JP4496397B2 - 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品 - Google Patents

薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品 Download PDF

Info

Publication number
JP4496397B2
JP4496397B2 JP2004366922A JP2004366922A JP4496397B2 JP 4496397 B2 JP4496397 B2 JP 4496397B2 JP 2004366922 A JP2004366922 A JP 2004366922A JP 2004366922 A JP2004366922 A JP 2004366922A JP 4496397 B2 JP4496397 B2 JP 4496397B2
Authority
JP
Japan
Prior art keywords
resin
olefin
container
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004366922A
Other languages
English (en)
Other versions
JP2006169450A (ja
Inventor
美都繁 濱口
大 秋田
英夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toyota Motor Corp
Toyoda Gosei Co Ltd
FTS Co Ltd
Original Assignee
Toray Industries Inc
Toyota Motor Corp
Toyoda Gosei Co Ltd
FTS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toyota Motor Corp, Toyoda Gosei Co Ltd, FTS Co Ltd filed Critical Toray Industries Inc
Priority to JP2004366922A priority Critical patent/JP4496397B2/ja
Publication of JP2006169450A publication Critical patent/JP2006169450A/ja
Application granted granted Critical
Publication of JP4496397B2 publication Critical patent/JP4496397B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、機械的性質、特に−40℃もの低温雰囲気下で優れた柔軟性及び耐衝撃性を有し、かつ薬液および/またはガスの耐透過性、薬液および/またはガス接触時の寸法安定性、成形性に優れた薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品に関するものである。特に、ポリエステル樹脂と特定のオレフィン系樹脂およびポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂からなる樹脂組成物を成形して得られる特異的な低温衝撃性、耐透過性、寸法安定性、成形加工性を有する薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品への適用に好適な樹脂成形品に関するものである。
ガソリンタンク、ホース、バルブ等の樹脂製自動車用燃料系部品は、従来、耐低温衝撃性および耐薬品性に優れ、かつ、低コストである高密度ポリエチレン(以下HDPEと略す)が適用されてきた。しかし、HDPEは、燃料透過性が大きいという問題があり、環境規制の一環として燃料の飛散抑制が求められている。
最近では、燃料透過性に優れる材料としてポリアミド樹脂等の材料も検討されているが、HDPEに比べて耐衝撃性に劣り、アルコール入り燃料に対しては耐透過性が低下する問題がある。アルコール入り燃料に対する耐透過性に優れる材料として、液晶性樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂(以下PPS樹脂と略す)、ポリアセタール樹脂などが挙げられるが、靭性、耐低温衝撃性に劣るという欠点を有していた。
これら樹脂の耐衝撃性改良には、従来から多くの改善方法が提案されているが、
なかでも、特許文献1では、PPS樹脂とオレフィン系樹脂により、耐燃料透過性と耐衝撃性に優れる燃料系部品が開示されている。しかしながら、PPS樹脂や液晶性樹脂は、HDPEに比べて材料コストが高く、得られる部品の経済性が不十分である。
一方、ポリエチレンテレフタレートやポリブチレンテレフタレートに代表されるポリエステル樹脂はその優れた特性から各種電気・電子部品、機械部品および自動車部品などに使用されている。
しかし、ポリエステル樹脂は、耐衝撃性が劣る。このため従来から多くの改善方法が提案されており、それらのなかでもα−オレフィンおよびα,β−不飽和酸グリシジルエステルなどのモノマーからなる共重合体をブレンドする方法などが多用されている。しかしながら、これら方法により得られた成形品は室温付近では良好な耐衝撃性を示すが、特に−40℃程度の低温雰囲気下ではHDPE並の耐衝撃性は得られず、大幅に低下するという問題がある。
これに対して従来、特定のグリシジル基含有オレフィン系共重合体およびエチレン・α−オレフィン系共重合体を配合する方法(例えば、特許文献2、3参照)、特定ポリエステル樹脂にエチレン・酢酸ビニル系共重合体を配合する方法(例えば、特許文献4参照)、酸無水物基を有する耐衝撃性成分と特定のグリシジル基含有オレフィン系共重合体を配合する方法により低温での耐衝撃性を改善する手段(例えば、特許文献5参照)が提案されている。
特開2002−226707号公報(請求項1) 特公昭63−4566号公報(特許請求の範囲) 特開2002−206052号公報(請求項1) 特許第3174339号公報(請求項1) 特開2002−234992号公報(請求項1)
しかしながら、これら従来に提案されている方法では、特に−40℃の低温雰囲気下でHDPE並の500J/m以上の耐衝撃性を有するような組成物までは得られていない。したがって、これらの組成物を用いて薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品を製造した場合には、低温での耐衝撃性が低いため極寒地での使用が制限され、汎用製品として実用的なものとならない。そこで、より高度な低温特性を満足し、かつ経済的にも有利な材料による薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品の開発が求められている。本発明は、従来の材料より優れた低温雰囲気下での優れた柔軟性及び耐衝撃性を有し、かつ耐透過性、寸法安定性、成形加工性にも優れる樹脂組成物を成形することにより、極寒地においても使用でき、かつコストが低く、汎用品として使用できる薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品を提供することを課題とするものである。
本発明者らは上記の課題を解決すべく検討した結果、ポリエステル樹脂と特定のオレフィン系樹脂、さらにポリフェニレンスルフィド樹脂およびポリエーテルイミド樹脂からなる特定の樹脂組成物を加工して得られる成形品において特定のモルホロジーを形成することにより上記課題が解決され、さらに成形加工性等に著しい効果を得られることを見出し本発明に到達した。
すなわち、本発明は、次の各項からなる。
(1)ポリエステル樹脂(a)60〜95重量%と、
オレフィン系樹脂(b)5〜40重量%とからなる樹脂組成物100重量部に対して、
ポリフェニレンスルフィド樹脂(c)0.5〜30重量部および
ポリエーテルイミド樹脂(d)0.5〜30重量部を含有し、
前記(b)オレフィン系樹脂が
カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基およびエポキシ基の群から選ばれる少なくとも一種の官能基を有する官能基含有オレフィン共重合体(b−1)と
エチレンと炭素数3〜20のα−オレフィンとを共重合して得られるエチレン/α−オレフィン共重合体(b−2)からなり、
かつ、ポリエステル樹脂(a)が連続相を形成し、
オレフィン系樹脂(b)、ポリフェニレンスルフィド樹脂(c)およびポリエーテルイミド樹脂(d)が分散相を形成することを特徴とする
薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
(2)オレフィン系樹脂(b)が平均粒子径0.01〜2μmでポリエステル連続相中に分散していることを特徴とする前記(1)記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
(3)ポリフェニレンスルフィド樹脂(c)が平均粒子径1〜200nmでポリエステル連続相中に分散していることを特徴とする前記(1)または(2)に記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
(4)(b−1)官能基含有オレフィン共重合体がα−オレフィンとα,β−不飽和カルボン酸グリシジルエステルの共重合体である前記(1)〜(3)のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
(5)前記ポリエステル樹脂(a)が、ポリエチレンテレフタレートであることを特徴とする前記(1)〜(4)のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
(6)温度−40℃においてASTM−D638に従って測定した引張り破断伸度が20〜400%であり、ASTM−D256に従って測定したアイゾット衝撃強度が500〜2000J/mである前記樹脂組成物を成形してなることを特徴とする前記(1)〜(5)のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
を提供するものである。
本発明によれば、機械的性質、特に−40℃もの低温雰囲気下で優れた柔軟性および耐衝撃性を有し、かつ耐久性、耐薬品性を有し、かつ薬液および/またはガスの耐透過性や成形性にも優れた薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品が得られる。
以下、本発明の実施の形態を詳細に説明する。
本発明で使用するポリエステル樹脂(a)とは、主鎖中にエステル結合を有する重合体である。好適には芳香環を重合体の連鎖単位に有する熱可塑性のポリエステルが挙げられる。具体的には通常、芳香族ジカルボン酸(あるいはそのエステル形成性誘導体)とジオール(あるいはそのエステル形成性誘導体)および/またはヒドロキシカルボン酸とを主成分とし、縮合反応により得られる重合体ないしは共重合体が挙げられる。
芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルトフタル酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’−ジフェニルジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸およびそのエステル形成性誘導体が挙げられる。これらの芳香族ジカルボン酸は2種以上併用することもできる。またアジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸およびそのエステル形成性誘導体を併用することもできる。
またジオールとしては炭素数2〜20の脂肪族ジオール、すなわちエチレングリコール、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオールなど、およびそれらのエステル形成性誘導体が挙げられる。これらのジオールは2種以上併用することもできる。
本発明において好ましく用いられるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリへキシレンテレフタレートなどのポリアルキレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレート、ポリブチレン−2,6−ナフタレンジカルボキシレート、ポリエチレン−1,2−ビス(フェノキシ)エタン−4,4’−ジカルボキシレートのほか、ポリエチレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリ(エチレンテレフタレート/シクロヘキサンジメチレンテレフタレート)、ポリエチレン−4,4’−ジカルボキシレート/テレフタレートなどの非液晶性ポリエステルおよびこれらの混合物が挙げられる。より好ましいものとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、および、ポリエチレン−2,6−ナフタレンジカルボキシレートが挙げられ、特に好ましくはポリエチレンテレフタレートである。これらのポリエステル樹脂は成形性、耐熱性、靱性、表面性などの必要特性に応じて、混合物として用いることも実用上好適である。
本発明で使用するポリエステル樹脂(a)の製造方法は、特に制限がなく、従来公知の直接重合法またはエステル交換法によって製造される。
これらポリエステル樹脂の重合度には制限はないが、例えば0.5%のo−クロロフェノール溶液中、25℃で測定した固有粘度が、0.35〜2.00の範囲が好ましく、0.50〜1.50の範囲がより好ましい。
また、本発明で用いられるポリエステル樹脂(a)は、m−クレゾール溶液をアルカリ溶液で電位差滴定して求めた、ポリマー1トン当りのカルボキシル末端基量が5〜40eq/tであることが好ましい。カルボキシル末端基量は、好ましくは10〜40eq/tである。カルボキシル末端基量が5eq/tより小さいと低温特性が低下する傾向にあり、また、40eq/tより多いと耐加水分解性が低下する傾向にあるため好ましくない。
次に本発明で用いるオレフィン系樹脂(b)は、少なくとも一種の官能基を有する官能基含有オレフィン共重合体(b−1)およびエチレンと炭素数3〜20のα−オレフィンとを共重合して得られるエチレン/α−オレフィン共重合体(b−2)を併用するものである。
ここで、本発明で用いる少なくとも一種の官能基を有する官能基含有オレフィン共重合体(b−1)とは、分子内に、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基およびエポキシ基のうちから選ばれる少なくとも一種の官能基を有するオレフィン共重合体である。ここで官能基を有するオレフィン共重合体は、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基およびエポキシ基のうちから選ばれる少なくとも一種の官能基を有する単量体成分をオレフィン共重合体に導入することで得ることができる。
オレフィン共重合体に官能基を導入するための官能基を有する単量体成分は、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、およびエポキシ基などを含有する化合物であり、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸などの不飽和カルボン酸、またはこれらのカルボン酸無水物あるいはカルボン酸エステルなどが挙げられる。具体的な化合物の例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸無水物、マレイン酸ジメチル、マレイン酸モノメチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタル酸ジメチル、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸ジメチル、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸プロピル、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル、メタクリル酸アミノエチルおよびメタクリル酸アミノプロピルなどが挙げられる。
これら官能基を有する単量体成分を導入する方法は特に制限なく、前記官能基を有する単量体成分をエチレンおよびα−オレフィンから選ばれる少なくとも一種のオレフィンとともに共重合せしめる方法、オレフィン系重合体にグラフト導入するなどの方法を用いることができる。
共重合する際に用いられるエチレンおよびα−オレフィンから選ばれる少なくとも一種のオレフィンとしては、エチレンおよび炭素数が3〜20のα−オレフィンが好ましく、具体的には、エチレンの他、プロピレン、1−ブテン、2−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4,4−ジメチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどのオレフィンが挙げられる。中でも、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテンから選ばれる1種以上のオレフィンが好ましい。
オレフィン系重合体にグラフト導入する際のオレフィン系重合体としては、具体的には、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、エチレン/ブテン−1共重合体、エチレン/ヘキセン−1共重合体、エチレン/プロピレン/ジシクロペンタジエン共重合体、エチレン/プロピレン/5−エチリデン−2−ノルボルネン共重合体、未水添または水添スチレン/イソプレン/スチレントリブロック共重合体、未水添または水添スチレン/ブタジエン/スチレントリブロック共重合体などを挙げることができる。
また官能基を有する単量体成分をオレフィン系重合体にグラフト導入する場合は、ラジカル開始剤の存在下で行うことによりグラフト反応効率が高くなるため好ましい。ここで用いられるラジカル開始剤としては、有機過酸化物あるいはアゾ化合物などを挙げることができ、具体的には、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、1,1−ビス(t−ブチルパーオキシ)バラレート、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイドおよび2,4−ジクロロベンゾイルパーオキサイドおよびm−トルイルパーオキサイドなどを挙げることができる。また、アゾ化合物としてはアゾイソブチロニトリルおよびジメチルアゾイソブチロニトリルなどが挙げられる。
上記のようなグラフト反応の反応条件については、特に制限はないが、オレフィン系重合体が溶融した状態で行うことが好ましく、この場合には通常オレフィン系重合体の融点以上で反応させる。すなわち、前記オレフィン共重合体の融点以上の温度、具体的には通常は80〜300℃、好ましくは80〜260℃の範囲でグラフト重合反応を行う。
また、カルボン酸金属塩基を有するオレフィン共重合体は、上記のように導入したカルボン酸の一部または全部を金属塩化したものである。カルボン酸金属塩基における金属種については特に制限はないが、Li、Na、K、Mg、Ca、Sr、Baなどのアルカリ金属またはアルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cdなどが用いられる。特にZnが好ましく用いられる。
官能基を含有する単量体成分の導入量は官能基含有オレフィン共重合体全体(b−1)に対して0.001〜40モル%が好ましく、0.01〜35モル%がより好ましい。
本発明の官能基含有オレフィン共重合体(b−1)としてはエポキシ基を含有するオレフィン共重合体が好ましい。エポキシ基を含有するオレフィン共重合体は、分子内に少なくとも一つエポキシ基をもつオレフィン共重合体である。好ましくは、エチレンおよび/またはα−オレフィンとα,β−不飽和カルボン酸のグリシジルエステルを共重合成分とするオレフィン共重合体である。また、これら共重合体にはさらに、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのα,β−不飽和カルボン酸およびそのアルキルエステル等を共重合することも可能である。
本発明においては特にエチレンとα,β−不飽和カルボン酸のグリシジルエステルを共重合成分とするオレフィン共重合体の使用が好ましく、中でも、エチレン60〜99重量%とα,β−不飽和カルボン酸のグリシジルエステル1〜40重量%を共重合成分とするオレフィン共重合体が特に好ましい。上記α,β−不飽和カルボン酸のグリシジルエステルとしては、
Figure 0004496397
(Rは水素原子または低級アルキル基を示す)で示される化合物であり、具体的にはアクリル酸グリシジル、メタクリル酸グリシジルおよびエタクリル酸グリシジルなどが挙げられるが、中でもメタクリル酸グリシジルが好ましく使用される。
エチレンおよび/またはα−オレフィンとα,β−不飽和カルボン酸のグリシジルエステルを必須共重合成分とするオレフィン共重合体の具体例としては、エチレン/プロピレン/メタクリル酸グリシジル共重合体、エチレン/ブテン−1/メタクリル酸グリシジル共重合体、エチレン/アクリル酸グリシジル共重合体、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体が挙げられる。中でも、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体が好ましく用いられる。
また、本発明で用いるエチレンと炭素数3〜20のα−オレフィンからなるエチレン/α−オレフィン共重合体(b−2)は、エチレンおよび炭素数3〜20を有する一種以上のα−オレフィンを構成成分とする共重合体である。上記の炭素数3〜20のα−オレフィンとして、具体的にはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンおよびこれらの組み合わせが挙げられる。これらα−オレフィンの中でも炭素数6から12であるα−オレフィンを用いた共重合体が衝撃強度の向上、改質効果の一層の向上が見られるためより好ましい。
本発明に用いるオレフィン系樹脂(b)のメルトフローレート(以下MFRと略す。:ASTM D 1238、190℃、2160g荷重にて測定)は0.01〜70g/10分であることが好ましく、さらに好ましくは0.03〜60g/10分である。MFRが0.01g/10分未満の場合は流動性が悪く、70g/10分を超える場合は成形品の形状によっては衝撃強度が低くなる場合もあるので注意が必要である。
本発明に用いる(b)オレフィン系樹脂の製造方法については、特に制限はなく、ラジカル重合、チーグラー・ナッタ触媒を用いた配位重合、アニオン重合、メタロセン触媒を用いた配位重合など、いずれの方法でも用いることができる。
本発明の(a)ポリエステル樹脂と(b)オレフィン系樹脂の配合割合は、ポリエステル樹脂60〜95重量%、オレフィン系樹脂5〜40重量%であり、好ましくは、ポリエステル樹脂70〜85重量%、オレフィン系樹脂15〜30重量%である。オレフィン系樹脂が5重量%より小さすぎると、柔軟性および耐衝撃性の改良効果が得にくく、逆に、40重量%より多すぎると、ポリエステル樹脂本来の熱安定性および耐薬品性が損なわれるばかりでなく、溶融混練時の増粘が大きくなるため、好ましくない。
さらに、本発明において、官能基含有オレフィン共重合体(b−1)とエチレン/α−オレフィン共重合体(b−2)の割合は、両者の合計に対し、(b−1)成分が5〜40重量%、(b−2)成分が60〜95重量%であることが好ましく、より好ましくは(b−1)成分が10〜30重量%、(b−2)成分が70〜90重量%である。(b−1)成分が、5重量%より小さすぎると低温特性が得られにくい傾向にあり、また、40重量%より多すぎると溶融混練時の増粘が大きくなり流動性が悪化する傾向にある。また、(b−2)成分が60重量%より小さすぎると低温特性が得られにくい傾向にあり、95重量%より大きすぎると耐薬品性が低下する傾向にある。
本発明においては、低温時の靱性および耐衝撃性を損なわず、さらに耐加水分解性、耐薬品性の改良などの特性を付与する点から、ポリフェニレンスルフィド樹脂(以下PPS樹脂と略す)(c)およびポリエーテルイミド樹脂(d)を含有せしめることが必要である。
本発明に用いるPPS樹脂(c)としては、下記構造式で示される繰り返し単位を有する重合体を用いることができる。
Figure 0004496397
耐熱性の観点からは前記構造式で示される繰り返し単位を70モル%以上、さらには90モル%以上含む重合体が好ましい。またPPS樹脂はその繰り返し単位の30モル%未満程度が、下記のいずれかの構造を有する繰り返し単位等で構成されていてもよい。なかでもp−フェニレンスルフィド/m−フェニレンスルフィド共重合体(m−フェニレンスルフィド単位20%以下)などは、成形加工性とバリア性を兼備する点で好ましく用いられ得る。
Figure 0004496397
かかるPPS樹脂は、ポリハロゲン芳香族化合物とスルフィド化剤とを極性有機溶媒中で反応させて得られるPPS樹脂を回収および後処理することで、高収率で製造することができる。具体的には特公昭45−3368号公報に記載される比較的分子量の小さな重合体を得る方法、あるいは特公昭52−12240号公報や特開昭61−7332号公報に記載される比較的分子量の大きな重合体を得る方法などによっても製造できる。前記のように得られたPPS樹脂を空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水、酸水溶液などによる洗浄、酸無水物、アミン、イソシアネート、官能基含有ジスルフィド化合物などの官能基含有化合物による活性化など種々の処理を施した上で使用することもできる。
PPS樹脂を加熱により架橋/高分子量化する場合の具体的方法としては、空気、酸素などの酸化性ガス雰囲気下あるいは前記酸化性ガスと窒素、アルゴンなどの不活性ガスとの混合ガス雰囲気下で、加熱容器中で所定の温度において、希望する溶融粘度が得られるまで加熱を行う方法が例示できる。加熱処理温度は通常、170〜280℃が選択され、好ましくは200〜270℃である。また、加熱処理時間は通常0.5〜100時間が選択され、好ましくは2〜50時間である。この両者をコントロールすることにより目標とする粘度レベルを得ることができる。加熱処理の装置は、通常の熱風乾燥機でも、また回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よくしかもより均一に処理するためには、回転式あるいは撹拌翼付の加熱装置を用いることが好ましい。
PPS樹脂を窒素などの不活性ガス雰囲気下あるいは減圧下で熱処理する場合の具体的方法としては、窒素などの不活性ガス雰囲気下あるいは減圧下で、加熱処理温度150〜280℃、好ましくは200〜270℃、加熱時間は0.5〜100時間、好ましくは2〜50時間加熱処理する方法が例示できる。加熱処理の装置は、通常の熱風乾燥機でも、また回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よくしかもより均一に処理するためには、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。
本発明で用いられるPPS樹脂(c)は、洗浄処理を施されたPPS樹脂であることが好ましい。かかる洗浄処理の具体的方法としては、酸水溶液洗浄処理、熱水洗浄処理および有機溶媒洗浄処理などが例示できる。これらの処理は2種以上の方法を組み合わせて用いても良い。
PPS樹脂を有機溶媒で洗浄する場合の具体的方法としては以下の方法が例示できる。すなわち、洗浄に用いる有機溶媒としては、PPS樹脂を分解する作用などを有しないものであれば特に制限はないが、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホンなどのスルホキシド、スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、ジクロルエタン、テトラクロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール、フェノール系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などがあげられる。これらの有機溶媒のなかでN−メチルピロリドン、アセトン、ジメチルホルムアミド、クロロホルムなどの使用が好ましい。これらの有機溶媒は、1種類または2種類以上を混合して使用される。有機溶媒による洗浄の方法としては、有機溶媒中にPPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でPPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温〜300℃程度の任意の温度が選択できる。洗浄温度が高くなるほど洗浄効率が高くなる傾向があるが、通常は常温〜150℃の洗浄温度で十分効果が得られる。また有機溶媒洗浄を施されたPPS樹脂は、残留している有機溶媒を除去するため、水または温水で数回洗浄することが好ましい。
PPS樹脂を熱水で洗浄処理する場合の具体的方法としては、以下の方法が例示できる。すなわち、熱水洗浄によるPPS樹脂の好ましい化学的変性の効果を発現するため、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作は、通常、所定量の水に所定量のPPS樹脂を投入し、常圧であるいは圧力容器内で加熱、撹拌することにより行われる。PPS樹脂と水との割合は、水の多いほうが好ましいが、通常、水1リットルに対し、PPS樹脂200g以下の浴比が選択される。
また、熱水で洗浄処理する場合、周期表の第II族の金属元素を含有する水溶液で処理することが好ましく用いられる。周期表の第II族の金属元素を含む水溶液とは、上記水に、周期表の第II族の金属元素を有する水溶性塩を添加したものである。水に対する周期表の第II族の金属元素を有する水溶性塩の濃度は、0.001〜5重量%程度の範囲が好ましい。
ここで使用する周期表の第II族の金属元素の中でも好ましい金属元素としては、Ca、Mg、BaおよびZnなどが例示でき、その対アニオンとしては、酢酸イオン、ハロゲン化物イオン、水酸化物イオンおよび炭酸イオンなどが挙げられる。より具体的で好適な化合物としては、酢酸Ca、酢酸Mg、酢酸Zn、CaCl、CaBr、ZnCl、CaCO、Ca(OH)およびCaOなどが例示でき、特に好ましくは、酢酸Caである。
周期表の第II族の金属元素を含有する水溶液の温度は130℃以上が好ましく、150℃以上がより好ましい。洗浄温度の上限については特に制限はないが、通常のオートクレーブを用いる場合には250℃程度が限界である。
かかる周期表の第II族の金属元素を含む水溶液の浴比は、重量比で乾燥ポリマー1に対し、2〜100の範囲が好ましく選択され、4〜50の範囲がより好ましく、5〜15の範囲であることがさらに好ましい。
PPS樹脂を酸水溶液で洗浄処理する場合の具体的方法としては、以下の方法が例示できる。すなわち、酸または酸の水溶液にPPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。用いられる酸はPPS樹脂を分解する作用を有しないものであれば特に制限はなく、ギ酸、酢酸、プロピオン酸、酪酸などの脂肪族飽和モノカルボン酸、クロロ酢酸、ジクロロ酢酸などのハロ置換脂肪族飽和カルボン酸、アクリル酸、クロトン酸などの脂肪族不飽和モノカルボン酸、安息香酸、サリチル酸などの芳香族カルボン酸、シュウ酸、マロン酸、コハク酸、フタル酸、フマル酸などのジカルボン酸、硫酸、リン酸、塩酸、炭酸、珪酸などの無機酸性化合物などがあげられる。中でも酢酸、塩酸がより好ましく用いられる。酸処理を施されたPPS樹脂は、残留している酸や塩などを除去するために、水または温水で数回洗浄することが好ましい。また洗浄に用いる水は、酸処理によるPPS樹脂の好ましい化学的変性の効果を損なわない意味で蒸留水あるいは脱イオン水であることが好ましい。
本発明で用いられるPPS樹脂(c)の灰分量は、加工時の流動性や成形サイクルなどの特性を付与する点から0.1〜2重量%と比較的多い範囲が好ましく、0.2〜1重量%の範囲がより好ましく、0.3〜0.8重量%の範囲であることがさらに好ましい。
ここで、灰分量とは以下の方法により求めたPPS樹脂中の無機成分量を指す。
(1)583℃で焼成、冷却した白金皿にPPS樹脂5〜6gを秤量する。
(2)白金皿とともにPPS樹脂を450〜500℃で予備焼成する。
(3)583℃にセットしたマッフル炉に白金皿とともに予備焼成したPPS樹脂試料を入れ、完全に灰化するまで約6時間焼成する。
(4)デシケーター内で冷却後、秤量する。
(5)式:灰分量(重量%)=(灰分の重量(g)/試料重量(g))×100により灰分量を算出する。
本発明で用いられるPPS樹脂(c)の溶融粘度は、耐薬品性の改良および加工時の流動性などの特性を付与する点から、1〜2000Pa・s(300℃、剪断速度1000sec−1)の範囲が好ましく選択され、1〜200Pa・sの範囲がより好ましく、1〜50Pa・sの範囲であることがさらに好ましい。ここで溶融粘度は、剪断速度1000sec−1の条件下でノズル径0.5mmφ、ノズル長10mmのノズルを用い、高化式フローテスターによって測定した値である。
本発明で用いられるPPS樹脂(c)の有機系低重合成分(オリゴマー)量の指標となるクロロホルム抽出量(ポリマー10g/クロロホルム200mL、ソックスレー抽出5時間処理時の残差量から算出)は、耐薬品性の改良および加工時の流動性などの特性を付与する点から1〜5重量%と比較的多い範囲が好ましく、1.5〜4重量%の範囲がより好ましく、2〜4重量%の範囲であることがさらに好ましい。
本発明で用いられるPPS樹脂(c)のポリエステル樹脂(a)とオレフィン系樹脂(b)からなる組成物への配合量は、低温時の靱性および耐衝撃性を損なわず、かつさらに耐薬品性の改良および加工時の流動性などの特性を付与する点から(a)および(b)の合計100重量部に対して0.5〜30重量部であり、好ましくは1〜20重量部である。PPS樹脂(c)の配合量が小さすぎると耐薬品性の改良効果が小さくなり、大きすぎると低温特性が低下する傾向にある。
本発明で用いられるポリエーテルイミド樹脂(d)は、主鎖中にエーテル結合とイミド結合を繰り返し有する重合体であれば、特に限定はされないが、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミン、およびm−フェニレンジアミンとp−フェニレンジアミンの混合物との重縮合物が好ましい。このポリエーテルイミドは、“ウルテム”(登録商標)の商標名で、ジーイープラスチックス社より入手可能である。
本発明で用いられるポリエーテルイミド樹脂(d)のポリエステル樹脂(a)とオレフィン系樹脂(b)からなる組成物への配合量は、低温時の靱性および耐衝撃性を損なわず、かつさらに耐薬品性の改良および耐加水分解性などの特性を付与する点から(a)および(b)の合計100重量部に対して0.5〜30重量部であり、好ましくは1〜25重量部である。ポリエーテルイミド(d)の配合量が小さすぎると耐加水分解性の改良効果が小さくなり、大きすぎると耐薬品性が低下する傾向にある。
本発明の薬液および/またはガスの搬送または貯蔵用の容器またはその付属部品には、さらに以下に説明するような酸化防止剤あるいはその他の添加剤を配合することが可能である。
さらに本発明においては、高い耐熱性および熱安定性を保持するために、フェノール系、リン系化合物の中から選ばれた1種以上の酸化防止剤を含有せしめることが好ましい。かかる酸化防止剤の配合量は、耐熱改良効果の点から(a)および(b)成分の合計100重量部に対して、0.01重量部以上、特に0.02重量部以上であることが好ましく、成形時に発生するガス成分の観点からは、5重量部以下、特に1重量部以下であることが好ましい。また、フェノール系およびリン系酸化防止剤を併用して使用することは、特に耐熱性、熱安定性、流動性保持効果が大きく好ましい。
フェノール系酸化防止剤としては、ヒンダードフェノール系化合物が好ましく用いられ、具体例としては、トリエチレングリコール−ビス[3−t−ブチル−(5−メチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナミド)、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−s−トリアジン−2,4,6−(1H,3H,5H)−トリオン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、1,3,5−トリメチル−2,4,6−トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンなどが挙げられる。
中でも、エステル型高分子ヒンダードフェノールタイプが好ましく、具体的には、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなどが好ましく用いられる。
次にリン系酸化防止剤としては、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリト−ル−ジ−ホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリト−ル−ジ−ホスファイト、ビス(2,4−ジ−クミルフェニル)ペンタエリスリト−ル−ジ−ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビスフェニレンホスファイト、ジ−ステアリルペンタエリスリトール−ジ−ホスファイト、トリフェニルホスファイト、3,5−ジーブチル−4−ヒドロキシベンジルホスフォネートジエチルエステルなどが挙げられる。
中でも、ポリエステル樹脂のコンパウンド中に酸化防止剤の揮発や分解を少なくするために、酸化防止剤の融点が高いものが好ましい。具体的にはビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリト−ル−ジ−ホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリト−ル−ジ−ホスファイト、ビス(2,4−ジ−クミルフェニル)ペンタエリスリトール−ジ−ホスファイトなどが好ましく用いられる。
さらに、本発明の薬液および/またはガスの搬送または貯蔵用の容器またはその付属部品には本発明の効果を損なわない範囲において、他の樹脂を添加することが可能である。但し、この量が組成物全体の30重量%を超えるとポリエステル樹脂本来の特徴が損なわれるため好ましくなく、特に20重量%以下の添加が好ましく使用される。熱可塑性樹脂の具体例としては、ポリアミド樹脂、変性ポリフェニレンエーテル樹脂、ポリサルフォン樹脂、ポリケトン樹脂、ポリアリレート樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、四フッ化ポリエチレン樹脂などが挙げられる。また、改質を目的として、以下のような化合物の添加が可能である。すなわち、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重宿合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、その他、滑剤、紫外線防止剤、着色剤、難燃剤、発泡剤などの通常の添加剤を配合することができる。上記化合物は何れも組成物全体の20重量%を越えるとポリエステル樹脂本来の特性が損なわれるため好ましくなく、10重量%以下、さらに好ましくは1重量%以下の添加がよい。
本発明の薬液および/またはガスの搬送または貯蔵用の容器またはその付属部品には、本発明の効果を損なわない範囲で充填材を配合して使用することも可能である。かかる充填材の具体例としてはガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはタルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が用いられる。これらは中空であってもよく、さらにはこれら充填剤を2種類以上併用することも可能である。また、これらの充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。
本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品は、低温での柔軟性および耐衝撃性の高度バランスを得るために、図1に示したようにポリエステル樹脂1が連続相(マトリックス)を形成し、オレフィン系樹脂2が分散相を形成(海−島構造)したモルホロジーとなり、かつ、分散相を形成するオレフィン系樹脂の平均粒子径が0.01〜2μm、好ましくは0.01〜1μmである。ここで、本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品のモルホロジーは、図1の形態に限定されるものではなく、オレフィン系樹脂粒子の形状が多角形、略楕円形などの非円形であってもかまわない。オレフィン系樹脂の分散が凝集形態となり、平均粒子径が2μmより大きくなると、容器もしくはその付属部品の低温特性が得られにくくなり、耐薬品性が低下する傾向となる。また、ポリエステルが連続相とならない場合には、本発明の容器もしくはその付属部品の成形性や耐薬品性が低下する。容器もしくはその付属部品が上記のモルホロジーである場合には、低温特性に優れ、耐薬品性および流動性が特に優れる。
ここでいうオレフィン系樹脂の平均粒子径とは、本発明の容器もしくはその付属部品を成形し、その肉厚方向の中心部から0.1μm以下の薄片を断面積方向に切削し、透過型電子顕微鏡(倍率:1万倍)で観察した際の任意の100ヶのオレフィン系樹脂の分散部分について、まずそれぞれの最大径と最小径を測定して平均値を求め、その後それらの平均値を求めた数平均粒子径である。
また、本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品は、PPS樹脂(c)が平均粒子径1〜200nmでポリエステル樹脂相中に分散していることが好ましい。さらに好ましくは1〜150nmであり、特に好ましくは1〜100nmである。このモルホロジーとなることにより耐薬品性が特に優れる。このようにPPS樹脂(c)が極めて微細に均一分散する構造をとることにより、本発明の容器もしくはその付属部品の低温衝撃性、耐薬品性が飛躍的に改良される。本発明の容器もしくはその付属部品において、PPS樹脂(c)およびポリエーテルイミド樹脂(d)を併用することにより、このようなPPS樹脂(c)の微細な分散構造を形成させることができる。
本発明の薬液および/またはガスの搬送または貯蔵用の容器またはその付属部品に用いられる樹脂組成物は、温度−40℃の条件下、ASTM−D638に従って測定した引張り破断伸度が20〜400%、かつASTM−D256に従って測定したノッチ付きアイゾット衝撃強度が500〜2000J/mであり、燃料((トルエン//イソオクタン=50//50体積%)とエタノールを90対10体積比に混合したアルコールガソリン混合物)の60℃での透過係数が50g・mm/m・24hr以下であることが好ましく、更に好ましくは、引張り破断伸度が30〜400%、ノッチ付きアイゾット衝撃強度が600〜2000J/mであり、燃料((トルエン//イソオクタン=50//50体積%)とエタノールを90対10体積比に混合したアルコールガソリン混合物)の60℃での透過係数が30g・mm/m・24hr以下であることが好ましい。上記特性を有する樹脂組成物を加工して得られる薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品は、例えば、自動車ガソリンタンクに用いる場合、車両追突時などの衝撃破壊性に優れると共に、ガソリンの耐透過性にも優れることから、非常に有用なガソリンタンクを得ることが可能となる。
本発明の薬液および/またはガスの搬送または貯蔵用の容器またはその付属部品に用いられる樹脂組成物の製造方法は、原料を、単軸、2軸の押出機、バンバリーミキサー、ニーダー、およびミキシングロールなどの溶融混練機に供給して、ポリエステル樹脂の融点以上の加工温度で混練する方法などを代表例として挙げることができる。本発明のモルホロジーおよびオレフィン系樹脂(b)、PPS樹脂(c)の粒径を上述の如くコントロールするためには、せん断力を比較的強くすることが必要であり、また、混練時の滞留時間を短くする必要がある。これらの条件を組み合わせることによって、オレフィン系樹脂の凝集を防ぎつつ、ポリエステル樹脂を連続相とすることができるからである。具体的には、2軸押出機を使用して、混練温度をポリエステル樹脂の融点+5〜20℃とし、滞留時間を1〜5分にすることが好ましい。この際、原料の混合順序には特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練しさらに残りの原材料を配合し溶融混練する方法、一部の原材料を配合後、単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することも勿論可能である。
本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品の加工方法に関しては、特に制限はなく、公知の方法(射出成形、押出成形、吹込成形、プレス成形等)を利用することができるが、生産上好ましい方法は、射出成形である。射出成形とは、可塑化装置で溶融された樹脂組成物を金型キャビティに加圧状態で注入し、金型内で固化させて成形品を得るもの全てを指し、通常の射出成形に加え例えば射出圧縮成形も含む。また、加工温度については、通常、PPS樹脂の融点+0〜50℃高い温度範囲から選択される。また成形品の構造は、一般的には、単層であるが、2色成形法により多層にしてもかまわない。
本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品の好ましい成形方法は、容器もしくはその付属部品を構成する2つ以上の分割体を射出成形によって形成し、次いでこれらを相互に接合することによって形成する方法である。分割体同士を接合する方法は特に限定されず公知の方法(熱板溶着、振動溶着、射出溶着、超音波溶着、レーザー溶着、マイクロ波溶着)を用いることが可能である。
熱板溶着法の場合、分割体の接合面を熱板により溶融させ、素早く分割体の接合面どうしを圧接させて溶着させる。この際の熱板条件としては、通常の条件をとればよく、例えば接触法の場合、熱板温度230〜350℃、溶融時間20〜60秒を採用することができる。
振動溶着法の場合、分割体の接合面どうしを上下に圧接させた状態とし、この状態で横方向に振動を与えて発生する摩擦熱によって溶着させる。この際の振動条件としては通常の条件をとればよく、例えば、振動数100〜300Hz、振幅0.5〜2.0mmを採用することができる。
熱線溶着法の場合、例えば鉄−クロム製の線材を分割体の接合部に埋め込んだ状態で接合面どうしを圧接し、線材に電流をかけジュール熱を発生させその発熱によって接合面を溶着させる。
射出溶着法の場合、分割体を金型内にインサートし、又は金型内で位置変更した後に、接合面を合わせた状態で保持し、その接合部の周縁に新たに溶融樹脂を射出して各分割体を互いに溶着させて中空容器を成形する。この際の射出溶着条件としては通常の条件をとればよく、例えば、樹脂温度230〜320℃、射出圧力10〜150MPa、型締め力100〜4000トン、金型温度30〜150℃を採用することができる(尚、前記記載の金型内で位置変更して行なう方法は、ダイスライド成形や、ダイ回転成形などともいわれている)。
レーザー溶着法の場合、レーザー光に対して非吸収性の分割体とレーザー光に対して吸収性の分割体を接合面で重ね合わせた状態で、非吸収性の分割体側からレーザー光を照射して溶着させる。また、レーザー光吸収性とするためには、カーボンブラックを添加する手法をあげることができる。カーボンブラックを添加することで照射されるレーザー光の透過率を5%以下とすることができ、レーザー光のエネルギーを効率的に熱に変換することが可能となる。この際のレーザー溶着条件としては通常の条件をとればよく、例えば、レーザー光として、YAGレーザー、レーザー光波長800〜1060nm、レーザー光出力5〜30Wを採用することができる。
本発明の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品は、例えば、フロン−11、フロン−12、フロン−21、フロン−22、フロン−113、フロン−114、フロン−115、フロン−134a、フロン−32、フロン−123、フロン−124、フロン−125、フロン−143a、フロン−141b、フロン−142b、フロン−225、フロン−C318、R−502、1,1,1−トリクロロエタン、塩化メチル、塩化メチレン、塩化エチル、メチルクロロホルム、プロパン、イソブタン、n−ブタン、ジメチルエーテル、ひまし油ベースのブレーキ液、グリコールエーテル系ブレーキ液、ホウ酸エステル系ブレーキ液、極寒地用ブレーキ液、シリコーン油系ブレーキ液、鉱油系ブレーキ液、パワースアリリングオイル、ウインドウオッシャー液、ロングライフクーラント液(LLC液)、ガソリン、メタノール、エタノール、イソプタノール、ブタノール、窒素、酸素、水素、二酸化炭素、メタン、プロパン、天然ガス、アルゴン、ヘリウム、キセノン、医薬剤等の気体および/または液体あるいは気化ガス等の透過性が低く優れていることから、燃料タンク、オイル用タンク、ラジエタータンク、各種薬剤用ボトルなどの薬液保存容器用途に有効である。また、これらタンク、ボトルに付属するカットオフバルブなどのバルブや継手類、付属ポンプのゲージ、ケース類などの部品、フューエルフィラーアンダーパイプ、ORVRホース、リザーブホース、ベントホースなどの各種燃料チューブ接続部品(コネクター等)、オイルチューブ接続部品、ブレーキホース接続部品、ウインドウオッシャー液用ノズル、冷却水、冷媒等用クーラーホース接続用部品、エアコン冷媒用チューブ接続用部品、消火器および消火設備用ホース、医療用冷却機材用チューブの接続用部品およびバルブ類、その他薬液およびガス搬送用チューブ用途に有効である。
以上のような薬液およびガスの耐透過性が必要とされる用途、自動車部品、内燃機関用途、電動工具ハウジング類などの機械部品を始め、電気・電子部品、医療、食品、家庭・事務用品、建材関係部品、家具用部品など各種用途に有効である。
以下に実施例を挙げて本発明を更に具体的に説明する。材料特性については下記の方法により行った。
[燃料透過係数]
射出成形(住友重機社製SG75H−MIV、シリンダー温度300℃、金型温度130℃、ただし、ポリブチレンテレフタレート樹脂系は、金型温度80℃で行った。)により1mm厚の円盤状試験片(直径6cm)を作製した。得られた試験片をGTR−30XATK(ヤナコ分析工業社製)に取り付けて、試験片上部のセルにモデルガソリン((イ)トルエンとイソオクタンの体積比50/50の混合物と(ロ)エタノールを90対10体積比に混合したアルコールガソリン混合物)を仕込み、JIS K7126 A法(差圧法)に従って、測定温度60℃で測定した。
[−40℃アイゾット衝撃強度]
温度雰囲気を−40℃にした以外はASTM−D256に従ってノッチ付きアイゾット衝撃強度を測定した。
[−40℃引張り破断伸度]
温度雰囲気を−40℃にした以外はASTM−D638に従って引張破断伸度を測定した。
[カルボキシル量]
m−クレゾール溶液をアルカリ溶液で電位差滴定して求めた。カルボキシル末端基量はポリマ1トン当りの末端基量で表した。
[灰分量]
(1)583℃で焼成、冷却した白金皿にPPS5〜6gを秤量する。
(2)白金皿とともにPPSを450〜500℃で予備焼成する。
(3)583℃にセットしたマッフル炉に白金皿とともに予備焼成したPPS試料を入れ、完全に灰化するまで約6時間焼成する。
(4)デシケーター内で冷却後、秤量する。
(5)式:灰分量(重量%)=(灰分の重量(g)/試料重量(g))×100により灰分量を算出する。
[クロロホルム抽出量]
PPSポリマー10gを円筒形濾紙に秤量し、クロロホルム200mLでソックスレー抽出(バス温120℃、5時間)を行った。抽出後クロロホルムを除去し、残差量を秤量しポリマー重量当たりで計算した。
[成形下限圧]
射出成形(住友重機社製SG75H−MIV、シリンダー温度300℃、金型温度130℃)によりASTM1号試験片を調製する際の最低充填圧力を求めた。ただし、ポリブチレンテレフタレート樹脂系は金型温度80℃で行った。
[耐透過性試験]
射出成形(東芝機械社製IS100FI−5A、シリンダー温度300℃、金型温度130℃、ただし、ポリブチレンテレフタレート樹脂系は金型温度80℃)により、直径12cm、厚み3mmの半球形状の成形品を成形した。この成形品2個を熱板溶着法で接合して球状のモデル容器を得た。接合の前に片側の成形品には切削加工によって金属製注入口を装着した。このモデル容器(内容積約900ml)にモデルガソリン((トルエン//イソオクタン=50//50体積%)とエタノールを90対10体積比に混合したアルコールガソリン混合物)500mlを金属製注入口より注入し、密封した。この後、60℃の防爆オーブンで3000時間処理した際の重量減量挙動からその透過性を評価した。重量減少量が0.5g/日未満を合格と判定した。燃料減少量が0.5g/日以上は不合格である。
[寸法安定性試験]
射出成形(東芝機械社製IS100FI−5A、シリンダー温度300℃、金型温度130℃、ただし、ポリブチレンテレフタレート樹脂系は金型温度80℃)により、直径12cm、厚み3mmの半球形状の成形品を成形した。この成形品2個を熱板溶着法で接合して球状のモデル容器を得た。接合の前に片側の成形品には切削加工によって金属製注入口を装着した。このモデル容器(内容積約900ml)にモデルガソリン((トルエン//イソオクタン=50//50体積%)とエタノールを90対10体積比に混合したアルコールガソリン混合物)500mlを金属製注入口より注入し、密封したのちモデル容器の高さを計測した。この後、60℃の防爆オーブンで3000時間処理した後のモデル容器の高さを計測し、その変化率から寸法安定性を下記のように評価した。
○:変化率が2%未満である。
△:変化率が2%以上、7%未満である。
×:変化率が7%以上である。
[落下試験]
射出成形(東芝機械社製IS100FI−5A、シリンダー温度300℃、金型温度130℃、ただし、ポリブチレンテレフタレート樹脂系は金型温度80℃)により、直径12cm、厚み3mmの半球形状の成形品を成形した。この成形品2個を熱板溶着法で接合して球状のモデル容器を得た。接合の前に片側の成形品には切削加工によって金属製注入口を装着した。このモデル容器(内容積約900ml)にトヨタ純正LLC700mlを金属製注入口より注入し、密封した。この後、−40℃の恒温槽に12時間放置した後取り出し、直ちに高さ1mから自由落下させて破壊状態を観察し、下記の判定を行った。
○:割れや変形は認められない
△:変形やひび割れが生じ、内容物の漏洩が認められる
×:脆性的に破壊が発生し、内容物の漏洩が認められる
[モルホロジー観察]
前記モデル容器の厚み方向の中心部から0.1μm以下の薄片を切削し、透過型電子顕微鏡で観察し、以下のように評価した。
○:図1記載のようにポリエステル樹脂が連続相形成場合。
×:図2のようにポリエステル樹脂とオレフィン系樹脂が共連続相形成場合。
[平均粒径]
オレフィン系樹脂の平均粒径の測定は、上記モルホロジー観察と同様に、射出成形により得た試験片の薄片を、透過型電子顕微鏡で観察した。倍率1万倍で観察した試験片中の任意のオレフィン系樹脂100ヶの分散部分について画像処理ソフト「Scion Image」を用いて、各々の粒子の最大径と最小径を測定して平均値を求めた。その後それら100ヶの平均値をさらに数平均した値を平均粒径と定義した。また、PPSの分散粒子径に関しては観察倍率を10万倍として観察を行う以外は同様にして求めた。
[参考例1]
ポリフェニレンスルフィド樹脂(C−1)の作製方法
撹拌機および底に弁の付いた20リットルオートクレーブに、47%水硫化ナトリウム(三協化成)2383g(20.0モル)、96%水酸化ナトリウム831g(19.9モル)、N−メチル−2−ピロリドン(NMP)3960g(40.0モル)、およびイオン交換水3000gを仕込んだ。常圧で窒素を通じながら225℃まで約3時間かけて徐々に加熱し、水4200gおよびNMP80gを留出した後、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は0.17モルであった。また、仕込みアルカリ金属硫化物1モル当たりの硫化水素の飛散量は0.021モルであった。
次に、p−ジクロロベンゼン(シグマアルドリッチ社)2942g(20.0モル)、NMP1515g(15.3モル)を加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から227℃まで0.8℃/分の速度で昇温し、次いで274℃まで0.6℃/分の速度で昇温し、274℃で50分保持した後、282℃まで昇温した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら、内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去し、ポリフェニレンスルフィド(PPS)と塩類を含む固形物を回収した。
得られた固形物およびイオン交換水15120gを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した17280gのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
得られたケークおよびイオン交換水11880g、酢酸カルシウム1水和物(シグマアルドリッチ)4gを、撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水17280gを注ぎ込み吸引濾過してケークを得た。得られたケークを80℃で熱風乾燥し、さらに120℃で24時間で真空乾燥することにより、乾燥PPSを得た。得られたPPSは、灰分量0.6重量%、溶融粘度12Pa・s(オリフィス0.5φ×10mm、300℃、剪断速度1000sec−1)、クロロホルム抽出量が3.8%であった。
[参考例2]
ポリフェニレンスルフィド樹脂(C−2)の作製方法
撹拌機付きの20リットルオートクレーブに、47%水硫化ナトリウム(三協化成株式会社)2383g(20.0モル)、96%水酸化ナトリウム848g(20.4モル)、N−メチル−2−ピロリドン(NMP)3267g(33モル)、酢酸ナトリウム531g(6.5モル)、およびイオン交換水3000gを仕込んだ。常圧で窒素を通じながら225℃まで約3時間かけて徐々に加熱し、水4200gおよびNMP80gを留出したのち、反応容器を160℃に冷却した。硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.018モルであった。
次に、p−ジクロロベンゼン(シグマアルドリッチ)3031g(20.6モル)、NMP2594g(26.2モル)を加え、反応容器を窒素ガス下に密封し、400rpmで撹拌しながら、227℃まで0.8℃/分の速度で昇温し、その後270℃まで0.6℃/分の速度で昇温し270℃で140分保持した。その後250℃まで1.3℃/分の速度で冷却しながら684g(38モル)のイオン交換水をオートクレーブに圧入した。その後200℃まで0.4℃/分の速度で冷却した後、室温近傍まで急冷した。
内容物を取り出し、10リットルのNMPで希釈後、溶剤と固形物をふるい(80mesh)で濾別し、得られた粒子を20リットルの温水で数回洗浄、濾別した。次いで100℃に加熱されたNMP10リットル中に投入して、約1時間攪拌し続けたのち、濾過し、さらに熱湯で数回洗浄した。次に9.8gの酢酸を含む20リットルの温水で洗浄、濾別した後、20リットルの温水で洗浄、濾別してPPSポリマー粒子を得た。これを、80℃で熱風乾燥し、120℃で24時間で真空乾燥することにより、乾燥PPS樹脂を得た。得られたPPS樹脂は、灰分量0.02重量%、溶融粘度40Pa・s(オリフィス0.5φ×10mm、300℃、剪断速度1000sec−1)、クロロホルム抽出量が0.4%であった。
[実施例1〜12]、[比較例1〜6]
上記参考例記載の(C−1、C−2)PPS成分および下に示す各成分を表1に記載の各割合でドライブレンドした後、日本製鋼所社製TEX30型2軸押出機で、シリンダー温度を250〜300℃に設定し、300rpmのスクリュー回転にて溶融混練し、ストランドカッターによりペレット化した。また、表1に示すように必要に応じて酸化防止剤として下記のものを溶融混練時に添加した。120℃で1晩除湿乾燥したペレットを用い、射出成形(住友重機社製SG75H−MIV、シリンダー温度300℃、金型温度130℃、ただし、ポリブチレンテレフタレート樹脂系は、金型温度80℃)により試験片を調製した。また、燃料タンク、オイル用タンク、ラジエタータンク、各種薬剤用ボトルなどの薬液保存容器としての特性を評価するために、さらに射出成形(東芝機械社製IS100FI−5A、シリンダー温度285℃、金型温度80℃)により、直径12cm、厚み3mmの半球形状の成形品を成形した。この成形品2個を熱板溶着法で接合して球状のモデル容器を得た。接合の前に片側の成形品には切削加工によって金属製注入口を装着した。各サンプルの低温特性およびモルホロジーなどを測定した結果は表1に示すとおりであった。本実施例が低温特性(柔軟性、耐衝撃性、落下試験)、燃料透過性、寸法安定性、流動性、耐透過性等に優れ、極めて実用性が高く、ガソリンタンクに代表される薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品に適した材料である。比較例においては低温特性、耐燃料透過性、流動性、耐透過性等に劣るものであった。
本実施例および比較例に用いた(a)ポリエステル樹脂は以下の通りである。
(A−1):固有粘度0.85、カルボキシル末端基量25eq/tのポリエチレンテレフタレート樹脂。
(A−2):固有粘度0.90、カルボキシル末端基量21eq/tのポリエチレンテレフタレート樹脂。
(A−3):固有粘度0.75、カルボキシル末端基量18eq/tのポリエチレンテレフタレート樹脂。
(A−4):固有粘度0.80、カルボキシル末端基量25eq/tのポリブチレンテレフタレート樹脂。
(A−5):固有粘度0.80、カルボキシル末端基量30eq/tのポリエチレン−2,6−ナフタレンジカルボキシレート樹脂。
(A−6):固有粘度0.85、カルボキシル末端基量25eq/t、融点234℃のポリエチレンテレフタレート/2,6−ナフタレンジカルボキシレート=92/8(モル%)樹脂。
同様に、(b−1)官能基含有オレフィン共重合体は以下の通りである。
(B−1):MFR=3g/10分(190℃、2.16kg荷重)のエチレン/メタクリル酸グリシジル=88/12(重量%)共重合体。
(B−2):無水マレイン酸変性のエチレン/プロピレン=85/15モル%共重合体。
また、同様に(b−2)エチレン/α−オレフィン共重合体は以下の通りである。
(B−3): MFR=0.5g/10分(190℃、2.16kg荷重)、密度0.861g/cmのエチレン/1−ブテン共重合体。
(B−4):無水マレイン酸で0.8重量%変性されたエチレン・1−ブテン共重合体。
(D−1):ポリエーテルイミド樹脂(GEプラスチックス株式会社製、“ウルテム”1010)
酸化防止剤:以下の2種類の化合物を用いた。
フェノール系:3,9−ビス[2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン。
リン系:ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリト−ル−ジ−ホスファイト
[比較例7]
下記のHDPEを用いた他は、実施例と同様にして球状のモデル容器を得た。耐透過性に劣るため燃料タンク、オイル用タンク、ラジエタータンク、各種薬剤用ボトルなどの薬液保存容器としての使用に不適切なものであった。
HDPE:高密度ポリエチレン(三井化学(株)製”ハイゼックス”7000F)
Figure 0004496397
ポリエステル樹脂が連続相を形成し、オレフィン系樹脂が分散した海−島構造の一例を示すモデル図である。 ポリエステル樹脂とオレフィン系樹脂が共に連続相を形成した共連続相構造の一例を示すモデル図である。
符号の説明
1 ポリエステル樹脂
2 オレフィン系樹脂

Claims (6)

  1. ポリエステル樹脂(a)60〜95重量%と、
    オレフィン系樹脂(b)5〜40重量%とからなる樹脂組成物100重量部に対して、
    ポリフェニレンスルフィド樹脂(c)0.5〜30重量部および
    ポリエーテルイミド樹脂(d)0.5〜30重量部を含有し、
    前記(b)オレフィン系樹脂が
    カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基およびエポキシ基の群から選ばれる少なくとも一種の官能基を有する官能基含有オレフィン共重合体(b−1)と
    エチレンと炭素数3〜20のα−オレフィンとを共重合して得られるエチレン/α−オレフィン共重合体(b−2)からなり、
    かつ、ポリエステル樹脂(a)が連続相を形成し、
    オレフィン系樹脂(b)、ポリフェニレンスルフィド樹脂(c)およびポリエーテルイミド樹脂(d)が分散相を形成することを特徴とする
    薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
  2. オレフィン系樹脂(b)が平均粒子径0.01〜2μmでポリエステル連続相中に分散していることを特徴とする請求項1記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
  3. ポリフェニレンスルフィド樹脂(c)が平均粒子径1〜200nmでポリエステル連続相中に分散していることを特徴とする請求項1または2に記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
  4. (b−1)官能基含有オレフィン共重合体がα−オレフィンとα,β−不飽和カルボン酸グリシジルエステルの共重合体である請求項1〜3のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
  5. 前記ポリエステル樹脂(a)が、ポリエチレンテレフタレートであることを特徴とする請求項1〜4のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
  6. 温度−40℃においてASTM−D638に従って測定した引張り破断伸度が20〜400%であり、ASTM−D256に従って測定したアイゾット衝撃強度が500〜2000J/mである前記樹脂組成物を成形してなることを特徴とする請求項1〜5のいずれかに記載の薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品。
JP2004366922A 2004-12-17 2004-12-17 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品 Expired - Fee Related JP4496397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366922A JP4496397B2 (ja) 2004-12-17 2004-12-17 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366922A JP4496397B2 (ja) 2004-12-17 2004-12-17 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品

Publications (2)

Publication Number Publication Date
JP2006169450A JP2006169450A (ja) 2006-06-29
JP4496397B2 true JP4496397B2 (ja) 2010-07-07

Family

ID=36670541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366922A Expired - Fee Related JP4496397B2 (ja) 2004-12-17 2004-12-17 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品

Country Status (1)

Country Link
JP (1) JP4496397B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954617B2 (ja) 2006-06-19 2012-06-20 株式会社エヌ・ティ・ティ・ドコモ 可変帯域で通信するための装置及び方法
JP5067278B2 (ja) * 2008-06-24 2012-11-07 東レ株式会社 ポリフェニレンスルフィド樹脂組成物
EP3358236A4 (en) * 2015-09-28 2018-10-03 Bridgestone Corporation Resin material for hoses, hose tube and hose

Also Published As

Publication number Publication date
JP2006169450A (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1241221B1 (en) Resin-molded article and process for producing it
US6830792B1 (en) Resin structure and use thereof
JP2003128846A (ja) 樹脂構造体
JP4165055B2 (ja) バリア性多層中空容器およびその製造方法
JP4609743B2 (ja) 樹脂構造体およびその用途
JP4078823B2 (ja) バリア性多層中空容器およびその製造方法
JP4496397B2 (ja) 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP2002249595A (ja) 射出成形品
JP4344176B2 (ja) 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP4352773B2 (ja) ポリエステル樹脂組成物
JP6048131B2 (ja) 振動溶着用ポリブチレンテレフタレート樹脂組成物
JP2005008681A (ja) 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP4770107B2 (ja) 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP4003432B2 (ja) バリア性多層中空容器およびその製造方法
JP2003128056A (ja) バリア性多層中空容器およびその製造方法
JP4701662B2 (ja) ポリエステル樹脂組成物
JP4252384B2 (ja) 燃料タンク
JP4387712B2 (ja) 薬液および/またはガスの搬送または貯蔵用の容器もしくはその付属部品
JP4266704B2 (ja) 樹脂組成物
JP4186617B2 (ja) 樹脂組成物
JP2003165535A (ja) 多層中空容器およびその製造方法
JP2005007615A (ja) 自動車用燃料タンク
JP2005023095A (ja) ポリエステル樹脂組成物
JP2009029903A (ja) ポリアミド樹脂組成物およびその製造方法。
JP2003147127A (ja) 多層中空容器およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees