面に、流動性が高い接着樹脂層2,3を有するベース材料を用意する。
(Example 3)
FIG. 3 is a cross-sectional process diagram illustrating a method for manufacturing a capacitor in Example 3 of the present invention. First, as shown in FIG. 3 (1), a base having adhesive resin layers 2 and 3 having high fluidity on both surfaces of the dielectric layer 1 having high dielectric constant and low fluidity shown in FIG. 1 (1). Prepare the materials.

次に、図3(2)に示すように、厚さ25μmのポリイミドフィルム9の両面に銅箔10および11を有する、所謂、両面銅張積層板を用意し、フォトファブリケーション手法による選択エッチングにより電極部10aを形成する。なお、図示しないが、対向する電極部10bをポリイミドフィルム9上に形成する。そして、後の工程での銅箔と接着材との密着強度を上げるための粗化処理を行う。   Next, as shown in FIG. 3 (2), a so-called double-sided copper-clad laminate having copper foils 10 and 11 on both sides of a polyimide film 9 having a thickness of 25 μm is prepared and selectively etched by a photofabrication technique. The electrode part 10a is formed. Although not shown, the opposing electrode portion 10 b is formed on the polyimide film 9. And the roughening process for raising the adhesive strength of copper foil and an adhesive material in a later process is performed.

次いで、図3(3)に示すように、ポリイミドフィルム9上に、電極10a,10bを形成した基材を誘電率が高く、流動性が低い誘電体層1の両面に対向するように位置合わせし、流動性が高い接着樹脂層2,3を有するベース材料に熱プレスにより積層する。具体的工程は、実施例1,2におけるものと同様である。   Next, as shown in FIG. 3 (3), the base material on which the electrodes 10a and 10b are formed on the polyimide film 9 is aligned so as to face both surfaces of the dielectric layer 1 having a high dielectric constant and low fluidity. Then, it is laminated by hot pressing on the base material having the adhesive resin layers 2 and 3 having high fluidity. The specific process is the same as that in Examples 1 and 2.

次に図3(4)に示すように、銅箔11をフォトファブリケーション手法による選択エッチングにより配線パターン11aを形成する。なお、層間接続については、例えば、図3(3)の積層後にNCドリル等で所望の箇所に導通用孔を形成し、導電化処理を含むスルーホールめっき処理により行うことができる。   Next, as shown in FIG. 3 (4), a wiring pattern 11a is formed on the copper foil 11 by selective etching using a photofabrication technique. Note that the interlayer connection can be performed, for example, by forming a conduction hole at a desired location with an NC drill or the like after stacking in FIG.

この後、必要に応じて、基板表面に、半田めっき、ニッケルめっき、金めっき等の表面処理を施し、フォトソルダーレジスト層の形成、ケーブルの外層側へのシールド層を銀ペースト、フィルム等を用いて形成し、外形加工を行うことで外層にケーブル部12を有する多層プリント配線基板13を得る。   Then, if necessary, surface treatment such as solder plating, nickel plating, gold plating, etc. is performed on the surface of the board, formation of a photo solder resist layer, and a shield layer on the outer layer side of the cable using silver paste, film, etc. The multilayer printed wiring board 13 having the cable portion 12 in the outer layer is obtained by performing the outer shape processing.

本発明の実施例1を示す概念的断面構成図。1 is a conceptual cross-sectional configuration diagram illustrating Example 1 of the present invention. 本発明の実施例2を示す概念的断面構成図。The conceptual cross-sectional block diagram which shows Example 2 of this invention. 本発明の実施例3を示す概念的断面構成図。The conceptual cross-sectional block diagram which shows Example 3 of this invention. 従来工法によるキャパシタを内蔵した両面プリント配線板の製造方法の概念的断面構成図。The conceptual cross-sectional block diagram of the manufacturing method of the double-sided printed wiring board which incorporated the capacitor by the conventional construction method.

符号の説明Explanation of symbols

1 誘電率が高く、流動性が低い誘電体層
2,3 流動性が高い接着樹脂層
4 除去可能な金属箔または可撓性樹脂フィルム
5 電極部となる金属箔
5a 第1の電極部
5b 第2の電極部
6 本発明によるキャパシタ
7 ニッケル箔
8 本発明によるキャパシタを内蔵した両面プリント配線板
9 銅箔
10a 第1の電極部
10b 第2の電極部
11 銅箔
12 ケーブル部
13 本発明によるキャパシタを内蔵したケーブル部を有する多層プリント配線板
21 誘電材料
22,23 銅箔
DESCRIPTION OF SYMBOLS 1 Dielectric layer 2 with high dielectric constant and low fluidity Adhesive resin layer 4 with high fluidity 4 Metal foil or flexible resin film 5 which can be removed Metal foil 5a used as an electrode part First electrode part 5b First 2 Electrode part 6 Capacitor according to the present invention 7 Nickel foil 8 Double-sided printed wiring board 9 incorporating the capacitor according to the present invention Copper foil 10a First electrode part 10b Second electrode part 11 Copper foil 12 Cable part 13 Capacitor according to the present invention Multilayer printed wiring board 21 having a cable portion with a built-in dielectric material 22, 23 copper foil

Claims (3)

誘電体層の両面に電極が接着されてなるキャパシタを、プリント配線板に内蔵して構成
するキャパシタ内蔵型プリント配線板の製造方法において、
誘電率が高く、前記誘電体層に前記電極を接着するためのプレスにおける所定の圧力お
よび温度では実質的な変形を生じない材料により構成され、接着性の両面を有する誘電体層と、前記電極の周囲を充填するための接着樹脂層とを有するキャパシタ用接着シートを用意し、
剥離除去可能な金属箔または可撓性樹脂フィルムの上に前記電極を形成した金属基材を
2枚用意し、
前記金属基材の前記電極側の面を前記キャパシタ用接着シートに向けて前記電極が対向
するように重ね合せ、
昇温および加圧により対向した前記電極と前記誘電体層とを接着して前記電極が前記接
着樹脂層に埋設された状態で前記誘電体層の表面に対向電極を形成し、
前記キャパシタの形成後に前記金属箔または前記可撓性樹脂フィルムを剥離除去し、
前記金属箔または前記可撓性樹脂フィルムを剥離除去した面に、シード層となる金属層を形成し、セミアディティブ法により配線パターンを形成する
ことを特徴とするキャパシタ内蔵型プリント配線板の製造方法。
In the method of manufacturing a capacitor - embedded printed wiring board, in which a capacitor having electrodes bonded to both surfaces of a dielectric layer is built in the printed wiring board ,
A dielectric layer having a high dielectric constant and made of a material that does not substantially deform at a predetermined pressure and temperature in a press for bonding the electrode to the dielectric layer, and has both adhesive surfaces; and the electrode Prepare an adhesive sheet for capacitors having an adhesive resin layer for filling the periphery of
A metal substrate in which the electrode is formed on a metal foil or a flexible resin film that can be peeled and removed.
Prepare two,
The electrodes face each other with the electrode-side surface of the metal substrate facing the adhesive sheet for capacitors.
To overlap,
The electrode and the dielectric layer opposed to each other by heating and pressurization are bonded to each other so that the electrode
Forming a counter electrode on the surface of the dielectric layer in a state of being embedded in the resin layer;
After the capacitor is formed, the metal foil or the flexible resin film is peeled and removed,
A metal layer to be a seed layer is formed on the surface from which the metal foil or the flexible resin film is peeled and removed, and a wiring pattern is formed by a semi-additive method.
A method of manufacturing a printed wiring board with a built-in capacitor.
誘電体層の両面に電極が接着されてなるキャパシタを、プリント配線板に内蔵して構成
するキャパシタ内蔵型プリント配線板の製造方法において、
誘電率が高く、前記誘電体層に前記電極を接着するためのプレスにおける所定の圧力お
よび温度では実質的な変形を生じない材料により構成され、接着性の両面を有する誘電体層と、前記電極の周囲を充填するための接着樹脂層とを有するキャパシタ用接着シートを用意し、
同種の金属による第1の導電層および第2の導電層、ならびにこれら両導電層の間に異種金属層を有する金属箔を用意し、
前記第1の導電層に前記異種金属層に対する選択エッチングによりキャパシタの電極を含む回路配線パターンを形成した金属基材を2枚用意し、
前記金属基材の前記電極側の面を前記キャパシタ用接着シートに向けて前記電極が対向
するように重ね合せ、
前記プレスにより対向した前記電極と前記誘電体層とを接着し前記電極を前記接着樹脂
層に埋設させて前記誘電体層の表面に対向電極を形成し、
前記キャパシタの形成後に前記第2の導電層を選択エッチングして配線パターンを形成する
ことを特徴とするキャパシタ内蔵型プリント配線板の製造方法。
In the method of manufacturing a capacitor-embedded printed wiring board, in which a capacitor having electrodes bonded to both surfaces of a dielectric layer is built in the printed wiring board,
A dielectric layer having a high dielectric constant and made of a material that does not substantially deform at a predetermined pressure and temperature in a press for bonding the electrode to the dielectric layer, and has both adhesive surfaces; and the electrode Prepare an adhesive sheet for capacitors having an adhesive resin layer for filling the periphery of
Preparing a first conductive layer and a second conductive layer of the same kind of metal, and a metal foil having a dissimilar metal layer between the two conductive layers;
Two metal base materials on which a circuit wiring pattern including a capacitor electrode is formed by selective etching with respect to the different metal layer in the first conductive layer are prepared,
The electrode-side surface of the metal substrate is overlaid so that the electrode faces the adhesive sheet for capacitors,
Bonding the electrode and the dielectric layer facing each other by the press, and burying the electrode in the adhesive resin layer to form a counter electrode on the surface of the dielectric layer,
A method of manufacturing a printed wiring board with a built-in capacitor, wherein after the capacitor is formed, the second conductive layer is selectively etched to form a wiring pattern .
請求項1または2記載のキャパシタ内蔵型プリント配線板の製造方法において、In the manufacturing method of the printed wiring board with a built-in capacitor according to claim 1 or 2,
前記電極の周囲を充填するための接着剤樹脂層は、液晶ポリマーであることを特徴とするキャパシタ内蔵型プリント配線板の製造方法。The method for manufacturing a printed wiring board with a built-in capacitor, wherein the adhesive resin layer for filling the periphery of the electrode is a liquid crystal polymer.
JP2006338480A 2006-12-15 2006-12-15 Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same Active JP4503583B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006338480A JP4503583B2 (en) 2006-12-15 2006-12-15 Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same
TW096141701A TWI455662B (en) 2006-12-15 2007-11-05 A method for manufacturing a capacitor-type printed wiring board, and a method for manufacturing the capacitor-type printed wiring board
KR1020070130915A KR20080055728A (en) 2006-12-15 2007-12-14 Adhesive sheet for capacitor and method for manufacturing printed circuit board having embedded capacitor using the same
CN2007103009309A CN101207971B (en) 2006-12-15 2007-12-14 Bonding sheet for capacitor and method for manufacturing capacitor built-in printing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338480A JP4503583B2 (en) 2006-12-15 2006-12-15 Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same

Publications (2)

Publication Number Publication Date
JP2008153360A JP2008153360A (en) 2008-07-03
JP4503583B2 true JP4503583B2 (en) 2010-07-14

Family

ID=39567741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338480A Active JP4503583B2 (en) 2006-12-15 2006-12-15 Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same

Country Status (4)

Country Link
JP (1) JP4503583B2 (en)
KR (1) KR20080055728A (en)
CN (1) CN101207971B (en)
TW (1) TWI455662B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10817096B2 (en) 2014-02-06 2020-10-27 Apple Inc. Force sensor incorporated into display
US10386970B2 (en) 2013-02-08 2019-08-20 Apple Inc. Force determination based on capacitive sensing
US9671889B1 (en) 2013-07-25 2017-06-06 Apple Inc. Input member with capacitive sensor
AU2015217268B2 (en) 2014-02-12 2018-03-01 Apple Inc. Force determination employing sheet sensor and capacitive array
US10006937B2 (en) * 2015-03-06 2018-06-26 Apple Inc. Capacitive sensors for electronic devices and methods of forming the same
US10007343B2 (en) 2016-03-31 2018-06-26 Apple Inc. Force sensor in an input device
US10866683B2 (en) 2018-08-27 2020-12-15 Apple Inc. Force or touch sensing on a mobile device using capacitive or pressure sensing
CN113985773B (en) * 2021-10-27 2024-01-30 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Control system and method for substrate lamination, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305365A (en) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp Multilayer printed wiring board and manufacturing method therefor
JP2004214433A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Printed wiring board, method for manufacturing the same and semiconductor device
WO2004089049A1 (en) * 2003-03-28 2004-10-14 Tdk Corporation Multilayer substrate and method for producing same
JP2006310543A (en) * 2005-04-28 2006-11-09 Ngk Spark Plug Co Ltd Wiring board and its production process, wiring board with semiconductor circuit element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119630B2 (en) * 1998-09-18 2000-12-25 日本電気株式会社 Multilayer circuit board for semiconductor chip module and method of manufacturing the same
US20040099367A1 (en) * 2000-06-15 2004-05-27 Shigeo Nakamura Adhesive film and method for manufacturing multilayer printed wiring board comprising the same
TW511415B (en) * 2001-01-19 2002-11-21 Matsushita Electric Ind Co Ltd Component built-in module and its manufacturing method
JP3816508B2 (en) * 2004-11-04 2006-08-30 三井金属鉱業株式会社 Capacitor layer forming material and printed wiring board with built-in capacitor layer obtained using the capacitor layer forming material
US7541265B2 (en) * 2005-01-10 2009-06-02 Endicott Interconnect Technologies, Inc. Capacitor material for use in circuitized substrates, circuitized substrate utilizing same, method of making said circuitized substrate, and information handling system utilizing said circuitized substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305365A (en) * 2001-04-05 2002-10-18 Mitsubishi Electric Corp Multilayer printed wiring board and manufacturing method therefor
JP2004214433A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Printed wiring board, method for manufacturing the same and semiconductor device
WO2004089049A1 (en) * 2003-03-28 2004-10-14 Tdk Corporation Multilayer substrate and method for producing same
JP2006310543A (en) * 2005-04-28 2006-11-09 Ngk Spark Plug Co Ltd Wiring board and its production process, wiring board with semiconductor circuit element

Also Published As

Publication number Publication date
JP2008153360A (en) 2008-07-03
TWI455662B (en) 2014-10-01
CN101207971A (en) 2008-06-25
TW200833190A (en) 2008-08-01
CN101207971B (en) 2011-07-06
KR20080055728A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4503583B2 (en) Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same
JP4881460B2 (en) Electronic component built-in multilayer board
JP3051700B2 (en) Method of manufacturing multilayer wiring board with built-in element
JP2010114434A (en) Component built-in wiring board and method of manufacturing the same
JP2013074178A (en) Method for manufacturing wiring board with built-in component
KR20070048802A (en) Passive device structure
US11553599B2 (en) Component carrier comprising pillars on a coreless substrate
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
JP2002204049A (en) Transfer material and its manufacturing method as well as wiring board manufactured by using the same
KR20090105661A (en) Multilayer printed circuit board and a fabricating method of the same
CN108934122B (en) Printed circuit board with built-in electronic component
US7728234B2 (en) Coreless thin substrate with embedded circuits in dielectric layers and method for manufacturing the same
JP2004007006A (en) Multilayer wiring board
JP4207517B2 (en) Embedded substrate
JP4407702B2 (en) Front and back conductive substrate manufacturing method and front and back conductive substrate
TW200845843A (en) Method for manufacturing printed circuit board with built-in capacitor
JP2001144212A (en) Semiconductor chip
JP2010278379A (en) Wiring board and method of manufacturing the same
JP2005038918A (en) Multilayer flexible printed wiring board and its production
JP2019067864A (en) Method for manufacturing printed wiring board
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JPH10107445A (en) Multi-layered wiring board and manufacture thereof
JPH11103165A (en) Multilayered wiring board and its manufacture
JP2001077536A (en) Printed wiring board with built-in electronic circuit board, and manufacture thereof
JP2006310543A (en) Wiring board and its production process, wiring board with semiconductor circuit element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250