JP2005129855A - High frequency module - Google Patents

High frequency module Download PDF

Info

Publication number
JP2005129855A
JP2005129855A JP2003366258A JP2003366258A JP2005129855A JP 2005129855 A JP2005129855 A JP 2005129855A JP 2003366258 A JP2003366258 A JP 2003366258A JP 2003366258 A JP2003366258 A JP 2003366258A JP 2005129855 A JP2005129855 A JP 2005129855A
Authority
JP
Japan
Prior art keywords
frequency module
electrode
saw chip
module substrate
bare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003366258A
Other languages
Japanese (ja)
Inventor
Kenji Kitazawa
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003366258A priority Critical patent/JP2005129855A/en
Priority to TW093130185A priority patent/TW200520201A/en
Priority to KR1020040080097A priority patent/KR20050033858A/en
Priority to US10/962,170 priority patent/US7289008B2/en
Priority to CNB2004100849819A priority patent/CN100525100C/en
Priority to DE102004049984A priority patent/DE102004049984A1/en
Publication of JP2005129855A publication Critical patent/JP2005129855A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a highly reliable high-frequency module capable of reducing a packaging area and a height by packaging a bare SAW chip on a module substrate together with other electronic components. <P>SOLUTION: Respective electrodes of the bare SAW chip having an excitation electrode, a grounded electrode surrounding the excitation electrode, and input/output electrodes formed on a principal plane, are opposed to electrodes formed on the surface of the module substrate. The grounded electrode and the input/output electrodes of the bare SAW chip are connected with the electrodes on the module substrate with a conductive adhesive so as to form a sealed space on a SAW propagation part of the excitation electrode. In addition, other electronic components are mounted on the surface of the module substrate, and/or a passive circuit is formed on the substrate surface, thereby providing the high-frequency module. At least, the bare SAW chip is hermetically sealed with a thermosetting resin with a flexural modulus of 4-8 GPa at ordinary temperatures and 0.2-0.5 GPa at 220°C and with a glass transfer temperature of 100-150°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、携帯電話、移動体通信、無線通信等に適用される小型化、低背化が可能な高周波モジュールに関する。   The present invention relates to a high-frequency module that can be reduced in size and height and applied to a mobile phone, mobile communication, wireless communication, and the like.

携帯電話、無線LANの市場は右肩上がりの成長が想定されており、第3世代の携帯電話の生産数は、急激に増加している。携帯電話の機能は第3世代に進歩するに従って、カメラ内蔵、テレビの受信、他の無線通信(ブルーツース、赤外線通信、無線LAN)との併用化も進んでおり、高周波回路の占有面積は年々減少している。その為、携帯電話の部品は小形軽量化、複合化がめざましく、個々の性能をアップしつつ、部品点数の削減、低消費電力化への要求に対応する必要がある。   The mobile phone and wireless LAN markets are expected to grow rapidly, and the number of third-generation mobile phones produced is increasing rapidly. As mobile phone functions advance to the third generation, built-in cameras, TV reception, and other wireless communications (Bluetooth, infrared communications, wireless LAN) are also being used together, and the area occupied by high-frequency circuits decreases year by year. doing. For this reason, mobile phone parts are rapidly becoming smaller and lighter, and it is necessary to meet the demands for reducing the number of parts and reducing power consumption while improving individual performance.

このような要求を実現するため、チップセットの集積化、性能向上が進んでおり、同様に周辺の高周波部品も集積化した高周波モジュールが提案されている。   In order to realize such requirements, integration of chipsets and improvement in performance are advancing, and high frequency modules in which peripheral high frequency components are also integrated have been proposed.

携帯電話等の移動体通信機器に用いられる高周波部品のうち、弾性表面波(SAW)フィルタ等の場合は、SAWチップが伝搬する励振電極に水分、塵埃等の異物が付着しないようにかつSAWチップの伝搬を妨げないように中空状態で気密封止する必要がある。   Among high-frequency components used in mobile communication devices such as mobile phones, in the case of a surface acoustic wave (SAW) filter or the like, the SAW chip prevents foreign matter such as moisture and dust from adhering to the excitation electrode through which the SAW chip propagates. It is necessary to hermetically seal in a hollow state so as not to hinder the propagation of.

(パッケージ)
そのため、従来は図5に示すように、所定のベアSAWチップ31を励振電極32が上面になるようにパッケージ33内に収納し、ワイヤ34によって、パッケージ33の配線層35と接続し、蓋体36を接合して気密に封止した構造が提案されている(特許文献1参照)。しかしながら、ワイヤ34を用いて接続するとワイヤ34によって気密空間を高く形成する必要があるために、パッケージの低背化には限界があった。
(package)
Therefore, conventionally, as shown in FIG. 5, a predetermined bare SAW chip 31 is housed in a package 33 so that the excitation electrode 32 is on the upper surface, and is connected to a wiring layer 35 of the package 33 by a wire 34, and a lid body. A structure in which 36 is joined and hermetically sealed has been proposed (see Patent Document 1). However, if the wire 34 is used for connection, it is necessary to form a high hermetic space with the wire 34, so that there is a limit to reducing the package height.

また、図6のように、ベアSAWチップ31の励振電極32を下面になるように配置し、半田37によってパッケージ33表面の配線層35と接続する、いわゆるフェースダウンボンディングすることも提案されている(特許文献2参照)。かかる構造は、図5よりも低背化を図ることはできるが、蓋体36を用いる以上、蓋体36の厚みを解消できなかった。しかも、蓋体36を用いる場合、蓋体36のコストや高気密な接合工程が不可欠になるためにコストが高くなるなどの問題があった。   In addition, as shown in FIG. 6, so-called face-down bonding is also proposed in which the excitation electrode 32 of the bare SAW chip 31 is disposed on the lower surface and connected to the wiring layer 35 on the surface of the package 33 with solder 37. (See Patent Document 2). Such a structure can achieve a lower profile than that of FIG. 5, but as long as the lid body 36 is used, the thickness of the lid body 36 cannot be eliminated. In addition, when the lid body 36 is used, there is a problem that the cost of the lid body 36 and a high airtight joining process are indispensable, resulting in an increase in cost.

これらのパッケージ構造に対して、図7に示すように、パッケージ化することなく、ベアSAWチップ31の励振電極32が下面になるように配置して基板37表面の配線層38、38に直接実装した弾性表面波装置が提案されている(特許文献3参照)。かかる構造によれば、励振電極32および入出力電極40の周囲に接地電極41を配置し、半田42によって基板表面の配線層38にそれぞれ接続することによって、励振電極接続部、入出力電極接続部を基板37表面とベアSAWチップ31および接地電極41接続部で囲まれた気密空間43内に封止した構造からなる。また、さらには、図7に示すように、基板表面に実装されたベアSAWチップを保護するために封止樹脂39で封止した構造も提案されている(特許文献4参照)。
特開2002−118487 特開2002−76832 特開2002−196400 特開2003−168942
With respect to these package structures, as shown in FIG. 7, without being packaged, the excitation electrodes 32 of the bare SAW chip 31 are arranged on the lower surface and directly mounted on the wiring layers 38 and 38 on the surface of the substrate 37. A surface acoustic wave device has been proposed (see Patent Document 3). According to this structure, the ground electrode 41 is disposed around the excitation electrode 32 and the input / output electrode 40 and is connected to the wiring layer 38 on the surface of the substrate by the solder 42, whereby the excitation electrode connection portion and the input / output electrode connection portion. Is sealed in an airtight space 43 surrounded by the surface of the substrate 37, the bare SAW chip 31 and the ground electrode 41 connecting portion. Furthermore, as shown in FIG. 7, a structure in which a bare SAW chip mounted on the substrate surface is sealed with a sealing resin 39 has been proposed (see Patent Document 4).
JP 2002-118487 A JP 2002-76832 A JP2002-196400 JP 2003-168942 A

しかしながら、高周波モジュールのように、1つの誘電体基板37表面に、ベアSAWチップ31とともに、コンデンサなどの電子部品や、半導体素子などの他の部品を半田実装し、ベアSAWチップ31を図7に示したような実装構造によって形成した場合、高周波モジュールをマザーボードに半田などによって2次実装したり、電子部品の半田実装時に、ベアSAWチップ31と高周波モジュール基板37とを接合している入出力電極40接続部、接地電極41接続部の半田42が再溶融し、溶融した半田42が、矢印に示すように、気密空間43側に移動する結果、ベアSAWチップ31における気密空間43の気密破壊、入出力電極40と接地電極41の接続部が半田によって短絡するなどの問題があった。   However, like a high-frequency module, electronic components such as capacitors and other components such as semiconductor elements are solder-mounted together with the bare SAW chip 31 on the surface of one dielectric substrate 37, and the bare SAW chip 31 is shown in FIG. When formed by the mounting structure as shown, the high-frequency module is secondarily mounted on the mother board by solder or the like, and the input / output electrodes that join the bare SAW chip 31 and the high-frequency module substrate 37 when the electronic component is solder-mounted. 40, the solder 42 of the ground electrode 41 connection portion is remelted, and the melted solder 42 moves to the airtight space 43 side as indicated by an arrow. As a result, the airtight destruction of the airtight space 43 in the bare SAW chip 31 is performed. There has been a problem that the connection between the input / output electrode 40 and the ground electrode 41 is short-circuited by solder.

この現象は、入出力電極接続部、接地電極接続部の半田42が再溶融した場合、その溶融膨張圧力が、ベアSAWチップ32の内側に作用するため、半田42が内側に流れ込み、短絡、断線に至るのである。   This phenomenon is caused by the fact that when the solder 42 of the input / output electrode connection portion and the ground electrode connection portion is remelted, the melt expansion pressure acts on the inner side of the bare SAW chip 32, so that the solder 42 flows into the inner side, causing a short circuit or disconnection. It leads to.

対策手段として、入出力電極接続部、接地電極接続部の半田42を再溶融しない融点の高い材質とするか、溶融しても気密空間43側に流れ込まないように、入出力電極接続部と、接地電極接続部との間にダム材を設けることも考えられるが、このベアSAWチップ32を実装する半田42のみを変更したり、ダム材などの異種材料を付加することによって、製造工程の増加とコストの上昇を招くなどの問題があった。   As a countermeasure, the input / output electrode connecting portion and the ground electrode connecting portion are made of a material having a high melting point that does not remelt, or the input / output electrode connecting portion so as not to flow into the airtight space 43 even when melted, It is conceivable to provide a dam material between the ground electrode connection portion, but the manufacturing process can be increased by changing only the solder 42 for mounting the bare SAW chip 32 or adding a different material such as a dam material. There were problems such as incurring an increase in costs.

従って、本発明の目的は、上記の点に鑑み、ベアSAWチップを他の電子部品とともにモジュール基板に実装し、実装面積の縮小や低背化を実現可能とした高信頼性の高周波モジュールを提供することにある。   Therefore, in view of the above points, an object of the present invention is to provide a high-reliability high-frequency module in which a bare SAW chip is mounted on a module substrate together with other electronic components, and the mounting area can be reduced and the height can be reduced. There is to do.

本発明の高周波モジュールは、励振電極と、該励振電極を取り囲む接地電極と、入出力電極とが主面に形成されたベアSAWチップの前記各電極をモジュール基板表面に形成された電極と対面させ、前記励振電極のSAW伝搬部分に密閉空間が形成されるように、前記ベアSAWチップの接地電極および入出力電極と、モジュール基板側の前記電極とを導電性接着剤によって接続してなるとともに、前記モジュール基板表面に他の電子部品を搭載および/または基板表面に受動回路を形成してなる高周波モジュールであって、少なくとも前記ベアSAWチップを曲げ弾性率が常温で4〜8GPa、220℃で0.2〜0.5GPa、ガラス転移温度が100〜150℃の熱硬化性樹脂で気密封止したことを特徴とするものである。   The high-frequency module of the present invention is configured such that each electrode of a bare SAW chip having an excitation electrode, a ground electrode surrounding the excitation electrode, and an input / output electrode on the main surface faces the electrode formed on the surface of the module substrate. The ground electrode and input / output electrodes of the bare SAW chip and the electrode on the module substrate side are connected by a conductive adhesive so that a sealed space is formed in the SAW propagation portion of the excitation electrode, A high-frequency module in which other electronic components are mounted on the surface of the module substrate and / or a passive circuit is formed on the surface of the substrate, wherein at least the bare SAW chip has a bending elastic modulus of 4 to 8 GPa at room temperature and 0 at 220 ° C. It is characterized by being hermetically sealed with a thermosetting resin having a glass transition temperature of 100 to 150 ° C. of 2 to 0.5 GPa.

また、上記高周波モジュールにおいて、前記他の電子部品は、チップコンデンサ、インダクタ、抵抗等の表面実装部品、パワーアンプ、スイッチ、パワーコントロール、検波、電源コントロール等の半導体素子の群から選ばれる少なくとも1つであることを特徴とする。   In the high-frequency module, the other electronic component is at least one selected from the group of semiconductor elements such as surface mount components such as chip capacitors, inductors, resistors, power amplifiers, switches, power control, detection, and power control. It is characterized by being.

さらに、上記高周波モジュールにおける前記受動回路が、分波回路、合波回路、カプラ、バラン、フィルタの少なくとも1つを具備することを特徴とする。   Furthermore, the passive circuit in the high-frequency module includes at least one of a demultiplexing circuit, a multiplexing circuit, a coupler, a balun, and a filter.

さらに、上記高周波モジュールにおける前記他の電子部品が、前記モジュール基板表面に形成された電極と半田を介して接続されていることを特徴とする。   Further, the other electronic component in the high-frequency module is connected to an electrode formed on the surface of the module substrate via solder.

また、前記モジュール基板の線膨張係数が25〜400℃で8〜18×10−6/℃以下であること、さらには、前記熱硬化性樹脂のガラス転移温度以下の線膨張係数が25〜80×10−6/℃であることが望ましい。 In addition, the linear expansion coefficient of the module substrate is 8 to 18 × 10 −6 / ° C. or less at 25 to 400 ° C., and further the linear expansion coefficient is 25 to 80 or less of the glass transition temperature of the thermosetting resin. It is desirable to be × 10 −6 / ° C.

本発明の高周波モジュールによれば、ベアSAWチップをモジュール基板にフェースダウンボンディングするにあたり、少なくとも前記ベアSAWチップを曲げ弾性率が常温で4〜8GPa、220℃で0.2〜0.5GPaであり、且つガラス転移温度が100〜150℃の熱硬化性樹脂で気密封止することによって、高周波モジュールを2次実装したり、ベアSAWチップ実装後に他の電子部品を半田実装する場合においても、半田実装時の温度条件下では、封止樹脂の剛性が低いために、入出力電極接続部、接地電極接続部の半田が再溶融した場合においても、溶融膨張圧力は、気密空間側のみならず、封止樹脂側に拡散することができるために、半田が気密空間側に流れることを防止することができ、気密封止性を高めるとともに、短絡、断線などの発生を防止することができる。   According to the high frequency module of the present invention, when face-down bonding a bare SAW chip to a module substrate, at least the bare SAW chip has a bending elastic modulus of 4 to 8 GPa at room temperature and 0.2 to 0.5 GPa at 220 ° C. In addition, by hermetically sealing with a thermosetting resin having a glass transition temperature of 100 to 150 ° C., even when the high frequency module is secondarily mounted or another electronic component is solder mounted after the bare SAW chip is mounted, Under the temperature conditions at the time of mounting, the rigidity of the sealing resin is low, so even when the solder of the input / output electrode connection part and the ground electrode connection part is remelted, the melt expansion pressure is not limited to the airtight space side, Since it is possible to diffuse to the sealing resin side, it is possible to prevent the solder from flowing to the airtight space side, improve the airtight sealing performance, Fault, it is possible to prevent the occurrence of disconnection.

以下に、本発明に係るベアSAWチップの実装封止構造並びに高周波モジュールの実施の形態を説明する。図1(a)は、ベアSAWチップをモジュール基板表面にフェースダウンボンディングした実装構造の概略断面図である。図1(b)は、ベアSAWチップの表面の導体パターンを示す平面図である。また、図1(c)は、図1(b)のベアSAWチップを実装するモジュール基板側の導体パターンを示す平面図である。   Embodiments of a bare SAW chip mounting and sealing structure and a high-frequency module according to the present invention will be described below. FIG. 1A is a schematic cross-sectional view of a mounting structure in which a bare SAW chip is face-down bonded to a module substrate surface. FIG. 1B is a plan view showing a conductor pattern on the surface of the bare SAW chip. FIG. 1C is a plan view showing a conductor pattern on the module substrate side on which the bare SAW chip of FIG. 1B is mounted.

図1に示すように、弾性表面波フィルタを構成するベアSAWチップ1は、例えばタンタル酸リチウム単結晶、ランガサイト型結晶構造を有する例えばランタン−ガリウム−ニオブ系単結晶、四ホウ酸リチウム単結晶等の圧電性の単結晶から成る基板2表面には、励振電極である共振子電極4の複数が例えばラダー型回路に接続されており、また、かかる励振電極の一端には入出力電極7Aが設けられており、さらにこれらの励振電極4および入出力電極7Aの周囲には、接地電極9Aが形成されている。   As shown in FIG. 1, a bare SAW chip 1 constituting a surface acoustic wave filter includes, for example, a lithium tantalate single crystal, a lanthanum-gallium-niobium single crystal, and a lithium tetraborate single crystal having a langasite type crystal structure. A plurality of resonator electrodes 4 as excitation electrodes are connected to, for example, a ladder-type circuit on the surface of the substrate 2 made of a piezoelectric single crystal such as an input / output electrode 7A at one end of the excitation electrode. Further, a ground electrode 9A is formed around the excitation electrode 4 and the input / output electrode 7A.

なお、これら電極の表面には、必要に応じて、シリコンや酸化シリコン等の半導電性もしくは絶縁性の保護膜が形成される。   A semiconductive or insulating protective film such as silicon or silicon oxide is formed on the surface of these electrodes as necessary.

一方、モジュール基板8の表面には、ベアSAWチップ1の入出力電極7Aと対向する部分に、銀、銅、金等の導体から成る入出力電極7Bが、また、接地電極9Aと対向する部分に接地電極9Bが被着形成されている。   On the other hand, on the surface of the module substrate 8, an input / output electrode 7B made of a conductor such as silver, copper, or gold is opposite to the input / output electrode 7A of the bare SAW chip 1, and a portion opposite to the ground electrode 9A. A ground electrode 9B is deposited on the surface.

そして、ベアSAWチップ1は、モジュール基板8の表面に載置され、半田、導電性樹脂などの導電性接着剤3によって電気的に接続される。   The bare SAW chip 1 is placed on the surface of the module substrate 8 and is electrically connected by a conductive adhesive 3 such as solder or conductive resin.

かかる接続構造によれば、励振電極4が形成された部分は、ベアSAWチップ1、モジュール基板8、接地電極9接続部の導電性接着剤3によって形成された空間5内に封止される。かかる構造によれば、大きな体積を取らずにベアSAWチップ1を封止することができ、低背化が可能となる。   According to such a connection structure, the portion where the excitation electrode 4 is formed is sealed in the space 5 formed by the conductive adhesive 3 of the bare SAW chip 1, the module substrate 8, and the ground electrode 9 connection portion. According to such a structure, the bare SAW chip 1 can be sealed without taking up a large volume, and the height can be reduced.

図2は、携帯電話のフロントエンドジュールのブロック回路図の一例であり、このブロック図は米国のセルラーバンドとPCSバンドからなるCDMA端末を想定したものであるが、IMT−2000のW−CDMAや、欧州のGSM、DCS端末、2.4GHzのブルーツース、W−LANなどのフロントエンドであっても構わない。   FIG. 2 is an example of a block circuit diagram of a front end module of a cellular phone. This block diagram assumes a CDMA terminal composed of a US cellular band and a PCS band. European GSM, DCS terminal, 2.4 GHz Bluetooth, W-LAN and other front ends may be used.

このブロック図中の送信フィルタおよび受信フィルタ、デュプレクサをベアSAWフィルタによって形成することできる。そして、これらを図1に示したようなベアSAWフィルタの実装構造によって高周波モジュールを構成する。   The transmission filter, reception filter, and duplexer in this block diagram can be formed by a bare SAW filter. These components constitute a high frequency module with a bare SAW filter mounting structure as shown in FIG.

図3は、図2のブロック回路を搭載したフロントエンドモジュールの平面図であり、図4は図3のx−x線の概略断面図である。   FIG. 3 is a plan view of a front end module on which the block circuit of FIG. 2 is mounted, and FIG. 4 is a schematic sectional view taken along line xx of FIG.

かかる高周波モジュールにおいては、送信フィルタおよび受信フィルタ、デュプレクサが、ベアSAWチップ1によって形成され、図1に示された実装構造によって、モジュール基板18表面に実装されている。   In such a high-frequency module, a transmission filter, a reception filter, and a duplexer are formed by the bare SAW chip 1 and are mounted on the surface of the module substrate 18 by the mounting structure shown in FIG.

また、モジュール基板18の表面には、チップコンデンサ13や、チップインダクタ14などの表面実装部品が半田実装されている。さらには、半導体チップ(パワーアンプIC)11がワイヤ12によってモジュール基板18表面に実装されている。また、場合によってはモジュール基板18表面や内部には、整合回路パターンなどの高周波回路パターン10なども導体材料によって被着形成されている。さらにモジュール基板内部には、半導体素子11から発生した熱を放熱するためのサーマルビア15が形成され、さらには、カプラ16なども内蔵されている。さらには必要に応じて、コンデンサやインダクタ、整合回路なども内蔵される。   Further, surface mount components such as a chip capacitor 13 and a chip inductor 14 are solder mounted on the surface of the module substrate 18. Further, a semiconductor chip (power amplifier IC) 11 is mounted on the surface of the module substrate 18 by wires 12. In some cases, a high-frequency circuit pattern 10 such as a matching circuit pattern is also deposited on the surface or inside of the module substrate 18 with a conductive material. Further, a thermal via 15 for radiating heat generated from the semiconductor element 11 is formed inside the module substrate, and a coupler 16 and the like are also built therein. Furthermore, a capacitor, an inductor, a matching circuit, and the like are incorporated as necessary.

そして、これらベアSAWチップ1、半導体チップ11、表面実装部品13,14は封止用樹脂6によってすべて封止されている。本発明のかかる高周波モジュールは、かかる構造にて携帯用電話機などの小形の携帯用電子機器などに組み込まれる。   The bare SAW chip 1, the semiconductor chip 11, and the surface mount components 13 and 14 are all sealed with a sealing resin 6. The high-frequency module according to the present invention is incorporated into a small portable electronic device such as a portable telephone with such a structure.

本発明によれば、上記の封止樹脂6の曲げ弾性率が常温で4〜8GPa、220℃で0.2〜0.5GPaであることが重要である。封止樹脂の曲げ弾性率が上記特性を具備することによって、リフロー半田付けによって高周波モジュールをマザーボード(図示省略)に接続する場合などにおいて、半田接続部が再溶融して熱膨張し、半田3からその周囲に向かって応力が発生しても、半田3の大部分を覆っている封止樹脂6がこの応力を緩衝することになり、半田3が無理にベアSAWチップ1とモジュール基板8間に浸入したりするのを防止することができる。このため、高周波モジュールのベアSAWチップ1の半田接続部は、再溶融しても、初めの位置に存在し続け、不要な箇所へ移動することがなくなり、最終的に短絡を生じたり、気密性を破壊したりすることがなくなるのである。   According to the present invention, it is important that the bending elastic modulus of the sealing resin 6 is 4 to 8 GPa at normal temperature and 0.2 to 0.5 GPa at 220 ° C. Since the bending elastic modulus of the sealing resin has the above characteristics, when the high frequency module is connected to the mother board (not shown) by reflow soldering, the solder connection portion is remelted and thermally expanded. Even if a stress is generated toward the periphery, the sealing resin 6 covering most of the solder 3 will buffer this stress, and the solder 3 will be forced between the bare SAW chip 1 and the module substrate 8. Intrusion can be prevented. For this reason, the solder connection portion of the bare SAW chip 1 of the high-frequency module continues to exist at the initial position even after remelting, and does not move to an unnecessary portion, eventually causing a short circuit or airtightness. It wo n’t destroy them.

これに対して、封止樹脂6の室温での曲げ弾性率が4GPaよりも小さいと、封止樹脂による高い機械的強度を得ることができず、8GPaよりも大きいと、ワイヤボンディングへの負荷が大きくなり断線原因となる。220℃の曲げ弾性率が0.2GPaよりも小さいと、ワイヤボンディングの接続不良を招きやすく、0.5GPaよりも大きいと、半田の熱膨張による応力を吸収することができず、リフロー加熱を繰り返すたびに、溶融した半田が無理に半導体チップ、ベアSAWチップ、チップ部品と基板との間の隙間に浸入したり、半導体チップと封止樹脂との界面に浸入したりして拡がるため、短絡や気密性の破壊が生じてしまう。特には、曲げ弾性率が常温で5〜8GPa、220℃で0.3〜0.5GPaであることが望ましい。   On the other hand, if the bending elastic modulus at room temperature of the sealing resin 6 is smaller than 4 GPa, high mechanical strength due to the sealing resin cannot be obtained, and if it is larger than 8 GPa, the load on the wire bonding is increased. It becomes large and causes disconnection. If the bending elastic modulus at 220 ° C. is smaller than 0.2 GPa, it is easy to cause poor connection of wire bonding. If it is larger than 0.5 GPa, stress due to thermal expansion of solder cannot be absorbed and reflow heating is repeated. Each time the melted solder forcibly penetrates into the gap between the semiconductor chip, bare SAW chip, chip component and substrate, or penetrates into the interface between the semiconductor chip and the sealing resin, The airtightness will be destroyed. In particular, the flexural modulus is desirably 5 to 8 GPa at normal temperature and 0.3 to 0.5 GPa at 220 ° C.

また、封止樹脂は、ガラス転移温度が100〜150℃であることが望ましい。これは、ガラス転移温度が、常温ではガラス状領域にあるため、高周波モジュール全体の機械的強度を十分に確保することができる。しかし、封止樹脂のガラス転移温度が100℃未満の場合、樹脂自体が常温でゴム状、ゲル状となってしまうため、高周波モジュールに十分な機械的強度を付与できなくなるおそれがある。逆にガラス転移温度が150℃を超えると、封止樹脂の硬度は高くなるが、十分な靭性を得ることができないため、製造過程で高周波モジュール多数個基板をダイシング加工等によって製品単位に分割する工程で封止樹脂にクラックが入り、製品が破損するといった問題が生じやすくなる。   Moreover, as for sealing resin, it is desirable that the glass transition temperature is 100-150 degreeC. This is because the glass transition temperature is in the glassy region at room temperature, so that the mechanical strength of the entire high-frequency module can be sufficiently secured. However, when the glass transition temperature of the sealing resin is less than 100 ° C., the resin itself becomes rubbery or gelled at room temperature, and thus there is a possibility that sufficient mechanical strength cannot be imparted to the high-frequency module. Conversely, when the glass transition temperature exceeds 150 ° C., the hardness of the sealing resin increases, but sufficient toughness cannot be obtained. Therefore, a large number of high-frequency module substrates are divided into product units by dicing or the like during the manufacturing process. In the process, the sealing resin cracks and the product is easily damaged.

上記封止樹脂のガラス転移点、曲げ弾性率は、熱硬化性樹脂の種類や分子量などによって制御され、また、熱硬化性樹脂に対して無機フィラーを添加含有せしめることによっても制御することができる。なお、無機フィラーの添加によって封止樹脂の熱伝導率を高めることもできる。これによって半導体素子等から発生する熱を放散させ熱抵抗を低減できる。   The glass transition point and bending elastic modulus of the sealing resin are controlled by the type and molecular weight of the thermosetting resin, and can also be controlled by adding an inorganic filler to the thermosetting resin. . It should be noted that the thermal conductivity of the sealing resin can be increased by adding an inorganic filler. As a result, heat generated from the semiconductor element or the like can be dissipated to reduce the thermal resistance.

さらに、ガラス転移温度以下の温度における、封止樹脂の線膨張係数は25〜80×10−6/℃で、基板の熱膨張係数は8〜15×10−6/℃であることが好ましい。その理由は、無機フィラーの比率を増やすことによって封止樹脂の線膨張係数を25×10−6/℃未満にすることができるが、その場合、封止樹脂の曲げ弾性率が高くなりやすくなる。逆に線膨張係数が80×10−6/℃を超えると、モジュール基板、半導体チップと封止樹脂間の膨張係数差が大きくなるため、封止樹脂が剥離し易くなり、気密性の破壊や半田による短絡を誘発するおそれがある。さらにモジュール基板の熱膨張係数が8×10−6/℃よりも小さい、または18×10−6/℃を超えると、ベアSAWチップとモジュール基板との熱膨張係数差が大きくなり、励振電極を取り囲む接地電極と入出力電極の接続部でクラックが起こりやすくなるため、信頼性の低下につながる。 Further, the linear expansion coefficient of the sealing resin at a temperature not higher than the glass transition temperature is preferably 25 to 80 × 10 −6 / ° C., and the thermal expansion coefficient of the substrate is preferably 8 to 15 × 10 −6 / ° C. The reason is that the linear expansion coefficient of the sealing resin can be made less than 25 × 10 −6 / ° C. by increasing the ratio of the inorganic filler, but in that case, the bending elastic modulus of the sealing resin tends to increase. . Conversely, if the linear expansion coefficient exceeds 80 × 10 −6 / ° C., the expansion coefficient difference between the module substrate, the semiconductor chip, and the sealing resin increases, so that the sealing resin is easily peeled off, There is a risk of inducing a short circuit due to solder. Furthermore, if the coefficient of thermal expansion of the module substrate is smaller than 8 × 10 −6 / ° C. or exceeds 18 × 10 −6 / ° C., the difference in thermal expansion coefficient between the bare SAW chip and the module substrate increases, and the excitation electrode Cracks are likely to occur at the connection between the surrounding ground electrode and the input / output electrodes, leading to a decrease in reliability.

本発明によれば、上記の封止樹脂6によって、少なくともベアSAWチップ1を封止すればよいが、図3に示すように、モジュール基板8表面に形成されたその他のコンデンサ、抵抗部品などの電子部品13、14、半導体素子11をこの封止樹脂6によって一括に封止することによって、各部品のモジュール基板8との接続部と、ベアSAWチップ1の気密封止の信頼性を大幅に向上させることができる。   According to the present invention, at least the bare SAW chip 1 may be sealed with the sealing resin 6 described above. However, as shown in FIG. 3, other capacitors, resistance components, etc. formed on the surface of the module substrate 8 may be used. By collectively sealing the electronic components 13 and 14 and the semiconductor element 11 with the sealing resin 6, the reliability of the hermetic sealing of the connection portion of each component to the module substrate 8 and the bare SAW chip 1 is greatly increased. Can be improved.

図1の例では、ベアSAWチップ1における励振電極として、ラダー型回路の共振器電極を用いたもので説明したが、共振器型や伝搬型のフィルタやフィルタ以外のデュプレクサ等の弾性表面波装置についても、封止が必要な励振電極を有するものであれば、本発明に適用される。   In the example of FIG. 1, the resonator electrode of the ladder type circuit is used as the excitation electrode in the bare SAW chip 1, but the surface acoustic wave device such as a resonator type or a propagation type filter or a duplexer other than the filter is used. If it has an excitation electrode which needs sealing, it is applied to this invention.

また、前記実施の形態では、高周波モジュールが、フロントエンドモジュールの場合を説明したが、前記高周波モジュールは、半田実装される表面実装部品とベアSAWチップを備え、かつ前記表面実装部品が封止樹脂によって封止される構造のものであれば、他の半導体装置であってもよい。   In the above embodiment, the high-frequency module is a front-end module. However, the high-frequency module includes a surface-mounted component to be solder-mounted and a bare SAW chip, and the surface-mounted component is a sealing resin. Any other semiconductor device may be used as long as it has a structure sealed by.

また、表面実装部品は、チップ部品や半導体チップに限定されずに、FBAR(Film Bulk Acoustic Resonator)やMEMSのスイッチ、光半導体素子等のチップ等であっても構わない。   The surface mount component is not limited to a chip component or a semiconductor chip, but may be a chip such as an FBAR (Film Bulk Acoustic Resonator), a MEMS switch, or an optical semiconductor element.

次に、本発明に係る高周波モジュールを作製した実施例について説明する。   Next, an example in which the high-frequency module according to the present invention is manufactured will be described.

0.95モルMgTiO−0.05モルCaTiOで表される主成分100質量部に対して、BをB換算で10質量部、LiをLiCO換算で5質量部添加したセラミック粉末組成物を用いてスラリーを調製し、ドクターブレード法によって厚さ100μmのグリーンシート形成した。 Ceramic in which 10 parts by mass of B in terms of B 2 O 3 and 5 parts by mass of Li in terms of LiCO 3 are added to 100 parts by mass of the main component represented by 0.95 mol MgTiO 3 -0.05 mol CaTiO 3 A slurry was prepared using the powder composition, and a green sheet having a thickness of 100 μm was formed by a doctor blade method.

そして、このグリーンシートの表面に、Agペーストを用いて厚さ20μmの導体パターンをスクリーン印刷法によって形成した。また、必要に応じて、直径が200ミクロンのスルーホールを形成し、上記のAgペーストを充填してスルーホール導体を形成した。その後、このグリーンシートを積層後、大気中で300℃、4時間脱バインダ処理をした後、900℃大気中で6時間焼成を行い、熱膨張係数が12×10−6/℃のモジュール基板を作製した。 Then, a conductor pattern having a thickness of 20 μm was formed on the surface of the green sheet by screen printing using Ag paste. Further, if necessary, a through hole having a diameter of 200 microns was formed and filled with the above Ag paste to form a through hole conductor. Then, after laminating this green sheet, after removing the binder at 300 ° C. for 4 hours in the atmosphere, firing was performed in the atmosphere at 900 ° C. for 6 hours to obtain a module substrate having a thermal expansion coefficient of 12 × 10 −6 / ° C. Produced.

次に圧電基板(タンタル酸リチウム単結晶の42°Yカット、熱膨張係数14〜16×10−6/℃)上にAl−Cu(2重量%)合金から成る電極を成膜した。その後、レジスト塗布、パターンニング、剥離を繰り返し、励起電極、入出力電極と接地電極、保護膜を形成し、ベアSAWチップを作製した。 Next, an electrode made of an Al—Cu (2 wt%) alloy was formed on a piezoelectric substrate (42 ° Y cut of lithium tantalate single crystal, thermal expansion coefficient 14 to 16 × 10 −6 / ° C.). Thereafter, resist coating, patterning, and peeling were repeated to form excitation electrodes, input / output electrodes, a ground electrode, and a protective film, thereby producing bare SAW chips.

完成したベアSAWチップは、モジュール基板に図1に従い、フェースダウン実装した。この実装には、接地電極及び入出力電極に、高温半田をスクリーン印刷法にて塗布し、リフローにて実装を行った。上記ベアSAWチップの実装構造によれば、励振電極の周囲を接地電極で取り囲こむようにしており、樹脂封止前の段階で気密性を確保することができた
その後、ディスペンサーで各実装パターンに半田を塗布後、コンデンサチップなどのチップ部品の実装を行い、リフローにて半田を固着させた。最後に銀ペーストにて半導体チップを接着した後、金線を用いてワイヤボンディングした。
The completed bare SAW chip was mounted face-down on the module substrate according to FIG. For this mounting, high-temperature solder was applied to the ground electrode and the input / output electrodes by screen printing, and mounting was performed by reflow. According to the mounting structure of the bare SAW chip, the periphery of the excitation electrode is surrounded by the ground electrode, and airtightness can be ensured before the resin sealing. Thereafter, the dispenser is soldered to each mounting pattern. After coating, chip parts such as capacitor chips were mounted, and solder was fixed by reflow. Finally, a semiconductor chip was bonded with a silver paste, and then wire bonding was performed using a gold wire.

上記の方法によって、各種表面実装部品、半導体チップ、ベアSAWチップを搭載した高周波モジュールを得た。   By the above method, a high-frequency module mounted with various surface mount components, semiconductor chips, and bare SAW chips was obtained.

次に、エポキシ樹脂に対してフィラーとして溶融シリカを添加した特性の異なる封止樹脂A、B、C、D、E、Fを用意した。封止樹脂の曲げ弾性率は、JIS−K−6911に基いて、ガラス転移温度と線膨張係数は、ディラトメータ法に基いて測定した。   Next, sealing resins A, B, C, D, E, and F having different characteristics in which fused silica was added as a filler to the epoxy resin were prepared. The bending elastic modulus of the sealing resin was measured based on JIS-K-6911, and the glass transition temperature and the linear expansion coefficient were measured based on the dilatometer method.

高周波モジュール領域が80個形成されたガラスセラミックス基板にメタルマスクとスキージとを使用して前記の封止樹脂によって複数のモジュール領域11aを一括で覆うように印刷方式で塗布して一括封止した。さらに、印刷方式によって形成された封止樹脂をベーク処理して硬化させた。その後、ダイシング装置を用いて80個の高周波モジュール領域を分割し、高周波モジュールを個片化した。   Using a metal mask and a squeegee, a glass ceramic substrate having 80 high-frequency module regions formed thereon was coated and collectively sealed by a printing method so as to collectively cover the plurality of module regions 11a with the sealing resin. Furthermore, the sealing resin formed by the printing method was baked and cured. Thereafter, 80 high-frequency module regions were divided using a dicing apparatus, and the high-frequency modules were separated into pieces.

同様に熱膨張係数が異なるモジュール基板として、熱膨張係数が6、8.5×10−6/℃の市販のガラスセラミックス基板、20、23、18×10−6/℃のガラスセラミックス基板と、熱膨張係数が19、20、23×10−6/℃のガラス繊維−エポキシ樹脂複合材のモジュール基板も用いた。 Similarly, as module substrates having different thermal expansion coefficients, commercially available glass ceramic substrates with thermal expansion coefficients of 6 , 8.5 × 10 −6 / ° C., glass ceramic substrates with 20, 23, 18 × 10 −6 / ° C., and A glass fiber-epoxy resin composite module substrate having a thermal expansion coefficient of 19, 20, 23 × 10 −6 / ° C. was also used.

その後、この封止した高周波モジュールを温度85℃、湿度60%の雰囲気下で168時間吸湿処理した後、リフロー加熱(ピーク温度260℃)を3回繰り返した。その後、外観検査によりクラックの有無を、電気導通検査によりショートの有無を、また水中投下後、モジュールの電気特性を評価し、フィルタの気密性とパワーアンプの気密性を確認した。ショートやクラック、気密性の不良等の不良モードがみられなかったものを「○」、みられたものを「×」と判定した。また、それぞれの不良モードの発生率(%)を表1の吸湿処理後のリフロー評価の欄に示す。

Figure 2005129855
Thereafter, the sealed high-frequency module was subjected to moisture absorption treatment in an atmosphere at a temperature of 85 ° C. and a humidity of 60% for 168 hours, and then reflow heating (peak temperature: 260 ° C.) was repeated three times. Subsequently, the appearance was checked for cracks, the electrical continuity was checked for shorts, and after dropping in water, the module electrical characteristics were evaluated to confirm the filter airtightness and the power amplifier airtightness. A case where no failure mode such as a short circuit, a crack, or an airtightness was not observed was judged as “◯”, and a case where it was seen was judged as “X”. Further, the occurrence rate (%) of each failure mode is shown in the column of reflow evaluation after moisture absorption treatment in Table 1.
Figure 2005129855

表1にみられるように、各実施例のものはいずれもショート及びクラックの発生率が0%であって、不良モードがみられないことが確認される。   As can be seen from Table 1, in each example, the occurrence rate of shorts and cracks is 0%, and it is confirmed that no failure mode is observed.

これに対し、曲げ弾性率や熱膨張係数が本発明の範囲から逸脱する試料はいずれも半田の熱膨張による応力を十分に吸収することができず、短絡や界面剥離、気密性低下が観察された。   On the other hand, none of the samples whose bending elastic modulus or thermal expansion coefficient deviates from the scope of the present invention can sufficiently absorb the stress due to the thermal expansion of the solder, and short-circuiting, interfacial delamination and hermeticity degradation are observed. It was.

本発明のベアSAWチップの実装形態を示す概略断面図(a)、ベアSAWチップの表面パターン(b)とモジュール基板の表面パターン(c)である。It is the schematic sectional drawing (a) which shows the mounting form of the bare SAW chip | tip of this invention, the surface pattern (b) of a bare SAW chip, and the surface pattern (c) of a module board | substrate. 本発明の高周波モジュールの代表的なブロック回路図である。It is a typical block circuit diagram of the high frequency module of the present invention. 本発明の高周波モジュールの一例を示す概略平面図である。It is a schematic plan view which shows an example of the high frequency module of this invention. 図3の高周波モジュールのx−x線の概略断面図である。It is a schematic sectional drawing of the xx line of the high frequency module of FIG. 従来のSAWチップのパッケージを示す概略断面図である。It is a schematic sectional drawing which shows the package of the conventional SAW chip. 従来の他のSAWチップのパッケージを示す概略断面図である。It is a schematic sectional drawing which shows the package of the other conventional SAW chip | tip. 従来のさらに他のSAWチップのパッケージを示す概略断面図である。It is a schematic sectional drawing which shows the package of the further another conventional SAW chip.

符号の説明Explanation of symbols

1・・・・・ベアSAWチップ
3・・・・・半田
4・・・・・励振電極
5・・・・・気密空間
6・・・・・封止樹脂
7A,7B・・入出力電極
8・・・・・モジュール基板
9A,9B・・・接地電極
11・・・・・半導体チップ
13,14・・表面実装部品
15・・・・・サーマルビア
16・・・・・カプラ
18・・・・・高周波モジュール
DESCRIPTION OF SYMBOLS 1 ... Bare SAW chip 3 ... Solder 4 ... Excitation electrode 5 ... Airtight space 6 ... Sealing resin 7A, 7B ... Input / output electrode 8 ... Module boards 9A, 9B ... Ground electrode 11 ... Semiconductor chips 13,14 ... Surface mount parts 15 ... Thermal via 16 ... Coupler 18 ... ..High frequency modules

Claims (7)

励振電極と、該励振電極を取り囲む接地電極と、入出力電極とが主面に形成されたベアSAWチップの前記各電極をモジュール基板表面に形成された電極と対面させ、前記励振電極のSAW伝搬部分に密閉空間が形成されるように、前記ベアSAWチップの接地電極および入出力電極と、モジュール基板側の前記電極とを導電性接着剤によって接続してなるとともに、前記モジュール基板表面に他の電子部品を搭載および/または基板表面に受動回路を形成してなる高周波モジュールであって、少なくとも前記ベアSAWチップを曲げ弾性率が常温で4〜8GPa、220℃で0.2〜0.5GPaであり、且つガラス転移温度が100〜150℃の熱硬化性樹脂で気密封止したことを特徴とする高周波モジュール。 Each electrode of the bare SAW chip having the excitation electrode, the ground electrode surrounding the excitation electrode, and the input / output electrode formed on the main surface faces the electrode formed on the surface of the module substrate, and the SAW propagation of the excitation electrode The bare SAW chip ground electrode and input / output electrodes and the module substrate side electrode are connected by a conductive adhesive so that a sealed space is formed in the portion, and another surface is provided on the module substrate surface. A high-frequency module in which electronic components are mounted and / or a passive circuit is formed on a substrate surface, and at least the bare SAW chip has a bending elastic modulus of 4 to 8 GPa at room temperature and 0.2 to 0.5 GPa at 220 ° C. A high frequency module characterized by being hermetically sealed with a thermosetting resin having a glass transition temperature of 100 to 150 ° C. 前記他の電子部品は、チップコンデンサ、インダクタ、抵抗等の表面実装部品、パワーアンプ、スイッチ、パワーコントロール、検波、電源コントロール等の半導体素子の群から選ばれる少なくとも1つであることを特徴とする請求項第1記載の高周波モジュール。 The other electronic component is at least one selected from the group of semiconductor elements such as surface mount components such as chip capacitors, inductors, resistors, power amplifiers, switches, power control, detection, power control, etc. The high-frequency module according to claim 1. 前記受動回路が、分波回路、合波回路、カプラ、バラン、フィルタの少なくとも1つを具備することを特徴とする請求項第1または請求項2記載の高周波モジュール。 The high-frequency module according to claim 1 or 2, wherein the passive circuit includes at least one of a demultiplexing circuit, a multiplexing circuit, a coupler, a balun, and a filter. 前記他の電子部品が、前記モジュール基板表面に形成された電極と半田を介して接続されていることを特徴とする請求項第1乃至請求項3のいずれか記載の高周波モジュール。 The high frequency module according to any one of claims 1 to 3, wherein the other electronic component is connected to an electrode formed on the surface of the module substrate via solder. 前記モジュール基板の線膨張係数が25〜400℃で8〜18×10−6/℃であることを特徴とする請求項1乃至請求項4のいずれか記載の高周波モジュール。 5. The high-frequency module according to claim 1, wherein a linear expansion coefficient of the module substrate is 8 to 18 × 10 −6 / ° C. at 25 to 400 ° C. 6 . 前記熱硬化性樹脂の前記ガラス転移温度以下の線膨張係数が25〜80×10−6/℃であることを特徴とする請求項1乃至請求項5のいずれか記載の高周波モジュール。 6. The high-frequency module according to claim 1, wherein the thermosetting resin has a linear expansion coefficient not higher than the glass transition temperature of 25 to 80 × 10 −6 / ° C. 6 . 前記封止樹脂によって、前記モジュール基板表面の他の電子部品を搭載および受動回路をも封止してなることを特徴とする請求項1乃至請求項6のいずれか記載の高周波モジュール。 7. The high-frequency module according to claim 1, further comprising: an electronic component mounted on the surface of the module substrate and a passive circuit sealed with the sealing resin.
JP2003366258A 2003-10-08 2003-10-27 High frequency module Pending JP2005129855A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003366258A JP2005129855A (en) 2003-10-27 2003-10-27 High frequency module
TW093130185A TW200520201A (en) 2003-10-08 2004-10-06 High-frequency module and communication apparatus
KR1020040080097A KR20050033858A (en) 2003-10-08 2004-10-07 High frequency module and communication equipment
US10/962,170 US7289008B2 (en) 2003-10-08 2004-10-07 High-frequency module and communication apparatus
CNB2004100849819A CN100525100C (en) 2003-10-08 2004-10-08 High frequency module and communication device
DE102004049984A DE102004049984A1 (en) 2003-10-08 2004-10-08 High frequency module and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366258A JP2005129855A (en) 2003-10-27 2003-10-27 High frequency module

Publications (1)

Publication Number Publication Date
JP2005129855A true JP2005129855A (en) 2005-05-19

Family

ID=34644657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366258A Pending JP2005129855A (en) 2003-10-08 2003-10-27 High frequency module

Country Status (1)

Country Link
JP (1) JP2005129855A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006110A (en) * 2005-06-23 2007-01-11 Kyocera Corp Surface acoustic wave device
JP2007116628A (en) * 2005-10-24 2007-05-10 Kyocera Corp Surface acoustic-wave device and communication apparatus
JP2010245704A (en) * 2009-04-02 2010-10-28 Sumitomo Bakelite Co Ltd Substrate for surface acoustic wave device and surface acoustic wave device
WO2014077239A1 (en) * 2012-11-13 2014-05-22 株式会社村田製作所 Acoustic wave device
JP2015162804A (en) * 2014-02-27 2015-09-07 株式会社村田製作所 Electronic component and manufacturing method of the same
US10707403B2 (en) 2014-07-09 2020-07-07 Murata Manufacturing Co., Ltd. Electronic component-containing module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006110A (en) * 2005-06-23 2007-01-11 Kyocera Corp Surface acoustic wave device
JP4731216B2 (en) * 2005-06-23 2011-07-20 京セラ株式会社 Surface acoustic wave device
JP2007116628A (en) * 2005-10-24 2007-05-10 Kyocera Corp Surface acoustic-wave device and communication apparatus
JP4758197B2 (en) * 2005-10-24 2011-08-24 京セラ株式会社 Surface acoustic wave device and communication device
JP2010245704A (en) * 2009-04-02 2010-10-28 Sumitomo Bakelite Co Ltd Substrate for surface acoustic wave device and surface acoustic wave device
WO2014077239A1 (en) * 2012-11-13 2014-05-22 株式会社村田製作所 Acoustic wave device
US9748919B2 (en) 2012-11-13 2017-08-29 Murata Manufacturing Co., Ltd. Elastic wave device
JP2015162804A (en) * 2014-02-27 2015-09-07 株式会社村田製作所 Electronic component and manufacturing method of the same
US10707403B2 (en) 2014-07-09 2020-07-07 Murata Manufacturing Co., Ltd. Electronic component-containing module

Similar Documents

Publication Publication Date Title
US7289008B2 (en) High-frequency module and communication apparatus
US7042056B2 (en) Chip-size package piezoelectric component
US6873529B2 (en) High frequency module
KR100463092B1 (en) Multilayer ceramic device
JP4453702B2 (en) COMPOSITE ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF
US20060220500A1 (en) Method for manufacturing surface acoustic wave device
JP4443325B2 (en) Surface acoustic wave device
JP2006304145A (en) High frequency module
JP2005277579A (en) High frequency module and communication apparatus employing the same
JPWO2005076351A1 (en) Component built-in module and manufacturing method thereof
JP5206377B2 (en) Electronic component module
JP2002359327A (en) Electronic circuit module
JP2007258776A (en) High-frequency module
JP2006237238A (en) High frequency module
JP2007096519A (en) High frequency module and manufacturing method thereof
JP2010004216A (en) Electronic component and electronic circuit board having the same
JP2005129855A (en) High frequency module
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
JP2015115671A (en) Module and manufacturing method of the same
JP4484544B2 (en) Manufacturing method of high frequency module
JP2005277939A (en) High frequency module and radio communication equipment
JP4234088B2 (en) Electronic component and manufacturing method thereof
JP2004129193A (en) Elastic surface wave apparatus
JP2007266898A (en) High-frequency module and manufacturing method therefor
JP2005102114A (en) Surface acoustic wave device, electronic device, and communication device