JP2012028613A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012028613A
JP2012028613A JP2010166934A JP2010166934A JP2012028613A JP 2012028613 A JP2012028613 A JP 2012028613A JP 2010166934 A JP2010166934 A JP 2010166934A JP 2010166934 A JP2010166934 A JP 2010166934A JP 2012028613 A JP2012028613 A JP 2012028613A
Authority
JP
Japan
Prior art keywords
semiconductor chip
mounting portion
paste
semiconductor device
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010166934A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakubo
弘史 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2010166934A priority Critical patent/JP2012028613A/en
Publication of JP2012028613A publication Critical patent/JP2012028613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of chip cracks in a semiconductor device in which a semiconductor chip including an SiC substrate is mounted on a mounting portion of Cu.SOLUTION: A semiconductor device 100 comprises: a semiconductor chip 10 including an SiC substrate 12; and a mounting portion 20 made of Cu for mounting the semiconductor chip. The semiconductor chip 10 is bonded to the mounting portion 20 with an Ag paste 30 in which Ag fine particles are dispersed in a solution not containing epoxy. The Ag paste is softer than an AuSn paste and functions as a buffer material for relieving stress transferred from the mounting portion 20 of Cu to the semiconductor chip 10. Therefore, occurrence of chip cracks can be suppressed by using the Ag paste as a brazing material for fixing the semiconductor chip 10 to the mounting portion 20.

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

基板材料に炭化珪素(SiC)を用いた半導体装置が知られている。例えば、基板上に窒化物系の半導体層(例えば、GaN系半導体層)を積層することで、高出力の高電子移動度トランジスタ(HEMT:HEMT:High Electron Mobility Transistor)を形成することができる。   A semiconductor device using silicon carbide (SiC) as a substrate material is known. For example, a high-power high electron mobility transistor (HEMT) can be formed by stacking a nitride-based semiconductor layer (for example, a GaN-based semiconductor layer) on a substrate.

SiC基板を含む半導体チップを実装部に実装する場合、安価で放熱性に優れた銅(Cu)実装部を使用することが一般的である。また、SiC基板を含む半導体チップをCu実装部に固定する際のロウ材には、金スズ(AuSn)ペーストを使用することが一般的である。   When a semiconductor chip including an SiC substrate is mounted on a mounting portion, it is common to use a copper (Cu) mounting portion that is inexpensive and excellent in heat dissipation. Moreover, it is common to use a gold tin (AuSn) paste for the brazing material when fixing the semiconductor chip including the SiC substrate to the Cu mounting portion.

特開2009−289935号公報JP 2009-289935 A

Cuは熱膨張率が大きいため、温度変化に伴いCu実装部が伸縮すると、Cu実装部の内部で応力が発生し、SiC基板を含む半導体チップへと伝達される。SiCとCuは熱膨張率が大きく異なるため、半導体チップには非常に大きな力が加わる。また、半導体チップとCu実装部とを固定するAuSnペーストは固いため、緩衝材としては十分に機能しない。その結果、半導体チップにクラックが発生してしまう場合がある。   Since Cu has a large coefficient of thermal expansion, when the Cu mounting portion expands and contracts with a change in temperature, stress is generated inside the Cu mounting portion and is transmitted to the semiconductor chip including the SiC substrate. Since SiC and Cu have greatly different coefficients of thermal expansion, a very large force is applied to the semiconductor chip. Further, since the AuSn paste for fixing the semiconductor chip and the Cu mounting portion is hard, it does not function sufficiently as a buffer material. As a result, a crack may occur in the semiconductor chip.

本発明は、上記課題に鑑みなされたものであり、SiC基板を含む半導体チップがCu実装部に実装された半導体装置において、チップクラックの発生を抑制することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to suppress the occurrence of chip cracks in a semiconductor device in which a semiconductor chip including an SiC substrate is mounted on a Cu mounting portion.

本半導体装置は、SiC基板を含む半導体チップと、本体がCuで構成され前記半導体チップを搭載する実装部とを備え、前記半導体チップは、エポキシを含まない溶剤にAg微粒子を分散したAgペーストにより前記実装部に固定されている。   The semiconductor device includes a semiconductor chip including a SiC substrate, and a mounting portion in which a main body is made of Cu and on which the semiconductor chip is mounted, and the semiconductor chip is made of Ag paste in which Ag fine particles are dispersed in a solvent not containing epoxy. It is fixed to the mounting part.

上記構成において、前記半導体チップにおける、前記実装部に固定される側の主面は、Agである構成とすることができる。   The said structure WHEREIN: The main surface of the side fixed to the said mounting part in the said semiconductor chip can be set as the structure which is Ag.

上記構成において、前記基板の厚みは、50μm〜150μmである構成とすることができる。   The said structure WHEREIN: The thickness of the said board | substrate can be set as the structure which is 50 micrometers-150 micrometers.

上記構成において、前記実装部には、ネジ止め用の貫通孔が形成されている構成とすることができる。   The said structure WHEREIN: The said mounting part can be set as the structure by which the through-hole for screwing is formed.

本発明によれば、SiC基板を含む半導体チップがCu実装部に実装された半導体装置において、チップクラックの発生を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a chip crack can be suppressed in the semiconductor device with which the semiconductor chip containing a SiC substrate was mounted in Cu mounting part.

図1は、比較例に係る半導体装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a semiconductor device according to a comparative example. 図2は、実施例1に係る半導体装置の製造方法を示す図である。FIG. 2 is a diagram illustrating the method of manufacturing the semiconductor device according to the first embodiment. 図3は、実施例1に係る半導体装置の構成を示す図である。FIG. 3 is a diagram illustrating the configuration of the semiconductor device according to the first embodiment.

(比較例)
最初に、比較例に係る半導体装置について説明する。
(Comparative example)
First, a semiconductor device according to a comparative example will be described.

図1は、比較例に係る半導体装置80を試験装置に搭載した状態を示す図である。図1(a)は断面模式図であり、図1(b)は上面模式図である。SiC基板を含む半導体チップ10が、AuSnペースト32によりCu実装部20に実装されている。(実装部20は、ヒートシンク等を含む)。Cu実装部20は、本体がCu(純銅)で構成され、そのCuの上下には、Cu側からNi,Auの順に積層されたカバー膜がそれぞれ形成されている。Cu実装部20の上面(半導体チップ10が実装された側の面)には、半導体チップ10を囲むように側壁24が設けられ、側壁24の上面はキャップ26により封止されている。Cu実装部20には複数の貫通孔22が形成され、Cu実装部20は貫通孔22に設けられたネジ42により、試験用のAl筐体40に固定されている。   FIG. 1 is a diagram illustrating a state in which a semiconductor device 80 according to a comparative example is mounted on a test apparatus. FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a schematic top view. The semiconductor chip 10 including the SiC substrate is mounted on the Cu mounting portion 20 with the AuSn paste 32. (The mounting unit 20 includes a heat sink and the like). The Cu mounting portion 20 has a main body made of Cu (pure copper), and a cover film in which Ni and Au are laminated in this order from the Cu side is formed above and below the Cu, respectively. A side wall 24 is provided on the upper surface (the surface on which the semiconductor chip 10 is mounted) of the Cu mounting portion 20 so as to surround the semiconductor chip 10, and the upper surface of the side wall 24 is sealed with a cap 26. A plurality of through holes 22 are formed in the Cu mounting portion 20, and the Cu mounting portion 20 is fixed to the test Al housing 40 by screws 42 provided in the through holes 22.

ここで、Al筐体40に固定された半導体装置80に対し、「−65℃に30分、室温に5分、175℃に30分」の条件下で100回の繰り返し環境試験を行った。このとき、基板の厚みは100μm、貫通孔の直径は100μm、貫通孔の数は17、貫通孔同士のピッチは222μm、半導体チップのチップサイズは3.90×0.72mm、ネジ締めの圧力は3kgf/cm、とした。その結果、試験に用いた10個のサンプルのうち、4個のサンプルにおいてチップクラック(図1の符号16)が発生した。 Here, the semiconductor device 80 fixed to the Al case 40 was subjected to 100 repeated environmental tests under the conditions of “-65 ° C. for 30 minutes, room temperature for 5 minutes, 175 ° C. for 30 minutes”. At this time, the thickness of the substrate is 100 μm, the diameter of the through holes is 100 μm, the number of through holes is 17, the pitch between the through holes is 222 μm, the chip size of the semiconductor chip is 3.90 × 0.72 mm, and the screwing pressure is 3 kgf / cm 2 . As a result, chip cracks (reference numeral 16 in FIG. 1) occurred in four of the ten samples used in the test.

SiC基板を含む半導体チップ10は、熱膨張率が小さく、硬く割れやすい性質を有する。一方、Cuを材料とする実装部20は、熱膨張率が大きく、周囲の温度変化に伴い大きく伸縮する。上記の環境試験において、Cu実装部20の伸縮に伴い発生した内部応力は、AuSnペースト32を介して半導体チップ10へと伝達される。Cu実装部20の伸縮の繰り返しにより、半導体チップ10に働く応力の大きさが限界値を超えたときに、半導体チップ10にチップクラック16が発生する。図中の矢印は、チップクラック16が発生した際における応力の働く方向を示す。   The semiconductor chip 10 including the SiC substrate has a low thermal expansion coefficient and has a property of being hard and easily broken. On the other hand, the mounting part 20 made of Cu has a large coefficient of thermal expansion and greatly expands and contracts with changes in ambient temperature. In the above environmental test, the internal stress generated with the expansion and contraction of the Cu mounting portion 20 is transmitted to the semiconductor chip 10 through the AuSn paste 32. When the magnitude of stress acting on the semiconductor chip 10 exceeds the limit value due to repeated expansion and contraction of the Cu mounting portion 20, a chip crack 16 is generated in the semiconductor chip 10. The arrows in the figure indicate the direction in which the stress acts when the chip crack 16 occurs.

ここで、半導体チップ10とCu実装部20とを固定するAuSnペースト32は硬い材料であるため、Cu実装部20から半導体チップ10に伝達される応力を緩和するための緩衝材としては十分に機能していない。   Here, since the AuSn paste 32 that fixes the semiconductor chip 10 and the Cu mounting part 20 is a hard material, it functions sufficiently as a cushioning material for relaxing the stress transmitted from the Cu mounting part 20 to the semiconductor chip 10. Not done.

図2は、実施例1に係る半導体装置100の製造方法を示す図である。図2(a)に示すように、Cu実装部20の上面に側壁24が形成され、側壁24の周囲にCu実装部20の貫通孔22が形成されている。比較例と異なり、側壁24内部における半導体チップ10の実装予定領域には、AuSnペーストの代わりにAgペースト30が供給されている。また、実施例1において、Cu実装部20のCuの仕様は、比較例と同様である。   FIG. 2 is a diagram illustrating the method for manufacturing the semiconductor device 100 according to the first embodiment. As shown in FIG. 2A, a side wall 24 is formed on the upper surface of the Cu mounting part 20, and a through hole 22 of the Cu mounting part 20 is formed around the side wall 24. Unlike the comparative example, an Ag paste 30 is supplied in place of the AuSn paste in a region where the semiconductor chip 10 is to be mounted inside the side wall 24. Moreover, in Example 1, the specification of Cu of the Cu mounting part 20 is the same as that of a comparative example.

最初に、図2(a)に示すように、Agペースト30が設けられた実装予定領域に半導体チップ10を搭載(ダイボンディング)する。半導体チップ10の下面(Cu実装部20に固定される側の主面)には、Agめっき層14が設けられている。Agペースト30のリフロー時の温度は、例えば200℃とする。また、Agめっき層14は、めっき以外にも蒸着、スパッタにより形成することもできる。   First, as shown in FIG. 2A, the semiconductor chip 10 is mounted (die-bonded) on the planned mounting area where the Ag paste 30 is provided. An Ag plating layer 14 is provided on the lower surface of the semiconductor chip 10 (the main surface on the side fixed to the Cu mounting portion 20). The temperature during reflow of the Ag paste 30 is, for example, 200 ° C. Further, the Ag plating layer 14 can be formed by vapor deposition or sputtering other than plating.

次に、図2(b)に示すように、側壁24の上面をキャップ26により封止する。次に、図2(c)に示すように、Cu実装部20及び半導体チップ10を室温付近(例えば、25℃)まで冷却する。冷却に伴うCu実装部20の縮小により、Cu実装部20の内部には圧縮方向の応力が残存し、半導体チップ10の内部には引張方向の応力が残存する(図中の矢印参照)。以上の工程により、実施例1に係る半導体装置100が完成する。   Next, as shown in FIG. 2B, the upper surface of the side wall 24 is sealed with a cap 26. Next, as shown in FIG. 2C, the Cu mounting portion 20 and the semiconductor chip 10 are cooled to around room temperature (for example, 25 ° C.). Due to the reduction of the Cu mounting part 20 accompanying cooling, the compressive stress remains inside the Cu mounting part 20, and the tensile stress remains inside the semiconductor chip 10 (see arrows in the figure). Through the above process, the semiconductor device 100 according to the first embodiment is completed.

図3は、実施例1に係る半導体装置100を試験装置に搭載した状態を示す図である。図3(a)は断面模式図であり、図3(b)は上面模式図である。SiC基板12を含む半導体チップ10が、Agペースト30によりCu実装部20に実装されている。Cu実装部20の上面には、半導体チップ10を囲むように側壁24が設けられ、側壁24の上面はキャップ26により封止されている。Cu実装部20には複数の貫通孔22が形成され、Cu実装部20は貫通孔22に設けられたネジ42により、試験用のAl筐体40に固定されている。   FIG. 3 is a diagram illustrating a state in which the semiconductor device 100 according to the first embodiment is mounted on the test apparatus. FIG. 3A is a schematic sectional view, and FIG. 3B is a schematic top view. The semiconductor chip 10 including the SiC substrate 12 is mounted on the Cu mounting portion 20 with an Ag paste 30. A sidewall 24 is provided on the upper surface of the Cu mounting portion 20 so as to surround the semiconductor chip 10, and the upper surface of the sidewall 24 is sealed with a cap 26. A plurality of through holes 22 are formed in the Cu mounting portion 20, and the Cu mounting portion 20 is fixed to the test Al housing 40 by screws 42 provided in the through holes 22.

ここで、比較例と同様に、Al筐体40に固定された半導体装置100に対し、「−65℃に30分、室温に5分、175℃に30分」の条件下で100回の繰り返し環境試験を行った。このとき、基板の厚みは100μm、貫通孔の直径は100μm、貫通孔の数は17、貫通孔同士のピッチは222μm、半導体チップのチップサイズは3.90×0.72mm、ネジ締めの圧力は3kgf/cm、とした。その結果、試験に用いた10個のサンプル全てにおいて、チップクラックは発生しなかった。 Here, as in the comparative example, the semiconductor device 100 fixed to the Al case 40 was repeated 100 times under the conditions of “-65 ° C. for 30 minutes, room temperature for 5 minutes, 175 ° C. for 30 minutes”. Environmental tests were conducted. At this time, the thickness of the substrate is 100 μm, the diameter of the through holes is 100 μm, the number of through holes is 17, the pitch between the through holes is 222 μm, the chip size of the semiconductor chip is 3.90 × 0.72 mm, and the screwing pressure is 3 kgf / cm 2 . As a result, chip cracks did not occur in all 10 samples used in the test.

実施例1に係る半導体装置100によれば、半導体チップ10とCu実装部20とを固定するためのロウ材として、Agペースト30を用いている。AgペーストはAuSnペーストに比べて柔らかく、Cu実装部20から半導体チップ10に伝達される応力を緩和する緩衝材として機能する。また、Agペーストのリフロー時の温度(約200℃)は、AuSnペーストの融点(約280℃)に比べて低い。このため、半導体チップ10をCu実装部20に実装後に室温(約25℃)まで冷却する際に、AuSnペーストでは約255℃の温度差が、Agペーストでは約175℃の温度差がそれぞれ生じる。Agペーストを用いる場合、AuSnペーストを用いる場合に比べて冷却時の温度差が小さいため、半導体チップ10の内部に残存する内部応力が小さい。以上のことから、SiC基板12を含む半導体チップ10がCu実装部20に実装された半導体装置100において、ロウ材としてAgペーストを用いることにより、チップクラックの発生を抑制することができる。   According to the semiconductor device 100 according to the first embodiment, the Ag paste 30 is used as the brazing material for fixing the semiconductor chip 10 and the Cu mounting portion 20. The Ag paste is softer than the AuSn paste and functions as a buffer material that relieves stress transmitted from the Cu mounting portion 20 to the semiconductor chip 10. Moreover, the temperature (about 200 ° C.) at the time of reflowing the Ag paste is lower than the melting point (about 280 ° C.) of the AuSn paste. For this reason, when the semiconductor chip 10 is cooled to room temperature (about 25 ° C.) after being mounted on the Cu mounting portion 20, a temperature difference of about 255 ° C. occurs in the AuSn paste and a temperature difference of about 175 ° C. occurs in the Ag paste. When the Ag paste is used, the internal stress remaining in the semiconductor chip 10 is small because the temperature difference during cooling is smaller than when the AuSn paste is used. From the above, in the semiconductor device 100 in which the semiconductor chip 10 including the SiC substrate 12 is mounted on the Cu mounting portion 20, the occurrence of chip cracks can be suppressed by using the Ag paste as the brazing material.

また、実施例1に係る半導体装置100によれば、半導体チップ10の下面にAgめっき層14が設けられている。半導体チップ10にAgめっきを施すことにより、半導体チップ10とAgペースト30との付着性が良好となるため、信頼性をより向上させることができる。   In addition, according to the semiconductor device 100 according to the first embodiment, the Ag plating layer 14 is provided on the lower surface of the semiconductor chip 10. By performing the Ag plating on the semiconductor chip 10, the adhesion between the semiconductor chip 10 and the Ag paste 30 becomes good, so that the reliability can be further improved.

上記実施例において、Agペースト30には、エポキシを含まない材料(例えば、エポキシを含まない有機溶剤(例えば、ターピネオールC)にAg微粒子を分散したもの)を用いることが好ましい。エポキシは熱伝導性が悪いため、Agペースト30がエポキシを含まないようにすることで、半導体装置100の放熱性を向上させることができる。   In the above embodiment, it is preferable to use an epoxy-free material (for example, an Ag-free organic solvent (for example, terpineol C) in which Ag fine particles are dispersed) as the Ag paste 30. Since epoxy has poor thermal conductivity, heat dissipation of the semiconductor device 100 can be improved by preventing the Ag paste 30 from containing epoxy.

上記実施例において、SiC基板12の厚みが所定値より小さいと、半導体チップ10は柔軟になるためチップクラックが生じにくくなる。また、SiC基板12の厚みが所定値より大きいと、半導体チップ10が頑丈になるため同様にチップクラックが生じにくくなる。従って、Agペースト30を用いることによるチップクラックの抑制効果を得るためには、SiC基板12の厚みが50〜150μmの範囲であることが好ましく、100〜150μmの範囲であることが更に好ましい。   In the said Example, when the thickness of the SiC substrate 12 is smaller than predetermined value, since the semiconductor chip 10 will become flexible, it will become difficult to produce a chip crack. Further, if the thickness of the SiC substrate 12 is larger than a predetermined value, the semiconductor chip 10 becomes rugged, and similarly, chip cracks are hardly generated. Therefore, in order to obtain the effect of suppressing chip cracks by using the Ag paste 30, the thickness of the SiC substrate 12 is preferably in the range of 50 to 150 μm, and more preferably in the range of 100 to 150 μm.

上記実施例において、半導体装置100は、試験用のAl筺体40に実装されている構成としたが、実際の製品では、半導体装置100は、Al筺体40の代わりに回路基板または放熱用の治具に実装されている構成とすることができる。回路基板または放熱用の治具への実装は、例えばネジ止めにより行うことができるが、その場合はネジ止めによりCu実装部20の伸縮が制限されるため、よりチップクラックが生じやすくなる。このような構成は、Agペースト30によるチップクラックの抑制効果を得るためにより好適である。また、上記構成のために、Cu実装部20には、ネジ止め用の貫通孔が形成されていることが好ましい。   In the above embodiment, the semiconductor device 100 is mounted on the test Al housing 40. However, in an actual product, the semiconductor device 100 may be a circuit board or a heat dissipation jig instead of the Al housing 40. It can be set as the structure mounted in. The mounting on the circuit board or the heat dissipation jig can be performed, for example, by screwing. In this case, since the expansion and contraction of the Cu mounting portion 20 is limited by screwing, chip cracks are more likely to occur. Such a configuration is more suitable for obtaining a chip crack suppressing effect by the Ag paste 30. Moreover, for the said structure, it is preferable that the through-hole for screwing is formed in Cu mounting part 20. As shown in FIG.

上記実施例において、半導体チップ10は、例えばSiC基板12の表面に窒化物半導体層が形成された構成とすることができる。窒化物半導体層は、例えば、AlNを材料とする300nmのバッファ層、i−GaNを材料とする1000nmのチャネル層(電子走行層)、n−AlGaNを材料とする20nmの電子供給層、及びn−GaNを材料とする5nmのキャップ層が順に積層された構造を有する。窒化物半導体層には、例えば、GaN、AlN、InN、InGaN、AlGaN、InAlN、InAlGaN等を用いることができる。   In the embodiment described above, the semiconductor chip 10 can be configured, for example, such that a nitride semiconductor layer is formed on the surface of the SiC substrate 12. The nitride semiconductor layer includes, for example, a 300 nm buffer layer made of AlN, a 1000 nm channel layer (electron transit layer) made of i-GaN, a 20 nm electron supply layer made of n-AlGaN, and n -It has a structure in which 5 nm cap layers made of GaN are laminated in order. For example, GaN, AlN, InN, InGaN, AlGaN, InAlN, InAlGaN, or the like can be used for the nitride semiconductor layer.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 半導体チップ
12 SiC基板
14 Agめっき層
16 チップクラック
20 Cu実装部
22 貫通孔
24 側壁
26 キャップ
30 Agペースト
40 Al筺体
42 ネジ
100 半導体装置
DESCRIPTION OF SYMBOLS 10 Semiconductor chip 12 SiC substrate 14 Ag plating layer 16 Chip crack 20 Cu mounting part 22 Through-hole 24 Side wall 26 Cap 30 Ag paste 40 Al housing 42 Screw 100 Semiconductor device

Claims (4)

SiC基板を含む半導体チップと、
本体がCuで構成され前記半導体チップを搭載する実装部とを備え、
前記半導体チップは、エポキシを含まない溶剤にAg微粒子を分散したAgペーストにより前記実装部に固定されていることを特徴とする半導体装置。
A semiconductor chip including a SiC substrate;
A main body is made of Cu and includes a mounting portion on which the semiconductor chip is mounted;
The semiconductor device, wherein the semiconductor chip is fixed to the mounting portion with an Ag paste in which Ag fine particles are dispersed in a solvent containing no epoxy.
前記半導体チップにおける、前記実装部に固定される側の主面は、Agであることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a main surface of the semiconductor chip that is fixed to the mounting portion is Ag. 前記基板の厚みは、50μm〜150μmであることを特徴とする請求項1または2のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the substrate has a thickness of 50 μm to 150 μm. 前記実装部には、ネジ止め用の貫通孔が形成されていることを特徴とする請求項1〜3のいずれかに記載の半導体装置。
The semiconductor device according to claim 1, wherein a screw hole is formed in the mounting portion.
JP2010166934A 2010-07-26 2010-07-26 Semiconductor device Pending JP2012028613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166934A JP2012028613A (en) 2010-07-26 2010-07-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166934A JP2012028613A (en) 2010-07-26 2010-07-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2012028613A true JP2012028613A (en) 2012-02-09

Family

ID=45781182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166934A Pending JP2012028613A (en) 2010-07-26 2010-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2012028613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211298A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Power module and manufacturing method of the same
DE112016006934T5 (en) 2016-07-04 2019-03-14 Mitsubishi Electric Corporation Semiconductor unit and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211298A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Power module and manufacturing method of the same
DE112016006934T5 (en) 2016-07-04 2019-03-14 Mitsubishi Electric Corporation Semiconductor unit and method of making the same
US10468375B2 (en) 2016-07-04 2019-11-05 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing same
DE112016006934B4 (en) 2016-07-04 2020-01-23 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6421050B2 (en) Semiconductor device
JP5684230B2 (en) Bumped self-separating GaN transistor chip with electrically isolated backside
US20070029664A1 (en) Integrated circuit package and method of assembling the same
JP2012216786A5 (en)
US20140284797A1 (en) Power semiconductor device fabrication method, power semiconductor device
JP6979610B2 (en) Semiconductor device
JP2009289935A (en) Semiconductor device
JP2007157835A (en) Mounting substrate
KR102352342B1 (en) Semiconductor package and method of manufacturing the same
JP2008016551A (en) Semiconductor device
JP6139329B2 (en) Ceramic circuit board and electronic device
CN107611111B (en) Semiconductor module and power conversion device
US20170278764A1 (en) Surface Mount Device Package Having Improved Reliability
JP2012028613A (en) Semiconductor device
JP2013098481A (en) Semiconductor device
JP2015115383A (en) Semiconductor device and manufacturing method of the same
JP2009224380A (en) Semiconductor device
JP6221590B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP6437012B2 (en) Surface mount package and method of manufacturing the same
JP2008103558A (en) Semiconductor power module
JP2015072959A (en) Junction structure of insulation substrate and cooler, manufacturing method thereof, power semiconductor module and manufacturing method thereof
EP3751603A3 (en) Semiconductor package with a heat sink bonded to a semiconductor chip with a bonding layer and to a molding material with a thermal interface material
JP2010027953A (en) Semiconductor device
US20130048253A1 (en) Heat dissipation device and method of manufacturing same
TWI629755B (en) Low thermal stress package for large area semiconductor dies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209