JP2015115383A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2015115383A
JP2015115383A JP2013254683A JP2013254683A JP2015115383A JP 2015115383 A JP2015115383 A JP 2015115383A JP 2013254683 A JP2013254683 A JP 2013254683A JP 2013254683 A JP2013254683 A JP 2013254683A JP 2015115383 A JP2015115383 A JP 2015115383A
Authority
JP
Japan
Prior art keywords
semiconductor element
coating film
semiconductor device
heat transfer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013254683A
Other languages
Japanese (ja)
Other versions
JP6150718B2 (en
Inventor
哲 根岸
Akira Negishi
哲 根岸
寺井 護
Mamoru Terai
護 寺井
山本 圭
Kei Yamamoto
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013254683A priority Critical patent/JP6150718B2/en
Publication of JP2015115383A publication Critical patent/JP2015115383A/en
Application granted granted Critical
Publication of JP6150718B2 publication Critical patent/JP6150718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Abstract

PROBLEM TO BE SOLVED: To achieve a highly reliable semiconductor device which inhibits peeling of an encapsulation body and the occurrence of cracks.SOLUTION: A semiconductor device comprises: a tabular semiconductor element 1 having on a principal surface 1a, an electrode 5 for bonding a lead frame 7; a heat transfer plate 2 with one surface (circuit surface 2a) being bonded to a rear face of the semiconductor element 1; an insulation substrate 3 to which the other surface of the heat transfer plate 2 is bonded; an encapsulation body 4 which encapsulates a side part 3s of the insulation substrate 3 to a component on the surface side where the heat transfer plate 2 is bonded so as to wrap the principal surface 1a of the semiconductor element; a coating film 9 which is sandwiched between the semiconductor element 1 and the encapsulation body 4 and formed by a material having an elastic modulus lower than that of a material which composes the encapsulation body. The coating film 9 has a thickness D1 to cover an angular part 1c formed on the semiconductor element 1, the thickness D1 being thicker than a thickness d1 to cover another region of the semiconductor element 1.

Description

本発明は、電力制御に用いられるパワー半導体素子を有する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device having a power semiconductor element used for power control and a method for manufacturing the same.

パワー半導体素子を用いた半導体装置は、半導体素子をエポキシ樹脂などの熱硬化性樹脂を封止樹脂材として用いたモールド封止型のものと、ゲル状樹脂を封止樹脂材として用いた封止型のものがある。特に、モールド封止型の半導体装置は小型で信頼性に優れており、取り扱いが容易であることから、空調機器の制御などに広く用いられている。また、近年は、モーター駆動を行う自動車の動力制御などにも使用されている。 A semiconductor device using a power semiconductor element includes a mold sealing type using a thermosetting resin such as an epoxy resin as a sealing resin material, and a sealing using a gel resin as a sealing resin material. There is a type. In particular, a mold-sealed semiconductor device is small and excellent in reliability, and is easy to handle. Therefore, it is widely used for controlling air-conditioning equipment. In recent years, it is also used for power control of automobiles driven by motors.

通常、半導体素子は、半導体結晶基板に多数個形成された半導体デバイスをダイシング工程で個片に切り分けて作製される。数百Vを超える高電圧で用いられる半導体素子は、主電極となる主面側の電極パッド(主面電極)と裏面側の電極(裏面電極)間の絶縁を図るため、主面電極の外周を囲むように樹脂材料からなる絶縁保護膜が形成される。しかし、ダイシング工程で用いられるダイシングブレードの目詰まりを防ぐため、保護膜はダイシング領域には形成されない。このようにして形成された半導体素子を金属フレームに接合後、配線等によって回路体を形成し、封止樹脂材として熱硬化性樹脂を用いて回路体を封止することで半導体装置が完成する。   Usually, a semiconductor element is manufactured by cutting a large number of semiconductor devices formed on a semiconductor crystal substrate into individual pieces by a dicing process. A semiconductor element used at a high voltage exceeding several hundred volts has an outer periphery of the main surface electrode in order to insulate between the main surface side electrode pad (main surface electrode) and the back surface side electrode (back surface electrode). An insulating protective film made of a resin material is formed so as to surround the substrate. However, in order to prevent clogging of the dicing blade used in the dicing process, the protective film is not formed in the dicing region. After the semiconductor element thus formed is bonded to a metal frame, a circuit body is formed by wiring or the like, and the circuit body is sealed using a thermosetting resin as a sealing resin material, thereby completing the semiconductor device. .

上記半導体装置では、動作時に半導体素子が発熱することから、半導体素子と封止体との間に熱応力が発生する。この熱応力は、半導体素子と封止体との熱膨張係数の差異のほか、封止体の硬化収縮にも起因している。通常、半導体素子は板状をなし、主面と側部との角状部に応力と歪みの集中が生じるが、この部分には上述したように保護膜が形成されていない。そのため、角状部の接着界面で剥離欠陥が発生し、主電極と裏面電極間で短絡が生じるおそれがある。また、裏面電極と同電位の伝熱板と、絶縁基板を介して接続される放熱板の間においても、絶縁基板の接着界面で剥離欠陥が発生し、裏面電極と放熱板の間で短絡が生じるおそれがある。   In the semiconductor device, since the semiconductor element generates heat during operation, thermal stress is generated between the semiconductor element and the sealing body. This thermal stress is caused not only by the difference in thermal expansion coefficient between the semiconductor element and the sealing body, but also by the curing shrinkage of the sealing body. Usually, the semiconductor element has a plate shape, and stress and strain are concentrated in the corner portion between the main surface and the side portion, but the protective film is not formed in this portion as described above. Therefore, a peeling defect may occur at the bonding interface of the square portion, and a short circuit may occur between the main electrode and the back electrode. In addition, a peeling defect may occur at the bonding interface of the insulating substrate between the heat transfer plate having the same potential as the back electrode and the heat sink connected via the insulating substrate, and there is a possibility that a short circuit may occur between the back electrode and the heat sink. .

そこで、半導体装置を構成する回路体全体を覆うシラン系樹脂の被覆膜を設け、熱硬化性樹脂による封止体と回路体との間に被覆膜を介在させることで、封止体との接着力を向上させた半導体装置が提案されている(例えば、特許文献1参照。)。   Therefore, by providing a coating film of a silane-based resin that covers the entire circuit body constituting the semiconductor device, and interposing the coating film between the sealing body and the circuit body with the thermosetting resin, A semiconductor device with improved adhesive strength has been proposed (see, for example, Patent Document 1).

特開平2−308557号公報(第3頁右上欄〜第4頁右下欄、第1図〜第9図)JP-A-2-308557 (page 3, upper right column to page 4, lower right column, FIGS. 1 to 9)

しかしながら、上記の半導体装置では、領域に応じた膜厚みの制御が考慮されていない。そのため、例えば、被覆膜が回路体全体にわたって均一に形成されており、応力と歪みが集中する端部の応力緩和と、封止体と半導体素子の密着性の向上を両立させることができず、封止体の剥離とクラックの発生をともに抑制することは困難であった。   However, in the semiconductor device described above, control of the film thickness according to the region is not considered. Therefore, for example, the coating film is uniformly formed over the entire circuit body, and it is impossible to achieve both stress relaxation at the end where stress and strain are concentrated and improvement in adhesion between the sealing body and the semiconductor element. It was difficult to suppress both peeling of the sealing body and generation of cracks.

この発明は、上記のような問題点を解決するためになされたものであり、封止体の剥離とクラックの発生を抑制した信頼性の高い半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a highly reliable semiconductor device in which peeling of a sealing body and generation of cracks are suppressed.

本発明にかかる半導体装置は、主面に配線部材を接合するための電極が形成された板状の半導体素子と、一方の面が前記半導体素子の裏面に接合された伝熱板と、外周に沿って余白が形成されるように、前記伝熱板の他方の面が接着された絶縁基板と、前記半導体素子の主面を包むように、前記絶縁基板の側部から前記伝熱板が接着された面側の部材を封止する封止体と、前記半導体素子および前記絶縁基板の少なくともいずれかを被覆対象とするとともに、前記被覆対象と前記封止体との間に介在し、前記封止体を構成する材料よりも弾性率が低い材料で形成された被覆膜と、を備え、前記被覆膜は、前記被覆対象に形成された角状部を覆う厚みが、前記被覆対象の他の領域を覆う厚みよりも厚いことを特徴とする。   A semiconductor device according to the present invention includes a plate-shaped semiconductor element having an electrode for bonding a wiring member on a main surface, a heat transfer plate having one surface bonded to the back surface of the semiconductor element, and an outer periphery. The heat transfer plate is bonded from the side of the insulating substrate so as to wrap the main surface of the semiconductor element and the insulating substrate to which the other surface of the heat transfer plate is bonded so that a margin is formed along A sealing body that seals a member on the surface side, and at least one of the semiconductor element and the insulating substrate is a covering target, and is interposed between the covering target and the sealing body, and the sealing A coating film formed of a material having a lower elastic modulus than the material constituting the body, and the coating film has a thickness that covers a square portion formed on the coating target, It is characterized by being thicker than the thickness covering the area.

本発明にかかる半導体装置の製造方法は、主面に配線部材を接合するための電極が形成された板状の半導体素子の裏面を、伝熱板の一方の面に接合する工程と、絶縁基板の一方の面に、前記伝熱板の他方の面を接着する工程と、前記半導体素子の主面を包むように、前記絶縁基板の側部から前記伝熱板が接着された面側の部材を封止する封止体を形成する工程と、前記半導体素子および前記絶縁基板の少なくともいずれかを被覆対象とするとともに、前記被覆対象に形成された角状部において、前記被覆対象と前記封止体との間に介在させるように、前記封止体を構成する材料よりも弾性率が低い樹脂を用いて被覆膜を形成する工程と、を含み、前記被覆膜を形成する工程では、前記樹脂が流動性を失う前から、前記角状部に電気力線が集中するように電場をかけることを特徴とする。   A method of manufacturing a semiconductor device according to the present invention includes a step of bonding a back surface of a plate-like semiconductor element on which an electrode for bonding a wiring member is formed on a main surface to one surface of a heat transfer plate, and an insulating substrate A step of adhering the other surface of the heat transfer plate to one surface of the substrate, and a member on the surface side to which the heat transfer plate is bonded from the side of the insulating substrate so as to wrap the main surface of the semiconductor element. A step of forming a sealing body to be sealed, and at least one of the semiconductor element and the insulating substrate is to be covered, and in the square portion formed on the covering target, the covering target and the sealing body Forming a coating film using a resin having a lower elastic modulus than the material constituting the sealing body, and in the step of forming the coating film, Before the resin loses its fluidity, the lines of electric force concentrate on the corners. Characterized in that applying an electric field to so that.

この発明によれば、応力が集中する角状部の被覆厚みをそれ以外の部分よりも厚くするようにしたので、動作時の熱応力にともなう封止体の剥離やクラック発生を抑制し、信頼性の高い半導体装置を得ることができる。   According to the present invention, since the coating thickness of the angular portion where stress is concentrated is made thicker than the other portions, it is possible to suppress the peeling of the sealing body and the generation of cracks due to the thermal stress during operation. A highly reliable semiconductor device can be obtained.

本発明の実施の形態1にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置における被覆膜の形状を説明するための半導体素子の角状部周辺部分の拡大断面図である。It is an expanded sectional view of the corner | angular part periphery part of the semiconductor element for demonstrating the shape of the coating film in the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置における被覆膜の変形例の形状を説明するための半導体素子の角状部周辺部分の拡大断面図である。It is an expanded sectional view of the corner part periphery part of a semiconductor element for explaining the shape of the modification of the covering film in the semiconductor device concerning Embodiment 1 of the present invention. 従来の半導体装置における被覆膜の形状を説明するための半導体素子の角状部周辺部分の拡大断面図である。It is an expanded sectional view of the corner part periphery part of a semiconductor element for explaining the shape of the coating film in the conventional semiconductor device. 封止体にフィラーが含まれる場合の、従来の半導体装置における半導体素子の角状部周辺部分の状態を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the state of the corner | angular part periphery part of the semiconductor element in the conventional semiconductor device in case a sealing body contains a filler. 封止体にフィラーが含まれる場合の、従来の半導体装置および本発明の実施の形態1にかかる半導体装置のそれぞれの角状部周辺部分の状態を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the state of each corner | angular part periphery part of the conventional semiconductor device and the semiconductor device concerning Embodiment 1 of this invention when a sealing body contains a filler. 本発明の実施の形態1の変形例にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning the modification of Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の製造方法を説明するための、工程途中の半導体装置の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor device in the middle of a process for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の製造方法を説明するための、工程途中の被覆膜の形状を説明するための半導体素子の角状部周辺部分の拡大断面図である。It is an expanded sectional view of the corner | angular part periphery part of the semiconductor element for demonstrating the shape of the coating film in the middle of the process for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の製造方法を説明するための、工程途中の被覆膜の形状を説明するための半導体素子の角状部周辺部分の拡大断面図である。It is an expanded sectional view of the corner | angular part periphery part of the semiconductor element for demonstrating the shape of the coating film in the middle of the process for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2の変形例にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning the modification of Embodiment 2 of this invention. 本発明の実施の形態2にかかる半導体装置における被覆膜の形状を説明するための絶縁基板の角状部および絶縁基板と伝熱板との接着面端周辺の拡大断面図である。It is an expanded sectional view of the adhesion part edge periphery of an insulating substrate and an insulating substrate and a heat exchanger plate for explaining the shape of a coating film in a semiconductor device concerning Embodiment 2 of the present invention. 本発明の実施の形態3にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning Embodiment 3 of this invention. 本発明の実施の形態3の変形例にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning the modification of Embodiment 3 of this invention. 本発明の実施の形態3の変形例にかかる半導体装置の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the semiconductor device concerning the modification of Embodiment 3 of this invention.

実施の形態1.
図1〜図3は、本発明の実施の形態1にかかる半導体装置の構成について説明するためのもので、図1は半導体装置の特徴的な構成を示す断面模式図、図2は半導体素子を被覆する被覆膜の形状を説明するための半導体素子の角状部周辺部分の拡大断面図であり、図3(a)と(b)は、それぞれ被覆膜の変形例の形状を説明するための拡大断面図である。一方、図4〜図6は本発明の各実施の形態にかかる半導体装置と従来の半導体装置との違いを説明するためのもので、図4(a)と(b)は、それぞれ従来の半導体装置の被覆膜の形状を説明するための拡大断面図、図5(a)と(b)は、それぞれ封止体4にフィラーが含まれる場合の、従来の半導体装置の拡大断面図、図6(a)と(b)は、それぞれ封止体にフィラーが含まれる場合の、従来の半導体装置および本発明の各実施の形態にかかる半導体装置の拡大断面図である。また、図7は変形例にかかる半導体装置の構成を説明するための断面模式図である。
Embodiment 1 FIG.
1 to 3 are diagrams for explaining a configuration of a semiconductor device according to a first embodiment of the present invention. FIG. 1 is a schematic cross-sectional view showing a characteristic configuration of the semiconductor device. FIG. 2 shows a semiconductor element. FIGS. 3A and 3B are enlarged cross-sectional views of a peripheral portion of a corner portion of a semiconductor element for explaining the shape of a coating film to be coated, and FIGS. 3A and 3B illustrate shapes of modifications of the coating film, respectively. FIG. On the other hand, FIGS. 4 to 6 are for explaining the difference between the semiconductor device according to each embodiment of the present invention and the conventional semiconductor device. FIGS. Enlarged sectional views for explaining the shape of the coating film of the device, FIGS. 5 (a) and 5 (b) are enlarged sectional views of a conventional semiconductor device when a filler is included in the sealing body 4, respectively. 6 (a) and 6 (b) are enlarged cross-sectional views of a conventional semiconductor device and a semiconductor device according to each embodiment of the present invention when a sealing body contains a filler, respectively. FIG. 7 is a schematic cross-sectional view for explaining the configuration of a semiconductor device according to a modification.

本発明の実施の形態1にかかる半導体装置は、図1に示すように、放熱板10に対して絶縁基板3を介して一方の面が接合された伝熱板2の他方の面(回路面2a)に、半導体素子1を実装し、伝熱板2の回路面2a、および半導体素子1の(伝熱板2に接合された面(裏面)の反対側の面である)主面1aにリードフレーム7等の配線部材を接合し、少なくとも回路面2a側を封止体4で封止したものであって、半導体素子1と封止体4との間には、主面1aと側面(側部1s)との境である角状部1cを覆う厚みの方が、他の部分を覆う厚みよりも厚くなるように封止体4よりも弾性率が低い材料で被覆膜9が形成されているものである。   As shown in FIG. 1, the semiconductor device according to the first embodiment of the present invention has the other surface (circuit surface) of the heat transfer plate 2 bonded to the heat radiating plate 10 via the insulating substrate 3. 2a), the semiconductor element 1 is mounted on the circuit surface 2a of the heat transfer plate 2 and the main surface 1a of the semiconductor element 1 (the surface opposite to the surface (back surface) joined to the heat transfer plate 2). A wiring member such as a lead frame 7 is joined, and at least the circuit surface 2a side is sealed with a sealing body 4. Between the semiconductor element 1 and the sealing body 4, a main surface 1a and a side surface ( The covering film 9 is formed of a material having a lower elastic modulus than the sealing body 4 so that the thickness covering the rectangular portion 1c which is the boundary with the side portion 1s) is thicker than the thickness covering the other portion. It is what has been.

伝熱板2と半導体素子1とは、半導体素子1から生じる熱を拡散させ、かつ半導体素子の裏面とのコンタクト(電気接合および伝熱接合)を実現するため、はんだ8を用いて接合されている。半導体素子1内を流れる電流が所望の経路外に流れ出ることを防ぐため、伝熱板2の回路面2aの反対側には、絶縁基板3が加圧プレスなどにより接着されている。なお、絶縁基板3は、絶縁距離を保つために伝熱板2よりも広く、伝熱板2の外周に沿って余白が形成されている。また、伝熱板2に伝わった熱を半導体装置外部に逃すため、絶縁基板3の伝熱板2が接着された面の反対側には、加圧プレスなどにより放熱板10が接着されている。   The heat transfer plate 2 and the semiconductor element 1 are bonded using solder 8 in order to diffuse the heat generated from the semiconductor element 1 and realize contact (electrical bonding and heat transfer bonding) with the back surface of the semiconductor element. Yes. In order to prevent a current flowing in the semiconductor element 1 from flowing out of a desired path, an insulating substrate 3 is bonded to the opposite side of the circuit surface 2a of the heat transfer plate 2 by a pressure press or the like. The insulating substrate 3 is wider than the heat transfer plate 2 in order to maintain an insulation distance, and a blank is formed along the outer periphery of the heat transfer plate 2. Further, in order to release the heat transferred to the heat transfer plate 2 to the outside of the semiconductor device, the heat radiating plate 10 is bonded to the opposite side of the surface of the insulating substrate 3 to which the heat transfer plate 2 is bonded by a pressure press or the like. .

一方、半導体装置に電圧を印加し電流を流すため、リードフレーム7は伝熱板2上と半導体素子1上の主面1aに形成された電極5にはんだ8を介して電気的にそれぞれ接続される。また、半導体素子1上の電極5の端部には絶縁保護用に絶縁保護膜6が形成されている。耐圧特性を向上するために絶縁保護膜6を有することが好ましいが、無くても良い。一方、半導体素子1の封止体4に封止されている部分は、本発明の実施の形態1の特徴である被覆膜9で被覆されている。このように構成された回路体が封止体4で封止されている。   On the other hand, the lead frame 7 is electrically connected to the electrodes 5 formed on the heat transfer plate 2 and the main surface 1a on the semiconductor element 1 via the solder 8 in order to apply a voltage to the semiconductor device and cause the current to flow. The An insulating protective film 6 is formed at the end of the electrode 5 on the semiconductor element 1 for insulating protection. In order to improve the breakdown voltage characteristics, it is preferable to have the insulating protective film 6, but it may be omitted. On the other hand, the portion sealed by the sealing body 4 of the semiconductor element 1 is covered with the coating film 9 which is a feature of the first embodiment of the present invention. The circuit body configured in this way is sealed with a sealing body 4.

封止体4を構成する樹脂材(封止樹脂材)は、エポキシ樹脂などの硬い樹脂であり、これで封止することにより、内容物の応力と歪みを分散、低減する効果がある。また、被覆膜9が被覆された箇所は、半導体素子1の角状部1cを被覆していればよく、半導体素子1が回路体において封止体4に封止された部分全てを被覆する必要はない。   The resin material (sealing resin material) which comprises the sealing body 4 is hard resin, such as an epoxy resin, and has the effect of disperse | distributing and reducing the stress and distortion of the content by sealing with this. The portion covered with the coating film 9 only needs to cover the rectangular portion 1c of the semiconductor element 1, and the semiconductor element 1 covers all the portions sealed by the sealing body 4 in the circuit body. There is no need.

そして、半導体素子1の角状部1cを被覆する被覆膜9は、図2に示すように、角状部1cを覆う部分の膜厚D1が、角状部1c以外の半導体素子1を覆う部分の膜厚d1よりも厚くなっている。この条件を満足していれば、角状部1cにおける膜形状は問わず、例えば、図3(a)に示すように、先鋭に突出しているような形状になっていてもよい。また、例えば、主面1a、側部1sのうち、角状部1cから離れた、半導体素子1の角状部1c以外の部分については、図3(b)に示すように被覆していなくてもよい。しかし、半導体素子1のうち、絶縁保護膜6等が施されていない露出部分については、被覆膜9で全面的に被覆されていることが好ましい。   Then, as shown in FIG. 2, the coating film 9 that covers the rectangular portion 1 c of the semiconductor element 1 has a film thickness D1 that covers the rectangular portion 1 c covering the semiconductor element 1 other than the rectangular portion 1 c. It is thicker than the film thickness d1 of the portion. As long as this condition is satisfied, the film shape in the rectangular portion 1c is not limited, and for example, as shown in FIG. Further, for example, in the main surface 1a and the side portion 1s, the portion other than the corner portion 1c of the semiconductor element 1 that is separated from the corner portion 1c is not covered as shown in FIG. Also good. However, the exposed portion of the semiconductor element 1 that is not provided with the insulating protective film 6 or the like is preferably covered entirely with the coating film 9.

このように、半導体素子1と封止体4との間に、被覆膜9を形成することにより、半導体素子1と封止体4の間の密着強度より、半導体素子1と被覆膜9の間および被覆膜9と封止体4の間の密着強度を高めることができる。さらに、応力と歪みが集中する半導体素子1の角状部1cに他の部分よりも厚みが厚くなるように被覆膜9を形成することにより、緩衝材の役割を担うことができる。そのため、封止体4で分散するに足りない半導体素子の角状部1cに集中する応力と歪みが封止体4に伝わることを防ぎ、剥離とクラックをともに抑制することができる。これは、後述する高温動作において応力と歪みが集中する半導体素子1の角状部1cが動く際に特に有効に働く。   In this way, by forming the coating film 9 between the semiconductor element 1 and the sealing body 4, the semiconductor element 1 and the coating film 9 can be obtained from the adhesion strength between the semiconductor element 1 and the sealing body 4. And the adhesion strength between the coating film 9 and the sealing body 4 can be increased. Furthermore, by forming the coating film 9 on the angular portion 1c of the semiconductor element 1 where stress and strain are concentrated so as to be thicker than other portions, it can serve as a buffer material. Therefore, it is possible to prevent stress and strain concentrated on the rectangular portion 1c of the semiconductor element that is insufficient to be dispersed by the sealing body 4 from being transmitted to the sealing body 4, and to suppress both peeling and cracking. This is particularly effective when the angular portion 1c of the semiconductor element 1 where stress and strain are concentrated in a high-temperature operation described later.

一方、開示された従来の方法で形成した被覆膜9Xでは、例えば、図4(a)に示すように半導体素子1の主面1aのみが被覆されている。あるいは、図4(b)のように半導体素子1の主面1aと側部1sを被覆しても、角状部1cが被覆されていないか、角状部1c以外の部分と比べて角状部1cを覆う厚みの方が極めて薄くなっていた。これでは、応力と歪みが集中する角状部1cでの被覆膜9Xの効果を得ることができず、剥離とクラックを抑制する効果を十分に得ることができなかった。   On the other hand, in the coating film 9X formed by the disclosed conventional method, for example, only the main surface 1a of the semiconductor element 1 is coated as shown in FIG. Alternatively, as shown in FIG. 4 (b), even if the main surface 1a and the side portion 1s of the semiconductor element 1 are covered, the corner portion 1c is not covered, or is square compared to portions other than the corner portion 1c. The thickness covering the portion 1c was extremely thin. In this case, the effect of the coating film 9X at the rectangular portion 1c where stress and strain are concentrated cannot be obtained, and the effect of suppressing peeling and cracking cannot be sufficiently obtained.

また、封止体4中にフィラー4fが含まれている場合、図5(a)や図5(b)に示すように角状部1cにフィラー4fが存在することがある。その場合、高温動作において応力と歪みが集中して半導体素子1の角状部1cが動く際に、フィラー4fが半導体素子1の角状部1cに接触することにより、その接触点から剥離が発生して剥離進行につながっていた。また、図6(a)に示すように、半導体素子1の主面1aに絶縁保護膜6を形成したままダイシングを行い、半導体素子1の主面1aにのみ、被覆膜9の代わりに、均一膜厚の絶縁保護膜6を形成したものでは、半導体素子1の主面1a側でのフィラー4fの接触を防ぐことはできるが、ダイシング面である半導体素子1の角状部1cの側部1s側でのフィラー4fの接触を防ぐことはできなかった。   Moreover, when the filler 4f is contained in the sealing body 4, as shown to Fig.5 (a) and FIG.5 (b), the filler 4f may exist in the square-shaped part 1c. In that case, when stress and strain concentrate in high-temperature operation and the square part 1c of the semiconductor element 1 moves, the filler 4f comes into contact with the square part 1c of the semiconductor element 1 and peeling occurs from the contact point. And led to the progress of peeling. Further, as shown in FIG. 6A, dicing is performed with the insulating protective film 6 formed on the main surface 1a of the semiconductor element 1, and only the main surface 1a of the semiconductor element 1 is replaced with the coating film 9, In the case where the insulating protective film 6 having a uniform film thickness is formed, the contact of the filler 4f on the main surface 1a side of the semiconductor element 1 can be prevented, but the side portion of the corner portion 1c of the semiconductor element 1 which is a dicing surface. The contact of the filler 4f on the 1s side could not be prevented.

しかし、本発明の各実施の形態にかかる半導体装置では、図6(b)に示すように、半導体素子1の角状部1cが他の部分よりも厚い被覆膜9により被覆されているので、フィラー4fが半導体素子1の角状部1cに接触することはなく、フィラー4fが半導体素子1の角状部1cに接触することによる剥離発生を抑制することができる。   However, in the semiconductor device according to each embodiment of the present invention, as shown in FIG. 6B, the rectangular portion 1c of the semiconductor element 1 is covered with the coating film 9 that is thicker than the other portions. The filler 4f does not contact the rectangular portion 1c of the semiconductor element 1, and the occurrence of peeling due to the filler 4f contacting the rectangular portion 1c of the semiconductor element 1 can be suppressed.

上述のように、応力と歪みが集中する半導体素子1の角状部1cに被覆膜9を形成することにより、半導体素子1と封止体4の間の密着強度の向上とともに、半導体素子1の角状部1cに集中する応力と歪みを緩和する事ができ、剥離とクラックを抑制することができる。ここで、例えば、半導体素子1の角状部1cの被覆膜9の膜厚として必要とされる、D1相当の厚い膜厚で、半導体素子1の角状部1c以外の部分も覆うと、上述の封止体4による内容物の封止効果自体も緩和してしまう。その結果、封止体4による封止効果が弱くなり、逆に剥離やクラックを発生させる恐れがある。   As described above, by forming the coating film 9 on the rectangular portion 1c of the semiconductor element 1 where stress and strain are concentrated, the adhesion strength between the semiconductor element 1 and the sealing body 4 is improved and the semiconductor element 1 is also formed. The stress and strain concentrated on the rectangular portion 1c can be relaxed, and peeling and cracking can be suppressed. Here, for example, when a portion other than the corner portion 1c of the semiconductor element 1 is covered with a thick film thickness equivalent to D1, which is required as the film thickness of the covering film 9 of the corner portion 1c of the semiconductor element 1, The sealing effect itself of the contents by the above-described sealing body 4 is also eased. As a result, the sealing effect by the sealing body 4 is weakened, and conversely, peeling or cracking may occur.

逆に、被覆膜9の角状部1cの膜厚を、角状部以外の部分と同様に、角状部以外の部分に適した、例えばd1相当の薄い膜厚に形成すると、上述の半導体素子1の角状部1cに集中する応力と歪みを緩和する事ができなくなる。その結果、角状部1cを起点として剥離やクラックを発生させる恐れがある。そこで、本発明の各実施の形態にかかる半導体装置では、半導体素子1の角状部1cでの密着強度の向上および応力と歪みの緩和と共に封止体4の効果を損なわないために、半導体素子1の角状部1cの被覆膜9の膜厚D1を半導体素子1の角状部1cに集中する応力と歪みの緩和が可能になる膜厚に厚くし、かつ、半導体素子1の角状部1c以外の部分での被覆膜9の膜厚を封止体4による内容物の封止効果自体が緩和されないよう、D1より薄い膜厚d1になるようにしている。   On the contrary, when the film thickness of the horn portion 1c of the coating film 9 is formed to be a thin film thickness suitable for a portion other than the horn portion, for example, d1, corresponding to the portion other than the horn portion, the above-mentioned It becomes impossible to relieve the stress and strain concentrated on the rectangular portion 1 c of the semiconductor element 1. As a result, there is a risk of peeling or cracking starting from the corner 1c. Therefore, in the semiconductor device according to each embodiment of the present invention, in order not to impair the effect of the sealing body 4 as well as to improve the adhesion strength at the rectangular portion 1c of the semiconductor element 1 and to relieve stress and strain, The film thickness D1 of the coating film 9 of the one corner portion 1c is increased to a thickness that enables relaxation of stress and strain concentrated on the corner portion 1c of the semiconductor element 1, and the corner shape of the semiconductor element 1 is increased. The film thickness of the coating film 9 in the part other than the part 1c is set to a film thickness d1 thinner than D1 so that the sealing effect of the contents by the sealing body 4 itself is not relaxed.

なお、上述した被覆膜9を設ける構成は、図7に示すように、半導体装置内に放熱板10を有しない構造に適用してもよく、その場合も上述した作用効果と同様の作用効果を発揮する。つまり、半導体素子1の角状部1cの膜厚D1が、主面1aおよび側部1s上の角状部1cから離れた部分の膜厚d1より厚くなるように、封止体4よりも弾性率の低い材料で被覆膜9を形成する。これにより、封止体4の効果を損なうことなく、半導体素子1と封止体4の間の密着強度の向上と、半導体素子1の角状部1cに集中する応力と歪みを緩和による剥離欠陥とクラックを抑制し、半導体素子1の主面1aの主電極と裏面電極間の絶縁耐性向上を実現することができる。   In addition, as shown in FIG. 7, the structure which provides the coating film 9 mentioned above may be applied to the structure which does not have the heat sink 10 in a semiconductor device, and the effect similar to the effect mentioned above also in that case Demonstrate. That is, it is more elastic than the sealing body 4 so that the film thickness D1 of the corner portion 1c of the semiconductor element 1 is thicker than the film thickness d1 of the main surface 1a and the portion on the side portion 1s away from the corner portion 1c. The coating film 9 is formed with a material having a low rate. Thereby, without impairing the effect of the sealing body 4, the adhesion strength between the semiconductor element 1 and the sealing body 4 is improved, and the stress and strain concentrated on the rectangular portion 1 c of the semiconductor element 1 are alleviated, thereby causing peeling defects. It is possible to suppress cracks and improve the insulation resistance between the main electrode and the back electrode of the main surface 1a of the semiconductor element 1.

つぎに、上述した半導体装置の製造方法および各部材の材料等について説明する。図8〜図10は、本発明の実施の形態1にかかる半導体装置の製造方法について説明するためのもので、図8は半導体装置を製造する工程のうち被覆膜9を形成する工程における、半導体装置(回路体)の断面と電場を形成するための配線を示す図、図9は被覆膜を形成する工程のうち、電場を形成した直後の角状部周辺部分の拡大断面図、図10は電場によって被覆膜の厚みを所望の分布に変化させた状態を示す角状部周辺部分の拡大断面図である。なお、被覆膜を形成する前までの工程については図1を参照する。   Next, a manufacturing method of the above-described semiconductor device and materials of each member will be described. FIGS. 8-10 is for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 1 of this invention, and FIG. 8 is in the process of forming the coating film 9 among the processes of manufacturing a semiconductor device. FIG. 9 is a cross-sectional view of a semiconductor device (circuit body) and a wiring for forming an electric field. FIG. 9 is an enlarged cross-sectional view of a peripheral portion of a rectangular portion immediately after forming an electric field in the step of forming a coating film. 10 is an enlarged cross-sectional view of a peripheral portion of the square portion showing a state in which the thickness of the coating film is changed to a desired distribution by an electric field. Note that FIG. 1 is referred to for the steps before the coating film is formed.

半導体素子1は、ウェハ上でデバイス構造を形成し、ダイシングなどで分割し、四角形の板状に切り出したものである。デバイス構造の形成は目的の半導体デバイスを構成するプロセスにより実施され、限定されるものではない。この工程において半導体素子1上の電極5および電極5の外周部(端部)に、絶縁保護用の絶縁保護膜6が形成される。絶縁保護膜6は絶縁性が確保されていれば材質は限定されるものではないが、耐熱性などに優れたポリイミドやポリアミドを用いることが好ましい。ダイシング工程は、ウェハから半導体素子を四角形に切り出すことが出来ればよく、ダイヤモンドカッターやレーザーなどを用いてウェハ分割が実施されることが好ましいが、限定されるものではない。   The semiconductor element 1 is formed by forming a device structure on a wafer, dividing it by dicing or the like, and cutting it into a square plate shape. The formation of the device structure is performed by a process for forming a target semiconductor device and is not limited. In this step, the insulating protective film 6 for insulating protection is formed on the electrode 5 on the semiconductor element 1 and the outer peripheral portion (end portion) of the electrode 5. The material of the insulating protective film 6 is not limited as long as the insulating property is ensured, but it is preferable to use polyimide or polyamide excellent in heat resistance. In the dicing process, it is only necessary to cut a semiconductor element from a wafer into a square, and the wafer is preferably divided using a diamond cutter, a laser, or the like, but is not limited thereto.

半導体素子1は、パワーデバイス用材料として知られるシリコン(Si)または炭化ケイ素(SiC)または窒化ガリウム(GaN)系材料を用いることが好ましい。中でも、バンドギャップが3.25eVと従来のSi半導体に比べて3倍と広く、その分絶縁破壊にいたる電界強度が3MV/cmと10倍程度大きく、また、熱伝導性、耐熱性、耐薬品性に優れ、放射線に対する耐性もSi半導体より高いという特徴を持つSiCがより好ましい。なお、SiCのほか、窒化ガリウム系材料やダイヤモンドもワイドバンドギャップ半導体材料と称されており、Si半導体よりもバンドギャップが広く、耐熱性にも優れている。そのため、半導体装置のさらなる高性能化には、これらワイドバンドギャップ半導体材料を用いた半導体素子1が欠かせない存在となっている。   The semiconductor element 1 is preferably made of silicon (Si), silicon carbide (SiC), or gallium nitride (GaN) -based material known as a power device material. In particular, the band gap is 3.25 eV, which is 3 times wider than that of conventional Si semiconductors, and the electric field strength that leads to dielectric breakdown is about 10 times as large as 3 MV / cm. Also, thermal conductivity, heat resistance, chemical resistance SiC having the characteristics that it has excellent properties and has higher radiation resistance than Si semiconductors is more preferable. In addition to SiC, gallium nitride-based materials and diamond are also called wide band gap semiconductor materials, which have a wider band gap and superior heat resistance than Si semiconductors. Therefore, the semiconductor element 1 using these wide band gap semiconductor materials is indispensable for further improving the performance of the semiconductor device.

その半導体素子1を、接着により絶縁基板3を介して放熱板10と一体となった伝熱板2上に、はんだ8を用いて接合する。伝熱板2への絶縁基板3の接着は、上述のように半導体素子1を接合する前に行っていても良いし、半導体素子1を接合した後に行っても良い。半導体素子1を接合する前に伝熱板2へ絶縁基板3を接着する場合、伝熱板2と絶縁基板3と放熱板10を加圧プレスなどで接着し、一体化しておくことが好ましい。伝熱板2と放熱板10には熱伝導率が高く安価な銅(Cu)やアルミニウム(Al)、またはその複合材を用いることが好ましい。絶縁基板3は絶縁性が確保できていればよく、二酸化ケイ素(SiO)、窒化ケイ素(SiN)、アルミナ(Al)、または窒化アルミニウム(AlN)などのHigh−k材料、あるいはそれらを用いた複合物を用いることが好ましい。中でも、高い熱伝導率と高い強度を兼ね備えたSiNを用いることがより好ましい。 The semiconductor element 1 is bonded to the heat transfer plate 2 integrated with the heat radiating plate 10 through the insulating substrate 3 by bonding using solder 8. Adhesion of the insulating substrate 3 to the heat transfer plate 2 may be performed before the semiconductor element 1 is bonded as described above, or may be performed after the semiconductor element 1 is bonded. When the insulating substrate 3 is bonded to the heat transfer plate 2 before the semiconductor element 1 is bonded, it is preferable that the heat transfer plate 2, the insulating substrate 3 and the heat radiating plate 10 are bonded and integrated by a pressure press or the like. For the heat transfer plate 2 and the heat radiating plate 10, it is preferable to use copper (Cu), aluminum (Al), or a composite material thereof that has high thermal conductivity and is inexpensive. The insulating substrate 3 only needs to have insulating properties, and is a high-k material such as silicon dioxide (SiO 2 ), silicon nitride (SiN), alumina (Al 2 O 3 ), or aluminum nitride (AlN), or those It is preferable to use a composite using Among these, it is more preferable to use SiN having both high thermal conductivity and high strength.

次に、半導体装置に電圧を印加し電流を流すため、配線部材としてリードフレーム7を伝熱板2の回路面2aと半導体素子1の主面1aの電極5に、はんだ8を介してそれぞれ接続する。なお、リードフレーム7は電気接続を行うために用いたのであって、電気接続ができるのであれば、リードフレーム7に限定されることはなく、ボンディングによる接続でもよい。   Next, in order to apply a voltage to the semiconductor device and cause a current to flow, the lead frame 7 is connected as a wiring member to the circuit surface 2a of the heat transfer plate 2 and the electrode 5 on the main surface 1a of the semiconductor element 1 via the solder 8, respectively. To do. The lead frame 7 is used for electrical connection, and is not limited to the lead frame 7 as long as electrical connection is possible, and connection by bonding may be used.

ここで、半導体素子1の露出部(そのまま封止されると封止体4に接する部分)に被覆膜9の形成を行う。半導体素子1の露出部に被覆膜9の形成を行う工程は、上述のリードフレーム7の接続の前に実施してもよい。被覆膜9の形成は、任意の箇所に被覆膜9を塗布する事ができればよく、静電塗布方式やディスペンス方式、インクジェット方式、噴霧塗布方式、ディッピング方式等の方法を用いることができ、限定されるものではない。また、被覆膜9にはポリイミドまたはポリアミドまたはシリコーンを主成分とする樹脂を用いることが好ましい。被覆膜9の材料はこれらに限定されることはないが、封止体4の効果を損なうこと無く、かつ、半導体装置にかかる応力と歪みの緩和層の役割を果たすため、物性値として、例えば、弾性率が8GPa以下、あるいは破断伸び率が30%以上を示す樹脂が好ましい。   Here, the coating film 9 is formed on the exposed portion of the semiconductor element 1 (the portion that comes into contact with the sealing body 4 when sealed as it is). The step of forming the coating film 9 on the exposed portion of the semiconductor element 1 may be performed before the connection of the lead frame 7 described above. The coating film 9 may be formed as long as the coating film 9 can be applied to any location, and electrostatic coating methods, dispensing methods, ink jet methods, spray coating methods, dipping methods, and the like can be used. It is not limited. Further, it is preferable to use a resin whose main component is polyimide, polyamide or silicone for the coating film 9. Although the material of the coating film 9 is not limited to these, since it does not impair the effect of the sealing body 4 and plays the role of a stress and strain relaxation layer applied to the semiconductor device, For example, a resin having an elastic modulus of 8 GPa or less or an elongation at break of 30% or more is preferable.

上述した条件の樹脂は半導体素子1に用いられるSiCやSi、封止体4に用いられるエポキシ樹脂、絶縁基板3に用いられるSiNやAlN、および伝熱板2などの各部材との良好な密着性を確認している。したがって、上述した条件の樹脂で、半導体素子1と封止体4との間に被覆膜9を形成することにより、半導体素子1と封止体4の間の密着強度より、半導体素子1と被覆膜9の間および被覆膜9と封止体4の間の密着強度が高くなり、剥離とクラックを抑制することができる。   The resin under the above-described conditions is excellent adhesion with each member such as SiC or Si used for the semiconductor element 1, epoxy resin used for the sealing body 4, SiN or AlN used for the insulating substrate 3, and the heat transfer plate 2. The sex is confirmed. Therefore, by forming the coating film 9 between the semiconductor element 1 and the sealing body 4 with the resin having the above-described conditions, the adhesion strength between the semiconductor element 1 and the sealing body 4 is greater than that of the semiconductor element 1 and the sealing body 4. The adhesion strength between the coating film 9 and between the coating film 9 and the sealing body 4 is increased, and peeling and cracking can be suppressed.

ディッピング方式を用いて塗布を行う場合、リードフレーム7の接続後、被覆膜9を構成する樹脂材料中に回路体(封止体4を除く半導体装置)を浸け込み、回路体の全面に被覆膜9が塗布されるようにする。この塗布後、回路体全体または任意の箇所に電場を生じさせることにより、半導体素子1の角状部1cにおける被覆膜9の膜厚を厚くしている。電場を加えること無く上述などの方法で塗布を行った場合、図4(a)、(b)で説明したように、角状部1cにおいては膜厚が極めて薄い、または膜が存在しない状態の被覆膜9Xになる。   When coating using the dipping method, after connecting the lead frame 7, the circuit body (semiconductor device excluding the sealing body 4) is immersed in the resin material constituting the coating film 9, and the entire surface of the circuit body is covered. The covering film 9 is applied. After this application, an electric field is generated in the entire circuit body or in an arbitrary place, so that the film thickness of the coating film 9 in the corner portion 1c of the semiconductor element 1 is increased. When the coating is performed by the above-described method without applying an electric field, as described in FIGS. 4A and 4B, the rectangular portion 1c has a very thin film or no film. It becomes the coating film 9X.

そこで、本実施の形態1にかかる半導体装置の製造方法では、図8に示すように、回路体全体が同電位になるように、回路体を構成する各導電部材(放熱板10、伝熱板2、リードフレーム7)を接地電極20eに接続する。一方、対向電極20cを半導体装置から適当に距離をおいた位置に配置し、接地電極20eに対して所定の電位の電圧を印加する。   Therefore, in the method of manufacturing the semiconductor device according to the first embodiment, as shown in FIG. 8, each conductive member (heat sink 10 and heat transfer plate) constituting the circuit body is set so that the entire circuit body has the same potential. 2. Connect the lead frame 7) to the ground electrode 20e. On the other hand, the counter electrode 20c is disposed at an appropriate distance from the semiconductor device, and a voltage having a predetermined potential is applied to the ground electrode 20e.

このように電極配置して電圧を印加すると、図9に示すように、角状部1cに電気力線Leが集中するような電場が発生する。すると、図10に示すように、集中した電場により、被覆膜9の表面電荷が角状部1cに向かって引き寄せられ、それに伴い被覆膜9を構成する樹脂材料自体が角状部1cに引き寄せられる。その結果、半導体素子1の角状部1cを被覆する被覆膜9の膜厚を厚くすることができる。   When the electrodes are arranged in this way and a voltage is applied, as shown in FIG. 9, an electric field is generated so that the electric lines of force Le are concentrated on the rectangular portion 1c. Then, as shown in FIG. 10, due to the concentrated electric field, the surface charge of the coating film 9 is attracted toward the square portion 1c, and accordingly, the resin material itself constituting the coating film 9 is attracted to the square portion 1c. Gravitate. As a result, the film thickness of the coating film 9 that covers the square portion 1c of the semiconductor element 1 can be increased.

この電場発生は、被覆膜9を構成する樹脂材料が流動性を有するときから、流動性を失い、電場外においても形状を保持できる状態になるまでを通じて行っておれば、いつでもよい。そのため、上述のように塗布後電場内にさらしても、塗布を行う工程全てを電場内で行っても良く、限定されるものではない。   The generation of the electric field may be performed at any time as long as the resin material constituting the coating film 9 is flowable until it loses the fluidity and can maintain the shape even outside the electric field. Therefore, even if it exposes in an electric field after application | coating as mentioned above, all the processes to apply | coat may be performed in an electric field, and it is not limited.

電場を発生させるための印加電圧は被覆膜9を構成する樹脂材料を引き寄せ、かつ放電を防ぐため、4kV以上150kV以下で行うことが好ましい。4kVより低い電圧の場合、樹脂材料を角状部1cに引き寄せることが難しく、角状部1cでの膜厚を十分に厚くすることができない。一方、150kVより高い電圧の場合、放電を生じ、半導体素子1の不良を引き起こす事がある。印加電圧は使用する樹脂材料により選択する必要があり、限定されるものではない。   The applied voltage for generating the electric field is preferably 4 kV or more and 150 kV or less in order to attract the resin material constituting the coating film 9 and prevent discharge. In the case of a voltage lower than 4 kV, it is difficult to draw the resin material to the corner portion 1c, and the film thickness at the corner portion 1c cannot be sufficiently increased. On the other hand, when the voltage is higher than 150 kV, discharge may occur and the semiconductor element 1 may be defective. The applied voltage must be selected depending on the resin material to be used, and is not limited.

また、電場の強度および電場にさらす時間によって、半導体素子1の角状部1cを被覆する被覆膜9の膜厚を調節することができる。上述の封止体4の効果を損なうことを防ぐため、半導体素子1の角状部1c以外の箇所での被覆膜9の膜厚は5μm以下が好ましい。被覆膜9の膜厚を5μmまで厚くしていったところ、剥離抑制効果を得ることができたが、6μmより厚くするとその効果が弱まり、剥離の発生が見られた。   In addition, the film thickness of the coating film 9 that covers the rectangular portion 1c of the semiconductor element 1 can be adjusted by the strength of the electric field and the time of exposure to the electric field. In order to prevent impairing the effect of the sealing body 4 described above, the film thickness of the coating film 9 at a portion other than the rectangular portion 1 c of the semiconductor element 1 is preferably 5 μm or less. When the film thickness of the coating film 9 was increased to 5 μm, a peeling suppression effect could be obtained, but when it was thicker than 6 μm, the effect was weakened and peeling was observed.

なお、被覆厚を5μm以下にする範囲としては、主面1aや側部1sのような面内において、一端を角状部1cとし、他端を被覆膜9が形成された端部としたときに、端部よりも中央に近い領域として定義できる。例えば、図1における、主面1aを覆う範囲では、角状部1cと絶縁保護膜6との間において、角状部1cあるいは絶縁保護膜6よりも、その中央に近い領域を厚みが5μm以下になる領域とする。あるいは、側部1sを覆う範囲では、角状部1cと伝熱板2との接合部分(はんだ8)との間において、角状部1cあるいははんだ8よりも、その中央に近い領域を厚みが5μm以下になる領域とする。つまり、被覆膜9は、角状部1cを含むひとつの面(例えば、主面1a)を覆う部分において、角状部1cを一端とし、角状部1cから離れた端(絶縁保護膜6との境)を他端とすると、両端よりも中央に近い領域の厚みが5μm以下になるように形成されている。   In addition, as a range which makes coating | coated thickness 5 micrometers or less, in the surface like the main surface 1a or the side part 1s, one end was made into the square-shaped part 1c, and the other end was made into the edge part in which the coating film 9 was formed. Sometimes it can be defined as a region closer to the center than to the edge. For example, in the range covering the main surface 1a in FIG. 1, a region closer to the center than the rectangular portion 1c or the insulating protective film 6 between the rectangular portion 1c and the insulating protective film 6 has a thickness of 5 μm or less. It becomes an area to become. Alternatively, in the range covering the side portion 1 s, the thickness of the region closer to the center than the rectangular portion 1 c or the solder 8 is between the rectangular portion 1 c and the joining portion (solder 8) of the heat transfer plate 2. The region is 5 μm or less. That is, the coating film 9 has a corner portion 1c as one end and an end away from the corner portion 1c (insulating protective film 6) in a portion covering one surface including the corner portion 1c (for example, the main surface 1a). When the other end is the other end, the thickness of the region closer to the center than both ends is 5 μm or less.

なお、被覆膜9を形成する工程において、硬化前の樹脂材料中に気泡が存在する場合、減圧雰囲気下に晒すことにより、被覆膜9中の気泡を除去することができる。上記減圧雰囲気は大気圧以下であればよく、ロータリーポンプなどの簡易な減圧装置で到達可能な0.1Pa以上100Pa以下であることが好ましい。簡易な減圧装置であるので、コスト増加を抑えることができ、かつ、十分な脱泡効果を得ることができる。気泡の除去には0.1Paで十分であり、また、0.1Paより低い圧力を得ようとすると、油拡散ポンプやターボ分子ポンプなどの装置が追加で必要となり、コスト増加につながる。また、100Paより高い圧力の場合、気泡を除去するのに十分でなく、気泡残りを生じる。   In the step of forming the coating film 9, if bubbles exist in the resin material before curing, the bubbles in the coating film 9 can be removed by exposure to a reduced pressure atmosphere. The above-mentioned reduced pressure atmosphere should just be below atmospheric pressure, and it is preferred that it is 0.1 Pa or more and 100 Pa or less which can be reached with a simple decompression device such as a rotary pump. Since it is a simple decompression device, an increase in cost can be suppressed and a sufficient defoaming effect can be obtained. In order to remove bubbles, 0.1 Pa is sufficient, and if a pressure lower than 0.1 Pa is to be obtained, an additional device such as an oil diffusion pump or a turbo molecular pump is required, leading to an increase in cost. In addition, when the pressure is higher than 100 Pa, it is not sufficient for removing bubbles, and bubbles remain.

上記のように、被覆膜9の膜厚を所望の膜厚にした後、被覆膜9の加熱処理を行い、硬化する。この時の加熱処理条件は用いる被覆膜9に用いる樹脂材料により異なり、限定されるものではない。また、被覆膜9は封止体4より弾性率の低い材質のものであれば、複数膜で構成されていてもよい。   As described above, after the coating film 9 has a desired film thickness, the coating film 9 is heated and cured. The heat treatment conditions at this time differ depending on the resin material used for the coating film 9 to be used, and are not limited. Further, the coating film 9 may be formed of a plurality of films as long as the material has a lower elastic modulus than the sealing body 4.

最後に、上記処理を施したものを封止体4で封止する。封止は、熱硬化性の樹脂材料を用い、トランスファー成形により行う。封止用の樹脂材料としては、エポキシ樹脂またはフィラーなどを含むエポキシ樹脂の複合材を用いることが好ましい。   Finally, what has been subjected to the above treatment is sealed with a sealing body 4. Sealing is performed by transfer molding using a thermosetting resin material. As the sealing resin material, it is preferable to use an epoxy resin composite material including an epoxy resin or a filler.

なお、リードフレーム7および放熱板10には、封止体4から外部に出る、または外部に面することで封止体4から露出し、外部と電気接続あるいは伝熱接続する必要がある部分が存在する。しかし、被覆膜9の樹脂材料を塗布する工程において、回路体の全体に樹脂材料を塗布した場合、リードフレーム7および放熱板10のうち、露出すべき部分にも、余分な被覆膜9が形成される。そこで、封止体4による封止後、リードフレーム7および放熱板10の露出すべき部分に形成された余分な被覆膜9を除去するため、酸素プラズマ処理やブラスト処理や物理研磨などのエッチングを行う。これにより、リードフレーム7および放熱板10の露出すべき部分を露出させることができ、半導体装置外との電気的接続や熱的接続が可能になる。   Note that the lead frame 7 and the heat radiating plate 10 have portions that are exposed from the sealing body 4 by being exposed to the outside or facing the outside, and need to be electrically connected or heat-transferred to the outside. Exists. However, when the resin material is applied to the entire circuit body in the step of applying the resin material of the coating film 9, the extra coating film 9 is also applied to the exposed portions of the lead frame 7 and the heat sink 10. Is formed. Therefore, after sealing with the sealing body 4, etching such as oxygen plasma processing, blast processing, physical polishing, etc. is performed in order to remove the excess coating film 9 formed on the exposed portions of the lead frame 7 and the heat sink 10. I do. Thereby, portions to be exposed of the lead frame 7 and the heat radiating plate 10 can be exposed, and electrical connection and thermal connection with the outside of the semiconductor device are possible.

被覆膜9を除去する方法については、露出すべき部分に形成された被覆膜9を除去することができれば、上述した方法に限定されることはなく、どのような方法でもよい。また、容易に除去ができるよう、露出すべき部分を予め離型材等で覆っておくようにしてもよい。なお、上述した製造方法は、以降の実施の形態2、3にかかる半導体装置にも適用できるものであることは言うまでもない。   The method for removing the coating film 9 is not limited to the above-described method as long as the coating film 9 formed on the portion to be exposed can be removed, and any method may be used. Moreover, you may make it cover the part which should be exposed previously with a mold release material etc. so that it can remove easily. Needless to say, the manufacturing method described above can also be applied to semiconductor devices according to the second and third embodiments.

以上のように、本発明の実施の形態1にかかる半導体装置によれば、主面1aに配線部材(リードフレーム7)を接合するための電極5が形成された板状の半導体素子1と、一方の面(回路面2a)が半導体素子1の裏面に接合された伝熱板2と、伝熱板2の他方の面が接着された絶縁基板3と、半導体素子1の主面1aを包むように、絶縁基板3の側部3sから伝熱板2が接着された面側の部材を封止する封止体4と、半導体素子1と封止体4との間に介在し、封止体4を構成する材料よりも弾性率が低い材料で形成された被覆膜9と、を備え、被覆膜9は、半導体素子1に形成された(主面1aと側部1sとの角である)角状部1cを覆う厚みD1が、半導体素子1の他の領域を覆う厚みd1よりも厚くなるように構成した。そのため、封止体4の効果を損なうことなく、半導体素子1と封止体4の間の密着強度の向上と、半導体素子1の角状部1cに集中する応力と歪みの緩和により、剥離欠陥とクラックを抑制し、半導体素子1の主面1aの電極5と裏面電極間の絶縁耐性を向上させることができる。その結果、封止体4の剥離とクラックの発生を抑制した信頼性の高い半導体装置を得ることができる。   As described above, according to the semiconductor device according to the first embodiment of the present invention, the plate-like semiconductor element 1 in which the electrode 5 for joining the wiring member (lead frame 7) is formed on the main surface 1a, A heat transfer plate 2 having one surface (circuit surface 2 a) bonded to the back surface of the semiconductor element 1, an insulating substrate 3 to which the other surface of the heat transfer plate 2 is bonded, and a main surface 1 a of the semiconductor element 1 are wrapped. In other words, a sealing body 4 that seals a member on the surface side to which the heat transfer plate 2 is bonded from the side portion 3s of the insulating substrate 3 is interposed between the semiconductor element 1 and the sealing body 4, and the sealing body 4, and the coating film 9 is formed on the semiconductor element 1 (at the angle between the main surface 1 a and the side portion 1 s). The thickness D1 covering the corner portion 1c is thicker than the thickness d1 covering the other region of the semiconductor element 1. Therefore, a peeling defect is achieved by improving the adhesion strength between the semiconductor element 1 and the sealing body 4 and reducing stress and strain concentrated on the rectangular portion 1c of the semiconductor element 1 without impairing the effect of the sealing body 4. And the cracking can be suppressed, and the insulation resistance between the electrode 5 on the main surface 1a of the semiconductor element 1 and the back electrode can be improved. As a result, a highly reliable semiconductor device in which peeling of the sealing body 4 and generation of cracks are suppressed can be obtained.

また、被覆膜9は、角状部1cを覆う部分から端部までの中間部分(例えば、主面1aを覆う部分のうち、角状部1cを覆う部分を一端とし、角状部1cから離れた端部を他端とすると、両端よりも中央に近い領域の部分)が5μm以下の厚みになるように形成されているので、封止体4による応力緩和効果を損ねることがなく、剥離欠陥とクラックを抑制することができる。   Further, the covering film 9 has an intermediate portion from the portion covering the corner portion 1c to the end portion (for example, of the portion covering the main surface 1a, the portion covering the corner portion 1c is one end, and from the corner portion 1c When the remote end is the other end, the portion of the region closer to the center than both ends) is formed to have a thickness of 5 μm or less. Defects and cracks can be suppressed.

被覆膜9がポリイミド、ポリアミド、およびシリコーンのいずれかを主成分とする樹脂で形成されているので、より剥離欠陥とクラックの抑制効果が高い。   Since the coating film 9 is made of a resin mainly composed of any one of polyimide, polyamide, and silicone, the effect of suppressing peeling defects and cracks is higher.

さらに、被覆膜9の弾性率が8GPa以下に設定すれば、確実に応力と歪みを緩和する。   Furthermore, if the elastic modulus of the coating film 9 is set to 8 GPa or less, the stress and strain are surely relieved.

あるいは、被覆膜9の破断伸び率30%以上に設定しても、確実に応力と歪みを緩和する。   Alternatively, even if the elongation at break of the coating film 9 is set to 30% or more, the stress and strain are surely relaxed.

また、本実施の形態1にかかる半導体装置の製造方法によれば、主面1aに配線部材(リードフレーム7)を接合するための電極5が形成された板状の半導体素子1の裏面を、伝熱板2の一方の面(回路面2a)に接合する工程と、絶縁基板3の一方の面に、伝熱板2の他方の面を接着する工程と、半導体素子1の主面1aを包むように、絶縁基板3の側部3sから伝熱板2が接着された面側の部材を封止する封止体4を形成する工程と、半導体素子1に形成された(主面1aと側部1sとの角である)角状部1cにおいて、半導体素子1と封止体4との間に介在するように、封止体4を構成する材料よりも弾性率が低い樹脂を用いて被覆膜9を形成する工程と、を含み、被覆膜9を形成する工程では、被覆膜の9の樹脂が流動性を失う前から、角状部1cに電気力線Leが集中するように電場をかけるようにしたので、角状部1cを覆う厚みD1が、他の領域を覆う厚みd1よりも厚くなるように被覆膜9を形成することができ、上述した特徴の半導体装置を製造することができる。   Moreover, according to the manufacturing method of the semiconductor device concerning this Embodiment 1, the back surface of the plate-shaped semiconductor element 1 in which the electrode 5 for joining a wiring member (lead frame 7) to the main surface 1a was formed, The step of bonding to one surface (circuit surface 2a) of the heat transfer plate 2, the step of bonding the other surface of the heat transfer plate 2 to one surface of the insulating substrate 3, and the main surface 1a of the semiconductor element 1 A step of forming a sealing body 4 for sealing a member on the surface side to which the heat transfer plate 2 is bonded from the side portion 3s of the insulating substrate 3 so as to wrap; and the semiconductor element 1 (the main surface 1a and the side) In the rectangular portion 1c (which is an angle with the portion 1s), a resin having a lower elastic modulus than the material constituting the sealing body 4 is used so as to be interposed between the semiconductor element 1 and the sealing body 4. A step of forming the covering film 9, and in the step of forming the covering film 9, whether the resin of the covering film 9 loses fluidity Since the electric field is applied so that the electric lines of force Le concentrate on the horn 1c, the coating film 9 is formed such that the thickness D1 covering the horn 1c is thicker than the thickness d1 covering the other area. The semiconductor device having the above-described characteristics can be manufactured.

電場をかけるための印加電圧を4kV以上、150kV以下の範囲に設定すれば、半導体素子1等の故障を引き起こすことなく、角状部1cを覆う厚みD1が、他の領域を覆う厚みd1よりも確実に厚くなるように被覆膜9を形成することができる。   If the applied voltage for applying the electric field is set in the range of 4 kV or more and 150 kV or less, the thickness D1 covering the rectangular portion 1c is larger than the thickness d1 covering other regions without causing failure of the semiconductor element 1 or the like. The coating film 9 can be formed so as to be surely thick.

被覆膜9を形成する工程が減圧雰囲気で行われたなら、気泡の発生を抑えることができる。   If the step of forming the coating film 9 is performed in a reduced pressure atmosphere, the generation of bubbles can be suppressed.

減圧雰囲気が、0.1Pa以上、100Pa以下の範囲であれば、大掛かりな装置も不要で、脱泡効果を確実に得ることができる。   If the reduced-pressure atmosphere is in the range of 0.1 Pa or more and 100 Pa or less, a large-scale apparatus is unnecessary and the defoaming effect can be obtained with certainty.

実施の形態2.
本実施の形態2にかかる半導体装置は、実施の形態1と異なり、被覆膜を設ける対象を絶縁基板にしたものである。図11〜図13は本発明の実施の形態2にかかる半導体装置の構成を説明するためのもので、図11は半導体装置の断面模式図、図12は変形例にかかる半導体装置の断面模式図、図13は被覆膜の形状を説明するための絶縁基板の角状部、および絶縁基板と伝熱板との接着面の端部(接着面端)周辺の拡大断面図である。
Embodiment 2. FIG.
The semiconductor device according to the second embodiment differs from the first embodiment in that an object to be provided with a coating film is an insulating substrate. 11 to 13 are diagrams for explaining the configuration of the semiconductor device according to the second embodiment of the present invention. FIG. 11 is a schematic sectional view of the semiconductor device. FIG. 12 is a schematic sectional view of the semiconductor device according to the modification. FIG. 13 is an enlarged cross-sectional view around a corner portion of the insulating substrate for explaining the shape of the coating film, and an end portion (adhesive surface end) of the bonding surface between the insulating substrate and the heat transfer plate.

本発明の実施の形態2にかかる半導体装置は、図11に示すように、放熱板10に対して絶縁基板3を介して一方の面が接合された伝熱板2の回路面2aに、半導体素子1を実装し、伝熱板2の回路面2a、および半導体素子1の主面1aにリードフレーム7等の配線部材を接合し、少なくとも回路面2a側を樹脂による封止体4で封止している。さらに、絶縁基板3と封止体4との間には、絶縁基板3の平面部3fと側面(側部3s)との境である角状部3cを覆う厚みの方が、他の部分を覆う厚みよりも厚くなるように封止体4よりも弾性率が低い材料で被覆膜9が形成されているものである。   As shown in FIG. 11, the semiconductor device according to the second embodiment of the present invention includes a semiconductor on the circuit surface 2 a of the heat transfer plate 2 that is joined to the heat radiating plate 10 via the insulating substrate 3. The element 1 is mounted, a wiring member such as a lead frame 7 is joined to the circuit surface 2a of the heat transfer plate 2 and the main surface 1a of the semiconductor element 1, and at least the circuit surface 2a side is sealed with a sealing body 4 made of resin. doing. Furthermore, between the insulating substrate 3 and the sealing body 4, the thickness that covers the rectangular portion 3 c that is the boundary between the flat portion 3 f and the side surface (side portion 3 s) of the insulating substrate 3 is the other portion. The coating film 9 is formed of a material having a lower elastic modulus than the sealing body 4 so as to be thicker than the covering thickness.

伝熱板2と半導体素子1とは、半導体素子1から生じる熱を拡散させ、かつ半導体素子の裏面とのコンタクトを実現するため、はんだ8を用いて接合されている。半導体素子1内を流れる電流が所望の経路外に流れ出ることを防ぐため、伝熱板2の回路面2aの反対側には、伝熱板2よりも面積が大きな絶縁基板3が加圧プレスなどにより接着されている。また、伝熱板2に伝わった熱を半導体装置外部に逃すため、絶縁基板3の伝熱板2が接着された面の反対側には、加圧プレスなどにより放熱板10が接着されている。   The heat transfer plate 2 and the semiconductor element 1 are joined using solder 8 in order to diffuse the heat generated from the semiconductor element 1 and realize contact with the back surface of the semiconductor element. In order to prevent a current flowing in the semiconductor element 1 from flowing out of a desired path, an insulating substrate 3 having a larger area than the heat transfer plate 2 is pressed on the opposite side of the circuit surface 2a of the heat transfer plate 2 or the like. It is adhered by. Further, in order to release the heat transferred to the heat transfer plate 2 to the outside of the semiconductor device, the heat radiating plate 10 is bonded to the opposite side of the surface of the insulating substrate 3 to which the heat transfer plate 2 is bonded by a pressure press or the like. .

一方、半導体装置に電圧を印加し電流を流すため、リードフレーム7は伝熱板2の回路面2aと半導体素子1の主面1aに形成された電極5にはんだ8を介して電気的にそれぞれ接続される。また、半導体素子1の電極5の端部には絶縁保護用に絶縁保護膜6が形成されている。耐圧特性を向上するために絶縁保護膜6を有することが好ましいが、無くても良い。一方、絶縁基板3の伝熱板2あるいは放熱板10からはみ出し、封止体4に対して露出する部分は、本発明の実施の形態2の特徴である被覆膜9で被覆されている。このように構成された回路体が封止体4で封止されている。   On the other hand, in order to apply a voltage to the semiconductor device and cause a current to flow, the lead frame 7 is electrically connected to the circuit surface 2 a of the heat transfer plate 2 and the electrode 5 formed on the main surface 1 a of the semiconductor element 1 via the solder 8. Connected. Further, an insulating protective film 6 is formed at the end of the electrode 5 of the semiconductor element 1 for insulating protection. In order to improve the breakdown voltage characteristics, it is preferable to have the insulating protective film 6, but it may be omitted. On the other hand, the portion of the insulating substrate 3 that protrudes from the heat transfer plate 2 or the heat radiating plate 10 and is exposed to the sealing body 4 is covered with the coating film 9 that is a feature of the second embodiment of the present invention. The circuit body configured in this way is sealed with a sealing body 4.

封止体4を構成する封止樹脂材は、エポキシ樹脂などの硬い樹脂であり、これで封止することにより、内容物の応力と歪みを分散、低減する効果がある。また、被覆膜9が被覆された箇所は、絶縁基板3の角状部3cおよび伝熱板2と絶縁基板3との接着面Pjの端部(接着面端Ej)を被覆していればよく、絶縁基板3の封止体4に封止される部分全てを被覆する必要はない。また、本実施の形態2においても、実施の形態1で説明したのと同様に、図15に示すように、半導体装置内に放熱板10を有しない構造に適用してもよい。   The sealing resin material which comprises the sealing body 4 is hard resin, such as an epoxy resin, and there exists an effect which disperse | distributes and reduces the stress and distortion of the content by sealing with this. In addition, the portion covered with the coating film 9 may cover the rectangular portion 3c of the insulating substrate 3 and the end portion (bonding surface end Ej) of the bonding surface Pj between the heat transfer plate 2 and the insulating substrate 3. Well, it is not necessary to cover the entire portion of the insulating substrate 3 sealed by the sealing body 4. Further, in the second embodiment, as described in the first embodiment, as shown in FIG. 15, the semiconductor device may be applied to a structure that does not have the heat sink 10.

そして、絶縁基板3を被覆する被覆膜9は、図13に示すように、封止体4に封止されている部分のうち、角状部3cおよび伝熱板2との接着面端Ej部分を覆うように形成されていればよい。そして、角状部3cを覆う部分の膜厚D2が、角状部3c以外の部分を覆うように形成された膜厚d2よりも厚くなっている。この条件を満足していれば、実施の形態1で説明したように角状部3cにおける膜形状は問わない。   And the coating film 9 which coat | covers the insulated substrate 3 is as shown in FIG. 13, Out of the part sealed by the sealing body 4, the adhesion surface edge Ej with the square-shaped part 3c and the heat exchanger plate 2 is shown. What is necessary is just to be formed so that a part may be covered. And the film thickness D2 of the part which covers the corner | angular part 3c is thicker than the film thickness d2 formed so that parts other than the corner | angular part 3c may be covered. As long as this condition is satisfied, the film shape in the corner portion 3c is not limited as described in the first embodiment.

このように、絶縁基板3と封止体4との間に、被覆膜9を形成することにより、絶縁基板3と封止体4の間の密着強度より、絶縁基板3と被覆膜9の間および被覆膜9と封止体4の間の密着強度を高めることができる。さらに、応力と歪みが集中する絶縁基板3の角状部3cに他の部分よりも厚みが厚くなるように被覆膜9を形成することにより、緩衝材の役割を担うことができる。そのため、封止体4で分散するに足りない絶縁基板3の角状部3cに集中する応力と歪みが封止体4に伝わることを防ぎ、剥離とクラックをともに抑制する。これにより、半導体素子1の裏面と同電位の伝熱板2と放熱板10の間の絶縁耐性を向上することができる。これは、上述の高温動作において応力と歪みが集中する絶縁基板3の角状部3cが動く際に特に有効に働く。   In this way, by forming the coating film 9 between the insulating substrate 3 and the sealing body 4, the insulating substrate 3 and the coating film 9 can be obtained based on the adhesion strength between the insulating substrate 3 and the sealing body 4. And the adhesion strength between the coating film 9 and the sealing body 4 can be increased. Furthermore, by forming the coating film 9 on the square portion 3c of the insulating substrate 3 where stress and strain are concentrated so as to be thicker than other portions, it can serve as a buffer material. For this reason, stress and strain concentrated on the rectangular portion 3c of the insulating substrate 3 that is insufficient to be dispersed by the sealing body 4 are prevented from being transmitted to the sealing body 4, and both peeling and cracking are suppressed. Thereby, the insulation tolerance between the heat exchanger plate 2 and the heat sink 10 having the same potential as the back surface of the semiconductor element 1 can be improved. This is particularly effective when the square portion 3c of the insulating substrate 3 where stress and strain concentrate in the above-described high-temperature operation.

また、伝熱板2または放熱板10と絶縁基板3の接着面端Ejには、動作時の印加電圧により電界が集中するので、剥離やクラックが発生した場合、空隙にコロナが発生し、絶縁不良を生じる恐れがある。コロナ発生を防ぐためには、電界強度を下げる必要があり、そのためには動作電圧を下げるか、絶縁基板3の厚さを厚くする必要がある。動作電圧を確保するために絶縁基板3を厚くすると、動作時に発生する熱を半導体装置外に拡散しにくくなる。そこで、上述したように、伝熱板2または放熱板10と絶縁基板3の接着面端Ejに被覆膜9を被覆すると、剥離やクラックを防ぐことができ、また、クラックが生じた場合でも伝熱板2または放熱板10と絶縁基板3の接着面端Ejを被覆膜9で被覆しているので空隙ができること無く、コロナ発生を防ぐことができる。コロナ発生を防ぐことができるので、動作電圧を保ちながら、絶縁基板3の膜厚を維持または薄くすることができ、熱的により優位な半導体装置の作製が可能となる。   Further, the electric field concentrates on the bonding surface edge Ej between the heat transfer plate 2 or the heat radiating plate 10 and the insulating substrate 3 due to the applied voltage during operation. Therefore, when peeling or cracking occurs, corona is generated in the air gap, and insulation is caused. May cause defects. In order to prevent the generation of corona, it is necessary to reduce the electric field strength. To that end, it is necessary to reduce the operating voltage or increase the thickness of the insulating substrate 3. If the insulating substrate 3 is thickened to ensure the operating voltage, it is difficult for heat generated during operation to diffuse out of the semiconductor device. Therefore, as described above, when the coating film 9 is coated on the heat transfer plate 2 or the heat sink 10 and the bonding surface end Ej of the insulating substrate 3, peeling or cracking can be prevented, and even if a crack occurs. Since the bonding surface end Ej of the heat transfer plate 2 or the heat radiating plate 10 and the insulating substrate 3 is covered with the coating film 9, no gap is formed, and the generation of corona can be prevented. Since the generation of corona can be prevented, the film thickness of the insulating substrate 3 can be maintained or reduced while maintaining the operating voltage, and a semiconductor device that is more thermally superior can be manufactured.

上述のように、応力と歪みが集中する絶縁基板3の角状部3cに被覆膜9を形成することにより、絶縁基板3と封止体4の間の密着強度の向上と、絶縁基板3の角状部3cに集中する応力と歪みを緩和する事ができ、剥離とクラックを抑制することができる。しかし、絶縁基板3の角状部3cの被覆膜9の膜厚と同じ膜厚で絶縁基板3の角状部3cおよび伝熱板2と絶縁基板3の接着面端Ej以外の箇所の膜厚も均一に厚くすると、上述の封止体4による内容物の封止効果自体も緩和してしまい、封止体4の封止効果が弱くなり、逆に剥離やクラックを発生させる恐れがある。   As described above, by forming the coating film 9 on the rectangular portion 3c of the insulating substrate 3 where stress and strain concentrate, the adhesion strength between the insulating substrate 3 and the sealing body 4 is improved, and the insulating substrate 3 The stress and strain concentrated on the rectangular portion 3c can be relaxed, and peeling and cracking can be suppressed. However, the film is the same as the film thickness of the covering film 9 of the corner portion 3 c of the insulating substrate 3, and is a film at a portion other than the corner portion 3 c of the insulating substrate 3 and the bonding surface end Ej of the heat transfer plate 2 and the insulating substrate 3. If the thickness is increased uniformly, the sealing effect of the contents by the sealing body 4 described above is relaxed, and the sealing effect of the sealing body 4 is weakened. .

そこで、本実施の形態2においても、角状部3cでの密着強度の向上および応力と歪みの緩和と共に封止体4の効果を損なわないために、絶縁基板3の角状部3cおよび伝熱板2との接着面端Ej以外の箇所での被覆膜9を角状部3cおよび接着面端Ej部分よりも薄くしている。角状部3cおよび接着面端Ej以外の部分については、実施の形態1で説明したように、ある面における被覆膜9が形成された範囲の両端よりも中央に近い領域の膜厚を5μm以下とすることが好ましい。   Therefore, in the present second embodiment as well, in order to improve the adhesion strength at the corner portion 3c and alleviate the stress and strain and not to impair the effect of the sealing body 4, the corner portion 3c and the heat transfer of the insulating substrate 3 are prevented. The coating film 9 in a portion other than the bonding surface end Ej with the plate 2 is made thinner than the corner portion 3c and the bonding surface end Ej. As for the portions other than the corner portion 3c and the adhesion surface end Ej, as described in the first embodiment, the film thickness of the region closer to the center than the both ends of the range where the coating film 9 is formed on a certain surface is 5 μm. The following is preferable.

以上のように、本発明の実施の形態2にかかる半導体装置によれば、主面1aに配線部材(リードフレーム7)を接合するための電極5が形成された板状の半導体素子1と、一方の面(回路面2a)が半導体素子1の裏面に接合された伝熱板2と、外周に沿って余白が形成されるように、伝熱板2の他方の面が接着された絶縁基板3と、半導体素子1の主面1aを包むように、絶縁基板3の側部3sから伝熱板2が接着された面側の部材を封止する封止体4と、絶縁基板3と封止体4との間に介在し、封止体4を構成する材料よりも弾性率が低い材料で形成された被覆膜9と、を備え、被覆膜9は、絶縁基板3に形成された(平面部3fと側部3sとの角である)角状部3cを覆う厚みD2が、絶縁基板3の他の領域を覆う厚みd2よりも厚くなるように構成した。そのため、封止体4の効果を損なうことなく、絶縁基板3と封止体4の間の密着強度の向上と、絶縁基板3の角状部3cに集中する応力と歪みの緩和により、剥離欠陥とクラックを抑制し、半導体素子1の裏面電極と同電位の伝熱板2と放熱板10の間の絶縁耐性向上を実現することができる。   As described above, according to the semiconductor device according to the second embodiment of the present invention, the plate-like semiconductor element 1 in which the electrode 5 for joining the wiring member (lead frame 7) is formed on the main surface 1a, Insulating substrate in which one surface (circuit surface 2a) is bonded to the back surface of the semiconductor element 1 and the other surface of the heat transfer plate 2 is bonded so that a margin is formed along the outer periphery. 3, a sealing body 4 that seals a member on the surface side to which the heat transfer plate 2 is bonded from the side 3 s of the insulating substrate 3 so as to wrap the main surface 1 a of the semiconductor element 1, and the insulating substrate 3 and the sealing And a coating film 9 formed of a material having a lower elastic modulus than the material constituting the sealing body 4. The coating film 9 is formed on the insulating substrate 3. The thickness D2 covering the rectangular portion 3c (which is the corner between the flat portion 3f and the side portion 3s) is thicker than the thickness d2 covering the other region of the insulating substrate 3. It was constructed so as to be. Therefore, a peeling defect is achieved by improving the adhesion strength between the insulating substrate 3 and the sealing body 4 and reducing stress and strain concentrated on the rectangular portion 3c of the insulating substrate 3 without impairing the effect of the sealing body 4. It is possible to suppress the cracks and improve the insulation resistance between the heat transfer plate 2 and the heat radiating plate 10 having the same potential as that of the back electrode of the semiconductor element 1.

また、絶縁基板3と伝熱板2(あるいは放熱板10)との接着面Pjの端部(接着面端Ej)が、被覆膜9で覆われているように構成すれば、伝熱板2または放熱板10と絶縁基板3の接着面端Ejにおけるコロナ発生の抑制を実現することができる。   Further, if the end portion (bonding surface end Ej) of the bonding surface Pj between the insulating substrate 3 and the heat transfer plate 2 (or the heat radiating plate 10) is covered with the coating film 9, the heat transfer plate is formed. 2 or corona generation at the bonding surface edge Ej of the heat sink 10 and the insulating substrate 3 can be realized.

実施の形態3.
本実施の形態3にかかる半導体装置は、上述した実施の形態1および2を組み合わせたものに相当し、半導体素子と絶縁基板の両方に被覆膜を形成したものである。図14〜図16は本発明の実施の形態3にかかる半導体装置の構成を説明するためのもので、図14は半導体装置の断面模式図、図15は変形例にかかる半導体装置の断面模式図、図16は別の変形例に半導体装置の断面模式図である。
Embodiment 3 FIG.
The semiconductor device according to the third embodiment corresponds to a combination of the first and second embodiments described above, and is formed by forming a coating film on both the semiconductor element and the insulating substrate. 14 to 16 are diagrams for explaining the configuration of the semiconductor device according to the third embodiment of the present invention. FIG. 14 is a schematic sectional view of the semiconductor device. FIG. 15 is a schematic sectional view of the semiconductor device according to the modification. FIG. 16 is a schematic cross-sectional view of a semiconductor device as another modification.

本発明の実施の形態3にかかる半導体装置は、図14に示すように、放熱板10に対して絶縁基板3を介して一方の面が接合された伝熱板2の回路面2aに、半導体素子1を実装し、伝熱板2の回路面2a、および半導体素子1の主面1aにリードフレーム7等の配線部材を接合し、少なくとも回路面2a側を封止体4で封止している。さらに、半導体素子1と封止体4との間、および絶縁基板3と封止体4との間には、それぞれ角状部1c、3cを覆う厚みの方が、他の部分を覆う厚みよりも厚くなるように封止体4よりも弾性率が低い材料で被覆膜9が形成されているものである。   As shown in FIG. 14, the semiconductor device according to the third embodiment of the present invention includes a semiconductor on the circuit surface 2 a of the heat transfer plate 2 that is bonded to the heat radiating plate 10 via the insulating substrate 3. The element 1 is mounted, a wiring member such as a lead frame 7 is bonded to the circuit surface 2a of the heat transfer plate 2 and the main surface 1a of the semiconductor element 1, and at least the circuit surface 2a side is sealed with the sealing body 4. Yes. Furthermore, between the semiconductor element 1 and the sealing body 4 and between the insulating substrate 3 and the sealing body 4, the thickness covering the rectangular portions 1 c and 3 c is larger than the thickness covering the other portions. The coating film 9 is formed of a material having a lower elastic modulus than the sealing body 4 so as to be thicker.

伝熱板2と半導体素子1とは、半導体素子1から生じる熱を拡散させ、かつ半導体素子の裏面とのコンタクトを実現するため、はんだ8を用いて接合されている。半導体素子1内を流れる電流が所望の経路外に流れ出ることを防ぐため、伝熱板2の回路面2aの反対側には、伝熱板2よりも面積が大きな絶縁基板3が加圧プレスなどにより接着されている。また、伝熱板2に伝わった熱を半導体装置外部に逃すため、絶縁基板3の伝熱板2が接着された面の反対側には、加圧プレスなどにより放熱板10が接着されている。   The heat transfer plate 2 and the semiconductor element 1 are joined using solder 8 in order to diffuse the heat generated from the semiconductor element 1 and realize contact with the back surface of the semiconductor element. In order to prevent a current flowing in the semiconductor element 1 from flowing out of a desired path, an insulating substrate 3 having a larger area than the heat transfer plate 2 is pressed on the opposite side of the circuit surface 2a of the heat transfer plate 2 or the like. It is adhered by. Further, in order to release the heat transferred to the heat transfer plate 2 to the outside of the semiconductor device, the heat radiating plate 10 is bonded to the opposite side of the surface of the insulating substrate 3 to which the heat transfer plate 2 is bonded by a pressure press or the like. .

一方、半導体装置に電圧を印加し電流を流すため、リードフレーム7は伝熱板2の回路面2aと半導体素子1の主面1aに形成された電極5にはんだ8を介して電気的にそれぞれ接続される。また、半導体素子1上の電極5の端部には絶縁保護用に絶縁保護膜6が形成されている。耐圧特性を向上するために絶縁保護膜6を有することが好ましいが、無くても良い。そして、半導体素子1および絶縁基板3の封止体4に対して露出する部分は、本発明の実施の形態3の特徴である被覆膜9で被覆されている。   On the other hand, in order to apply a voltage to the semiconductor device and cause a current to flow, the lead frame 7 is electrically connected to the circuit surface 2 a of the heat transfer plate 2 and the electrode 5 formed on the main surface 1 a of the semiconductor element 1 via the solder 8. Connected. An insulating protective film 6 is formed at the end of the electrode 5 on the semiconductor element 1 for insulating protection. In order to improve the breakdown voltage characteristics, it is preferable to have the insulating protective film 6, but it may be omitted. And the part exposed with respect to the sealing body 4 of the semiconductor element 1 and the insulated substrate 3 is coat | covered with the coating film 9 which is the characteristics of Embodiment 3 of this invention.

封止体4を構成する封止樹脂材は、エポキシ樹脂などの硬い樹脂であり、これで封止することにより、内容物の応力と歪みを分散、低減する効果がある。また、被覆膜9が被覆された箇所は、半導体素子1の角状部1c、絶縁基板3の角状部3cおよび伝熱板2との接着面端Ejを被覆していればよく、半導体素子1および絶縁基板3が回路体において封止体4に封止されている部分全てを被覆する必要はない。また、本実施の形態3においても、上述した実施の形態1あるいは2で説明したのと同様に、図15に示すように、半導体装置内に放熱板10を有しない構造に適用してもよい。さらに、図16に示すように、封止体4で封止される面全面を覆うように被覆膜9を形成してもよい。   The sealing resin material which comprises the sealing body 4 is hard resin, such as an epoxy resin, and there exists an effect which disperse | distributes and reduces the stress and distortion of the content by sealing with this. Further, the portion coated with the coating film 9 only needs to cover the corner portion 1c of the semiconductor element 1, the corner portion 3c of the insulating substrate 3, and the bonding surface end Ej with the heat transfer plate 2. It is not necessary for the element 1 and the insulating substrate 3 to cover all portions of the circuit body that are sealed with the sealing body 4. Also, in the third embodiment, as described in the first or second embodiment, as shown in FIG. 15, the semiconductor device may be applied to a structure that does not have the heat sink 10. . Furthermore, as shown in FIG. 16, a coating film 9 may be formed so as to cover the entire surface sealed with the sealing body 4.

その際、半導体素子1、および絶縁基板3を被覆する被覆膜9は、実施の形態1および実施の形態2でそれぞれ説明したように、封止体4で封止されている部分のうち、角状部1c、角状部3cおよび伝熱板2との接着面端Ej部分を覆うように形成されていればよい。そして、実施の形態1の図2および実施の形態2の図13で説明したように、角状部1cを覆う部分の膜厚D1が角状部1c以外の部分を覆うように形成された膜厚d1よりも厚く、角状部3cを覆う部分の膜厚D2が、角状部3c以外の部分を覆うように形成された膜厚d2よりも厚くなっている。この条件を満足していれば、実施の形態1あるいは実施の形態2で説明したように角状部3cにおける膜形状は問わない。また、角状部1c、角状部3cおよび接着面端Ej以外の部分については、実施の形態1あるいは2で説明したように、ある面における被覆膜9が形成された範囲の両端よりも中央に近い領域の膜厚を5μm以下とすることが好ましい。   At that time, the coating film 9 covering the semiconductor element 1 and the insulating substrate 3 is, as described in the first embodiment and the second embodiment, among the portions sealed by the sealing body 4, What is necessary is just to be formed so that the adhesion surface edge Ej part with the corner | angular part 1c, the corner | angular part 3c, and the heat exchanger plate 2 may be covered. Then, as described in FIG. 2 of the first embodiment and FIG. 13 of the second embodiment, the film formed so that the film thickness D1 of the portion covering the corner portion 1c covers the portion other than the corner portion 1c. The film thickness D2 that is thicker than the thickness d1 and covers the corners 3c is thicker than the film thickness d2 that is formed so as to cover parts other than the corners 3c. As long as this condition is satisfied, the film shape in the corner portion 3c is not limited as described in the first embodiment or the second embodiment. Further, as described in the first or second embodiment, the portions other than the corner portion 1c, the corner portion 3c, and the bonding surface end Ej are more than both ends of the range where the coating film 9 is formed on a certain surface. The film thickness in the region near the center is preferably 5 μm or less.

このように、半導体素子1の角状部1cと絶縁基板3の角状部3cが被覆膜9で覆われることにより、実施の形態1および実施の形態2で説明した効果をともに発揮することができる。さらに、応力と歪みが集中する半導体素子1と絶縁基板3の両方の角状部1c、3cにおける剥離欠陥とクラックの抑制および伝熱板2または放熱板10と絶縁基板3の接着面端Ejにおけるコロナ発生の抑制を抑制することにより半導体装置全体の絶縁耐性向上が可能となり、半導体装置のさらなる長寿命化と高信頼性を得ることができる。   As described above, when the rectangular portion 1 c of the semiconductor element 1 and the rectangular portion 3 c of the insulating substrate 3 are covered with the coating film 9, the effects described in the first and second embodiments are exhibited. Can do. Further, peeling defects and cracks are suppressed in the corners 1 c and 3 c of both the semiconductor element 1 and the insulating substrate 3 where stress and strain are concentrated, and the heat transfer plate 2 or the heat sink 10 and the bonding surface end Ej of the insulating substrate 3 are suppressed. By suppressing the suppression of corona generation, the insulation resistance of the entire semiconductor device can be improved, and the life of the semiconductor device can be further extended and high reliability can be obtained.

以上のように、本発明の実施の形態3にかかる半導体装置によれば、主面1aに配線部材(リードフレーム7)を接合するための電極5が形成された板状の半導体素子1と、一方の面(回路面2a)が半導体素子1の裏面に接合された伝熱板2と、外周に沿って余白が形成されるように、伝熱板2の他方の面が接着された絶縁基板3と、半導体素子1の主面1aを包むように、絶縁基板3の側部3sから伝熱板2が接着された面側の部材を封止する封止体4と、半導体素子1および絶縁基板3を被覆対象とするとともに、被覆対象と封止体4との間に介在し、封止体4を構成する材料よりも弾性率が低い材料で形成された被覆膜9と、を備え、被覆膜9は、それぞれ被覆対象に形成された(主面1aと側部1s、平面部3fと側部3sとの角である)角状部1c、3cを覆う厚みD1、D2が、被覆対象の他の領域を覆う厚みd1、d2よりも厚くなるように構成した。そのため、封止体4の効果を損なうことなく、被覆対象と封止体4の間の密着強度の向上と、被覆対象の角状部1c、3cに集中する応力と歪みの緩和により、剥離欠陥とクラックの抑制、あるいは、半導体素子1の裏面電極と同電位の伝熱板2と放熱板10の間の絶縁耐性向上を実現することができる。   As described above, according to the semiconductor device according to the third embodiment of the present invention, the plate-like semiconductor element 1 in which the electrode 5 for joining the wiring member (lead frame 7) is formed on the main surface 1a, Insulating substrate in which one surface (circuit surface 2a) is bonded to the back surface of the semiconductor element 1 and the other surface of the heat transfer plate 2 is bonded so that a margin is formed along the outer periphery. 3, a sealing body 4 for sealing a member on the surface side to which the heat transfer plate 2 is bonded from the side portion 3 s of the insulating substrate 3 so as to wrap the main surface 1 a of the semiconductor element 1, the semiconductor element 1, and the insulating substrate 3 is a coating target, and is provided between the coating target and the sealing body 4, and a coating film 9 formed of a material having a lower elastic modulus than the material constituting the sealing body 4, The coating film 9 was formed on the object to be coated (the corners between the main surface 1a and the side portion 1s, the plane portion 3f and the side portion 3s). There) angular portion 1c, thickness D1, D2 covering the 3c, configured to be thicker than the thickness d1, d2 covering the other areas to be coated. Therefore, a peeling defect is achieved by improving the adhesion strength between the covering target and the sealing body 4 and reducing stress and strain concentrated on the rectangular portions 1c and 3c to be covered without impairing the effect of the sealing body 4. In addition, it is possible to suppress cracking or to improve the insulation resistance between the heat transfer plate 2 and the heat dissipation plate 10 having the same potential as that of the back electrode of the semiconductor element 1.

以上のように、本発明の実施の形態1〜3にかかる半導体装置によれば、主面1aに配線部材(リードフレーム7)を接合するための電極5が形成された板状の半導体素子1と、一方の面(回路面2a)が半導体素子1の裏面に接合された伝熱板2と、外周に沿って余白が形成されるように、伝熱板2の他方の面が接着された絶縁基板3と、半導体素子1の主面1aを包むように、絶縁基板3の側部3sから伝熱板2が接着された面側の部材を封止する封止体4と、半導体素子1および絶縁基板3の少なくともいずれかを被覆対象とするとともに、被覆対象と封止体4との間に介在し、封止体4を構成する材料よりも弾性率が低い材料で形成された被覆膜9と、を備え、被覆膜9は、被覆対象に形成された(主面1aと側部1s、平面部3fと側部3sとの角である)角状部1c、3cを覆う厚みD1、D2が、被覆対象の他の領域を覆う厚みd1、d2よりも厚くなるように構成した。そのため、封止体4の効果を損なうことなく、被覆対象と封止体4の間の密着強度の向上と、被覆対象の角状部1c、3cに集中する応力と歪みの緩和により、剥離欠陥とクラックを抑制し、半導体素子1の裏面電極と同電位の伝熱板2と放熱板10の間の絶縁耐性向上を実現することができる。   As described above, according to the semiconductor device according to the first to third embodiments of the present invention, the plate-like semiconductor element 1 in which the electrode 5 for joining the wiring member (lead frame 7) is formed on the main surface 1a. And the other surface of the heat transfer plate 2 is bonded so that a margin is formed along the outer periphery, with one surface (circuit surface 2a) bonded to the back surface of the semiconductor element 1. A sealing body 4 for sealing a member on the surface side to which the heat transfer plate 2 is bonded from the side portion 3s of the insulating substrate 3 so as to wrap the insulating substrate 3 and the main surface 1a of the semiconductor element 1; A coating film that is made of a material that has at least one of the insulating substrate 3 as a coating target and is interposed between the coating target and the sealing body 4 and has a lower elastic modulus than the material constituting the sealing body 4 9 and the coating film 9 is formed on the object to be coated (the main surface 1a, the side portion 1s, the plane portion 3f). The thickness D1, D2 of the side 3s is the angle between) angular portion 1c, and 3c cover is configured to be thicker than the thickness d1, d2 covering the other areas to be coated. Therefore, a peeling defect is achieved by improving the adhesion strength between the covering target and the sealing body 4 and reducing stress and strain concentrated on the rectangular portions 1c and 3c to be covered without impairing the effect of the sealing body 4. It is possible to suppress the cracks and improve the insulation resistance between the heat transfer plate 2 and the heat radiating plate 10 having the same potential as that of the back electrode of the semiconductor element 1.

また、半導体素子1に、ワイドバンドギャップ半導体材料を用いると、上述したように従来の半導体材料と比べて、動作温度が高くなり、より高い耐電圧性が要求される。そのため、本発明による効果がさらに顕著に顕れる。   In addition, when a wide band gap semiconductor material is used for the semiconductor element 1, as described above, the operating temperature is higher than that of the conventional semiconductor material, and higher voltage resistance is required. For this reason, the effects of the present invention are more prominent.

1:半導体素子、 1a:主面、 1c:角状部、 1s:側部、 2:伝熱板、 2a:回路面、 3:絶縁基板、 3s:角状部、 3f:平面部、 3s:側部、 4:封止体、 4f:フィラー、 5:素子電極、 6:絶縁保護膜、 7:リードフレーム、 8:はんだ、 9:被覆膜、 10:放熱板、
D1:半導体素子の角状部を覆う被覆膜の厚み、 d2:半導体素子の角状部以外の箇所を覆う被覆膜の厚み、 D2:絶縁基板の角状部を覆う被覆膜の厚み、 d2:絶縁基板の角状部および伝熱板と絶縁基板の接着面端以外の箇所を覆う被覆膜の厚み、 Le:電気力線、 Ej:接着面の端部(接着面端)、 Pj:伝熱板または放熱板と絶縁基板との接着面。
DESCRIPTION OF SYMBOLS 1: Semiconductor element, 1a: Main surface, 1c: Square part, 1s: Side part, 2: Heat transfer plate, 2a: Circuit surface, 3: Insulating substrate, 3s: Square part, 3f: Plane part, 3s: Side part, 4: Sealed body, 4f: Filler, 5: Element electrode, 6: Insulating protective film, 7: Lead frame, 8: Solder, 9: Coating film, 10: Heat sink,
D1: thickness of the coating film covering the corner portion of the semiconductor element, d2: thickness of the coating film covering a portion other than the corner portion of the semiconductor element, D2: thickness of the coating film covering the corner portion of the insulating substrate D2: the thickness of the coating film covering the corners of the insulating substrate and the portions other than the bonding surface edge of the heat transfer plate and the insulating substrate, Le: lines of electric force, Ej: the edge of the bonding surface (bonding surface edge), Pj: Adhesive surface between the heat transfer plate or the heat radiating plate and the insulating substrate.

Claims (12)

主面に配線部材を接合するための電極が形成された板状の半導体素子と、
一方の面が前記半導体素子の裏面に接合された伝熱板と、
外周に沿って余白が形成されるように、前記伝熱板の他方の面が接着された絶縁基板と、
前記半導体素子の主面を包むように、前記絶縁基板の側部から前記伝熱板が接着された面側の部材を封止する封止体と、
前記半導体素子および前記絶縁基板の少なくともいずれかを被覆対象とするとともに、前記被覆対象と前記封止体との間に介在し、前記封止体を構成する材料よりも弾性率が低い材料で形成された被覆膜と、を備え、
前記被覆膜は、前記被覆対象に形成された角状部を覆う厚みが、前記被覆対象の他の領域を覆う厚みよりも厚いことを特徴とする半導体装置。
A plate-like semiconductor element in which an electrode for joining a wiring member to the main surface is formed;
A heat transfer plate having one surface bonded to the back surface of the semiconductor element;
An insulating substrate to which the other surface of the heat transfer plate is bonded so that a margin is formed along the outer periphery; and
A sealing body for sealing a member on a surface side to which the heat transfer plate is bonded from a side portion of the insulating substrate so as to wrap the main surface of the semiconductor element;
At least one of the semiconductor element and the insulating substrate is to be covered, and is formed of a material having an elastic modulus lower than that of the material constituting the sealing body, interposed between the covering target and the sealing body. A coated film,
The semiconductor device according to claim 1, wherein the coating film has a thickness that covers a corner portion formed on the coating target, and is thicker than a thickness that covers another region of the coating target.
前記絶縁基板と前記伝熱板の接合面の端部が、前記被覆膜で覆われていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein an end portion of a joint surface between the insulating substrate and the heat transfer plate is covered with the coating film. 前記被覆膜は、前記角状部を覆う部分から端部までの中間部分が5μm以下の厚みになるように形成されていることを特徴とする請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the coating film is formed so that an intermediate portion from a portion covering the square portion to an end portion has a thickness of 5 μm or less. 前記被覆膜は、ポリイミド、ポリアミドおよびシリコーンのいずれかを主体とする樹脂で形成されていることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the coating film is made of a resin mainly composed of any one of polyimide, polyamide, and silicone. 前記被覆膜は、8GPa以下の弾性率を有することを特徴とする請求項1から4のいずれか1項に記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the coating film has an elastic modulus of 8 GPa or less. 前記被覆膜は、30%以上の破断伸び率を有することを特徴とする請求項1から5のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the coating film has a breaking elongation of 30% or more. 前記半導体素子は、ワイドバンドギャップ半導体材料で形成されていることを特徴とする請求項1から6のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is made of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、およびダイヤモンドのうちのいずれかであることを特徴とする請求項7に記載の半導体装置。   The semiconductor device according to claim 7, wherein the wide band gap semiconductor material is any one of silicon carbide, a gallium nitride-based material, and diamond. 主面に配線部材を接合するための電極が形成された板状の半導体素子の裏面を、伝熱板の一方の面に接合する工程と、
絶縁基板の一方の面に、前記伝熱板の他方の面を接着する工程と、
前記半導体素子の主面を包むように、前記絶縁基板の側部から前記伝熱板が接着された面側の部材を封止する封止体を形成する工程と、
前記半導体素子および前記絶縁基板の少なくともいずれかを被覆対象とするとともに、前記被覆対象に形成された角状部において、前記被覆対象と前記封止体との間に介在させるように、前記封止体を構成する材料よりも弾性率が低い樹脂を用いて被覆膜を形成する工程と、を含み、
前記被覆膜を形成する工程では、前記樹脂が流動性を失う前から、前記角状部に電気力線が集中するように電場をかけることを特徴とする半導体装置の製造方法。
Bonding the back surface of the plate-like semiconductor element on which the electrode for bonding the wiring member is formed on the main surface to one surface of the heat transfer plate;
Adhering the other surface of the heat transfer plate to one surface of the insulating substrate;
Forming a sealing body for sealing a member on a surface side to which the heat transfer plate is bonded from a side portion of the insulating substrate so as to wrap the main surface of the semiconductor element;
The sealing is performed so that at least one of the semiconductor element and the insulating substrate is an object to be covered, and is interposed between the object to be covered and the sealing body in a square portion formed on the object to be covered. Forming a coating film using a resin having a lower elastic modulus than the material constituting the body,
In the step of forming the coating film, a method of manufacturing a semiconductor device is characterized in that an electric field is applied so that lines of electric force are concentrated on the square portions before the resin loses fluidity.
前記電場をかけるための印加電圧が4kV以上、150kV以下の範囲であることを特徴とする請求項9に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 9, wherein an applied voltage for applying the electric field is in a range of 4 kV to 150 kV. 前記被覆膜を形成する工程が、減圧雰囲気で行われることを特徴とする請求項9または10に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 9, wherein the step of forming the coating film is performed in a reduced pressure atmosphere. 前記減圧雰囲気は、0.1Pa以上、100Pa以下の範囲であることを特徴とする請求項11に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 11, wherein the reduced-pressure atmosphere is in a range of 0.1 Pa to 100 Pa.
JP2013254683A 2013-12-10 2013-12-10 Semiconductor device and manufacturing method thereof Expired - Fee Related JP6150718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254683A JP6150718B2 (en) 2013-12-10 2013-12-10 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254683A JP6150718B2 (en) 2013-12-10 2013-12-10 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015115383A true JP2015115383A (en) 2015-06-22
JP6150718B2 JP6150718B2 (en) 2017-06-21

Family

ID=53528944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254683A Expired - Fee Related JP6150718B2 (en) 2013-12-10 2013-12-10 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6150718B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924889A (en) * 2016-03-31 2018-04-17 富士电机株式会社 The manufacture method of semiconductor device and semiconductor device
CN109585385A (en) * 2017-09-29 2019-04-05 三菱电机株式会社 Semiconductor device
WO2019171666A1 (en) * 2018-03-06 2019-09-12 三菱電機株式会社 Semiconductor device, electric power converter and method for producing semiconductor device
JP7411748B2 (en) 2018-07-20 2024-01-11 ローム株式会社 semiconductor equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821849A (en) * 1981-07-31 1983-02-08 Nec Home Electronics Ltd Resin-sealed semiconductor device
JPH02105446A (en) * 1988-10-13 1990-04-18 Nec Corp Hybrid integrated circuit
US5536970A (en) * 1992-09-29 1996-07-16 Kabushiki Kaisha Toshiba Resin-encapsulated semiconductor device
JP2006179538A (en) * 2004-12-21 2006-07-06 Hitachi Ltd Semiconductor power module
JP2012164796A (en) * 2011-02-07 2012-08-30 Mitsubishi Electric Corp Power semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821849A (en) * 1981-07-31 1983-02-08 Nec Home Electronics Ltd Resin-sealed semiconductor device
JPH02105446A (en) * 1988-10-13 1990-04-18 Nec Corp Hybrid integrated circuit
US5536970A (en) * 1992-09-29 1996-07-16 Kabushiki Kaisha Toshiba Resin-encapsulated semiconductor device
JP2006179538A (en) * 2004-12-21 2006-07-06 Hitachi Ltd Semiconductor power module
JP2012164796A (en) * 2011-02-07 2012-08-30 Mitsubishi Electric Corp Power semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924889A (en) * 2016-03-31 2018-04-17 富士电机株式会社 The manufacture method of semiconductor device and semiconductor device
JPWO2017169857A1 (en) * 2016-03-31 2018-07-26 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US10199305B2 (en) 2016-03-31 2019-02-05 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN107924889B (en) * 2016-03-31 2021-02-12 富士电机株式会社 Semiconductor device and method for manufacturing semiconductor device
CN109585385A (en) * 2017-09-29 2019-04-05 三菱电机株式会社 Semiconductor device
CN109585385B (en) * 2017-09-29 2022-12-09 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
WO2019171666A1 (en) * 2018-03-06 2019-09-12 三菱電機株式会社 Semiconductor device, electric power converter and method for producing semiconductor device
JP6639740B1 (en) * 2018-03-06 2020-02-05 三菱電機株式会社 Semiconductor device, power conversion device, and method of manufacturing semiconductor device
JP7411748B2 (en) 2018-07-20 2024-01-11 ローム株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP6150718B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP5804203B2 (en) Semiconductor device and manufacturing method thereof
WO2018181236A1 (en) Semiconductor device, and method for manufacturing same
JP2016012741A (en) Semiconductor device and formation method of the same
JP6150718B2 (en) Semiconductor device and manufacturing method thereof
JP2016018866A (en) Power module
JP2011228336A (en) Semiconductor device and method for manufacturing the same
WO2015166737A1 (en) Semiconductor device
JP5759744B2 (en) Power module and manufacturing method thereof
JP6125089B2 (en) Power semiconductor module and power unit
US20160268154A1 (en) Insulating substrate and semiconductor device
WO2020136810A1 (en) Semiconductor device, manufacturing method for semiconductor device, and power conversion equipment
JP5921723B2 (en) Semiconductor device
CN114078790A (en) Power semiconductor module device and method for manufacturing the same
JP7175095B2 (en) semiconductor equipment
JP2008078555A (en) Semiconductor device and method of manufacturing same
JP6101507B2 (en) Manufacturing method of semiconductor device
US20160148865A1 (en) Electronic Circuit Board, Semiconductor Device Using the Same and Manufacturing Method for the Same
JP7203214B2 (en) Power semiconductor device with floating mounting
JP2014116333A (en) Semiconductor device
JP5826443B1 (en) Semiconductor device and manufacturing method thereof
JP6317178B2 (en) Circuit board and electronic device
JP2014107519A (en) Semiconductor device and manufacturing method of the same
JP2015162645A (en) Semiconductor device and manufacturing method of the same
JP2017063168A (en) Circuit board and electronic apparatus
JP2015090884A (en) Power semiconductor device, power semiconductor module, and manufacturing method of power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R151 Written notification of patent or utility model registration

Ref document number: 6150718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees