JP4484544B2 - Manufacturing method of high frequency module - Google Patents

Manufacturing method of high frequency module Download PDF

Info

Publication number
JP4484544B2
JP4484544B2 JP2004049554A JP2004049554A JP4484544B2 JP 4484544 B2 JP4484544 B2 JP 4484544B2 JP 2004049554 A JP2004049554 A JP 2004049554A JP 2004049554 A JP2004049554 A JP 2004049554A JP 4484544 B2 JP4484544 B2 JP 4484544B2
Authority
JP
Japan
Prior art keywords
frequency module
semiconductor element
mounting
dielectric substrate
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049554A
Other languages
Japanese (ja)
Other versions
JP2005243787A (en
Inventor
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004049554A priority Critical patent/JP4484544B2/en
Publication of JP2005243787A publication Critical patent/JP2005243787A/en
Application granted granted Critical
Publication of JP4484544B2 publication Critical patent/JP4484544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein since a semiconductor device accompanying miniaturization, heat dissipation path is reduced, the use of a conductive resin that has thermal conductivity which is lower by a factor of ten than those of metals would result in insufficient heat dissipation, thereby causing temperature rise inside a high-frequency module, as well as an efficiency reduction in a power amplifier. <P>SOLUTION: When mounting a semiconductor device 4, such as a power amplifier on the surface of a dielectric substrate 2, the mounting is performed using a molten silver layer 15 which is formed by depositing silver particles, having a particle diameter of 20nm or smaller at a temperature of 300&deg;C or smaller, and which does not contain organic resin. This can reduce heat resistance, and improve heat conductivity and heat dissipation characteristic, thereby enabling the achievement of efficiency improvement in the power amplifier, and temperature reduction inside the module. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、携帯電話、移動体通信、無線通信等に適用される高周波モジュールの製造方
に関する。
The present invention relates to a method of manufacturing a high-frequency module applied to a mobile phone, mobile communication, wireless communication, etc.
Regarding the law .

携帯電話、無線LANの市場は右肩上がりの成長が想定されており、第3世代の携帯電話の生産数は、急激に増加している。携帯電話の機能は第3世代に進歩するに従って、カメラ内蔵、テレビの受信、他の無線通信(ブルーツース、赤外線通信、無線LAN)との併用化も進んでおり、高周波回路の占有面積は年々減少している。その為、携帯電話の部品は小形軽量化、複合化がめざましく、個々の性能をアップしつつ、部品点数の削減、低消費電力化への要求に対応する必要がある。   The mobile phone and wireless LAN markets are expected to grow rapidly, and the number of third-generation mobile phones produced is increasing rapidly. As mobile phone functions advance to the third generation, built-in cameras, TV reception, and other wireless communications (Bluetooth, infrared communications, wireless LAN) are also being used together, and the area occupied by high-frequency circuits decreases year by year. is doing. For this reason, mobile phone parts are rapidly becoming smaller and lighter, and it is necessary to meet the demands for reducing the number of parts and reducing power consumption while improving individual performance.

このような要求を実現するため、チップセットの集積化、性能向上が進んでおり、同様に周辺の高周波部品も集積化した高周波モジュールが提案されている。   In order to realize such requirements, integration of chipsets and improvement in performance are advancing, and high frequency modules in which peripheral high frequency components are also integrated have been proposed.

高周波モジュールにおいて発熱性を伴うパワーアンプ等の半導体素子は、自身の小型化と、移動体通信システムにおける伝送容量の増加や伝送スピードの高速化に伴い大きな高周波電力を取り扱うため、半導体素子の単位面積当たりの発熱量が大幅に増加している。その放熱対策として、放熱フィンを取り付ける方法や、パワーアンプが搭載される誘電体基板に熱伝導率が大きな高熱伝導セラミックスである窒化アルミニウム等を用いる方法があり、良好な放熱性を得ることが出来る。さらに特許文献1では、パワーアンプを配線基板の背面に配置し外部電気回路基板に半田付けすることで放熱性を向上する技術が提案されている。   Semiconductor elements such as power amplifiers with high heat generation in high-frequency modules are designed to handle large high-frequency power due to their own miniaturization and increased transmission capacity and transmission speed in mobile communication systems. The amount of heat generated per hit has increased significantly. As a heat dissipation measure, there are a method of attaching a heat dissipation fin and a method of using aluminum nitride, which is a high thermal conductivity ceramic having a high thermal conductivity, on the dielectric substrate on which the power amplifier is mounted, and good heat dissipation can be obtained. . Further, Patent Document 1 proposes a technique for improving heat dissipation by arranging a power amplifier on the back surface of a wiring board and soldering it to an external electric circuit board.

また、高周波モジュールにおいてパワーアンプの近傍に構成される高周波フィルタ装置等に用いられる表面弾性波素子は、一般的にリチウムタンタレート等の圧電体基板に表面弾性波を伝播させるための櫛形電極が形成されたものであるが、圧電体基板自身の電気的特性が温度変化による影響を大きく受けるため、モジュール内でパワーアンプ等の発熱体から離れた位置に配置することが必要不可欠となっている。このため、従来のパワーアンプと表面弾性波素子等とを一体に形成した高周波モジュールは、近年の移動体通信用情報端末機等の小型化・軽量化・高密度化・低価格化のための要求に十分に応えることができないという問題点があった。   A surface acoustic wave element used in a high frequency filter device or the like configured in the vicinity of a power amplifier in a high frequency module is generally formed with a comb-shaped electrode for propagating surface acoustic waves to a piezoelectric substrate such as lithium tantalate. However, since the electrical characteristics of the piezoelectric substrate itself are greatly affected by temperature changes, it is indispensable to dispose the piezoelectric substrate in a position away from a heating element such as a power amplifier. For this reason, a high frequency module in which a conventional power amplifier and a surface acoustic wave element are integrally formed is used for downsizing, weight reduction, high density, and price reduction of information terminals for mobile communication in recent years. There was a problem that the request could not be fully met.

これに対し、例えば特許文献2、特許文献3には、パワーアンプである能動回路素子と、表面弾性波素子である受動回路素子をモジュール基板上に搭載した高周波モジュールにおいて、パワーアンプから表面弾性波への伝熱対策を施した構造が提案されている。
特開2000−31331号 特開2002−359327号 特開2003−100989号
In contrast, for example, in Patent Document 2 and Patent Document 3, in a high-frequency module in which an active circuit element that is a power amplifier and a passive circuit element that is a surface acoustic wave element are mounted on a module substrate, the surface acoustic wave is transmitted from the power amplifier. A structure with heat transfer measures has been proposed.
JP 2000-31331 A JP 2002-359327 A Japanese Patent Laid-Open No. 2003-10089

特許文献2、3に開示された高周波モジュールでは、パワーアンプからの発熱によって、表面弾性波素子の特性変化が問題となる為、モジュール内の伝熱構造を改善することによって表面弾性波素子の特性劣化を抑えることが出来る。しかし、パワーアンプ等の半導体素子は年々小型化しており、モジュールの放熱経路が減少しているので、単位面積当たりの放熱量は増加している。   In the high-frequency module disclosed in Patent Documents 2 and 3, since the characteristics of the surface acoustic wave element change due to heat generated from the power amplifier, the characteristics of the surface acoustic wave element are improved by improving the heat transfer structure in the module. Deterioration can be suppressed. However, semiconductor elements such as power amplifiers are becoming smaller year by year, and the heat dissipation path of the module is decreasing, so the amount of heat dissipation per unit area is increasing.

通常、半導体素子は導電性樹脂、半田等の接着剤を用いてモジュール基板に接続されているが、この接着剤は、金属材料の熱伝導率に比べて一桁小さい値となっている。その結果、パワーアンプで発生した熱は、接着剤、サーマルビアを通して充分に放熱されない為に熱抵抗が高くなり、モジュール内部の温度上昇、表面弾性波素子の特性劣化、パワーアンプの効率低下を招いていた。   Normally, the semiconductor element is connected to the module substrate using an adhesive such as conductive resin or solder, but this adhesive has a value that is an order of magnitude smaller than the thermal conductivity of the metal material. As a result, the heat generated in the power amplifier is not sufficiently dissipated through the adhesive and thermal vias, resulting in a high thermal resistance, leading to an increase in the temperature inside the module, deterioration of the characteristics of the surface acoustic wave device, and a reduction in the efficiency of the power amplifier. It was.

従って、本発明の目的は、上記の点に鑑み、パワーアンプなどの半導体素子から発生する熱を効率よく放熱し、モジュール内部の温度を低減し、表面弾性波素子などの表面実装部品の特性、半導体素子の効率を改善し、かつ小型で高性能な、携帯型情報端末機、無線通信等の電子機器・電子装置等に好適な高周波モジュールを提供することにある。   Therefore, in view of the above points, the object of the present invention is to efficiently dissipate heat generated from a semiconductor element such as a power amplifier, reduce the temperature inside the module, and the characteristics of surface-mounted components such as surface acoustic wave elements, An object of the present invention is to provide a high-frequency module that improves the efficiency of a semiconductor element and is suitable for electronic devices and electronic devices such as portable information terminals and wireless communications that are small and have high performance.

本発明の高周波モジュールの製造方法は、誘電体基板表面に、表面実装部品を半田層を介して実装し、半導体素子を実質的に有機分を含まない溶融銀層を介して実装搭載してなる高周波モジュールの製造方法であって、平均粒径が20nm以下の銀粒子および150℃以下で揮発する有機溶媒が混合されたペーストを前記誘電体基板表面の導体層に塗布する工程と、前記ペーストが塗布された前記導体層上に前記半導体素子を載置する工程と、その後に250℃以上300℃以下の温度で熱処理する工程とを含むことを特徴とする。
The method for producing a high-frequency module of the present invention comprises mounting a surface-mounted component on a dielectric substrate surface via a solder layer, and mounting and mounting a semiconductor element via a molten silver layer substantially free of organic components. a method of manufacturing a high-frequency module, comprising the steps of applying a paste flat Hitoshitsubu diameter are mixed organic solvent volatilize at 20nm or less silver particles and 0.99 ° C. or less to the conductor layer of the dielectric substrate surface, the paste The method includes a step of placing the semiconductor element on the conductor layer to which is applied, and a heat treatment at a temperature of 250 ° C. to 300 ° C. thereafter .

また、上記高周波モジュールにおける前記表面実装部品は、チップコンデンサ、チップインダクタ、チップ抵抗素子、表面弾性波素子、FBAR、BAWの群から選ばれる少なくとも1つであり、前記半導体素子はパワーアンプ、スイッチ、パワーコントロール、検波、電源コントロールの群から選ばれる少なくとも1つであることを特徴とする。   The surface-mounted component in the high-frequency module is at least one selected from the group consisting of a chip capacitor, a chip inductor, a chip resistor element, a surface acoustic wave element, FBAR, and BAW, and the semiconductor element includes a power amplifier, a switch, It is at least one selected from the group of power control, detection, and power control.

また、前記誘電体基板表面に実装された表面実装部品および半導体素子を熱硬化性樹脂で気密封止する工程をさらに有することを特徴とする。
Also, the pre-Symbol dielectric surface mounted components and a semiconductor element mounted on the substrate surface, further comprising a hermetic seal to process a thermosetting resin.

さらに、上記高周波モジュールにおける前記誘電体基板に分波回路、合波回路、カプラ、バラン、フィルタの少なくとも1つの受動回路を具備することを特徴とする。   Further, the dielectric substrate in the high-frequency module includes at least one passive circuit of a demultiplexing circuit, a multiplexing circuit, a coupler, a balun, and a filter.

本発明の高周波モジュールの製造方法によれば、誘電体基板表面に表面実装部品を半田層を介して実装し、半導体素子を実質的に有機分を含まない溶融銀層を介して搭載してなる高周波モジュールの製造方法であって、平均粒径が20nm以下の銀粒子および150℃以下で揮発する有機溶媒が混合されたペーストを前記誘電体基板表面の導体層に塗布する工程と、前記ペーストが塗布された前記導体層上に前記半導体素子を載置する工程と、その後に250℃以上300℃以下の温度で熱処理する工程とを含むことによって、半導体素子から発生した熱を熱伝導率の高い溶融銀層によって低い熱抵抗で効果的に伝熱させることができる。これにより、パワーアンプなどの半導体素子の効率を向上させることができる。また、モジュール内の半導体素子付近の低温化や、半導体素子付近に搭載された表面弾性波素子等の表面実装部品の特性変動の低減が可能となり、高信頼性の高周波モジ
ュールを提供することが可能となる。
According to the method for manufacturing a high-frequency module of the present invention, a surface-mounted component is mounted on a dielectric substrate surface via a solder layer, and a semiconductor element is mounted via a molten silver layer substantially free of organic components. a method of manufacturing a high-frequency module, comprising the steps of applying a paste flat Hitoshitsubu diameter are mixed organic solvent volatilize at 20nm or less silver particles and 0.99 ° C. or less to the conductor layer of the dielectric substrate surface, the paste Including the step of placing the semiconductor element on the conductor layer coated with a heat treatment , and the subsequent step of heat-treating at a temperature of 250 ° C. or higher and 300 ° C. or lower. Heat can be effectively transferred with a low heat resistance by the high molten silver layer. Thereby, the efficiency of a semiconductor element such as a power amplifier can be improved. In addition, it is possible to lower the temperature near the semiconductor element in the module and to reduce the characteristic fluctuation of surface mounted components such as surface acoustic wave elements mounted in the vicinity of the semiconductor element, thereby providing a highly reliable high-frequency module. It becomes.

以下、図面に基づいて本発明の製造方法により得られる高周波モジュールについて詳細に説明する。
Hereinafter, the high frequency module obtained by the manufacturing method of the present invention will be described in detail with reference to the drawings.

図1は、高周波モジュールの一例を説明するための概略断面図である。この図1に示される高周波モジュール1は、フロントエンドモジュールと呼ばれるモジュール製品であり、複数の誘電体層を積層することによって誘電体基板2が形成されており、この誘電体基板2の表面には、チップコンデンサ、チップ抵抗素子、チップインダクタなどの表面実装部品3が実装されている。さらに、この誘電体基板2の表面には、パワーアップとなる半導体素子4もあわせて実装されている。 Figure 1 is a schematic sectional view for explaining an example of a high-frequency module. A high-frequency module 1 shown in FIG. 1 is a module product called a front-end module, and a dielectric substrate 2 is formed by laminating a plurality of dielectric layers. A surface mount component 3 such as a chip capacitor, a chip resistance element, or a chip inductor is mounted. Further, a semiconductor element 4 to be powered up is also mounted on the surface of the dielectric substrate 2.

また、この高周波モジュール1によれば、誘電体基板2の内部には、配線回路層5や、垂直導体6によって3次元的な高周波回路が形成されている。また、誘電体基板2の底面には、グランド層7、他の外部回路と接続するための端子電極8が形成されている。   Further, according to the high frequency module 1, a three-dimensional high frequency circuit is formed in the dielectric substrate 2 by the wiring circuit layer 5 and the vertical conductor 6. On the bottom surface of the dielectric substrate 2, a ground layer 7 and terminal electrodes 8 for connecting to other external circuits are formed.

また、半導体素子4の直下には、半導体素子4から発生した熱を誘電体基板2の底面側に伝熱するためのサーマルビア9が形成されており、表面導体層10およびグランド層7に接続されている。   A thermal via 9 for transferring heat generated from the semiconductor element 4 to the bottom surface side of the dielectric substrate 2 is formed immediately below the semiconductor element 4, and is connected to the surface conductor layer 10 and the ground layer 7. Has been.

また、誘電体基板2の表面には、さらに圧電体からなる表面弾性波素子11が実装されている。場合によっては誘電体基板1表面には、整合回路パターンなどの高周波回路パターンなども導体材料によって被着形成されている。   A surface acoustic wave element 11 made of a piezoelectric material is further mounted on the surface of the dielectric substrate 2. In some cases, a high-frequency circuit pattern such as a matching circuit pattern is deposited on the surface of the dielectric substrate 1 with a conductive material.

本発明によれば、これら表面実装部品3、半導体素子4、圧電体からなる表面弾性波素子11が接続、ボンディング、またはフェースダウンボンディングされるとともに、表面実装部品3,半導体素子4、圧電体からなる表面弾性波素子11が封止用樹脂12によって封止されている。   According to the present invention, the surface-mounted component 3, the semiconductor element 4, and the surface acoustic wave element 11 including the piezoelectric body are connected, bonded, or face-down bonded, and the surface-mounted component 3, the semiconductor element 4, and the piezoelectric body. The surface acoustic wave element 11 is sealed with a sealing resin 12.

本発明の高周波モジュールにおいては、表面実装部品3および表面弾性波素子11は、いずれも半田13によって表面導体層14に電気的に接続され実装されている。一方、半導体素子4は、実質的に有機分を含まない溶融銀層15によって表面導体層10に接続され実装されていることが重要である。   In the high frequency module of the present invention, the surface mount component 3 and the surface acoustic wave element 11 are both electrically connected and mounted on the surface conductor layer 14 by the solder 13. On the other hand, it is important that the semiconductor element 4 is connected to and mounted on the surface conductor layer 10 by a molten silver layer 15 that does not substantially contain an organic component.

この溶融銀層15は、平均粒径が20nm以下、特に15nm以下の微細な銀粒子を用い、これを300℃以下の温度で熱処理することによって形成することができる。   The molten silver layer 15 can be formed by using fine silver particles having an average particle diameter of 20 nm or less, particularly 15 nm or less, and heat-treating them at a temperature of 300 ° C. or less.

この第1の実施の形態によれば、従来、平均粒径が0.5〜10μmのAg粉末を用いた場合、750〜800℃の温度で熱処理しなければ焼成できなかったのに対して、平均粒径が20nm以下の銀粒子を用いることによって、300℃以下の温度で焼成することができる。その結果、この焼成後の銀層は、銀粉末が溶融した状態で固化しているために、高純度の高熱伝導の銀層を形成することができる。   According to the first embodiment, conventionally, when Ag powder having an average particle size of 0.5 to 10 μm was used, it could not be fired unless it was heat-treated at a temperature of 750 to 800 ° C. By using silver particles having an average particle size of 20 nm or less, firing can be performed at a temperature of 300 ° C. or less. As a result, since the silver layer after firing is solidified in a state where the silver powder is melted, a high-purity and highly heat-conductive silver layer can be formed.

その結果、従来、合成樹脂と銀粒子との混合ペーストを硬化させて半導体素子を実装していた場合に比較して、熱伝導率を200W/m・K以上に高めることができ、半導体素子からの放熱性を大きく改善することができる。   As a result, the thermal conductivity can be increased to 200 W / m · K or more compared to the case where a semiconductor element is mounted by curing a mixed paste of synthetic resin and silver particles, The heat dissipation can be greatly improved.

このような溶融銀層を形成するには、平均粒径が20nm以下、特に15nm以下の微細な銀粒子に対して、150℃以下で揮発するような有機溶媒と混合してペーストを調製し、これを誘電体基板2の表面の表面導体層10の表面に塗布後、半導体素子4を載置し、300℃以下の温度で熱処理することによって半導体素子4を表面導体層10の表面に実装することができる。   In order to form such a molten silver layer, a paste is prepared by mixing with an organic solvent that volatilizes at 150 ° C. or less with respect to fine silver particles having an average particle diameter of 20 nm or less, particularly 15 nm or less, After coating this on the surface of the surface conductor layer 10 on the surface of the dielectric substrate 2, the semiconductor element 4 is mounted and heat-treated at a temperature of 300 ° C. or lower to mount the semiconductor element 4 on the surface of the surface conductor layer 10. be able to.

ここで用いられる有機溶媒としては、エチレングリコール、トリエチレングリコール、ジエチレングリコール、テルピネオール、ブタノールの群から選ばれる少なくとも1種が望ましく、かかる有機溶媒は、銀粒子100質量部あたり、40質量部以下の割合で添加、混合される。   The organic solvent used here is preferably at least one selected from the group of ethylene glycol, triethylene glycol, diethylene glycol, terpineol, and butanol, and the organic solvent is a proportion of 40 parts by mass or less per 100 parts by mass of silver particles. Added and mixed.

本発明によれば、半導体素子4、及びその他の電子部品を同一の誘電体基板2の表面に実装するにあたり、表面実装部品3、表面弾性波素子11などのその他の電子部品を半導体素子4よりも先に実装するか、または後に実装するかを、その他の電子部品を実装するための半田層の形成温度に応じて種々変更することでき、半導体素子、その他の電子部品の接続信頼性を高めた高周波回路モジュールを容易に形成することができる。   According to the present invention, when mounting the semiconductor element 4 and other electronic components on the surface of the same dielectric substrate 2, other electronic components such as the surface-mounted component 3 and the surface acoustic wave element 11 are transferred from the semiconductor element 4. Depending on the solder layer formation temperature for mounting other electronic components, the mounting reliability of semiconductor elements and other electronic components can be improved. A high frequency circuit module can be easily formed.

例えば、半導体素子4の実装をその他の電子部品の実装よりも先に行なう場合には、その他の電子部品の実装温度を250℃以下の半導体素子4の実装温度よりも低い温度で行なう。逆に、半導体素子4の実装をその他の電子部品の実装よりも後に行なう場合には、その他の電子部品の実装温度を250から300℃の半導体素子4の実装温度よりも高い温度で行なう。これによって、銀溶融層15の形成をいずれの場合も300℃以下で行うことが可能となる。   For example, when mounting the semiconductor element 4 prior to mounting other electronic components, the mounting temperature of the other electronic components is set to a temperature lower than the mounting temperature of the semiconductor element 4 of 250 ° C. or less. Conversely, when mounting the semiconductor element 4 after mounting other electronic components, the mounting temperature of the other electronic components is set to a temperature higher than the mounting temperature of the semiconductor element 4 of 250 to 300 ° C. This makes it possible to form the silver molten layer 15 at 300 ° C. or lower in any case.

また、前記実施の形態では、高周波モジュールが、フロントエンドモジュールの場合を説明したが、本発明の高周波モジュールは、これに限られるものではなく、半田実装される表面実装部品、溶融銀層を介して実装される半導体素子が実装されるものであれば、他の半導体装置であってもよい。   In the above-described embodiment, the case where the high-frequency module is a front-end module has been described. However, the high-frequency module of the present invention is not limited to this, and via a surface-mounted component to be solder-mounted and a molten silver layer Other semiconductor devices may be used as long as the semiconductor elements to be mounted are mounted.

本発明における表面実装部品としては、チップコンデンサ、インダクタ、抵抗の群から選ばれる少なくとも1種が挙げられる。さらに半導体素子としては、パワーアンプ、スイッチ、パワーコントロール、検波、電源コントロール、光半導体素子、FBAR(Film Bulk Acoustic Resonator)MEMSのスイッチの群から選ばれる少なくとも1種が挙げられる。   Examples of the surface mount component in the present invention include at least one selected from the group of chip capacitors, inductors, and resistors. Further, examples of the semiconductor element include at least one selected from the group of a power amplifier, a switch, power control, detection, power supply control, an optical semiconductor element, and a FBAR (Film Bulk Acoustic Resonator) MEMS switch.

また、表面実装部品を実装するのに用いられる半田としては、PbSn、AuSn、SnAgCu,SnAgBi,SnSbの群から選ばれる少なくとも1種が用いられる。   Further, as the solder used for mounting the surface-mounted component, at least one selected from the group of PbSn, AuSn, SnAgCu, SnAgBi, and SnSb is used.

0.95モルMgTiO−0.05モルCaTiOで表される主成分100質量部に対して、BをB換算で10質量部、LiをLiCO換算で5質量部添加したセラミック原料粉末を用いて厚さ200μmのグリーンシートを作製した後、このグリーンシートに貫通孔を形成してその孔内に平均粒径が3μmの銀粉末を含有する銀ペーストを充填してバイア導体を形成した後、グリーンシートの表面に、前記銀ペーストを回路パターンに印刷塗布した。このようにして作製した複数のグリーンシートを積層後、大気中で300℃、4時間脱バインダ処理をし、さらに900℃大気中で6時間焼成を行い、高周波モジュール用の多層配線基板を作製した。なお、半導体素子実装部には、図1の高周波モジュールのようにサーマルビアを設けた。 Ceramic in which 10 parts by mass of B in terms of B 2 O 3 and 5 parts by mass of Li in terms of LiCO 3 are added to 100 parts by mass of the main component represented by 0.95 mol MgTiO 3 -0.05 mol CaTiO 3 A green sheet having a thickness of 200 μm was prepared using the raw material powder, and then a through hole was formed in the green sheet, and a silver paste containing silver powder having an average particle diameter of 3 μm was filled in the hole to form a via conductor. After the formation, the silver paste was printed and applied to the circuit pattern on the surface of the green sheet. After laminating a plurality of green sheets thus produced, the binder removal treatment was performed in the atmosphere at 300 ° C. for 4 hours, and further, the firing was performed in the atmosphere at 900 ° C. for 6 hours to produce a multilayer wiring board for a high-frequency module. . In addition, the thermal via was provided in the semiconductor element mounting part like the high frequency module of FIG.

(半田実装)
表1に示す溶融温度の半田(SnSb=280℃、SnAgBi=235℃)をスクリーン印刷法にて塗布し、圧電体からなる表面弾性波素子のチップスケールパッケージ、およびチップコンデンサ、チップインダクタなどの表面実装部品を搭載した後、上記溶融温度の窒素雰囲気にてリフロー実装を行った。
(Solder mounting)
Solder (SnSb = 280 ° C., SnAgBi = 235 ° C.) having a melting temperature shown in Table 1 is applied by a screen printing method, and a chip scale package of a surface acoustic wave device made of a piezoelectric body, and a surface of a chip capacitor, a chip inductor, etc. After mounting the mounting components, reflow mounting was performed in a nitrogen atmosphere at the melting temperature.

(銀実装)
ディスペンサーにて平均粒径が表1に示すような種々の銀粒子を準備し、この銀粒子100質量部にブタノールを30質量部の割合で添加混合してAgペースト1を調製した。
(Silver mounting)
Various silver particles having an average particle diameter as shown in Table 1 were prepared using a dispenser, and butanol was added and mixed at a ratio of 30 parts by mass to 100 parts by mass of the silver particles to prepare an Ag paste 1.

また、比較のために、平均粒径が5〜10μmのAg粒子とエポキシ樹脂とを混合した市販の導電性樹脂を用いた。   For comparison, a commercially available conductive resin obtained by mixing Ag particles having an average particle diameter of 5 to 10 μm and an epoxy resin was used.

その後、このAgペーストを半導体素子搭載部の導体層表面に塗布後、半導体素子を載置し、窒素雰囲気で表1に示す温度の電気炉内で溶融させた後、金線を用いて半導体素子とその周囲に形成された電極とワイヤボンディングした。   Then, after applying this Ag paste to the surface of the conductor layer of the semiconductor element mounting portion, the semiconductor element is placed and melted in an electric furnace having a temperature shown in Table 1 in a nitrogen atmosphere, and then the semiconductor element is formed using a gold wire. And the electrode formed in the circumference | surroundings was wire-bonded.

なお、上記半田実装と銀実装とは、銀実装温度、半田実装温度のうち、温度が高い方を先に行った。最後に、モジュール表面にエポキシ系封止樹脂を塗布して一括封止した。   The solder mounting and the silver mounting were performed first in the silver mounting temperature and the solder mounting temperature, whichever was higher. Finally, an epoxy-based sealing resin was applied to the module surface and sealed together.

これに、コントロール電圧、基準電圧、電源をONにし、高周波モジュールの出力端で最大出力が25dBmとなるよう、入力側の信号レベルを調節した。この状態で、高周波モジュールの裏面温度を測定した。その結果を表1に示す。

Figure 0004484544
For this, the control voltage, the reference voltage, and the power supply were turned on, and the signal level on the input side was adjusted so that the maximum output was 25 dBm at the output end of the high-frequency module. In this state, the back surface temperature of the high frequency module was measured. The results are shown in Table 1.
Figure 0004484544

表1にみられるように、銀粒子の粒径が20nmよりも大きい試料No.7〜12は、300℃以下の温度条件で溶融銀層が形成できないため、裏面温度は60℃以下、熱伝導度は100W/m・K以下であった。また半導体素子が誘電体基板から容易に剥離することが確認できた。また、樹脂と銀粒子を混合した導電性ペーストを接着剤として用いた試料No.11、12は、200℃以下で接着固定できるが、裏面温度は60℃以下、熱伝導度は100W/m・K以下であるため、溶融銀層を形成した試料No.1〜6よりもパワーアンプの効率が劣化していることが確認された。本発明品は、有機溶剤と混合した本発明の溶融銀の熱伝導度は300W/m・K以上と高く、その結果、モジュールの裏面温度が60℃以上と高く、伝熱性に優れていることが確認された。そしてこれによりパワーアンプの効率も39%以上と高い効率を得ることができた。   As can be seen in Table 1, the sample nos. In Nos. 7 to 12, since the molten silver layer could not be formed under a temperature condition of 300 ° C. or lower, the back surface temperature was 60 ° C. or lower and the thermal conductivity was 100 W / m · K or lower. It was also confirmed that the semiconductor element was easily peeled from the dielectric substrate. Sample No. using a conductive paste mixed with resin and silver particles as an adhesive was used. 11 and 12 can be bonded and fixed at 200 ° C. or lower, but the back surface temperature is 60 ° C. or lower and the thermal conductivity is 100 W / m · K or lower. It was confirmed that the efficiency of the power amplifier was deteriorated more than 1-6. The product of the present invention has a high thermal conductivity of 300 W / m · K or more, and as a result, the back surface temperature of the module is as high as 60 ° C. or more and has excellent heat conductivity. Was confirmed. As a result, the efficiency of the power amplifier can be as high as 39% or more.

本発明の高周波モジュールの概略断面図を示す。The schematic sectional drawing of the high frequency module of this invention is shown. 図1の高周波モジュールの概略平面図を示す。The schematic plan view of the high frequency module of FIG. 1 is shown.

符号の説明Explanation of symbols

1・・・・高周波モジュール
2・・・・誘電体基板
3・・・・表面実装部品
4・・・・半導体素子
5・・・・導体層 圧電体からなる表面弾性波素子
6・・・・ビア導体
9・・・・サーマルビア
13・・・・半田
15・・・・溶融銀層
DESCRIPTION OF SYMBOLS 1 ... High frequency module 2 ... Dielectric substrate 3 ... Surface mount component 4 ... Semiconductor element 5 ... Conductive layer Surface acoustic wave element which consists of piezoelectric bodies 6 ... Via conductor 9 ... Thermal via 13 ... Solder 15 ... Molten silver layer

Claims (4)

誘電体基板表面に、表面実装部品を半田層を介して実装し、半導体素子を実質的に有機分を含まない溶融銀層を介して実装搭載してなる高周波モジュールの製造方法であって、平均粒径が20nm以下の銀粒子および150℃以下で揮発する有機溶媒が混合されたペーストを前記誘電体基板表面の導体層に塗布する工程と、前記ペーストが塗布された前記導体層上に前記半導体素子を載置する工程と、その後に250℃以上300℃以下の温度で熱処理する工程とを含むことを特徴とする高周波モジュールの製造方法The dielectric substrate surface, the surface mounting component via a solder layer to implement a method for producing a high-frequency module formed by mounting mounted via the molten silver layer containing substantially no organic component of semiconductor devices, flat Applying a paste mixed with silver particles having an average particle size of 20 nm or less and an organic solvent that volatilizes at 150 ° C. or less to a conductor layer on the surface of the dielectric substrate; and on the conductor layer to which the paste is applied, A method of manufacturing a high-frequency module , comprising a step of placing a semiconductor element and a step of heat-treating at a temperature of 250 ° C. to 300 ° C. thereafter . 前記表面実装部品が、チップコンデンサ、チップインダクタ、チップ抵抗素子、表面弾性波素子、FBAR、BAWの群から選ばれる少なくとも1つであることを特徴とする請求項1記載の高周波モジュールの製造方法The surface mount components, chip capacitors, chip inductors, chip resistor, a surface acoustic wave device, FBAR, a manufacturing method of claim 1 Symbol placement of the high-frequency module, characterized in that at least one selected from the group of BAW . 前記半導体素子が、パワーアンプ、スイッチ、パワーコントロール、検波、電源コントロールの群から選ばれる少なくとも1つであることを特徴とする請求項1または請求項2に記載の高周波モジュールの製造方法The semiconductor element is a power amplifier, switch, power control, detection method of the high-frequency module according to claim 1 or claim 2, characterized in that at least one selected from the group of power control. 前記誘電体基板表面に実装された前記表面実装部品および前記半導体素子を熱硬化性樹脂で気密封止する工程をさらに含むことを特徴とする請求項1乃至請求項のいずれか記載の高周波モジュールの製造方法The high-frequency module according to any one of claims 1 to 3 , further comprising a step of hermetically sealing the surface-mounted component and the semiconductor element mounted on the dielectric substrate surface with a thermosetting resin. Manufacturing method .
JP2004049554A 2004-02-25 2004-02-25 Manufacturing method of high frequency module Expired - Fee Related JP4484544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049554A JP4484544B2 (en) 2004-02-25 2004-02-25 Manufacturing method of high frequency module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049554A JP4484544B2 (en) 2004-02-25 2004-02-25 Manufacturing method of high frequency module

Publications (2)

Publication Number Publication Date
JP2005243787A JP2005243787A (en) 2005-09-08
JP4484544B2 true JP4484544B2 (en) 2010-06-16

Family

ID=35025220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049554A Expired - Fee Related JP4484544B2 (en) 2004-02-25 2004-02-25 Manufacturing method of high frequency module

Country Status (1)

Country Link
JP (1) JP4484544B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903540B2 (en) * 2006-11-29 2012-03-28 京セラ株式会社 Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device
JP2011014659A (en) * 2009-06-30 2011-01-20 Murata Mfg Co Ltd Composite electronic component module
JP2012028613A (en) * 2010-07-26 2012-02-09 Sumitomo Electric Device Innovations Inc Semiconductor device
JP2012182395A (en) * 2011-03-02 2012-09-20 Taiyo Yuden Co Ltd Electronic device
DE102014118214B4 (en) 2014-12-09 2024-02-22 Snaptrack, Inc. Easily manufactured electrical component and method for producing an electrical component
WO2019132941A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Hybrid filter having an acoustic wave resonator embedded in a cavity of a package substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010717B2 (en) * 1999-10-15 2007-11-21 株式会社荏原製作所 Electrical contact joining method
JP3942816B2 (en) * 2000-10-25 2007-07-11 ハリマ化成株式会社 Brazing joining method between metals
JP2004058088A (en) * 2002-07-26 2004-02-26 Ebara Corp Joint method and joint body
JP4134878B2 (en) * 2003-10-22 2008-08-20 株式会社デンソー Conductor composition, mounting substrate using the conductor composition, and mounting structure

Also Published As

Publication number Publication date
JP2005243787A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US7385286B2 (en) Semiconductor module
JP2005277579A (en) High frequency module and communication apparatus employing the same
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
TWI649841B (en) High frequency module and manufacturing method thereof
JP2006304145A (en) High frequency module
JP2006237238A (en) High frequency module
JP4484544B2 (en) Manufacturing method of high frequency module
WO2014013831A1 (en) Module and module manufacturing method
JP3591437B2 (en) Multilayer ceramic substrate, method of manufacturing the same, and electronic device
JP2007096519A (en) High frequency module and manufacturing method thereof
JP2003060107A (en) Semiconductor module
WO2014017160A1 (en) Module, and device having module mounted thereon
JP2006222307A (en) Wiring board
JP2005129855A (en) High frequency module
JP3948925B2 (en) High frequency module parts
JP2005277939A (en) High frequency module and radio communication equipment
WO2015088028A1 (en) Element housing package and mounting structure
JP4260835B2 (en) High frequency module parts
JP2012146940A (en) Electronic component and electronic device
JP4307184B2 (en) Ceramic container and tantalum electrolytic capacitor using the same
JP2004247699A (en) Wiring board
JP2004146818A (en) Laminated ceramic substrate and high-frequency electronic component
JP2735750B2 (en) Aluminum nitride sintered body having metallized metal layer
JP6042773B2 (en) INPUT / OUTPUT TERMINAL, INPUT / OUTPUT TERMINAL MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT PACKAGE AND SEMICONDUCTOR DEVICE USING THE SAME
JP3847236B2 (en) Semiconductor element storage package and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees