JP4463004B2 - 受信方法および装置 - Google Patents

受信方法および装置 Download PDF

Info

Publication number
JP4463004B2
JP4463004B2 JP2004157481A JP2004157481A JP4463004B2 JP 4463004 B2 JP4463004 B2 JP 4463004B2 JP 2004157481 A JP2004157481 A JP 2004157481A JP 2004157481 A JP2004157481 A JP 2004157481A JP 4463004 B2 JP4463004 B2 JP 4463004B2
Authority
JP
Japan
Prior art keywords
phase
signal
unit
error
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004157481A
Other languages
English (en)
Other versions
JP2005341230A (ja
Inventor
真介 盛合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004157481A priority Critical patent/JP4463004B2/ja
Publication of JP2005341230A publication Critical patent/JP2005341230A/ja
Application granted granted Critical
Publication of JP4463004B2 publication Critical patent/JP4463004B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Description

本発明は、受信技術に関し、特に無線通信回線を介した信号のタイミングの誤差を補正するための受信方法および装置に関する。
2.4GHz帯の無線周波数を使用したスペクトル拡散通信システムとして、IEEE802.11b規格の無線LAN(Local Area Network)が実用化されている。当該無線LANは、CCK(Complementary Code Keying)変調によって、11Mbpsの最大伝送速度を実現する。このようなCCK変調に対応した受信装置は、一般的に、送信された信号の波形のパターンを予め複数用意しており、受信した信号の波形に最も近い波形の送信信号を復調結果としている(例えば、特許文献1参照。)。
このようなIEEE802.11b規格の無線LANで使用されているスペクトル拡散方式は、直接拡散方式といわれる。直接拡散方式は、送信側において、送信すべき情報の信号よりも高いクロックレートを有した拡散符号によって送信すべき情報の信号を直接拡散し、受信側において、受信した信号を送信側と同一の拡散符号で逆拡散して、送信すべき情報を抽出する。このような直接拡散方式の受信装置には、抽出した送信すべき信号を復調するための復調回路の他に、拡散された受信信号の相関検出を行うための同期捕捉回路、検出された相関を保持すると共に拡散符号クロックを再生するためのディレーロックループなどの同期追跡回路が備えられている。このようなディレーロックループは、受信した信号のクロックとVCO(Voltage Controlled Oscillator)から出力されるクロックが一致するように制御される。
特開2003−168999号公報
受信した信号のタイミングの同期を確立するために、VCOを制御して受信装置の基準周波数を調節すれば調節の精度は高くなるが、その一方で、受信装置は高安定性のVCOを備える必要があり、それによって受信装置の製造コストが高価になる傾向がある。また、VCOは電圧制御であるために、ノイズ等の影響を抑えなければならず制御が容易でない。なお、IEEE802.11b規格の無線LANにおいてCCK変調が使用されている場合、タイミング同期の調節がCCK変調を実行する際の数チップ単位の途中で実行されれば、復調する場合に誤りが生じる可能性があるので、タイミング同期の調節は少なくともCCK変調を実行する際の数チップ単位でなされた方がよい。そのため、その間にタイミングに誤差が生じて、復調する際に誤りが生じる可能性がある。
本発明はこうした状況に鑑みてなされたものであり、その目的は、信号のタイミングを逐次同期させる受信方法および装置を提供することにある。
本発明のある態様は、受信装置である。この装置は、所定のタイミングでサンプリングされた信号を入力する入力部と、入力した信号が配置されるべき位相のいずれかに近づくように、入力した信号の位相を補正する初期位相補正部と、入力した信号が配置されるべき位相平面を複数の部分領域に予め分割しておき、複数の部分領域の中から位相を補正した信号に対応したひとつの部分領域を検出する領域検出部と、入力した信号が配置されるべき信号点のいずれかと位相を補正した信号の信号点との誤差を導出する導出部と、導出した誤差の大きさと検出したひとつの部分領域にもとづいて、入力した信号に含まれたタイミングの誤差を推定するタイミング誤差推定部と、推定したタイミングの誤差にもとづいて、位相を補正した信号の位相を再び補正することによって、入力した信号に含まれたタイミングの誤差を補正するタイミング誤差補正部とを備える。
「入力した信号が配置されるべき位相」は、入力した信号に対して予め規定されている位相である。例えば、入力した信号がQPSK信号である場合に、「入力した信号が配置されるべき位相」は、「π/4」、「3π/4」、「5π/4」、「7π/4」に相当する。
以上の装置により、入力した信号に含まれたタイミング誤差を導出し、導出したタイミング誤差で入力した信号を順次補正するので、入力した信号に含まれたタイミング誤差を抑圧できる。
入力部に入力した信号がサンプリングされたタイミングは、所定の間隔で調節されてもよい。タイミング誤差推定部は、導出した誤差の大きさを統計処理し、当該統計処理した誤差の大きさから、入力した信号に含まれたタイミングの誤差の大きさを推定してもよい。領域検出部は、入力した信号が配置されるべき位相を境界にして、かつ複数の部分領域が重複しないように、入力した信号が配置されるべき位相平面を複数の部分領域に予め分割し、さらに複数の部分領域のそれぞれに対応づけて位相の回転方向を規定しており、タイミング誤差推定部は、検出したひとつの部分領域に対して規定された位相の回転方向から、入力した信号に含まれたタイミングの誤差に応じた位相の回転方向を推定してもよい。領域検出部は、ひとつの部分領域に含まれた任意の位相から、当該ひとつの部分領域の境界とされた位相であって、かつ入力した信号が配置されるべき位相へ向かう方向を当該ひとつの部分領域に対応した位相の回転方向して規定してもよい。
「統計処理」には、平均が含まれるが、これ以外に偏差等であってもよいものとする。
「複数の部分領域が重複しないように」とは、位相空間における任意の領域がひとつの部分領域に含まれることを意味する。
導出した誤差にもとづいて、位相を補正した信号に含まれた残留の位相誤差を推定する位相誤差推定部と、推定した残留の位相誤差を初期位相補正部から出力された信号にフィードバックして、位相を補正した信号に含まれた残留の位相誤差を補正する残留位相補正部とをさらに備え、残留位相補正部は、導出部とタイミング誤差補正部に対して、残留の位相誤差を補正した信号を位相を補正した信号として出力してもよい。入力部で入力した信号は、複数の位相信号からそれぞれ生成された複数チップのウォルシュ符号をひとつのシンボルとした信号であり、かつ入力した信号がサンプリングされたタイミングは、ひとつのシンボルを単位にして調節されており、初期位相補正部は、入力した信号が配置されるべき位相を複数チップのウォルシュ符号が配置された位相に設定し、タイミングの誤差を補正した信号をひとつのシンボル単位でウォルシュ変換して、複数の相関値をそれぞれ生成し、生成した複数の相関値にもとづいて複数の位相信号を出力する復調部をさらに備えてもよい。
「残留の位相誤差」とは、初期位相補正部で補正した信号に含まれた位相誤差である。
「複数チップのウォルシュ符号をひとつのシンボル」とは、複数チップで構成されたひとつのシンボルであるが、さらにひとつのチップが複数のサンプルで構成される場合には、複数サンプルで構成されたひとつのシンボルである。
本発明の別の態様は、受信方法である。この方法は、所定のタイミングでサンプリングされた信号を入力するステップと、入力した信号が配置されるべき位相のいずれかに近づくように、入力した信号の位相を補正するステップと、入力した信号が配置されるべき位相平面を複数の部分領域に予め分割しておき、複数の部分領域の中から位相を補正した信号に対応したひとつの部分領域を検出するステップと、入力した信号が配置されるべき信号点のいずれかと位相を補正した信号の信号点との誤差を導出するステップと、導出した誤差の大きさと検出したひとつの部分領域にもとづいて、入力した信号に含まれたタイミングの誤差を推定するステップと、推定したタイミングの誤差にもとづいて、位相を補正した信号の位相を再び補正することによって、入力した信号に含まれたタイミングの誤差を補正するステップとを備える。
入力するステップに入力した信号がサンプリングされたタイミングは、所定の間隔で調節されてもよい。タイミングの誤差を補正するステップは、導出した誤差の大きさを統計処理し、当該統計処理した誤差の大きさから、入力した信号に含まれたタイミングの誤差の大きさを推定してもよい。部分領域を検出するステップは、入力した信号が配置されるべき位相を境界にして、かつ複数の部分領域が重複しないように、入力した信号が配置されるべき位相平面を複数の部分領域に予め分割し、さらに複数の部分領域のそれぞれに対応づけて位相の回転方向を規定しており、タイミングの誤差を推定するステップは、検出したひとつの部分領域に対して規定された位相の回転方向から、入力した信号に含まれたタイミングの誤差に応じた位相の回転方向を推定してもよい。
部分領域を検出するステップは、ひとつの部分領域に含まれた任意の位相から、当該ひとつの部分領域の境界とされた位相であって、かつ入力した信号が配置されるべき位相へ向かう方向を当該ひとつの部分領域に対応した位相の回転方向して規定してもよい。導出した誤差にもとづいて、位相を補正した信号に含まれた残留の位相誤差を推定する位相誤差を推定するステップと、推定した残留の位相誤差を入力した信号の位相を補正するステップから出力された信号にフィードバックして、位相を補正した信号に含まれた残留の位相誤差を補正するステップとをさらに備え、残留の位相誤差を補正するステップは、誤差を導出するステップとタイミングの誤差を補正するステップに対して、残留の位相誤差を補正した信号を位相を補正した信号として出力してもよい。
入力するステップで入力した信号は、複数の位相信号からそれぞれ生成された複数チップのウォルシュ符号をひとつのシンボルとした信号であり、かつ入力した信号がサンプリングされたタイミングは、ひとつのシンボルを単位にして調節されており、入力した信号の位相を補正するステップは、入力した信号が配置されるべき位相を複数チップのウォルシュ符号が配置された位相に設定し、タイミングの誤差を補正した信号をひとつのシンボル単位でウォルシュ変換して、複数の相関値をそれぞれ生成し、生成した複数の相関値にもとづいて複数の位相信号を出力するステップをさらに備えてもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、信号のタイミングを逐次同期できる。
本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、IEEE802.11b規格の無線LANの無線装置、特に受信装置に関する。受信装置は、受信した信号であるCCK変調の信号をFWT(Fast Walsh Transform)演算する。さらに受信装置は、FWT演算して得られた複数の相関値の中から大きさが最大の相関値を選択し、当該選択した相関値に対応した位相信号の組合せをCCK変調に含まれた位相信号として再生する。ここで、CCK変調の信号は差動符号化した信号にもとづいて生成されているため、通常は、受信装置において絶対的な位相の補正を必要としなかった。
本実施例に係る受信装置は、受信したCCK変調の信号に対してFWT演算の前に絶対的な位相を補正し、さらにFWT演算によって生成された相関値に、相関値が同相成分の軸と直交成分の軸から離れるほど値が大きくなるような近似を行う。その結果、最終的に選択されるべき相関値は、近似した値の大きさが大きくなるような位相に配置される。そのため、当該相関値が複数の相関値の中から選択される可能性が向上して、信号の受信特性が向上する。このような受信装置において、タイミングの同期は、CCK変調が実行される数チップを単位にして行われる。そのため、数チップの終了タイミング付近ではタイミングの誤差が大きくなる可能性を有する。タイミングの誤差は、受信したCCK変調の信号に対して位相の回転を与える。そのため、本実施例に係る受信装置は、タイミングの誤差による位相の回転量および方向を導出して、受信したCCK変調の信号の位相を補正することによって、タイミングの誤差を補正する。
受信装置は、絶対的な位相を補正したCCK変調の信号の位相とCCK変調の信号が配置されるべき位相、すなわち、「π/4」、「3π/4」、「5π/4」、「7π/4」との間の位相の誤差を検出する。検出した位相の誤差に対して絶対値を求め、絶対値を平均してタイミングの誤差による位相の回転量を導出する。また、絶対的な位相を補正したCCK変調の信号が配置されるべき位相空間を複数の部分領域に分割しておく。すなわち、「0からπ/4」、「π/4からπ/2」、「π/2から3π/4」、「3π/4からπ」、「πから5π/4」、「5π/4から3π/2」、「3π/2から7π/4」、「7π/4から0」の8つの部分領域に分割しておく。
さらに、それぞれの部分領域に位相の回転方向を対応づける。前述の例では、「0からπ/4」に左回転、「π/4からπ/2」に右回転を対応付け、部分領域内の任意の位相からCCK変調の信号が配置されるべき位相、すなわち、「π/4」、「3π/4」、「5π/4」、「7π/4」に向かう回転方向を対応づける。絶対的な位相を補正したCCK変調の信号が含まれるひとつの部分領域を検出し、当該ひとつの部分領域に対応づけられた回転方向をタイミングの誤差による位相の回転方向として導出する。受信装置は、導出した位相の回転量と回転の方向にもとづいて、絶対的な位相を補正したCCK変調の信号に含まれたタイミングの誤差を補正する。
本実施例の前提として、IEEE802.11b規格におけるCCK変調の概略を説明する。CCK変調は、8ビットをひとつの単位(以下、この単位を「CCK変調単位」とする)とし、この8ビットを上位からd1、d2、・・・d8と名づける。CCK単位のうち、下位6ビットは、[d3,d4]、[d5,d6]、[d7,d8]単位でそれぞれQPSK(Quadrature Phase Shift Keying)の信号点にマッピングされる。また、マッピングした位相をそれぞれ(φ2、φ3、φ4)とする。さらに、位相φ2、φ3、φ4から8種類の拡散符号P1からP8を以下の通り生成する。
Figure 0004463004
一方、CCK変調単位のうち、上位2ビットの[d1,d2]は、DQPSK(Differntial encoding Quadrature Phase Shift Keying)の信号点配置にマッピングされ、ここではマッピングした位相をφ1とする。なお、φ1が被拡散信号に相当する。さらに、被拡散信号φ1と拡散符号P1からP8より、以下の通り8通りのチップ信号X0からX7を生成する。
Figure 0004463004
送信装置は、チップ信号X0からX7の順に送信する(以下、チップ信号X0からX7によって構成される時系列の単位も「CCK変調単位」という)。なお、IEEE802.11b規格ではCCK変調の他に、DBPSK(Differntial encoding Binary Phase Shift Keying)やDQPSKの位相変調した信号が既知の拡散符号によって拡散されて送信される。以上のような処理にもとづく、CCK変調された信号は、ウォルシュ符号とも呼ばれる。
図1は、本発明の実施例に係る通信システムのバーストフォーマットを示す。このバーストフォーマットは、IEEE802.11b規格のShortPLCPに相当する。バースト信号は、図示のごとくプリアンブル、ヘッダ、データの領域を含む。さらに、プリアンブルは、DBPSKの変調方式によって伝送速度1Mbpsで通信され、ヘッダは、DQPSKの変調方式によって伝送速度2Mbpsで通信され、データは、CCKの変調方式によって伝送速度11Mbpsで通信される。また、プリアンブルは、56ビットのSYNC、16ビットのSFDを含み、ヘッダは、8ビットのSIGNAL、8ビットのSERVICE、16ビットのLENGTH、16ビットのCRCを含む。一方、データに対応したPSDUの長さは、可変である。
図2は、本発明の実施例に係る無線装置100の構成を示す。無線装置100は、アンテナ300、スイッチ部302、直交変調部304、直交検波部306、発振器308、ゲインアンプ310、ベースバンド処理部312、制御部334を含む。また、ベースバンド処理部312は、DA部314、送信フィルタ部316、変調部318、スクランブル部320、バースト組立部322、AD部324、AGC部326、復調部26、デスクランブル部328、バースト分解部330、MACインターフェース部332を含む。また、信号としてデジタル受信信号200、出力信号202を含む。
アンテナ300は、無線周波数の信号を送受信する。スイッチ部302は、直交変調部304から入力した信号をアンテナ300へ出力、あるいはアンテナ300から入力した信号を直交検波部306へ出力する。なお、直交変調部304から入力した信号と直交検波部306へ出力する信号は中間周波数であるので、スイッチ部302は、直交変調部304から入力した信号を無線周波数に変換してアンテナ300へ出力し、アンテナ300から入力した信号を中間周波数に変換して直交検波部306へ出力する。発振器308は、所定の周波数の信号、ここでは正弦波を発振する。直交検波部306は、発振器308から入力した所定の周波数の信号にもとづいて、スイッチ部302から入力した信号を直交検波する。一般的に直交検波したベースバンドの信号は同相成分と直交成分を有するので、2本の信号線が示されるべきであるが、ここでは図を簡潔に表示するため、これらの信号線を1本で示した。以下同様である。
ゲインアンプ310は、AGC部326で設定された利得にもとづいて直交検波部306で直交検波した信号を増幅する。AGC部326は、ゲインアンプ310で増幅された信号の振幅がAD部324のダイナミックレンジに入るように利得を制御する。AD部324は、ゲインアンプ310で増幅された信号をAD変換し信号を所定のタイミングでサンプリングする。ここで、サンプリングした信号、すなわちデジタル受信信号200は、複数チップのCCK変調された信号をひとつのシンボルとした信号である。さらに、サンプリングのためのタイミング同期は、CCK変調単位でなされているものとする。例えば、CCK変調単位の開始のタイミングでは同期しているが、CCK変調単位の終了のタイミングでは同期にズレが生じている。
復調部26は、デジタル受信信号200を復調して出力信号202を出力する。すなわち、復調部26は、デジタル受信信号200に含まれたタイミングの誤差や位相の誤差を補正し、補正した信号をひとつのシンボル単位でウォルシュ変換して、複数の相関値をそれぞれ生成し、生成した複数の相関値にもとづいて複数の位相信号を出力信号202として出力する。デスクランブル部328は、デジタル受信信号200をデスクランブルする。バースト分解部330は、バースト信号を構成した信号を分解して、MACインターフェース部332に出力する。また、MACインターフェース部332は送信すべきビット系列を外部から入力する。
バースト組立部322は、入力したビット系列からバースト信号を構成する。スクランブル部320は、バースト信号をスクランブルする。変調部318は、スクランブル部320から入力した信号を変調して送信フィルタ部316に出力する。ここで、変調にはスペクトル拡散も含む。送信フィルタ部316は、変調した信号の高周波成分を遮断し、DA部314が送信フィルタ部316から入力した信号をDA変換する。直交変調部304は、DA部314から入力した信号を直交変調して、中間周波数の信号をスイッチ部302に出力する。制御部28は、無線装置100のタイミング等を制御する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリのロードされた予約管理機能のあるプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
図3は、復調部26の構成を示す。復調部26は、初期補正部130、等化器42、相関器44、PSK復調部46、初期推定部48、残留補正部56、DFE58、FWT演算部50、最大値検索部52、φ1復調部54、スイッチ部60を含む。また、信号として、復調信号204、位相誤差信号206、φ1信号208、φ成分信号210、ウォルシュ変換値FWTを含む。
初期補正部130は、後述の初期推定部48から入力した位相誤差信号206によって、デジタル受信信号200の位相を回転する。当該回転の結果、CCK変調の信号が配置されるべき位相のいずれかに近づくように、すなわち、デジタル受信信号200の信号点が同相成分の軸と直交成分の軸の中間の位相、ここではπ/4、3π/4、5π/4、7π/4のいずれかに近づくように補正される。なお、π/4、3π/4、5π/4、7π/4は、複数チップのウォルシュ符号が配置された位相である。また、初期補正部130での回転は、複素成分のベクトル演算によってなされてもよいし、位相成分のみの加減演算によってなされてもよい。
等化器42は、初期補正部130から出力された信号に含まれたマルチパス伝送路の影響を除去する。等化器42は、トランスバーサル型のフィルタによって構成される。また、等化器42のタップ係数が設定されるまで、等化器42は等化の処理を実行せず、入力された信号をそのまま出力してもよい。
相関器44は、図1のバーストフォーマットのプリアンブルとヘッダのように、所定の拡散符号で拡散された位相変調信号を逆拡散するために、等化器42から出力された信号を当該拡散符号で相関処理する。また、相関器44は、図1のバーストフォーマットのデータがCCK変調されていない場合に、データに対しても使用される。相関処理は、スライディング型の相関処理であってもよいし、マッチドフィルタ型の相関処理であってもよい。
PSK復調部46は、相関器44で逆拡散した逆拡散信号を復調する。逆拡散信号の変調方式がDBPSKあるいはDQPSKであるので、復調は遅延検波で実行される。初期推定部48は、復調信号204にもとづいて位相誤差を検出する。詳細は後述するが、検出した位相誤差は、位相誤差信号206として出力される。
残留補正部56は、図1のバーストフォーマットのデータ区間にわたって、等化器42で等化された信号に含まれた残留位相の誤差とタイミングの誤差を補正する。補正方法の詳細は後述するが、初期補正部130でなされた位相の補正の結果、残留した位相誤差を補正する。また、図1のAD部324でなされたアナログ−デジタル変換の結果、生じたタイミング誤差を補正する。
DFE58は、判定帰還型の等化器であり、残留補正部56から出力された信号、すなわち残留した位相誤差とタイミング誤差が補正された信号を等化する。主として、信号に含まれた遅延波の成分を除去する。
FWT演算部50は、図1のバーストフォーマットのデータ区間のようにCCK変調された信号に対応した値であって、DFE58から出力された信号をFWT演算し、ウォルシュ変換値FWTを出力する。FWT演算部50の処理をより具体的に説明すると、CCK変調単位のチップ信号を入力して、チップ信号間の相関処理によって、64個のウォルシュ変換値FWT、すなわち相関値を出力する。
最大値検索部52は、64個のウォルシュ変換値FWTを入力し、それらの大きさにもとづいて、ひとつのウォルシュ変換値FWTを選択する。さらに、選択したひとつのウォルシュ変換値FWTに応じて、φ1が遅延検波される前の信号に相当したφ1信号208と、φ2からφ4の組合せをφ成分信号210として出力する。φ1復調部54は、φ1信号208を遅延検波して、φ1を生成する。さらに、φ1からφ4の組合せから、伝送すべき情報信号のd1、d2、・・・d8を再生して出力する。すなわち、FWT演算部50、最大値検索部52、φ1復調部54は、初期補正部130、残留補正部56によって位相誤差とタイミング誤差がそれぞれ補正された信号を復調する。
スイッチ部60は、PSK復調部46から出力された信号とφ1復調部54から出力された信号のいずれかを選択し、出力信号202として出力する。図1のバーストフォーマットのプリアンブルとヘッダの区間では、PSK復調部46から出力された信号を選択し、バーストフォーマットのデータ領域の区間では、φ1復調部54から出力された信号を選択する。
図4は、初期推定部48の構成を示す。初期推定部48は、記憶部74、判定部70、複素共役部72、スイッチ部76、乗算部78を含む。
記憶部74は、図1のバーストフォーマットのプリアンブル区間に対応した既知の信号を記憶し、プリアンブル期間に該当するタイミングで記憶した既知の信号を出力する。プリアンブル区間の指示は、図2の制御部334によって図示しない信号線を介してなされる。
判定部70は、図1のバーストフォーマットのヘッダ区間において、判定のためのしきい値にもとづいて、復調信号204の値を判定する。当該判定は、復調信号204の同相成分と直交成分に対してそれぞれ行う。複素共役部72は、判定部70で判定した信号の複素共役を計算する。スイッチ部76は、プリアンブル区間で記憶部74からの信号を参照信号として出力し、ヘッダ区間で複素共役部72からの信号を参照信号として出力する。
乗算部78は、スイッチ部76から出力される参照信号と、復調信号204を乗算し、参照信号に対する復調信号204の位相誤差を位相誤差信号206として出力する。なお、図1のバーストフォーマットのデータ区間以降では、ヘッダ区間で導出した位相誤差信号206を引き続き出力してもよい。
図5は、残留補正部56の構成を示す。残留補正部56は、第1回転部140、第2回転部142、誤差導出部144、第1平均部146、第1係数乗算部148、積算部150、第2平均部152、第2係数乗算部154、領域判定部156、決定部158を含む。
領域判定部156は、CCK変調された信号が配置されるべき位相平面を予め分割し、分割によって生成される複数の部分領域を規定する。図6(a)−(b)は、領域判定部156で規定した部分領域を示す。図6(a)は、CCK変調された信号が配置されるべき位相平面を示しており、当該位相平面は、図示のごとく同相軸(以下、「I軸」という)と直交軸(以下、「Q軸」という)によって規定されている。図中のX印が、CCK変調された信号が配置されるべき信号点を示しており、位相が「π/4」、「3π/4」、「5π/4」、「7π/4」になるような信号点に相当する。さらに、CCK変調された信号が配置されるべき位相とI軸とQ軸を境界にして位相平面を分割し、8つの部分領域を規定する。ここで、境界は、前述の4つの位相と「0」、「π/2」、「π」、「3π/2」によって規定される。以上のように規定された8つの領域は、互いに重複せず、さらに図示のごとく「A」から「H」と示される。
さらに、領域判定部156は、8つの部分領域のそれぞれに対応づけた位相の回転方向を規定する。具体的には、ひとつの部分領域に含まれた任意の位相から、当該ひとつの部分領域の境界とされた位相であって、かつCCK変調された信号が配置されるべき位相へ向かう方向を当該ひとつの部分領域に対して規定する。図の部分領域「A」には、部分領域「A」の中の所定の位相から「π/4」に向かう方向、すなわち左回りの方向を対応づける。そのほかの部分領域も同様に対応付け、部分領域「C」、「E」、「G」に左回りの方向を対応付け、また部分領域「B」、「D」、「F」、「H」に右回りの方向を対応づける。
以上のように予め規定しており、領域判定部156は、8つの部分領域の中から、入力した信号の位相に対応したひとつの部分領域を検出し、さらに検出したひとつの部分領域に対応した回転の方向を導出する。また、図6(a)とは別に規定した複数の部分領域を図6(b)に示す。図6(b)に示した複数の部分領域は、図6(a)に示したものと類似するが、部分領域「A」と「B」の間に新たな部分領域「α」を規定する。また、図示のごとく、部分領域「A」から「H」の間に新たな部分領域「β」から「δ」を規定する。ここで、新たな部分領域「α」から「δ」には、回転の方向を対応づけない。すなわち、入力した信号の位相が新たな部分領域「α」から「δ」に該当する場合、後述の第2回転部142で位相の回転を実行しない。
図5に戻る。第1回転部140は、後述する積算部150から出力された位相にもとづいて、入力した信号に含まれた残留の位相誤差を補正する。ここで、積算部150から出力された信号は、入力した信号に含まれた残留の位相誤差に対応する。さらに、第1回転部140は、残留の位相誤差を補正した信号を後述の誤差導出部144と第2回転部142に出力する。
誤差導出部144は、CCK変調された信号が配置されるべき信号点のいずれかと、残留の位相誤差を補正した信号の信号点との誤差を検出する。例えば、残留の位相誤差を補正した信号を複素数で示し、両者の外積を計算する。また、残留の位相誤差を補正した信号をスカラー量で示し、両者の位相差を計算してもよい。
第1平均部146は、誤差を平均して雑音の影響を抑圧する。また、平均以外の統計処理であってもよい。位相差が複素数で示されている場合は、同相(I)成分と直交(Q)成分に対してそれぞれ平均を計算する。また、位相差がスカラー量で示されている場合は、スカラー量を平均する。第1係数乗算部148は、平均した値に係数を乗算する。
積算部150は、平均した値を積算する。すなわち、平均した値がスカラー量である場合は、平均した量を順次加算していき、平均した値が複素数である場合は、平均した値を順次複素乗算する。さらに、位相を反転する。積算部150は、積算した結果を第1回転部140にフィードバックする。
第2平均部152は、誤差の絶対値を計算し、絶対値を平均する。また、平均以外の統計処理であってもよい。誤差の絶対値が複素数で示されている場合は、同相成分と直交成分に対してそれぞれ平均を計算する。また、誤差の絶対値がスカラー量で示されている場合は、スカラー量を平均する。平均した絶対値は、位相誤差の大きさに相当する。第2係数乗算部154は、平均した絶対値に係数を乗算する。
決定部158は、領域判定部156から入力した回転の方向と、第2係数乗算部154から入力した位相誤差の大きさから、タイミング誤差に応じた位相の回転の方向と回転量を決定する。例えば、入力した回転の方向が左回りの方向であり、入力した位相誤差の大きさがπ/16である場合に、決定部158は、左回りの方向にπ/16だけ回転することを決定する。ここで、決定した位相の回転の方向と回転量は、複素数であってもよく、スカラー量であってもよい。なお、決定した位相の回転の方向と回転量がタイミング誤差に依存する理由については、後述する。
第2回転部142は、決定部158から入力した位相の回転の方向と回転量にもとづいて、第1回転部140で残留の位相誤差を補正した信号の位相を再び補正することによって、CCK変更された信号に含まれたタイミングの誤差を補正する。
図7は、AD部324でAD変換された信号のタイミング誤差を示す。図の横軸は、時間を示しており、矢印で示した区間は1シンボルの区間、すなわちCCK変調単位を示す。前述のごとく、CCK変調単位は複数のチップ信号で構成されており、さらにひとつのチップ信号が複数のサンプルで構成されている場合もあるので、矢印で示した区間には複数のサンプルが含まれている。図の縦軸は、タイミング誤差を示しており、「0」はタイミングが同期していることに相当する。タイミング誤差が「前方」であれば、AD部324でなされるサンプリングのタイミングが、理想的なタイミングより進んでおり、タイミング誤差が「後方」であれば、AD部324でなされるサンプリングのタイミングが、理想的なタイミングより遅れている。
ここでは、前述のごとくひとつのシンボルが開始される時点でタイミングを調節する。また、AD部324でサンプリングするタイミングの周期が理想的なタイミングの周期よりも遅れているものとする。そのため、AD部324は、ひとつのシンボル単位で所定の方法によって、タイミング誤差が「前方」になるようにタイミングを調節する。時間の経過とともに、タイミング誤差に遅れが生じ、ひとつのシンボルの終わりにおいて、タイミング誤差が「後方」になっている。すなわち、AD部324でサンプリングするためのタイミングを発生するクロックは、入力した信号に対してタイミング誤差を有しているために、時間の経過とともに、タイミング誤差を重ねていく。本発明は、ひとつのシンボルの区間で生じるタイミング誤差をサンプリングのタイミングを単位にして補正するものである。なお、図においてタイミング調節を実行する際に、タイミング誤差が「前方」になるように調節しているのは、タイミング誤差の絶対値を小さくするためである。次に、このように変化するタイミング誤差と位相の誤差の関係を説明する。
図8(a)−(d)は、タイミング誤差の影響を示す。図8(a)は、タイミングの誤差がない場合のCCK変調の信号の同相(I)成分と直交(Q)成分の波形を示す。図中に示した「1」、「2」、「3」、「4」は、信号をサンプリングするタイミングを示しており、ここでは、それぞれ波形の最大値および最小値でサンプリングしているので、タイミングの誤差がない。図8(b)は、図8(a)の波形のコンスタレーションを示す。タイミングの誤差がないので、CCK変調の信号はQPSKの信号点、すなわち「π/4」、「3π/4」、「5π/4」、「7π/4」に配置されている。
図8(c)は、タイミングの誤差が含まれる場合のCCK変調の信号のI成分とQ成分の波形を示す。図中に示した「1」、「2」、「3」、「4」は、図8(a)と異なって波形の最大値および最小値から後方にずれており、このずれに相当したタイミングの誤差を含む。図8(d)は、図8(c)の波形のコンスタレーションを示す。タイミングの誤差が含まれるので、CCK変調の信号はQPSKの信号点(図中の「×」印)、すなわち「π/4」、「3π/4」、「5π/4」、「7π/4」からずれた位置に配置されている。以上のように、信号にタイミング誤差が含まれていれば、位相に誤差が生じる。ここでは、タイミング誤差を一定の値にしたが、タイミング誤差を大きくすれば、位相の誤差も大きくなる。本発明はこの関係を利用し、図5の決定部158において位相の誤差からタイミング誤差を導出している。
図9は、FWT演算部50の構成を示す。FWT演算部50は、φ2推定部80と総称される第1φ2推定部80a、第2φ2推定部80b、第3φ2推定部80c、第4φ2推定部80d、φ3推定部82と総称される第1φ3推定部82a、第2φ3推定部82b、φ4推定部84を含む。また信号として、チップ信号Xと総称されるX0、X1、X2、X3、X4、X5、X6、X7、第1相関値Yと総称されるY0−0、Y0−1、Y0−2、Y0−3、Y1−0、Y1−1、Y1−2、Y1−3、Y2−0、Y2−1、Y2−2、Y2−3、Y3−0、Y3−1、Y3−2、Y3−3、第2相関値Zと総称されるZ0、Z1、Z15、Z16、Z17、Z31、ウォルシュ変換値FWTと総称されるFWT0、FWT1、FWT63を含む。
φ2推定部80は、それぞれふたつのチップ信号X、例えば、X0とX1を入力し、X0の位相を0、π/2、π、3π/2回転させて、X1と回転させたX0をそれぞれ加算して、Y0−0からY0−3をそれぞれ出力する。ここでは、X0を回転させた位相とφ2の位相が等しい場合に、該当する第1相関値Yの大きさが大きくなる。その結果、φ2を推定できる。
φ3推定部82は、φ2推定部80と同様に動作し、例えば、Y0−0からY0−3とY1−0からY1−3を入力して、Z0からZ15をそれぞれ出力し、第2相関値Zの大きさよりφ3を推定できる。φ4推定部84は、φ2推定部80と同様に動作し、Z0からZ31を入力して、FWT0からFWT63を出力し、ウォルシュ変換値FWTの大きさよりφ4、さらにφ1を推定できる。
図10は、第1φ2推定部80aの構成を示す。第1φ2推定部80aは、0位相回転部86、π/2位相回転部88、π位相回転部90、3/2π位相回転部92、加算部94と総称される第1加算部94a、第2加算部94b、第3加算部94c、第4加算部94dを含む。
0位相回転部86、π/2位相回転部88、π位相回転部90、3/2π位相回転部92は、X0の位相をそれぞれ0、π/2、π、3π/2回転させる。それらの出力は、加算部94でX1と加算される。
図11は、最大値検索部52の構成を示す。最大値検索部52は、選択部110、近似部112、比較部114と総称される第1比較部114a、第2比較部114b、第3比較部114c、第4比較部114d、第5比較部114e、第6比較部114f、第7比較部114g、最大値比較部116、最大値格納部118、最大値Index格納部120を含む。
選択部110は、FWT0からFWT63の64個のデータを入力し、8個ずつのデータを出力する。例えば、最初のタイミングでFWT0からFWT7を出力し、次のタイミングでFWT8からFWT15を出力する。
近似部112は、ウォルシュ変換値FWTの大きさを近似によって求める。ここでは、ウォルシュ変換値FWTの同相成分と直交成分をそれぞれIとQとすれば、絶対値和によって大きさRを求める。
(数3)
R = |I|+|Q|
比較部114は、8個のRを比較し、最大の大きさをもつウォルシュ変換値FWTを選択する。
最大値比較部116は、FWT0からFWT63の中で、前回の8個のウォルシュ変換値FWTの最大値と比較し、大きいほうを選択する。最終的には、FWT0からFWT63の中で最大の大きさをもつウォルシュ変換値FWTを選択する。選択されたウォルシュ変換値FWTは最大値格納部118に格納される。
最大値Index格納部120は、最大値格納部118に最終的に格納された最大のウォルシュ変換値FWTに対応したφ2からφ4の組合せを出力する。
図12は、最大値検索部52で選択されるべきウォルシュ変換した信号のコンスタレーションを示す。図中の○印は、位相誤差のない場合の理想的なウォルシュ変換値FWTのコンスタレーションを示す。点線は、ウォルシュ変換値FWTの大きさを通常の2乗和で求めた場合と同様に一定の大きさを示す。一方、図中に示した正方形は、点線に対応したウォルシュ変換値FWTを前述の絶対値和で求めた場合の大きさである。なお、図中のI軸とQ軸に示した「1」と「−1」の値は、ウォルシュ変換値FWTを正規化した場合の値であって、実際のウォルシュ変換値FWTはこれ以外の値であってもよい。
正方形と点線のずれが、近似による誤差を示し、特にπ/4、3π/4、5π/4、7π/4で大きくなっている。しかしながら、図示のごとく、ウォルシュ変換値FWTのコンスタレーションが配置されるべき位相で近似した値が大きくなるため、当該ウォルシュ変換値FWTが選択されやすくなり、受信特性が向上する。一方、位相誤差およびタイミング誤差があれば、ウォルシュ変換値FWTのコンスタレーションは、図中の×印となるため、当該ウォルシュ変換値FWTが選択されにくくなり、受信特性の劣化の可能性がある。これを防止するために、本実施例では、初期補正部130、第1回転部140、第2回転部142で位相の誤差とタイミングの誤差を補正している。
以上の構成による復調部26の動作を説明する。プリアンブルとヘッダ区間において、相関器44は、等化器42で等化した信号を逆拡散し、PSK復調部46は復調し、それに応じてスイッチ部60は出力信号202を出力する。また、初期推定部48は、復調信号204から位相誤差を検出して、初期補正部130は検出された位相誤差にもとづいて入力した信号の位相を補正する。すなわち、入力した信号の位相は、CCK変調された信号が配置されるべき位相に近づくように補正される。また、入力した信号はCCK変調単位でタイミングが調節されている。一方、データ区間において、初期補正部130は、位相を補正した信号を等化器42に出力する。第1回転部140は、等化器42で等化した信号に含まれた残留の位相誤差を補正する。ここで、残留の位相誤差を補正するための補正信号は、誤差導出部144と第1平均部146において、残留の位相誤差を補正した信号の位相とCCK変調された信号が配置されるべき位相の間の誤差を平均して導出される。
また、第2平均部152は、当該誤差の絶対値を平均してタイミング誤差の大きさを導出し、領域判定部156は、等化器42で等化した信号の位相と予め規定した複数の部分領域の対応から、タイミング誤差の補正の方向を導出する。決定部158は、入力した信号に含まれたタイミング誤差に対応した位相の回転方向と回転量を導出し、第2回転部142は、導出した位相の回転方向と回転量によって、第1回転部140で残留の位相誤差を補正した信号の位相を補正し、DFE58に出力する。FWT演算部50は、DFE58から入力した信号をFWT演算してウォルシュ変換値FWTを求め、最大値検索部52は、ウォルシュ変換値FWTの大きさを絶対値和で求めて、最大のウォルシュ変換値FWTに対応したφ2からφ4の組合せを出力し、φ1復調部54はφ1を出力する。
本発明の実施例によれば、入力した信号の絶対的な位相を予め補正しているので、補正した信号が配置されるべき位相から、入力した信号に含まれたタイミングの誤差にもとづく位相回転の方向を推定できる。また、入力した信号の絶対的な位相を予め補正しているので、補正した信号が配置されるべき位相と補正した信号の位相の誤差の絶対値から、入力した信号に含まれたタイミング誤差の大きさを推定できる。タイミング誤差をサンプル単位で実行するので、伝送される信号の品質を向上できる。また、複数の部分領域に位相回転を行わない部分領域を設けるので、誤判定を防止できる。また、補正した信号が配置されるべき位相と補正した信号の位相の誤差の絶対値から、補正した信号に含まれた残留の位相誤差も推定できる。また、残留の位相誤差を推定する場合とタイミング誤差を推定する場合で、処理の一部を共用できるので、回路規模を小さくできる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例において、復調部26は、スペクトル拡散した信号を復調し、残留補正部56は、CCK変調の信号に含まれた位相の誤差にもとづいて、残留位相の誤差およびタイミングの誤差を推定した。しかしながらこれに限らず例えば、スペクトル拡散されていないシングルキャリアの信号やマルチキャリアの信号を処理対象にしてもよい。その場合においても、シングルキャリアの信号やマルチキャリアの信号は位相空間の所定の位相に配置されており、残留補正部56は、実施例と同様に誤差を小さくするように残留の位相誤差とタイミングの誤差を推定する。本変形例によれば、様々な通信システムに本発明を適用できる。つまり、信号点が所定の位相に配置されていればよい。
本発明の実施例において、近似部112は、ウォルシュ変換値FWTの大きさの近似値Rを絶対値和によって求めている。しかしこれに限らず例えば、以下の通りにウォルシュ変換値FWTの大きさの近似値Rを求めてもよい。
(数4)
R = Max{|I|,|Q|}+K×Min{|I|,|Q|}
(K>0)
また、ウォルシュ変換値FWTの位相とウォルシュ符号が配置された位相のいずれかとの誤差を計算し、誤差が小さくなればそれと反対に大きくなるような係数を計算する。ウォルシュ変換値FWTのIとQの2乗和に係数を乗算して、近似値Rを求めてもよい。本変形例によれば、受信特性をより向上できる。つまり、ウォルシュ変換値FWTの位相が、ウォルシュ符号が配置された位相のいずれかに近づくほど、近似値Rの大きさが大きくなればよい。さらに別の変形例として、前述の変形例では、IとQの2乗和に係数Kを乗算して、近似値Rを求めたが、それに限定されず、IとQの2乗和でも本発明の目的を達成できる。
本発明の実施例において、初期補正部130は、受信した信号の位相誤差を補正している。しかしこれに限らず例えば、位相誤差とは別に周波数誤差を補正してもよい。本変形例によれば、位相誤差の検出範囲を狭くでき、それに応じて位相誤差の検出精度を高くできるため、受信特性を向上できる。すなわち、受信した信号の位相誤差が補正されていればよい。
本発明の実施例に係る通信システムのバーストフォーマットを示す図である。 本発明の実施例に係る無線装置の構成を示す図である。 図2の復調部の構成を示す図である。 図3の初期推定部の構成を示す図である。 図3の残留補正部の構成を示す図である。 図6(a)−(b)は、図5の領域判定部で規定した部分領域を示す図である。 図1のAD部でAD変換された信号のタイミング誤差を示す図である。 図8(a)−(d)は、タイミング誤差の影響を示した図である。 図3のFWT演算部の構成を示す図である。 図3の第1φ2推定部の構成を示す図である。 図3の最大値検索部の構成を示す図である。 図3の最大値検索部で選択されるべきウォルシュ変換した信号のコンスタレーションを示す図である。
符号の説明
26 復調部、 42 等化器、 44 相関器、 46 PSK復調部、 48 初期推定部、 50 FWT演算部、 52 最大値検索部、 54 φ1復調部、 56 残留補正部、 58 DFE、 60 スイッチ部、 70 判定部、 72 複素共役部、 74 記憶部、 76 スイッチ部、 78 乗算部、 80 φ2推定部、 82 φ3推定部、 84 φ4推定部、 86 0位相回転部、 88 π/2位相回転部、 90 π位相回転部、 92 3/2π位相回転部、 94 加算部、 100 無線装置、 110 選択部、 112 近似部、 114 比較部、 116 最大値比較部、 118 最大値格納部、 120 最大値Index格納部、 130 初期補正部、 140 第1回転部、 142 第2回転部、 144 誤差導出部、 146 第1平均部、 148 第1係数乗算部、 150 積算部、 152 第2平均部、 154 第2係数乗算部、 156 領域判定部、 158 決定部、 200 デジタル受信信号、 202 出力信号、 204 復調信号、 206 位相誤差信号、 208 φ1信号、 210 φ成分信号、 300 アンテナ、 302 スイッチ部、 304 直交変調部、 306 直交検波部、 308 発振器、 310 ゲインアンプ、 312 ベースバンド処理部、 314 DA部、 316 送信フィルタ部、 318 変調部、 320 スクランブル部、 322 バースト組立部、 324 AD部、 326 AGC部、 328 デスクランブル部、 330 バースト分解部、 332 MACインターフェース部、 334 制御部、 FWT ウォルシュ変換値、 X チップ信号、 Y 第1相関値、 Z 第2相関値。

Claims (8)

  1. 所定のタイミングでサンプリングされた信号を入力する入力部と、
    前記入力した信号が配置されるべき位相のいずれかに近づくように、前記入力した信号の位相を補正する初期位相補正部と、
    前記入力した信号が配置されるべき位相平面を複数の部分領域に予め分割しておき、前記複数の部分領域の中から前記位相を補正した信号に対応したひとつの部分領域を検出する領域検出部と、
    前記入力した信号が配置されるべき信号点のいずれかと前記位相を補正した信号の信号点との誤差を導出する導出部と、
    前記導出した誤差の大きさと前記検出したひとつの部分領域にもとづいて、前記入力した信号に含まれたタイミングの誤差を推定するタイミング誤差推定部と、
    前記推定したタイミングの誤差にもとづいて、前記位相を補正した信号の位相を再び補正することによって、前記入力した信号に含まれたタイミングの誤差を補正するタイミング誤差補正部と、
    を備えることを特徴とする受信装置。
  2. 前記入力部に入力した信号がサンプリングされたタイミングは、所定の間隔で調節されていることを特徴とする請求項1に記載の受信装置。
  3. 前記タイミング誤差推定部は、前記導出した誤差の大きさを統計処理し、当該統計処理した誤差の大きさから、前記入力した信号に含まれたタイミングの誤差の大きさを推定することを特徴とする請求項1または2に記載の受信装置。
  4. 前記領域検出部は、前記入力した信号が配置されるべき位相を境界にして、かつ前記複数の部分領域が重複しないように、前記入力した信号が配置されるべき位相平面を複数の部分領域に予め分割し、さらに前記複数の部分領域のそれぞれに対応づけて位相の回転方向を規定しており、
    前記タイミング誤差推定部は、前記検出したひとつの部分領域に対して規定された位相の回転方向から、前記入力した信号に含まれたタイミングの誤差に応じた位相の回転方向を推定することを特徴とする請求項1から3のいずれかに記載の受信装置。
  5. 前記領域検出部は、ひとつの部分領域に含まれた任意の位相から、当該ひとつの部分領域の境界とされた位相であって、かつ前記入力した信号が配置されるべき位相へ向かう方向を当該ひとつの部分領域に対応した位相の回転方向して規定することを特徴とする請求項4に記載の受信装置。
  6. 前記導出した誤差にもとづいて、前記位相を補正した信号に含まれた残留の位相誤差を推定する位相誤差推定部と、
    前記推定した残留の位相誤差を前記初期位相補正部から出力された信号にフィードバックして、位相を補正した信号に含まれた残留の位相誤差を補正する残留位相補正部とをさらに備え、
    前記残留位相補正部は、前記導出部と前記タイミング誤差補正部に対して、前記残留の位相誤差を補正した信号を前記位相を補正した信号として出力することを特徴とする請求項1から4のいずれかに記載の受信装置。
  7. 前記入力部に入力した信号は、複数の位相信号からそれぞれ生成された複数チップのウォルシュ符号をひとつのシンボルとした信号であり、かつ前記入力した信号がサンプリングされたタイミングは、ひとつのシンボルを単位にして調節されており、
    前記初期位相補正部は、前記入力した信号が配置されるべき位相を前記複数チップのウォルシュ符号が配置された位相に設定し、
    前記タイミングの誤差を補正した信号をひとつのシンボル単位でウォルシュ変換して、複数の相関値をそれぞれ生成し、前記生成した複数の相関値にもとづいて複数の位相信号を出力する復調部をさらに備えることを特徴とする請求項1から6のいずれかに記載の受信装置。
  8. 所定のタイミングでサンプリングされた信号を入力するステップと、
    前記入力した信号が配置されるべき位相のいずれかに近づくように、前記入力した信号の位相を補正するステップと、
    前記入力した信号が配置されるべき位相平面を複数の部分領域に予め分割しておき、前記複数の部分領域の中から前記位相を補正した信号に対応したひとつの部分領域を検出するステップと、
    前記入力した信号が配置されるべき信号点のいずれかと前記位相を補正した信号の信号点との誤差を導出するステップと、
    前記導出した誤差の大きさと前記検出したひとつの部分領域にもとづいて、前記入力した信号に含まれたタイミングの誤差を推定するステップと、
    前記推定したタイミングの誤差にもとづいて、前記位相を補正した信号の位相を再び補正することによって、前記入力した信号に含まれたタイミングの誤差を補正するステップと、
    を備えることを特徴とする受信方法。
JP2004157481A 2004-05-27 2004-05-27 受信方法および装置 Expired - Lifetime JP4463004B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157481A JP4463004B2 (ja) 2004-05-27 2004-05-27 受信方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157481A JP4463004B2 (ja) 2004-05-27 2004-05-27 受信方法および装置

Publications (2)

Publication Number Publication Date
JP2005341230A JP2005341230A (ja) 2005-12-08
JP4463004B2 true JP4463004B2 (ja) 2010-05-12

Family

ID=35494282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157481A Expired - Lifetime JP4463004B2 (ja) 2004-05-27 2004-05-27 受信方法および装置

Country Status (1)

Country Link
JP (1) JP4463004B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2547057A1 (en) * 2011-07-15 2013-01-16 ST-Ericsson SA A method for demodulating the HT-SIG field used in WLAN standard

Also Published As

Publication number Publication date
JP2005341230A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
US7889782B2 (en) Joint de-spreading and frequency correction using a correlator
US8040937B2 (en) Selective noise cancellation of a spread spectrum signal
US7239675B2 (en) GFSK receiver
JP3108051B2 (ja) 通信信号プロセッサおよび通信装置により使用される多帯域多モードトランシーバ
JP4098096B2 (ja) スペクトル拡散受信装置
US7486748B2 (en) Method and system for signal quality measurement based on mean phase error magnitude of a signal
US7991043B2 (en) Hybrid polyphase and joint time-frequency detection
US20050220186A1 (en) Timing adjustment method and digital filter and receiver using the method
JP4346465B2 (ja) 受信方法および装置
US7539167B2 (en) Spread spectrum receiver and method for carrier frequency offset compensation in such a spread spectrum receiver
JP4463004B2 (ja) 受信方法および装置
JP3971861B2 (ja) Cdma受信信号の位相補正装置
KR100921544B1 (ko) 초기 주파수 추정 및 피드백 추적에 의한 주파수 오차 교정 시스템
KR20020067601A (ko) 스프레드 스펙트럼 통신 시스템에서의 옵셋 보정
US7394847B2 (en) Receiving method and receiver with high-precision signal estimation
US6556619B2 (en) Frequency adjusting circuit in code division multiple access communication system
JP3637812B2 (ja) Cdma通信装置
US20060008036A1 (en) Receiving method and receiving apparatus
JP4485297B2 (ja) 復調回路集積の半導体集積回路、復調方法及び受信機
JP2005286868A (ja) 受信方法および装置
JP4148879B2 (ja) 受信方法および装置
JP4148880B2 (ja) 受信方法および装置
JP4150345B2 (ja) 初期周波数推定及びフィードバックトラッキングによる周波数エラー訂正システム
JP4314330B2 (ja) 信号処理装置及び方法
JP2004260531A (ja) タイミング検出方法と装置およびそれを利用した受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4463004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

EXPY Cancellation because of completion of term