JP4485771B2 - 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法 - Google Patents

切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法 Download PDF

Info

Publication number
JP4485771B2
JP4485771B2 JP2003324837A JP2003324837A JP4485771B2 JP 4485771 B2 JP4485771 B2 JP 4485771B2 JP 2003324837 A JP2003324837 A JP 2003324837A JP 2003324837 A JP2003324837 A JP 2003324837A JP 4485771 B2 JP4485771 B2 JP 4485771B2
Authority
JP
Japan
Prior art keywords
microscope
reference point
coordinates
chuck table
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003324837A
Other languages
English (en)
Other versions
JP2005093710A (ja
Inventor
悟志 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2003324837A priority Critical patent/JP4485771B2/ja
Publication of JP2005093710A publication Critical patent/JP2005093710A/ja
Application granted granted Critical
Publication of JP4485771B2 publication Critical patent/JP4485771B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は,切削装置においてチャックテーブルの回転軸と顕微鏡の中心とを位置合わせする方法に関する。
半導体ウェハ等の被加工物をダイシング加工するダイシング装置には,被加工物を切削する切削ブレードを備えた切削ユニットと,被加工物を載置するチャックテーブルと,被加工物の切削予定ラインのアライメントやカーフチェック等に用いられる顕微鏡とが設けられている。このチャックテーブルや顕微鏡は,消耗や不具合などが原因で交換されることがある。かかるチャックテーブルや顕微鏡の交換後には,チャックテーブルの回転軸と顕微鏡の中心とを位置合わせする作業(いわゆる回転軸合わせ)を行う必要がある。
従来では,チャックテーブルの回転軸と顕微鏡の中心とを位置合わせする場合には,まず,図6(a)に示すように,チャックテーブル130上に被加工物112を載置した状態で,被加工物112の外周部付近にある任意の場所を顕微鏡の視野範囲161内に捉える。次いで,この視野範囲161内の中心にあるパターンを基準パターン150として指定し,このときの顕微鏡(若しくはチャックテーブル130)のXY軸位置を記憶しておく(ステップA)。
次に,図6(b)に示すように,チャックテーブル130の回転軸O’を中心としてチャックテーブル130を角度γ(例えば90°)だけ回転させ,基準パターン150を顕微鏡の視野範囲161外に移動させる。次いで,顕微鏡の画像を見ながら,顕微鏡を上記基準パターン150が移動したと思われる位置に手動で移動させて,発見した基準パターン150を顕微鏡の視野範囲162の中心に配置する。このときの顕微鏡(若しくはチャックテーブル130)のXY軸位置を記憶する(ステップB)。この場合,視野範囲162の中心に基準パターン150を配置するのは,視野範囲162の画像と視野範囲161の画像とを視覚的に同じような画像にして,基準パターン150の確認を容易にするためである。
その後,上記ステップAおよびステップBで記憶されたXY軸位置と,上記角度γに基づいて,チャックテーブル30の回転軸O’のXY軸位置を算出する(ステップC)。このように算出した回転軸O’のXY軸位置を顕微鏡の中心位置とすることによって,チャックテーブル30の回転軸と顕微鏡の中心とを位置合わせすることができる。
上記従来の回転軸合わせ方法では,チャックテーブルの回転軸を角度γだけ回転させた後に,基準パターンがあると思われる位置に顕微鏡を移動させ,視野範囲の中心に基準パターンを配置する必要があった。しかしながら,このように顕微鏡を移動させるときに,オペレータは,基準パターンが移動したと思われる場所を正確に予測しなければならないだけでなく,基準パターンを顕微鏡の視野範囲の中心に高精度で配置しなくてはならなかった。このため,熟練者でなければ,上記のような位置合わせを好適に実施することが困難であるという問題があった。
そこで,本発明は,上記問題に鑑みてなされたものであり,本発明の目的とするところは,熟練者でなくとも,チャックテーブルの回転軸と顕微鏡の中心とを容易かつ正確に位置合わせすることが可能な,新規かつ改良された切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法を提供することにある。
上記課題を解決するために,本発明の第1の観点によれば,被加工物を保持するチャックテーブルと,被加工物を測定するための顕微鏡と,チャックテーブルと顕微鏡とを相対移動させる移動機構とを備えた切削装置において,チャックテーブルの回転軸と顕微鏡の中心とを位置合わせする方法が提供される。この位置合わせ方法は,以下の第1〜第9工程を含む。
まず,第1の工程では,顕微鏡の第1の視野範囲内に含まれる被加工物またはチャックテーブルの任意の1点を基準点として選択し,この基準点の座標を検出して記憶する。次いで,第2の工程では,顕微鏡の位置を固定した状態で,チャックテーブルを角度αだけ回転させることによって,第1の視野範囲内に含まれるように基準点を移動させるとともに,角度αを記憶する。さらに,第3の工程では,上記第2の工程で移動した基準点の座標を検出して記憶する。その後,第4の工程では,角度αと,上記第1の工程で検出した基準点の座標と,上記第3の工程で検出した基準点の座標とに基づいて,チャックテーブルの回転軸の概算座標を算出する。次いで,第5の工程では,チャックテーブルを角度βだけ回転させることによって,第1の視野範囲外に基準点を移動させるとともに,角度βを記憶する。さらに,第6の工程では,角度βと,上記第4の工程で算出されたチャックテーブルの回転軸の概算座標とに基づいて,上記第5の工程で移動した基準点の概算座標を算出する。その後,第7の工程では,上記第6の工程で算出された基準点の概算座標に基づいて,上記第5の工程で移動した基準点が顕微鏡の視野範囲に含まれるように移動機構により自動的に顕微鏡を移動させる。次いで,第8の工程では,上記第7の工程で移動した位置における顕微鏡の第2の視野範囲内に含まれる上記第5の工程で移動した基準点の座標を検出して記憶する。さらに,第9の工程では,角度α+βと,上記第1の工程で記憶した基準点の座標と,第8の工程で記憶した基準点の座標とに基づいて,チャックテーブルの回転軸の座標を算出する。
かかる構成により,第1〜第4の工程においては,顕微鏡を移動させることなく,チャックテーブルを比較的小さい角度αだけ回転させることにより,顕微鏡の同一の視野範囲内(即ち,第1の視野範囲内)で基準点を移動させて,かかる移動前と移動後の基準点の座標をそれぞれ検出し,この2点の座標と角度αに基づいてチャックテーブルの回転軸の座標を概算することができる。
さらに,第5〜第9の工程においては,チャックテーブルを比較的大きい角度βだけ回転させることにより,顕微鏡の第1の視野範囲外に基準点を移動させた後,このように移動した基準点の位置を上記回転軸の概算座標と角度βとに基づいて推定し,この推定位置に顕微鏡を移動することにより,顕微鏡の第2の視野範囲内に基準点を捉えてその座標を検出し,かかる座標と角度α+βとに基づいてチャックテーブルの回転軸の正確な座標を算出することができる。このようにして正確に算出したチャックテーブルの回転軸の座標位置を,顕微鏡の中心とすることにより,双方の位置合わせを正確に行うことができる。
また,第1,第3および第8の工程において基準点の座標をそれぞれ検出する際に,顕微鏡の視野範囲の中央に当該基準点を高精度で位置づける必要がない。また,顕微鏡の視野範囲外に移動した基準点を,顕微鏡を移動させて再度顕微鏡の視野範囲内に捕捉する際に,移動した基準点の概算位置を算出して顕微鏡の移動先の目安とすることができる。
また,本発明の別の観点によれば,上記第9の工程において,角度βと,上記第3の工程で記憶した基準点の座標と,上記第8の工程で記憶した基準点の座標とに基づいて,チャックテーブルの回転軸の座標を算出する,チャックテーブルの回転軸と顕微鏡の中心とを位置合わせする方法が提供される。なお,この方法における第1〜第8の工程は上述した位置合わせ方法と略同一である。かかる構成によっても,上記と同様にして,チャックテーブルと顕微鏡中心との位置合わせを好適に行うことができる。
以上説明したように本発明によれば,顕微鏡の視野範囲外に移動した基準点の位置を予測する必要がなく,かつ,顕微鏡の視野範囲の中心に基準点を高精度で配置する必要もない。従って,熟練者でなくとも,チャックテーブルの回転軸と顕微鏡の中心とを容易かつ正確に位置合わせすることができる。
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(第1の実施形態)
以下に本発明の第1の実施形態について説明する。以下では,まず,本実施形態にかかる切削装置として構成されたダイシング装置の構成について説明した上で,次いで,このダイシング装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法について詳細に説明する。
まず,図1および図2に基づいて,本発明の第1の実施形態にかかるダイシング装置の構成について説明する。なお,図1は,本実施形態にかかるダイシング装置10の全体構成を示す斜視図である。また,図2は,本実施形態にかかる切削ユニット20およびチャックテーブル30の構成を示す斜視図である。
図1に示すように,ダイシング装置10は,例えば,半導体ウェハ等の被加工物12を切削加工する切削ユニット20と,切削ユニット移動機構(図示せず。)と,被加工物12を保持するチャックテーブル30と,チャックテーブル移動機構(図示せず。)と,制御装置32と,表示装置34と,操作部36とを備える。
切削ユニット20は,図2に示すように,例えば,略リング形状を有する極薄の切削砥石である切削ブレード22と,一端に装着された切削ブレード22を高速回転させるスピンドル24と,スピンドル24を回転可能に支持するスピンドルハウジング26と,を主に備える。かかる構成の切削ユニット20は,切削ブレード22を高速回転させながら被加工物12に切り込ませることにより,被加工物12を切削予定ラインに沿って切削(切断を含む。)して,極薄のカーフ(切溝)を形成することができる。
また,この切削ユニット20には,例えば,図2に示すように,顕微鏡40と,この顕微鏡40と同軸に連結された撮像手段42と,が設けられている。この顕微鏡40および顕微鏡40は,被加工物12の少なくとも一部を撮像して,かかる撮像画像を被加工物12の測定(アライメント,カーフチェック等)に利用するための測定ユニットとして構成されている。
顕微鏡40は,例えば,略円筒形の鏡筒とその内部に配された1または2以上のレンズなどから構成されており,被加工物12から入射された光学像を所定の倍率で拡大/縮小して撮像手段42に出射することができる。かかる顕微鏡40は,その光軸Cが被加工物12の表面に対して略垂直となる(即ち,Z軸方向となる)ように,配置及び向きが調整されている。また,撮像手段42は,例えばCCDカメラなどから構成されており,上記顕微鏡40から入射された光学像を光電変換して,撮像画像データとして出力する(即ち,撮像する)ことができる。このような構成の顕微鏡40および撮像手段42は,例えば,切削ユニット20のスピンドルハウジング26の一側面に装着されており,切削ユニット20の下方に配置された被加工物12の表面(上面)の少なくとも一部を,上方から撮像することができる。
切削ユニット移動機構は,例えば,電動モータなどから構成され,切削ユニット20を例えばX,Y軸およびZ軸方向に移動させることができる。この切削ユニット移動機構が切削ユニット20をZ軸方向に移動させることにより,被加工物12に対する切削ブレード22の切り込み深さを調整することができる。また,この切削ユニット移動機構が切削ユニット20をX軸およびY軸方向に移動させることにより,例えば,被加工物12の切削予定ラインに切削ブレード22の刃先位置を合わせることができる。また,後述する回転軸合わせ時には,顕微鏡40および撮像手段42を,被加工物12に対してX軸およびY軸方向に移動させることができる。
チャックテーブル30は,図1および図2に示すように,例えば,真空チャック等を備えた略円盤状のテーブルであり,そのテーブル面は,例えば略水平(X−Y平面に対して平行)である。このチャックテーブル30は,例えば,ウェハテープ14を介してフレーム16に支持された状態の被加工物12を,真空吸着して保持することができる。かかるチャックテーブル30は,その回転軸Oを中心として回転することができる。なお,本実施形態にかかる被加工物12は,半導体ウェハなどであり,例えば,回路(半導体素子)が形成された表面側を上向きにしてチャックテーブル30上に載置される。
チャックテーブル移動機構は,例えば,電動モータなどから構成され,チャックテーブル30をX軸およびY軸方向に移動させたり,回転させたりすることができる。これにより,切削加工時には,被加工物12の表面に切削ブレード22の刃先を切り込ませた状態で,当該被加工物12を切削ユニット20に対して切削方向(X軸方向)に平行移動させることができる。また,後述する回転軸合わせ時には,チャックテーブル30上に保持された被加工物12を,顕微鏡40および撮像手段42に対してX軸およびY軸方向に移動させたり,回転軸Oを中心に回転させたりすることができる。
制御装置32は,例えばダイシング装置10の内部に配設されており,例えば,CPU等で構成された演算処理装置(図示せず。)と,ROM,RAM,ハードディスク等で構成され各種のデータやプログラムなどを記憶する記憶部(図示せず。)とを備える。この制御装置32は,オペレータの入力や予め設定されたプログラム等に基づいて,ダイシング装置10の上記各部の動作を制御する機能を有する。また,この制御装置32は,例えば,顕微鏡40および撮像手段42による被加工物12の撮像画像を表示装置34に表示させることができる。さらに,制御装置32は,被加工物15をアライメントするため,或いは,後述する回転軸合わせにおいて基準点を検出,選択するために,当該撮像画像を画像処理(パターンマッチング処理等)する画像処理手段(図示せず。)としても機能する。加えて,制御装置32は,例えば,後述する回転軸合わせ時において,基準点の座標およびチャックテーブル30の回転軸Oの座標の算出処理,記憶処理などを実行するデータ処理手段(図示せず。)としても機能する。
表示装置34は,例えば,CRTまたはLCD等で構成されたモニタであり,上記制御装置32によって画像処理された画像を表示することができる。また,操作部36は,各種のスイッチ,ボタン,タッチパネル,キーボード等の入力装置などで構成されており,オペレータによるダイシング装置10の各部に対する指示が入力される部分である。
以上のような構成のダイシング装置10は,高速回転させた切削ブレード22を被加工物12に所定の切り込み深さで切り込ませながら,切削ユニット20とチャックテーブル30とを例えばX軸方向に相対移動させることにより,被加工物12を切削予定ラインに沿って切削加工することができる。かかる切削加工を同一方向の全ての切削予定ラインについて繰り返した後に,被加工物12を例えば90°回転させ,新たにX軸方向に配された全ての切削予定ラインについて同様の切削加工を繰り返すことにより,被加工物12をダイシング加工して,複数のチップに分割することができる。
次に,以上のような構成のダイシング装置10におけるチャックテーブル30の回転軸Oと顕微鏡40の中心との位置合わせ方法(回転軸合わせ)について説明する。
まず,本実施形態にかかる位置合わせ方法の概要について説明する。本実施形態にかかる位置合わせ方法は,例えば,上記図2に示したような,Z軸方向(例えば鉛直方向)に延びるチャックテーブル30の回転軸Oと顕微鏡40の中心とを位置合わせする手法である。ここで,「顕微鏡40の中心」とは,顕微鏡40のX軸及びY軸方向の中心を意味し,顕微鏡40の光軸C上に位置する。従って,「チャックテーブル30の回転軸Oと顕微鏡40の中心とを位置合わせする」とは,チャックテーブル30と顕微鏡40とをX軸及び/又はY軸方向に相対移動させることにより,チャックテーブル30の回転軸OのX−Y平面(例えば水平面)上での位置と,顕微鏡40の中心のX−Y平面上での位置とを合わせることをいう。
上記構成のダイシング装置10において,例えば,チャックテーブル30及び/又は顕微鏡40を新規に取り付けた場合や,消耗や不具合等により交換した場合などには,チャックテーブル30の回転軸Oの位置と,顕微鏡40の中心位置とがずれる可能性がある。このため,かかる顕微鏡40を用いてチャックテーブル30上の被加工物12を高精度でアライメント若しくはカーフチェックなどするためには,予め双方の位置を正確に位置合わしておく必要がある。
そこで,本実施形態にかかる位置合わせ方法では,以下に詳述するように,例えば,被加工物12を保持するチャックテーブル30を任意の角度α,βだけ順次回転させた場合において,被加工物12上の任意の基準点を追跡して顕微鏡40の視野範囲内に捉えて,上記基準点の座標を順次検出し,かかる基準点の座標および上記角度α,βに基づいて,チャックテーブル30の回転軸Oの座標を高精度で算出する。このようにして,チャックテーブル30の回転軸Oの座標を求めて,かかる座標位置と顕微鏡40の中心とを関連付けることにより,チャックテーブル30の回転軸Oと顕微鏡40の中心とを位置合わせすることができる。
かかる位置合わせを行うことにより,チャックテーブル30と顕微鏡40との相対位置関係を正確に定めることができるので,顕微鏡40によってチャックテーブル30上の被加工物12を測定した時に,当該被加工物12上の測定対象物(切削ラインやカーフ等)の位置を正確に特定することができるようになる。
次に,図3及び図4に基づいて,本実施形態にかかるダイシング装置10におけるチャックテーブル30の回転軸Oと顕微鏡40の中心との位置合わせ方法について詳細に説明する。なお,図3は,本実施形態にかかる上記位置合わせ方法を示すフローチャートである。また,図4A〜Dは,本実施形態にかかる上記位置合わせ方法の各工程を説明するための工程図である。
<第1の工程>
図3に示すように,まず,ステップS100では,図4Aに示すように,顕微鏡40の視野範囲内にある被加工物12上の基準点50が選択され,この基準点50のXY座標が検出される。(ステップS100)。
具体的には,まず,例えば,チャックテーブル30または顕微鏡40を交換した後,チャックテーブル30上に半導体ウェハ等の被加工物12を,例えば表面(回路が形成された面)を上向きにして載置する。次いで,例えば,上記切削ユニット20をX軸及び/又はY軸方向に移動させて,顕微鏡40および撮像手段42を被加工物12上の任意の位置(以下,「第1の位置」という。)に配置する。この第1の位置における顕微鏡40の視野範囲は,図4Aに示す第1の視野範囲61となる。なお,本実施形態にかかる顕微鏡40の視野範囲の形状は,図4A等に示すように例えば略矩形であるが,かかる例に限定されず,例えば略円形若しくは略正方形など任意の形状であってよい。
さらに,上記第1の位置にある顕微鏡40および撮像手段42によって,上記第1の視野範囲61内に含まれる被加工物12を撮像して,第1の撮像画像を得る。このように,顕微鏡40等は,例えば,被加工物12全体ではなく,被加工物12の一部を拡大して撮像できるように倍率設定されている。また,例えば,上記第1の撮像画像は表示装置34に表示されるため,オペレータは,上記第1の視野範囲61内に含まれる被加工物12のパターン等を確認することができる。
その後,上記第1の視野範囲61内(即ち,第1の撮像画像内)の被加工物12の任意の1点が,基準点50として選択される。この基準点50は,例えば,被加工物12の表面上の特徴的な回路パターンやマークなどであり,他の部分と識別可能なターゲットである。かかる基準点50は,必ずしも顕微鏡40の第1の視野範囲61の中心(第1の撮像画像の中心)に位置するものである必要はなく,第1の視野範囲61内の任意の場所に位置するものであってよい。これにより,従来のように基準点を顕微鏡の視野範囲の中心に配置する作業を省略できる。以下の説明では,かかる基準点50として,例えば,図4Aに示すように,被加工物12のA地点にあるターゲットが選択されたものとする。
なお,このような基準点50の選択作業においては,例えば,オペレータが表示装置34に表示された第1の撮像画像を閲覧しながら,操作部36を操作して基準点50を手動で選択してもよいし,或いは,制御装置32が第1の撮像画像を画像処理して基準点50を自動的に選択してもよい。
次いで,上記のように選択されたA地点にある基準点50のXY座標(以下では,「A座標」という。)が検出される。このA座標の検出処理は,例えば,制御装置32等によって第1の撮像画像を画像処理することにより,自動的に行われる。このようにして検出されたA座標のデータは,例えば制御装置32の記憶部に記憶される。
<第2の工程>
次に,ステップS102では,図4Bに示すように,顕微鏡40を移動させずに,チャックテーブル30を角度αだけ回転させることにより,基準点50を上記第1の視野範囲61内で移動させる(ステップS102)。この角度αは,移動後の基準点50が上記第1の視野範囲61内に収まる程度の比較的小さい角度(例えば5°以内が好ましい。)であり,本実施形態では例えば2°に設定されている。このようにしてチャックテーブル30を角度αだけ回転させた結果,被加工物12も角度α回転し,基準点50は最初のA地点からB地点に移動する。また,上記角度αのデータは,例えば制御装置32の記憶部に記憶される。
<第3の工程>
次に,ステップS104では,上記ステップS102でB地点に移動した基準点50のXY座標が検出される(ステップS104)。具体的には,まず,上記第1の位置にある顕微鏡40および撮像手段42によって,上記第1の視野範囲61内に含まれる被加工物12を撮像して,B地点に移動した基準点50を含む第2の撮像画像を得る。次いで,制御装置32によって,例えば,パターンマッチング処理等を行い,第2の撮像画像内の基準点50を自動的に認識する。さらに,制御装置32によって,上記A座標の検出の場合と同様に,上記第2の撮像画像を画像処理等することにより,B地点に移動した基準点50のXY座標(以下,「B座標」という。)を自動的に検出する。このようにして検出されたB座標のデータは,例えば制御装置32の記憶部に記憶される。
<第4の工程>
次に,ステップS106では,上記角度α,A座標およびB座標に基づいて,チャックーブル30の回転軸OのXY座標が概算される(ステップS106)。具体的には,制御装置32は,上記のようにして記憶されている角度α,A座標およびB座標のデータを基に,以下の一般式を演算することにより,チャックーブル30の回転軸Oの概算座標を算出する。
ここで,ある中心点を基準に対象物を回転移動させた場合の,当該中心点の座標を算出するための一般式について説明する。図5に示すように,一般的に,XY平面上において,点Pを中心としてある点Qを角度θだけ回転させて点Q’に移動させた場合において,移動前の点Qの座標(x,y)と,移動後の点Q’の座標(x,y)と,角度θとが既知であるときには,以下のような一般式(数式1〜4)により,回転中心である点Pの座標(Px,Py)を算出できる。
まず,次の数式1により,点Qと点Q’との距離dを算出する。
Figure 0004485771
次いで,次の数式2により,中心点Pと点Qとの距離rを算出する。
Figure 0004485771
この結果,次の数式3および4により,点PのX座標Pxと,Y座標Pyとを算出できる。
Figure 0004485771
Figure 0004485771
本ステップS106では,制御装置32が,以上のような一般式に,上記角度α,座標Aおよび座標Bを,それぞれ,上記θ,Qの座標,Q’の座標として代入して演算することにより,チャックテーブル30の回転軸OのXY座標を自動的に算出することができる。
なお,本ステップで算出した回転軸Oの座標は,概算座標であり,正確な座標とはずれがある可能性がある。これは,基準点50をA地点からB地点に移動させたときの上記角度αは比較的小さい角度であるので,基準点50の座標Aと座標Bの検出誤差が,上記回転軸Oの座標の算出精度に比較的大きく影響するからである。このように,本ステップでは,上記角度α,A座標およびB座標に基づいて,チャックテーブル30の回転軸OのXY座標を概算しており,回転軸O位置の大まかな測定がなされたといえる。
<第5の工程>
次に,ステップS108では,例えば,図4Cに示すように,チャックテーブル30を上記ステップS102での回転方向と同方向にさらに角度βだけ回転させることにより,基準点50を上記第1の視野範囲61外に移動させる(ステップS108)。この角度βは,基準点50が上記第1の視野範囲61外に移動する程度の比較的大きい角度であり,本実施形態では例えば88°に設定されている。このようにしてチャックテーブル30を角度βだけ回転させた結果,基準点50はB地点からC地点に移動し,当初の地点Aからみれば例えば90°回転したこととなる。また,上記角度βのデータは,例えば制御装置32の記憶部に記憶される。
<第6の工程>
次に,ステップS110では,例えば,上記ステップS106で算出されたチャックテーブル30の回転軸Oの概算座標,角度βおよびB座標に基づいて,C地点に移動した基準点50のXY座標が概算される(ステップS110)。より詳細には,上記ステップS108で基準点50は顕微鏡40の第1の視野範囲61外のC地点に移動するため,再度顕微鏡40によって基準点50を捉えるためには,C地点が視野範囲に含まれるように顕微鏡40を移動させる必要がある。
そこで,本ステップでは,このように顕微鏡40を移動させる基準となる情報を得るために,C地点に移動した基準点50の座標(以下,「C座標」という。)が概算される。具体的には,上記ステップS106までで,回転軸Oの概算座標と,角度βと,移動前の基準点50のB座標とが既知であるので,制御装置32は,かかるデータを上記数式1〜4と同様な原理で定められる一般式(詳細説明は省略する。)に当てはめることにより,移動後の基準点50のC座標を算出することができる。なお,かかる算出で用いられる上記回転軸Oの座標が概算座標であるので,本ステップで算出されるC座標も概算座標であり,必ずしも正確なC座標ではないが,顕微鏡40をC地点付近に移動させる基準となる情報としては,十分な精度を有する。
なお,本ステップでは,上記のように,例えば,回転軸Oの概算座標と,角度βと,B座標とに基づいてC座標を概算したが,かかる例に限定されず,例えば,回転軸Oの概算座標と,角度α+βと,A座標とに基づいてC座標を概算することも可能である。
<第7の工程>
次に,ステップS112では,例えば,図4Dに示すように,上記ステップS110で算出された基準点50のC座標の概算座標に基づいて,C地点に移動した基準点50が視野範囲内に含まれるように顕微鏡50を移動させる(ステップS112)。
従来では,顕微鏡の視野範囲外に移動した基準点の位置に顕微鏡を移動させる作業は,オペレータが顕微鏡等による画像を閲覧しながら経験と勘に頼って手動で行っていた。しかし,本実施形態では,上記ステップS110によって基準点50の移動先であるC地点の座標(C座標)が概算されているので,例えば,制御装置32によって,この概算されたC座標のデータに基づいて,C地点に移動した基準点50を視野範囲に含むような位置(以下では,「第2の位置」という。)に顕微鏡40を自動的に移動させることができる。
この結果,かかる第2の位置に移動された顕微鏡40の視野範囲は,図4Dに示す第2の視野範囲62となる。以上のように,本実施形態では,オペレータの熟練に頼ることなく,顕微鏡40を上記第2の位置に自動的に移動させて,C地点に移動した基準点40を顕微鏡40の第2の視野範囲62内に容易かつ的確に捉えることができる。
なお,本実施形態では,例えば,チャックテーブル30を固定した状態で上記切削ユニット20をX軸およびY軸方向に移動させることにより,上記のように顕微鏡40を上記第2の位置に移動させている。しかし,かかる例に限定されず,例えば,切削ユニット20を固定(即ち,顕微鏡40を固定)した状態で,チャックテーブル30をX軸およびY軸方向に移動させることにより,チャックテーブル30を顕微鏡40に対してX軸およびY軸方向に相対移動させて,結果的に,顕微鏡40を上記第2の位置に配置するようにしてもよい。
<第8の工程>
次に,ステップS114では,上記ステップS108でC地点に移動した基準点50のXY座標が検出される(ステップS114)。具体的には,まず,上記第2の位置に移動した顕微鏡40および撮像手段42によって,上記第2の視野範囲62内に含まれる被加工物12を撮像して,C地点に移動した基準点50を含む第3の撮像画像を得る。次いで,例えば制御装置32によって,上記B座標の検出の場合と同様にして,上記第3の撮像画像を画像処理等することにより,C地点に移動した基準点50のXY座標(以下,「C座標」という。)を検出する。このようにして検出されたC座標のデータは,例えば制御装置32の記憶部に記憶される。
<第9の工程>
次に,ステップS116では,例えば,上記角度α+β,A座標およびC座標に基づいて,チャックーブル30の回転軸OのXY座標が高精度で算出される(ステップS116)。具体的には,制御装置32は,例えば,上記のようにして記憶されている角度α+β(例えば90°),A座標およびC座標のデータを基に,上述したような数式1〜4からなる一般式を演算することにより,チャックーブル30の回転軸Oの座標を算出する。このように算出された回転軸Oの座標は,上記ステップS106で算出された回転軸Oの座標よりも高精度である。これは,基準点50をA地点からC地点まで移動させたときの上記角度α+βは比較的大きい角度(例えば90°)であるため,基準点50の座標Aと座標Cの検出誤差が上記回転軸Oの座標の算出精度にあまり影響を与えないからである。よって,本ステップでは,チャックテーブル30の回転軸Oの位置の精密な測定がなされたといえる。
なお,本ステップでは,制御装置32は,例えば,上記の角度β(例えば88°),B座標およびC座標のデータに基づいて,上述したような数式1〜4からなる一般式を演算することにより,チャックーブル30の回転軸Oの座標を正確に算出することもできる。
このようにステップS116での正確な測定によって得られたチャックテーブル30の回転軸OのXY座標位置を,顕微鏡40の中心位置とすることによって,チャックテーブル30の回転軸Oと顕微鏡30の中心とを正確に位置合わせ(回転軸合わせ)することができる。
以上説明したように,本実施形態にかかるチャックテーブル30の回転軸Oと顕微鏡40の中心との位置合わせ方法では,上記一般式(例えば数式1〜4)を利用して,2度にわたりチャックテーブル30の回転軸Oの座標を算出する。
具体的には,1度目の算出(ステップS100〜S106)では,まず,第1の位置に際された顕微鏡40の第1の視野範囲61内に含まれる任意の基準点50の座標(A座標)を検出する。次いで,この第1の視野範囲61内に基準点50が含まれる程度の小さい角度αでチャックテーブル30を回転させて,基準点50をわずかに移動させた後,移動後の基準点50の座標(B座標)を検出する。さらに,かかるA座標,B座標および角度αを上記一般式に当てはめることにより,チャックテーブル30の回転軸Oの概算座標を算出する。このように1度目の算出は,回転軸Oの座標を大まかに算出する作業である。
さらに,2度目の算出(ステップS108〜S116)では,まず,チャックテーブル30を大きい角度β回転させて,基準点を顕微鏡40の第1の視野範囲61外に移動させる。次いで,上記1度目に算出した回転軸Oの概算座標に基づいて,基準点50の移動した位置を推定し,この基準点50を撮像可能な第2の位置に顕微鏡40を自動的に移動させる。次いで,顕微鏡40の第2の視野範囲62内に基準点50を捉えて,移動後の基準点50の座標(C座標)を検出する。かかるC座標,A若しくはB座標,および角度α+β若しくは角度βを,上記一般式に再度当てはめることにより,チャックテーブル30の回転軸Oの座標を正確に算出する。
このように,2段階でチャックテーブル30の回転軸Oの座標を算出することにより,チャックテーブルの回転軸Oの座標を高精度で求めることができる。
また,チャックテーブル30を大きく回転させて,基準点50を顕微鏡40の視野範囲外に移動させた後に,移動した基準点50の位置を推定し,この推定位置に顕微鏡50を自動的に移動させることができる。このため,従来のように,顕微鏡40の画像を見ながら,移動後の基準点50を手動で探す作業を行う必要がない。
さらに,基準点50の位置を検出する際に,顕微鏡40の視野範囲(画像領域)の中心に基準点50を合わせる必要もない。また,被加工物12やチャックテーブル30上の如何なるターゲット(回路パターン等)を基準点50として選択しても,回転軸合わせを行うことができる。
従って,熟練者でなくても,正確かつ容易にチャックテーブル30の回転軸Oと顕微鏡40の中心とを位置合わせすることができる。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば,上記実施形態では,顕微鏡40および撮像手段42は,切削ユニット20の側面に装着されていたが,本発明はかかる例に限定されない。例えば,顕微鏡40および撮像手段42は,切削ユニット20とは別体に構成され,独立してXY軸方向に移動可能に設置されてもよいし,或いは,ダイシング装置10の任意の場所に固定的に設置されていてもよい。
また,上記実施形態では,顕微鏡40をXY軸方向に移動させることにより,顕微鏡40をチャックテーブルに対して移動させた(ステップS112;第7の工程)が,本発明はかかる例に限定されない。例えば,チャックテーブル30をXY軸方向に移動させることにより,顕微鏡40をチャックテーブル30に対して移動させてもよい。特に,顕微鏡40をダイシング装置10に固定的に設置した場合には,チャックテーブル30を移動させて顕微鏡40の視野範囲を移動させる必要がある。
また,上記実施形態では,被加工物12上のターゲットを基準点50として選択したが,本発明はかかる例に限定されない。例えば,チャックテーブル30上のターゲット(例えば,テーブル面上に位置合わせ用に特別に付したマークや,テーブル面に形成されている特別なパターン形状など)を基準点50としてもよい。この場合には,上記位置合わせ方法を行うときに,チャックテーブル30上に被加工物12を載置しなくてもよい。
また,上記実施形態では,顕微鏡40に撮像手段42を連結し,この撮像手段42によって撮像した撮像画像を画像処理することにより,基準点50の座標の検出処理などを自動的に行ったが,本発明は,かかる例に限定されない。例えば,撮像手段42を設置せずに顕微鏡40のみを設置して,顕微鏡40の画像をオペレータが目視することにより,基準点50の選択,基準点50の座標の検出,チャックテーブル30の回転,顕微鏡40の移動などの作業の全部若しくは一部を手動で行っても良い。
本発明は,半導体ウェハ等の被加工物を切削加工する切削装置に適用可能であり,特に,被加工物をアライメント若しくはカーフチェックなどするための顕微鏡を備えた切削装置に適用可能である。
本発明の第1の実施形態にかかるダイシング装置の全体構成を示す斜視図である。 本発明の第1の実施形態にかかる切削ユニットおよびチャックテーブルの構成を示す斜視図である。 本発明の第1の実施形態にかかるダイシング装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法を示すフローチャートである。 本発明の第1の実施形態にかかるダイシング装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法の第1の工程を説明するための工程図である。 同方法の第2の工程を説明するための工程図である。 同方法の第5の工程を説明するための工程図である。 同方法の第7の工程を説明するための工程図である。 本発明の第1の実施形態にかかる中心点座標を算出するための一般式について説明するための説明図である。 従来のダイシング装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法を説明するための工程図である。
符号の説明
10 : ダイシング装置
12 : 被加工物
20 : 切削ユニット
30 : チャックテーブル
32 : 制御装置
34 : 表示装置
36 : 操作部
40 : 顕微鏡
42 : 撮像手段
50 : 基準点
61 : 顕微鏡の第1の視野範囲
62 : 顕微鏡の第2の視野範囲
O : チャックテーブルの回転軸
C : 顕微鏡の光軸

Claims (2)

  1. 被加工物を保持するチャックテーブルと,前記被加工物を測定するための顕微鏡と,前記チャックテーブルと前記顕微鏡とを相対移動させる移動機構とを備えた切削装置において,前記チャックテーブルの回転軸と前記顕微鏡の中心とを位置合わせする方法であって:
    前記顕微鏡の第1の視野範囲内に含まれる前記被加工物または前記チャックテーブルの任意の1点を基準点として選択し,前記基準点の座標を検出して記憶する第1の工程と;
    前記顕微鏡の位置を固定した状態で,前記チャックテーブルを角度αだけ回転させることによって,前記第1の視野範囲内に含まれるように前記基準点を移動させるとともに,前記角度αを記憶する第2の工程と;
    前記第2の工程で移動した前記基準点の座標を検出して記憶する第3の工程と;
    前記角度αと,前記第1の工程で記憶した前記基準点の座標と,前記第3の工程で記憶した前記基準点の座標とに基づいて,前記チャックテーブルの回転軸の概算座標を算出する第4の工程と;
    前記チャックテーブルを角度βだけ回転させることによって,前記第1の視野範囲外に前記基準点を移動させるとともに,前記角度βを記憶する第5の工程と;
    前記角度βと,前記第4の工程で算出された前記チャックテーブルの回転軸の概算座標とに基づいて,前記第5の工程で移動した前記基準点の概算座標を算出する第6の工程と;
    前記第6の工程で算出された前記基準点の概算座標に基づいて,前記第5の工程で移動した前記基準点が前記顕微鏡の視野範囲に含まれるように前記顕微鏡を前記移動機構により自動的に移動させる第7の工程と;
    前記第7の工程で移動した位置における前記顕微鏡の第2の視野範囲内に含まれる前記第5の工程で移動した前記基準点の座標を検出して記憶する第8の工程と;
    前記角度α+βと,前記第1の工程で記憶した前記基準点の座標と,前記第8の工程で記憶した前記基準点の座標とに基づいて,前記チャックテーブルの回転軸の座標を算出する第9の工程と;
    を含むことを特徴とする,切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法。
  2. 被加工物を保持するチャックテーブルと,前記被加工物を測定するための顕微鏡と,前記チャックテーブルと前記顕微鏡とを相対移動させる移動機構とを備えた切削装置において,前記チャックテーブルの回転軸と前記顕微鏡の中心とを位置合わせする方法であって:
    前記顕微鏡の第1の視野範囲内に含まれる前記被加工物または前記チャックテーブルの任意の1点を基準点として選択し,前記基準点の座標を検出して記憶する第1の工程と;
    前記顕微鏡の位置を固定した状態で,前記チャックテーブルを角度αだけ回転させることによって,前記第1の視野範囲内に含まれるように前記基準点を移動させるとともに,前記角度αを記憶する第2の工程と;
    前記第2の工程で移動した前記基準点の座標を検出して記憶する第3の工程と;
    前記角度αと,前記第1の工程で記憶した前記基準点の座標と,前記第3の工程で記憶した前記基準点の座標とに基づいて,前記チャックテーブルの回転軸の概算座標を算出する第4の工程と;
    前記チャックテーブルを角度βだけ回転させることによって,前記第1の視野範囲外に前記基準点を移動させるとともに,前記角度βを記憶する第5の工程と;
    前記角度βと,前記第4の工程で算出された前記チャックテーブルの回転軸の概算座標とに基づいて,前記第5の工程で移動した前記基準点の概算座標を算出する第6の工程と;
    前記第6の工程で算出された前記基準点の概算座標に基づいて,前記第5の工程で移動した前記基準点が前記顕微鏡の視野範囲に含まれるように前記顕微鏡を前記移動機構により自動的に移動させる第7の工程と;
    前記第7の工程で移動した位置における前記顕微鏡の第2の視野範囲内に含まれる前記第5の工程で移動した前記基準点の座標を検出して記憶する第8の工程と;
    前記角度βと,前記第3の工程で記憶した前記基準点の座標と,前記第8の工程で記憶した前記基準点の座標とに基づいて,前記チャックテーブルの回転軸の座標を算出する第9の工程と;
    を含むことを特徴とする,切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法。
JP2003324837A 2003-09-17 2003-09-17 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法 Expired - Lifetime JP4485771B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324837A JP4485771B2 (ja) 2003-09-17 2003-09-17 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324837A JP4485771B2 (ja) 2003-09-17 2003-09-17 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法

Publications (2)

Publication Number Publication Date
JP2005093710A JP2005093710A (ja) 2005-04-07
JP4485771B2 true JP4485771B2 (ja) 2010-06-23

Family

ID=34455477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324837A Expired - Lifetime JP4485771B2 (ja) 2003-09-17 2003-09-17 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法

Country Status (1)

Country Link
JP (1) JP4485771B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159409A (ja) * 2015-03-04 2016-09-05 株式会社ディスコ 切削装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6689543B2 (ja) * 2016-08-26 2020-04-28 株式会社ディスコ 被加工物のアライメント方法
JP7308394B2 (ja) 2018-05-08 2023-07-14 株式会社東京精密 補助方法及び補助装置
JP7087264B2 (ja) * 2018-05-08 2022-06-21 株式会社東京精密 補助方法及び補助装置
JP7109736B2 (ja) * 2018-06-28 2022-08-01 株式会社東京精密 補助装置及び補助方法
JP7336960B2 (ja) 2019-10-30 2023-09-01 株式会社ディスコ 中心位置づけ方法
JP2022152993A (ja) * 2021-03-29 2022-10-12 Towa株式会社 加工装置、及び加工品の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159409A (ja) * 2015-03-04 2016-09-05 株式会社ディスコ 切削装置

Also Published As

Publication number Publication date
JP2005093710A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
US10099380B2 (en) Robot, robot control device, and robot system
TWI764786B (zh) 沿著試樣之期望的x’方向成像該試樣的方法及顯微鏡系統
KR101110145B1 (ko) X선 투시 장치
JP5525953B2 (ja) 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
KR101399669B1 (ko) 거리 측정 기능을 갖는 연마기
US7456947B2 (en) Inspecting apparatus and inspecting method
KR20170095125A (ko) 장치
JP6588704B2 (ja) 工具刃先の検出方法及び装置並びに工具補正値の設定装置
JP5467962B2 (ja) 測定設定データ作成装置、測定設定データ作成方法、測定設定データ作成装置用のプログラム及び寸法測定装置
JP4485771B2 (ja) 切削装置におけるチャックテーブルの回転軸と顕微鏡の中心との位置合わせ方法
JP4381755B2 (ja) 切削装置
US11232551B2 (en) Wafer inspecting apparatus
JP2020097067A (ja) 補助方法及び補助装置
JP2010023233A (ja) 単結晶材料の面方位合わせ装置および面方位合わせ方法
JP6108806B2 (ja) 加工装置
JP4436641B2 (ja) 切削装置におけるアライメント方法
JP2012213814A (ja) 自動ドリル先端加工機
JP6703463B2 (ja) 調整方法及び装置
KR20220133780A (ko) 가공 장치
JP3679460B2 (ja) 移動体装置及びその制御方法
JP7308394B2 (ja) 補助方法及び補助装置
JP7222733B2 (ja) アライメント方法
JP7252769B2 (ja) アライメント方法
JP7368138B2 (ja) 加工装置
JP7087264B2 (ja) 補助方法及び補助装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Ref document number: 4485771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term